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We propose to realize quantum anomalous Hall effect (QAHE) in two-dimensional antiferromag-
netic topological insulators. We consider antiferromagnetic MnBi2Te4 as a concrete example. In
contrast to the even-layer A-type antiferromagnetic MnBi2Te4 that has zero Chern number due
to the combined parity-time (PT ) symmetry, the system can host a nonzero Chern number by
breaking this symmetry. We show that by controlling the antiferromagnetic spin configuration, for
example, down/up/up/down, to break PT symmetry, tetralayer antiferromagnetic MnBi2Te4 can
realize QAHE with Chern number C = −1. Such spin configuration can be stablized by pinning
the spin orientations on top and bottom layers. Furthermore, we reveal that the edge states are
layer-selective and primarily locate at the boundaries of the bottom and top layers. In addition, via
tuning the on-site orbital energy which determines the inverted band gap, we find tunable Chern
number from C = −1 to C = 2 and then to C = −1. Our work not only proposes a scheme to realize
Chern number tunable QAHE in antiferromagnets without net spin magnetization, but also provide
a platform for layer-selective dissipationless transport devices.

The quantum anomalous Hall effect (QAHE) exhibits
topologically protected chiral edge states, the dissipa-
tionless feature of which makes them attractive for next-
generation high-performance electronics [1]. The QAHE
also shows close connection with novel quantum phenom-
ena such as topological magnetoelectric effects and topo-
logical superconductivity [2–4]. The search for QAHE
is thus a hot spot in condensed matter physics [5–7]
with many recipes being theoretically proposed [8–22].
In experiments, the QAHE has been observed in three
main categories, i.e., magnetic doped topological insu-
lators [23], intrinsic magnetic topological insulators [24]
and moiré systems [25, 26]. All of them possess ferro-
magnetism, which can be influenced by fluctuations of
external magnetic fields that can arise from stray fields
or other external sources, which is not desired in ap-
plications. In contrast, antiferromagnets are more ro-
bust to fluctuations of magnetic fields [28] and has at-
tracted growing attention in recent years, which extended
the traditional spintronics to antiferromagnetic spintron-
ics [28–36]. The realization of QAHE in antiferromag-
nets is thus highly desired for applications. Despite sev-
eral theoretical proposals of realizing QAHE in antiferro-
magnetic systems [37–47], it is still challenging to realize
Chern number tunable QAHE in compensated antiferro-
magnets without net spin magnetization.

In this letter, we propose to realize the antiferromag-
netic QAHE in an experimentally feasible system, i.e.,
the magnetic topological insulator system, by control-
ling the spin configuration. We consider the tetralayer
antiferromagnetic MnBi2Te4 as an example. The typ-
ical A-type antiferromagnetic spin configuration (e.g.,

FIG. 1. The tetralayer system of an (a) intrinsic A-type an-
tiferromagnet with PT symmetry, and (b) antiferromagnet
without PT symmetry. The latter is composed of two bilayer
antiferromagnets (separated by the green dashed line), where
the upper bilayer is head-to-head, and the lower tail-to-tail.
The space inversion point is denoted by O.

down/up/down/up) is invariant under PT operation
where P is parity and T is the time-reversal operation
as illustrated in Fig. 1(a). This symmetry guarantees a
zero Chern number. By reversing the spins of the top
two layers as illustrated in Fig. 1(b), the PT symmetry
is broken as the system now is even under P whereas
is odd under T . The breaking of both PT and T sym-
metries allows the presence of a nonzero Chern number.
Despite the fact that the spin configuration in Fig. 1(b)
is energetically less favorable than the intrinsic A-type
antiferromagnetic spin configuration in Fig. 1(a), it can
be realized by introducing magnetic pinning layer that
fix the spin configuration of the top and bottom layers.

Structure and model.— We focus on the intrinsic mag-
netic topological insulator MnBi2Te4 [48–59], where Mn
atoms form magnetic layers. The intralayer spin-spin in-
teraction is ferromagnetic forming a ferromagnetic layer.
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The neighboring layers are coupled antiferromagneticly,
resulting in an A-type antiferromagnetic configuration,
which is invariant under the PT operation and thus en-
sures a zero Chern number [51]. To realize QAHE, this
symmetry must be broken [53]. Here, we break this sym-
metry by controlling the spin configuration as shown in
Fig. 1(b).
The tetralayer antiferromagnetic topological insulator

system can be described by the model Hamiltonian [55–
61]

H =
∑

i

c†i (E0 + νim)ci +
∑

〈ij〉,α

c†iTαcj +H.c., (1)

where ci = {|+ ↑〉 , |− ↑〉 , |+ ↓〉 , |− ↓〉}
T
is the electronic

state at site i, ± represent two different orbits and (↑
, ↓) denote spin indices. E0 = (tAσ0 ⊗ τz − 3

2
Aσ0 ⊗ τ0)

and Tα = 3
2
(tBσ0 ⊗ τz + Aσ0 ⊗ τ0 − iBσα ⊗ τx) with

α = x, y, z. The Pauli matrices σ and τ are for the spin
and orbit degrees of freedom, respectively. 〈ij〉 denotes
the nearest neighboring coupling. m = m0σz ⊗ τ0 is the
exchange field and νi = {−1, 1, 1,−1} for different layers,
representing down/up/up/down spin configuration. The
parameter B reflects the Fermi velocity, and tA is the on-
site orbital energy which determines the inverted band
gap. In experiments, tA can be controlled by atomic
doping and pressure. Without loss of generality, we set
the parameters to be A = 0.1, B = 1.5,m0 = 0.35 [60],
and tB = 1 as the energy unit.
Band structures and topological properties.— The

spin compensated antiferromagnetic topological insula-
tor with down/up/up/down spin configuration can host
a Chern insulator phase. Figure 2 shows the band struc-
tures and Berry curvature distributions at various tA.
The band structure at tA = −1.5 is plotted in Fig. 2(a)
where the bands are non-degenerate since the PT sym-
metry is broken. The valance band maximum and con-
ductance band minimum are dominated by spin-down
(blue) and spin-up (red) electrons, respectively. The
band gap is topologically trivial as the positive and neg-
ative Berry curvatures (see the inset) cancel in the first
Brillouin zone resulting in a vanished Chern number
C = 0. The band gap decreases with increasing tA, and
at tA = −1.38, a Dirac point emerges at Γ point [see
Fig. 2(b)]. When tA exceeds −1.38, the band gap re-
opens, accompanied by the switch of spin between the
valance band maximum and conductance band minimum
[see Fig. 2(c)]. In this case, only negative Berry cur-
vatures emerge concentrated at the Γ point, leading to
Chern number C = −1, i.e., the system goes into the
QAHE states. This topologically nontrivial phase per-
sists until tA is further increased to −0.62 [see Fig. 2(d)].
In terms of MnBi2Te4, the parameters tB ≃ 47

meV and tA = −tB can faithfully reproduce the band
gap and band topology for antiferromagnetic MnBi2Te4
trilayer (down/up/down) (see Supplementary Materials

FIG. 2. Bulk band structures along the high symmetry lines of
tetralayer antiferromagnetic systems without PT symmetry:
(a) tA = −1.5, (b) tA = −1.38, (c) tA = −1, (d) tA = −0.62.
The majority of the electronic spin is up (red) or down (blue)
near the Fermi level. The inset is the distribution of Berry
curvatures in the momentum space, with black lines marking
the first Brillouin zone.

[63]). Therefore, the nontrivial band topology at tA =
−1 indicates that a topologically nontrivial phase with
C = −1 can be realized in tetralayer MnBi2Te4 with
down/up/up/down spin configuration.

Phase diagram.— We further study the topological
phase diagram of this model systematically to identify
the parameter space of realizing the antiferromagnetic
QAHE. Keeping the increase of tA, the band structures
of even-layer antiferromagnetic system are notably de-
formed, as shown in Fig. 2. When tA = −0.5, the valance
band maximum and conductance band minimum migrate
to X/Y points, with positive and negative Berry cur-
vature distributing at Γ and X/Y points, respectively.
When tA = −0.38, two Dirac points are formed at X/Y
points. After tA exceeds −0.38, the band inversion oc-
curs again near the Fermi level, i.e., another topological
phase transition emerges. As shown in Fig. 3(c), only
positive Berry curvatures are observed at X and Y points.
Since the Berry curvature around each X or Y point con-
tributes 1 to the total Chern number, the system enters
another QAHE state and Chern number C = 2. With
the further increase of tA, at X and Y points, two Dirac
points are formed and gaped sequentially, leading to a
transition of the system into a topologically trivial phase
[Fig. 3(e)]. And the positive and negative Berry cur-
vatures distribute, respectively, at M with X/Y points.
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FIG. 3. Bulk band structures evolution of tetralayer antiferromagnetic systems with different tA: (a) tA = −0.5, (b) tA = −0.38,
(c) tA = 0, (d) tA = 0.38, (e) tA = 0.5, (f) tA = 0.62, (g) tA = 1, (h) tA = 1.38, and (i) tA = 1.5. The majority of the electronic
spin is up (red) or down (blue) near the Fermi level. The inset is the distribution of Berry curvatures in the momentum space,
with black lines marking the first Brillouin zone.

When tA = 0.62, the valance band maximum and con-
ductance band minimum migrate to M point forming one
Dirac point. After tA exceeding this value, the band gap
opens and accompanies band inversion near the Fermi
level [see Fig. 3(g)]. Accordingly, the system possesses
negative Berry curvatures concentrated at M point. This
distribution of Berry curvatures reveals that it is a Chern
insulator with C = −1. When tA = 1.38, a Dirac point is
formed at M point [Fig. 3(h)]. Under even stronger |tA|,
the system goes into a topologically trivial phase where
the band gap increases monotonically.

The phase diagram is plotted in Fig. 4 where the band
gap is plotted in black solid line as a function of tA. The
system undergoes band gap closing and reopening for six
times. During this process, the band gap closing migrates
from Γ point to X/Y points, and subsequently to M point.
The migration of Dirac points induces the redistribution
of Berry curvatures leading to a tunable Chern number
ranging from −1 to 2 and then to −1 as indicated by
color. It is noteworthy that although the system has two
QAHE phases with C = −1 successively, they have dis-

FIG. 4. The phase diagram of Chern number as a function
of tA for the tetralayer antiferromagnetic system.

tinct distributions of the Berry curvatures and different
band structures.

Layer-selective edge states.— As a multi-layer sys-
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FIG. 5. The first column: the one-dimensional energy spec-
trum of three different topologically nontrivial phases for (a)
tA = −1, (c) tA = 0, and (e) tA = 1, where the differ-
ent edge states near the charge neutral point are labeled
as “A”, “B”, “C” and “D”. The second column: The cor-
responding wavefunction distributions |ψ|2 of different edge
states in each layer, with values ranging from 0 to 0.32 in
each layer. A break is taken on the x-axis since the values
within the break range are zero.

tem, even-layer MnBi2Te4 possesses the spatial degree
of freedom corresponding to different layers, which will
bring new features to electronic and topological proper-
ties [53, 58]. Figure 5(a) displays the one-dimensional
band structure of the system of tA = −1 corresponding
to a Chern number C = −1. There are a pair of gapless
chiral edge states at kx = 0, whose wavefunction distri-
butions are depicted in Fig. 5(b). State A with negative
velocity is located at the left boundary. It is noted that
the probability density distribution of this states is not
equally divided in each layer. The wavefunction distri-
bution concentrates on top and bottom layers, which are

much larger than the probability density in the middle
two layers. The distributions in top and bottom layers
are the same guaranteed by the inversion symmetry. The
case is similar for state B, which is the inversion counter-
part of the state A localized on the opposite boundary
with opposite velocity.
When tA = 0, the system is a Chern insulator with

Chern number C = 2. According to bulk-boundary cor-
respondence [62], there are two pairs of gapless chiral
edge states as shown in Fig. 5(c) where two pairs of
edge states appear at kx = 0 and kx = π respectively.
The modulus squared of wavefunction distribution [see
Fig. 5(d)] indicate that the edge states are also mainly
distributed in the bottom and top layers. Similarly, the
system of tA = 1 is a Chern insulator with C = −1,
and the corresponding chirality is identical to that of
tA = −1. Its chiral edge states at kx = π [see Fig. 5(e)]
are also mainly distributed in the bottom and top layers,
as shown in Fig. 5(f). For all three different topologi-
cally nontrivial phases, the edge states are mainly dis-
tributed at the boundaries of the bottom and top layers.
Such layer-selective phenomena can be applied in layer-
selective dissipationless transport devices. This behavior
is also illustrated by our calculations of the local density
of states [63].
Stability of the spin configuration.— Although the spin

configuration in our proposal is not the lowest-energy
states compared to the intrinsic A-type antiferromagnetic
configuration, it can be achieved by pinning the top and
the bottom magnetic layers [64], which is widely used in
magnetic tunneling junctions. By including pinning lay-
ers, one can pin the spin configurations of the top and
the bottom layers to be, for example, downward. Here we
show that, in this case, the down/up/up/down spin con-
figuration is the lowest energy configuration. We consider
a Heisenberg spin model to describe the spin configura-
tion that reads

Hs = Jc
∑

〈ij〉

Si · Sj −D
∑

i

(Si · ẑ)
2
, (2)

where Si labels the spin at layer i

Si = {sin(θi) cos(φi), sin(θi) sin(φi), cos(θi)}, (3)

with θ and φ being the spin polar and azimuthal angles,
respectively. Jc > 0 is the interlayer magnetic exchange
interaction between the nearest-neighbor layers 〈ij〉, D is
the uniaxial magnetic anisotropy. The pinning effect fix
the spin orientations at the top and bottom layers with
θ1 = θ4 = π. The spin orientations of the middle two
layers is determined by the lowest energy configuration.
Given the parameters Jc = 0.034 meV and D = 0.03
meV in MnBi2Te4 [65], our calculation shows that the
spin configuration has lowest energy at θ2 = θ3 = 0.
Therefore, our spin configuration of down/up/up/down
is stable when we pinned the top and bottom layers.
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Summary.— We systematically investigate the elec-
tronic and topological properties of two-dimensional
compensated antiferromagnetic systems. Taking even-
layer MnBi2Te4 as an example, the QAHE can be real-
ized by breaking PT symmetry through the controlling
of layer stacking order. And such spin magnetic config-
uration can be realized by pinning effect. Furthermore,
the position of Dirac points and the distribution of Berry
curvatures are successively tuned via tuning the on-site
orbital energy which determines the inverted band gap,
giving rise to Chern number tunable QAHE. We also find
that the edge states are layer-selective, i.e., primarily dis-
tributed at the boundaries of the bottom and top layers.
Our work not only provides an ideal platform to real-
ize Chern number tunable QAHE and Berry curvature
engineering in compensated antiferromagnets, but also
sheds light on layer-selective dissipationless transport for
practical applications.

Our results in the tetralayer compensated antiferro-
magnetic system can be generalized to multi-layer sys-
tems. We demonstrate in the Supplementary Materi-
als [63] that the electronic and topological properties of
multi-layer systems are almost identical to the tetralayer
system. Futhermore, what we studied is a general model,
which is not limited to MnBi2Te4. Our results are gen-
erally applicable to layered antiferromagnetic topological
insulator materials.
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Phys. Rev. B 99, 075127 (2019).

[18] N. Bultinck, S. Chatterjee, and M. P. Zaletel, Mechanism
for Anomalous Hall Ferromagnetism in Twisted Bilayer
Graphene, Phys. Rev. Lett. 124, 166601 (2020).

[19] J. Shi, J. Zhu, and A. H. MacDonald, Moiré commen-
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Nature 600, 641 (2021).

[27] C.-X. Liu, S.-C. Zhang, and X.-L. Qi, The Quan-
tum Anomalous Hall Effect: Theory and Experiment,
Annu. Rev. Condens. Matter Phys. 7, 301 (2016).

[28] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T.
Ono, and Y. Tserkovnyak, Antiferromagnetic spintron-
ics, Rev. Mod. Phys. 90, 015005 (2018).

[29] T. Jungwirth, X. Marti, P. Wadley, and J. Wunder-
lich, Antiferromagnetic spintronics, Nat. Nanotechnol.
11, 231 (2016).
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