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Exceptional points (EPs), as an exclusive feature of a non-Hermitian system, support coalescing
states to be alternative stable state beyond the ground state. In this work, we explore the influ-
ence of non-Hermitian impurities on the dynamic formation of condensate states in one-, two-, and
three-dimensional extended Bose-Hubbard systems with strong on-site interaction. Based on the
solution for the hardcore limit, we show exactly that condensate modes with off-diagonal long-range
order (ODLRO) can exist when certain system parameters satisfy specific matching conditions.
Under open boundary conditions, the condensate states become coalescing states when the non-
Hermitian PT -symmetric boundary gives rise to the EPs. The fundamental mechanism behind this
phenomenon is uncovered through analyzing the scattering dynamics of many-particle wavepackets
at the non-Hermitian boundaries. The EP dynamics facilitate the dynamic generation of conden-
sate states with non-zero momentum. To further substantiate the theoretical findings, numerical
simulations are conducted. This study not only unveils the potential condensation of interacting
bosons but also offers an approach for the engineering of condensate states.

I. INTRODUCTION

Recent developments in cold atom experiments provide
a versatile platform for realizing various phases of inter-
acting and non-interacting bosonic systems [1–4] . Avail-
able experimental setups nowadays allow for the control
of both geometry and interactions, so as to investigate
the real-time evolution of quantum many-body systems
directly with engineered model Hamiltonians [1, 5, 6]. It
thus boosts the theoretical predictions of exotic quantum
phases in interacting systems, which then might be real-
ized and tested in experiments. Exact solutions for quan-
tum many-body systems are rare, but important for pro-
viding valuable insights for the characterization of new
forms of quantum matter and dynamic behaviors.

Bose-Einstein condensation (BEC) is one of the most
striking manifestations of the quantum nature of matter
on the macroscopic scale [7–9]. It represents a formation
of a collective quantum state of free bosons. Intuitively,
on-site repulsive interactions should block the formation
of BEC under the moderate particle density. A lot of
effort has been devoted to investigate and understand the
role of particle-particle interactions on the occurrence of
BEC [10, 11].

On the other hand, recent years have seen a grow-
ing interest in non-Hermitian descriptions of condensed-
matter systems [12–28] It has been shown that the inter-
play between non-Hermiticity and interaction can give
rise to exotic quantum many-body effect, ranging from
non-Hermitian extensions of Kondo effect [17, 29], many-
body localization [23], Fermi surface in coordinate space
[30], to fermionic superfluidity [20, 31]. The cooperation
between the non-Hermiticity and interaction may lead
to rich quantum phases due to the peculiarity of non-
Hermitian system.

Exceptional points (EPs), as an exclusive feature
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of a non-Hermitian system, are degeneracies of non-
Hermitian operators [32–35]. The corresponding eigen-
states coalesce into one state, resulting in the incomplete-
ness of Hilbert space. The peculiar features around EP
have sparked tremendous attention to the classical and
quantum photonic systems [36–42].Notably, a coalescing
state has an exclusive feature. On the one hand, it is an
eigenstate of the Hamiltonian, on the other hand, it has
the advantage that it is also a target state for a long-time
evolution of various initial states. In this sense, a coalesc-
ing state is an alternative stable state beyond the ground
state. Given the above rapidly growing fields in exper-
imental and theoretical perspectives, we are motivated
to investigate the impact of non-Hermitian impurities on
the dynamic formation of condensate states of interacting
bosons.

In this paper, we study one-, two-, and three-
dimensional extended Bose-Hubbard systems with strong
on-site interaction. The exact solution for the hardcore
limit shows that there exists condensate modes when the
system parameters meet the matching conditions. It also
allows us to calculate the correlation function for any
size system, so as to prove that condensate states in-
deed possesses off-diagonal long-range order (ODLRO)
[43]. We focus on the impact of non-Hermitian impu-
rities on the dynamic formation of condensate states.
For open boundary condition, the condensate states be-
come coalescing states when the non-Hermitian PT -
symmetric boundary induces the EPs. The underlying
mechanism is revealed by the reflectionless absorption of
many-particle wavepacket with resonant momentum by
the non-Hermitian boundary. In parallel, the EP dynam-
ics allows the dynamic generation of condensate states
with nonzero momentum. We perform numerical simula-
tions for finite-size system to demonstrate and verify the
theoretical results. The finding not only reveals the possi-
ble condensation of interaction bosons, but also provides
a method for condensate state engineering in an alterna-
tive way. The implications of this work are significant for
both theoretical and practical applications in the realm
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of quantum many-body systems and could pave the way
for innovative strategies in quantum state manipulation
and control.

This paper is organized as follows. In Sec. II, we in-
troduce the model Hamiltonian and its condensate eigen-
state. In Sec. III, we derive the exact condition for
coalescing condensate state. In Sec. IV, we perform
the numerical simulations to demonstrate reflectionless
scattering of many-particle Gaussian wavepacket at non-
Hermitian boundary. In Sec. V, we present the possibil-
ity of dynamically generating condensate state with an
arbitrary initial state. Finally, we summarize our results
in Sec. VI.

II. MODEL AND CONDENSATE STATES

We start our study from a general form of the Hamil-
tonian on a three-dimensional lattice N1 ×N2 ×N3

H =

3∑
α=1

Jα
∑
r

1

2
â†râr+eα

+H.c.+

3∑
α=1

Vα
∑
r

n̂rn̂r+eα

+

3∑
α=1

∑
r

(µαn̂rδ1,mα + µ∗
αn̂rδNα,mα) , (1)

where â†r is the hardcore boson creation operator at the
position r =m1e1+m2e2+m3e3 (mα = 1, 2, ..., Nα, α =
1, 2, 3), satisfying{

âl, â
†
l

}
= 1, {âl, âl} = 0, (2)

and [
âj , â

†
l

]
= 0, [âj , âl] = 0, (3)

for j ̸= l, and n̂r = â†râr, eα is the unit vector forNα. Un-
der the open boundary condition, we define âr+Nαeα

= 0,
while âr+Nαeα

= âr for the periodic boundary condition
(α = 1, 2, 3).

The parameters are taken as{
Vα = Jα cos qα
µα = Jα

eiqα

2

, (4)

with arbitrary real number qα for the case with open
boundary condition, but with q = (q1, q2, q3), qα =
2πmα/Nα (mα = 1, 2, ..., Nα, α = 1, 2, 3) and µα = 0
with periodic boundary condition. When taking {Nα} =
(N1, N2, N3) = (N1, N2, 1) or (N1, 1, 1), the system re-
duces to two- or one-dimensional systems.

In the following, we will show that state

|ψn⟩ =
1

Ωn

(∑
r

â†re
−iq·r

)n

|0⟩ , (5)

Ωn =
1

(n!)
√
Cn

N

, (6)

is an eigenstate of the system, where the vacuum state
|0⟩ =

∏
r |0⟩r, with âr |0⟩r = 0. In both two cases (also

including mixed boundary conditions), the Hamiltonian
can be written as the form

H =

3∑
α=1

∑
r

hαr +

3∑
α=1

Vαn̂, (7)

where the dimer term is non-Hermitian, i.e.,

hαr = Jα[
1

2
â†râr+eα +H.c.

+cos(q · eα)(n̂rn̂r+eα − n̂r − n̂r+eα)

+
1

2

(
eiq·eα n̂r + e−iq·eα n̂r+eα

)
], (8)

and n̂ =
∑

r n̂r is the total number operator. It is easy
to check that

hαr [e
−iq·râ†r + e−iq·(r+eα)â†r+eα

] |0⟩r |0⟩r+eα
= 0,

hαr â
†
râ

†
r+eα

|0⟩r |0⟩r+eα
= 0,

hαr |0⟩r |0⟩r+eα
= 0, (9)

which ensures that

H |ψn⟩ = n

3∑
α=1

Vα |ψn⟩ . (10)

In addition, state |ψn⟩ possesses ODLRO due to the fact
that the correlation function

⟨ψn| â†râr+R |ψn⟩ = e−iq·R (N − n)n

N(N − 1)
, (11)

does not decay as |R| increases. The detail derivation is
given in the Appendix A.

III. COALESCING CONDENSATE STATES

In parallel, without loss of generality, we have

|φn⟩ =
1

Ωn

(∑
r

â†re
iq·r

)n

|0⟩ , (12)

for the equation

H† |φn⟩ = n

3∑
α=1

Vα |φm⟩ , (13)

which establishes the biorthonormal set {|φm⟩, |ψn⟩},
satisfying

⟨φm |ψn⟩ = δmn, (14)

except for some special cases. We start the demonstra-
tions from the simplest case with n = 1. Straightforward
derivation shows that

⟨φ1 |ψ1⟩ = 0, (15)
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if qα = qcα = πmα/Nα (mα ∈ [1, 2Nα − 1], mα ̸= Nα)
for any one of α, which indicates that the complete set of
eigenstates is spoiled. According to non-Hermitian quan-
tum mechanics, the Hamiltonian with parameter qcα has
an EP, and |ψ1⟩ is referred to as a coalescing state. We
note that an EP can be induced by the parameter along
a single direction (any one of α = 1, 2, and 3). In this
sense, the conditions for occurrence of EP are indepen-
dent of three directions. Then one can investigate the EP
problem from a 1D system, which makes things easily ac-
cessible. However, it is not a straightforward conclusion
that |ψn⟩ is a coalescing state simultaneously, since op-
erator â†r obeys an unusual commutation relations in Eq.
(4).

Considering a 1D system with a set of Hamiltonians
in Eq. (1) with open boundary condition, i.e., N1 = N ,
N2 = N3 = 1, and qc1 = πm1/N = 2πm1/ (2N) (m1 ∈
[1, 2N − 1], m1 ̸= N), each Hamiltonian H(qc1) is tuned
at EP. The matrix representation of H(qc1) in the single-
particle invariant subspace should have an EP [44, 45]
due to the existence of 2 × 2 Jordan block. A natu-
ral question is what happens in the n-particle invariant
subspace and whether |ψn⟩ is also a coalescing state. To
answer this question, we consider another set of Hamil-
tonians in Eq. (1) with periodic boundary condition, i.e.,
N1 = 2N , N2 = N3 = 1, and q1 = 2πm1/ (2N) (m1 ∈
[1, 2N ]). Each Hamiltonian H(q1) is Hermitian and sup-
ports the Schrodinger equation

H(q1) |Ψn⟩ = nV1 |Ψn⟩ , (16)

with eigenstates

|Ψn⟩ =
1

Ωn

(
2N∑
m=1

â†me1
e−imq1

)n

|0⟩ . (17)

Notably, we find that the coalescing state |ψ1⟩ of H(qc1)
is exactly the half part of the eigenstate |Ψ1⟩. It is a
starting point, based on which we can show that

⟨φn |ψn⟩ = 0, (18)

i.e., state |ψn⟩ is also a coalescing state of the Hamil-
tonian H(qc1). The detail derivation is given in the Ap-
pendix B.

IV. RESONANT SCATTERING OF
NON-HERMITIAN IMPURITY

In this section, we focus on our study on 1D system
for simplicity. The obtained result can be extended to
2D and 3D systems. We start with our investigation on
the Hamiltonian in a single-particle invariant subspace,
in which the single-particle dynamics obeys a free boson
model with the PT symmetric non-Hermitian Hamilto-
nian

HFB =

N−1∑
j=1

(
b̂†j b̂j+1 +H.c.

)
+ e−iq b̂†1b̂1 + eiq b̂†N b̂N , (19)

on an N -site chain with complex on-site potential at two

ends. Here b†j and bj are creation and annihilation op-
erators for a boson on site j. We take a dimensionless
constant for the sake of simplicity. According to the anal-
ysis in last two sections, states N∑

j=1

eiqj b̂†j

n

|0⟩ , (20)

are n-boson eigenstates of HFB. In addition, these states
with different n are coalescing states under the condition
q = qc = πm/N (m ∈ [1, 2N −1], m ̸= N). Furthermore,
this constraint for qc is satisfied automatically in large
N limit. It has been shown that this fact has intimate
connection to the reflectionless scattering problem [45]
for the semi-infinite system

H∞
FB =

∞∑
j=1

(
b̂†j b̂j+1 +H.c.

)
+ e−iqc b̂†1b̂1, (21)

with a complex impurity at the end. The dynamic
demonstration of this exact result is the near-perfect re-
flectionless of a Gaussian wavepacket with resonant mo-
mentum q = qc. Specifically, we consider an initial n-
boson state in the form

|ϕ(0)⟩ =

∑
j

gj b̂
†
j

n

|0⟩ , (22)

where the single-boson wave function has the form

gj = e−
α2

2 (j−N0)
2

eiqj . (23)

The shape and center of the wavepacket are determined
by parameters α and N0. The near-perfect reflectionless
indicates the time evolution of |ϕ(0)⟩ obeys

lim
t→∞

e−iH∞
FBt |ϕ(0)⟩ ≈ 0. (24)

It holds true for any n with small α, due to the following
facts. (i) A wider single-boson wavepacket with q = qc
can reflect the exact result for plane wave scattering from
the end [45]. (ii) Multi-boson wavepacket shares the same
dynamic behavior of a single-boson, since there is no in-
teraction between bosons.
Now we turn to the hardcore boson Hubbard model, by

ruling out the double occupation and adding the resonant
NN interaction with the Hamiltonian

H∞
HB =

∞∑
j=1

(
â†j âj+1 +H.c. + cos qcn̂j n̂j+1

)
+e−iqc â†1â1. (25)

The question is whether we still have the result

lim
t→∞

e−iH∞
HBt

∑
j

gj â
†
j

n

|0⟩ ≈ 0, (26)
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FIG. 1. Plots of pj(t) and P (t) defined in Eqs. (28) and (29) for the initial states defined in Eq. (27) with n = 1 in (a1)-(a3)
and n = 2 in (b1)-(b3), respectively. The parameters of the Gaussian wavepacket are α = 0.05, N0 = 50 and q = π/10 in (a1,
b1), π/5 in (a2, b2), π/20 in (a3, b3). The system parameter is qc = π/10. The profiles of pj(t) in (a2, b2, a3, b3) exhibit
evident interference fringes indicating reflections from the end of the chain. The plots of P (t) indicate the perfect probability
absorption for the resonant incident wavepackets.

for the initial state

|ϕ(0)⟩ =

∑
j

gj â
†
j

n

|0⟩ . (27)

To answer this question, numerical simulations are per-
formed for the n-hardcore-boson initial wavepackets
|ϕ(0)⟩ with q around qc. The profiles of the evolved states
and the total probabilities are measured by

pj(t) =

∣∣∣∣ âj |ϕ(t)⟩|ϕ(0)⟩

∣∣∣∣2 , (28)

and

P (t) =
1

n

∑
j

pj(t) =

∣∣∣∣ |ϕ(t)⟩|ϕ(0)⟩

∣∣∣∣2 , (29)

respectively. We plot the two quantities in Fig. 1(a) and
(b). The parameters of the initial wavepackets and the
driven system are given in the captions. The profiles of
eveloved states and the total probabilities indicate the
perfect absorption for the resonant incident wavepackets
with q = qc for both one- and two-boson cases, in accord
with the previous theoretical analysis.

V. DYNAMIC GENERATION OF
CONDENSATE STATES

Condensate state as macroscopic quantum state has
significance both in theoretical and experimental physics.

TABLE I. The structures of energy levels for 10-site open
chain with different q and filling particle number n. We list
the numbers of coalescing states nCS, of order nOR and the
numbers of complex levels nCM in the form (nCM, nOR ×
nCS ). It indicates that all the energy levels are real and all
the systems contain a single 2 order coalescing state.

q n=2 3 4 5

π/10 0, 2× 1 0, 2× 1 0, 2× 1 0, 2× 1

2π/10 0, 2× 1 0, 2× 1 0, 2× 36 0, 2× 43

3π/10 0, 2× 1 0, 2× 1 0, 2× 1 0, 2× 1

4π/10 0, 2× 1 0, 2× 1 0, 2× 36 0, 2× 43

TABLE II. The same as Table I but for N1×N2 = 5×3 lattice
with different (q1, q2). We take open boundary condition in
q1-direction and periodic boundary condition in q2-direction.
It indicates that all the systems contain complex levels and
multiple 2 order coalescing states.

(q1, q2) n=2 3 4

(π/5, 2π/3) 7, 2× 11 135, 2× 5 525, 2× 2

(2π/5, 2π/3) 16, 2× 11 173, 2× 5 586, 2× 2

(3π/5, 2π/3) 16, 2× 11 171, 2× 5 586, 2× 2

(4π/5, 2π/3) 13, 2× 11 159, 2× 5 570, 2× 2

The stability of such states is crucial in practice. In gen-
eral, it can be prepared as ground state by discreasing
the temperature. Dynamical generation of nonequilib-
rium steady condensate states is another way, which has
been received much attention recently. The advantage of
an EP system is that a coalescing state is also a target
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FIG. 2. (a1)-(a4) present the time evolution of fidelity of n-particle one-dimensional system with q = mπ/N where m ranges
from 1 to 4. (b1)-(b4) present the time evolution of probability of the same system. The slope of dashed line as reference is 2
and it is nearly parallel to other colored lines. Here we only plot the results with a single 2 order coalescing state. The initial
state is

∏n
j=1 â

†
j |0⟩ and the size of system N = 10, where the number n is indicated in the panel.

state for a long-time evolution of various initial states.
In the above, we have shown that the state |ψn⟩ is also a
coalescing state of the Hamiltonian H(qc1). However, the
order of EP is unkown, maybe depends on the particle
numbers n, and the numbers of dimensions nd at which
the resonant boundary is taken.

In contrast, the order of EP for free boson model can be
exactly obtained. In a single-boson invariant subspace,
the maximal order of EP is nd+1, and then is (nd + 1)n
for n-boson system. According to the non-Hermitian
quantum theory, there is a (nd + 1)n-D Jordan block M
in the matrix representation of the Hamiltonian, which
ensures that

M (nd+1)n+1 = 0. (30)

The dynamics for any state in this subspace of Jordan
block, referred to as auxiliary states, is governed by the
time evolution operator

U(t) = e−iEte−iMt = e−iEt

(nd+1)n∑
l=0

1

l!
(−iMt)

l
, (31)

where E is a constant without any effect on the evolved
state. It indicates that for an initial state |ϕ(0)⟩ involving
the auxiliary states we have |ϕ (t)⟩ = U(t) |ϕ(0)⟩

lim
t→∞

|ϕ(t)⟩ ∝

(∑
r

e−iq·rb̂†r

)n

|0⟩ , (32)

within large t region and

||ϕ (t)⟩|2 ∝ t2(nd+1)n, (33)

which is also a dynamic demonstration for the order of
the Jordan block.

However, such an analysis may be invalid due to the

particle-particle interactions, i.e., replacing b̂†r by â†r. In
this situation, numerical simulations for finite size sys-
tems can shed some light on the dynamic generation of
the condensate states of hardcore bosons.

We perform numerical simulations on finite systems
with the following considerations. (i) The analysis above
only predicts the results within large time domain. The
efficiency of the scheme should be estimated from nu-
merical simulations. (ii) The final state seems to be
independent of the initial states, which can be simply
unentangled n-boson initial states in the form |ϕ(0)⟩ =∏

{l1,l2,...lj ,...ln,} â
†
lj
|0⟩. (iii) The order of EP can be

observed by the dynamic process. The energy levels
of many-particle non-Hermitian system are complicated,
containing complex energy levels and multiple coalescing
states, which may pose an obstacle in the calculation of
time evolution. Our strategy has two steps. First, we
find out the structure of energy level for sample systems.
Second, select several coalescing states as target states.
In Tables I and II, the numbers of complex energy and
coalescing levels are listed. We select several cases with
single coalescing state to perform the computations.

The evolved states |ϕ (t)⟩ are computed by exact di-
agonalization for finite systems with several typical set
of parameters. We focus on the Dirac probability P (t)
defined in Eq. (29) and the fidelity

F (t) =
|⟨ψn |ϕ (t)⟩|2

||ϕ (t)⟩|2
, (34)
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which is the measure of the distance between the final
state and the condensate states |ψn(q)⟩. We plot the
fidelity F (t) in Fig. 2 as function of t for selected sys-
tems and particle numbers. We also plot the probability
ln P (t) as function of lnt to demonstrate the EP dy-
namic behavior. Numerical results in Fig. 2 show that
the unentangled initial states (see the caption) can indeed
evolve to the corresponding target with high fidelity. On
the other hand, it can be seen that the slopes of the lines
in lnP (t) -lnt plane accord with the predicted values.

VI. SUMMARY

In summary, we have studied the Hermitian and non-
Hermitian extended hardcore Bose-Hubbard model on
one-, two-, and three-dimensional lattices. A set of ex-
act eigenstates are constructed and have the following
implications: (i) The strong on-site repulsion and near-
est neighboring interaction cannot block the formation of
BEC under the moderate particle density, when two in-
teracting strengths are matched with each other. (ii) The
solutions for Hermitian systems with periodic boundary
condition are available for any given size, in which the
momentum of the condensate is nothing but the recip-
rocal vector. Then the resonant non-Hermitian impuri-
ties can result in coalescing hardcore-boson condensate
states. As an alternative stable state beyond the ground
state, a coalescing state may be obtained via natural time
evolution, although it is also the excited eigenstate of
the system. In this sense, our finding not only reveals
the possible condensation of interaction bosons, but also
provides a method for condensate state engineering in an
alternative way.

APPENDIX

In this appendix, we present the derivations on the
eigenstates of the Hamiltonian in Eq. (1) and resonant
conditions for many-body coalescing states.

A. Condensate eigenstates with ODLRO

Consider the state

|ψn⟩ =
1

Ωn

(
[e−iq·râ†r + e−iq·(r+R)â†r+R] +A

)n
|0⟩ ,

(35)
where A is an operator which does not contain â†r and

â†r+R. We have

|ψn⟩ =
1

Ωn

n∑
k=1

Ck
nA

n−k[e−iq·râ†r + e−iq·(r+R)â†r+R]n |0⟩ .

(36)

In fact, we note that

[e−iq·râ†r+e
−iq·(r+R)â†r+R]2 |0⟩ = 2e−iq·(2r+R)â†râ

†
r+R |0⟩ ,

but

[e−iq·râ†r + e−iq·(r+R)â†r+R]k |0⟩ = 0, (k > 2). (37)

Then

|ψn⟩ =
1

Ωn
{An + nAn−1[e−iq·râ†r + e−iq·(r+R)â†r+R]

+e−iq·(2r+R)n(n− 1)An−2â†râ
†
r+R} |0⟩ . (38)

One can take R = eα, and then we have

hαr |ψn⟩ = 0, (39)

which ensures that

H |ψn⟩ = n

3∑
α=1

Vα |ψn⟩ . (40)

Furthermore, we have

â†râr+R |ψn⟩ =
1

Ωn
{nAn−1[e−iq·râ†râr+Râ

†
r

+e−iq·(r+R)â†râr+Râ
†
r+R]} |0⟩

=
1

Ωn
nAn−1e−iq·(r+R)â†r |0⟩ , (41)

which results in the correlation function

⟨ψn| â†râr+R |ψn⟩ =

(
n

Ωn

)2

e−iq·R ∣∣An−1 |0⟩
∣∣2

= e−iq·R (N − n)n

N(N − 1)
. (42)

We find that

lim
|R|→∞

∣∣⟨ψn| â†râr+R |ψn⟩
∣∣ = n (N1N2N3 − n)

N1N2N3 (N1N2N3 − 1)
,

(43)
which is finite number, indicating off-diagonal long-range
order (ODLRO) according to [43].

B. Coalescing condensate states

We start with the case with n = 1. The biorthogonal
norm for state |ψ1⟩ is

⟨φ1 |ψ1⟩ =
1

Ω2
n

∑
r

e−i2q·r

=
1

Ω2
n

∏
α=1,2,3

∑
mα

e−i2qαmα . (44)

We note that if ∑
mα

e−i2qαmα = 0, (45)
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for one of α, we have

⟨φ1 |ψ1⟩ = 0, (46)

i.e., an EP can be induced by the parameter along a single
direction.

In the following, we will show that it is also true for
the case with n > 1. We only consider 1D systems for
the sake of simplicity. We focus on two Hamiltonians.
The first one is

H1
HB =

N−1∑
j=1

(
â†j âj+1 +H.c. + cos qn̂j n̂j+1

)
+e−iqâ†1â1 + eiqâ†N âN , (47)

which is non-Hermitian and reduced from Eq. (1) for an
N -site chain. The second one is

H2
HB =

2N∑
j=1

(
â†j âj+1 +H.c. + cos qn̂j n̂j+1

)
, (48)

which is Hermitian and reduced from Eq. (1) for a 2N -
site ring. Defining a set of collective operators

A+ =
1√
N

N∑
j=1

â†je
−iqj , B+ =

1√
N

2N∑
j=N+1

â†je
−iqj , (49)

and

A− =
1√
N

N∑
j=1

âje
−iqj , B− =

1√
N

2N∑
j=N+1

âje
−iqj , (50)

with q = 2πm/ (2N) (m ∈ [1, 2N − 1], m ̸= N), a subset
of the eigenstates of H1

HB can be expressed as

|ψn⟩ =
1

Λn

(
A+
)n |0⟩ , (51)

while states

|Ψn⟩ =
1

Λ′
n

(
A+ +B+

)n |0⟩ , (52)

and

|Ψ∗
n⟩ =

1

Ω′
n

[(
A+ +B+

)∗]n |0⟩ , (53)

are a subset of the eigenstates of H2
HB, here

Λn =
Nn/2

(n!)
√
Cn

N

,Λ′
n =

Nn/2

(n!)
√
Cn

2N

. (54)

We note that state |ψn⟩ is a part of state |Ψn⟩, which is
crucial for the following proof. The orthogonality of two
states |Ψn⟩ and |Ψ∗

n⟩ leads to

⟨Ψ∗
n |Ψn⟩

=

n∑
m=0

pm ⟨0|
(
A−)n−m (

B−)m (A+
)n−m (

B+
)m |0⟩

= 0. (55)
Taking n = 1, we have

⟨0|
(
A−A+ +B−B+

)
|0⟩ = 0, (56)

which resuts in

⟨0|A−A+ |0⟩ = ⟨0|B−B+ |0⟩ = 0, (57)

due to the translational symmetry of state |Ψn⟩. Based

on this conclusion, taking n = 2, we have ⟨0| (B−B+)
2 |0⟩

= ⟨0| (A−A+)
2 |0⟩ = 0. Furthermore, it turns out that

⟨0|
(
A−A+

)m |0⟩ = 0, (58)

for m ∈ [0, n], which results in

⟨φn |ψn⟩ = 0. (59)
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