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Using the proposed space gravitational wave detector LISA, we will be able to measure the
geometrical configurations of ∼ 104 close white dwarf binaries in our Galaxy. The obtained data
will be an entirely new resource to examine the randomness of their orbital orientations. Partly
motivated by a recent reported on the systematic alignments of bulge planetary nebulae, we discuss
the outlook of the orientational analysis with LISA. We find that a quadrupole pattern as small as
∼ 0.05 can be detected for bulge white dwarf binaries, owing to their large available number. From
such a pattern analysis, we might geometrically explore fossil records in our Galaxy billions of years
ago.

I. INTRODUCTION

Since 2015, the LIGO-Virgo-Kagra network has de-
tected gravitational wave (GW) signals from ∼ 100 merg-
ing extra-Galactic binaries in the 10-1000Hz band [1–3].
Quite recently, in the nHz band, various theoretical mod-
els have been actively discussed with the advent of new
pulsar timing data [4–7]. In the 2030s, the Laser Inter-
ferometer Space Antenna (LISA) will be launched and
will explore GWs around 0.1-100mHz [8]. LISA has the
potential to observe massive black holes at cosmological
distances, although the estimated detection rates have
large uncertainties [8].

More securely, LISA will separately detect ∼ 104 close
white dwarf binaries (CWDBs) in our Galaxy, as nearly
monochromatic GW sources [8–12]. Indeed, for improv-
ing the effective sensitivity of LISA, it is essential to iden-
tify these vast number of binaries and subtract their fore-
ground GW signals [13]. A significant fraction (∼ 30%)
of the identified CWDBs will be the bulge component,
located near the Galactic center [14]. The remaining
ones will be distributed more broadly around the Galac-
tic disk. In both cases, the orbital motions of the CWDBs
are directly encoded in the emitted GW signals [15–17].
Using LISA, we can receive the GW signals, decode them
and generate a long and high-quality list for the orbital
configurations of the CWDBs, solely based on the first
principles of physics. Note that most of CWDBs are ex-
pected to have negligible eccentricities due to tidal effects
(as for the known CWDBs [8, 12]).

In relation to the orientations (i.e. the directions of
angular momentum vectors) of CWDBs, on the basis of
electromagnetic observations, there recently appeared an
interesting report on the bulge planetary nebulae (PNe)
which are (or are inferred to be) specifically associated
with short-period (≲1 day) binaries (in total of 14 sys-
tems) [18]. In contrast to the whole bulge PN popu-
lations, the orientations of the symmetric axes of the
specific PNe show concentrations nearly parallel to the
Galactic plane, at 5σ significance. PNe are ionized gas
ejected at the formation of white dwarfs [19] and closely
related to the common envelope phases [20]. In the re-
port, the orientations of the specific subset are consid-

ered to be parallel to the orbital angular momentum vec-
tors of the associated short-period binaries (see also [21]).
Then, the angular momentum vectors of the binaries are
not randomly oriented but more probable to be nearly
parallel to the Galactic disk (roughly speaking, removing
PNe from the triple geometrical relations between the
short-period binaries, PNe and the Galactic plane). In
general, binary formation should involve various physi-
cal processes and could also depend on time and location
[22]. The reported alignments might be embedded al-
ready at the formations of the bulge binaries billions of
years ago, e.g. due to ordered strong magnetic fields as
argued in the report [18].

Regarding the potential alignments of compact bina-
ries in the bulge, we await further studies, in particu-
lar, independent observational analyses (see also [23] for
nearby binaries). Here the long list of CWDBs provided
by LISA could be an invaluable and solid resource. With
the large number of the available sample, we will be able
to detect a weak anisotropic pattern existing in their ori-
entation distribution function.

In this work, we discuss the outlook of such an inquiry
with LISA, paying special attentions to the geometrical
aspects of the involved systems. Along the way, we point
out a fourfold degeneracy at determining the polariza-
tion angle ψ, which fixes the binary’s orientation around
the line-of-sight direction. This degeneracy is induced
by the underlying symmetry of the measurable gravita-
tional waveform and can be effectively regarded as an
irreversibility in the information transfer (from the en-
coding to the decoding), partially hampering our obser-
vational analysis. For the data analysis of actual CWDB
sample, we examine a simple dualistic approach to sta-
tistically enhance its anisotropic pattern. The associated
detection limit can be as small as ∼ 0.05 for a quadupole
mode of the spherical harmonic expansion. Through this
pattern analysis, LISA might enable us to geometrically
delve into the ancient history of our Galaxy.
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II. ORIENTATIONS OF CWDBS

A. Axisymmetric Model

As shown in Fig. 1, we first define the relevant unit vec-
tors for describing the configuration of a circular CWDB.
We put its sky direction n⃗ and its orientation j⃗ (paral-
lel to its angular momentum vector). We also set q⃗ as
the direction of the Galactic rotation axis. The Galactic
plane is normal to q⃗.
Given the recent report on the bulge PNe [18], we are

primarily interested in the probability distribution func-
tion P (⃗j) for the orientations j⃗ of the bulge CWDBs, in
particular, its pattern relative to the rotation axis q⃗. We
thus set q⃗ as the polar direction for the spherical har-
monic bases Ylm(⃗j).

We assume that the function P (⃗j) is axisymmetric

around the vector q⃗. Then the function P (⃗j) depends
only on the polar angle θ (i.e. only with m = 0 modes).
Given the normalization condition, the resultant axisym-
metric function is expanded as

PA(cos θ) = (4π)−1/2[Y00(θ) + a10Y10(θ) + a20Y20(θ)

+a30Y30(θ) + a40Y40(θ) + · · · ] (1)

defined in the range 0 ≤ θ ≤ π. We have Yl0(θ) ∝
Ll(cos θ) with the Legendre polynomials Ll(x) (in an un-
conventional notation to prevent confuses with proba-
bility distribution functions), which satisfy the odd-even
identities

Ll(−x) = (−1)lLl(x). (2)

We present some of the explicit forms Y00 = (4π)−1/2,
Y10 ∝ cos θ, Y20 ∝ (3 cos2 θ − 1)/2, Y30 ∝ (5 cos3 θ −
3 cos)/2 and Y40 ∝ (35 cos4 θ−30 cos2 θ+3)/8. For a even
l, we have Yl0(0) = Yl0(π) > Yl0(π/2), and a negative
value al0 resultantly induces a higher concentration to
the equatorial directions (θ = π/2) rather than the polar

directions. We have P (⃗j) = 1/(4π) for the isotropic (ran-
dom) orientation distribution with a10 = a20 = · · · = 0.
Later, in Sec. III, we will discuss which parameters al0
we can determine for the Galactic CWDBs with LISA.

B. Coordinate Transformation

For discussing GW observation, it is convenient to in-
troduce the two unit vectors (e⃗j , e⃗k) normal to the binary
direction n⃗ (see Fig. 1). Here the unit vector e⃗j shows

the transverse projection of the orientation vector j⃗, with
the remaining one e⃗k(= n⃗× e⃗j).
The unit vector e⃗q is similarly defined by the transverse

projection of q⃗ with e⃗r(= n⃗ × e⃗q). For a given binary
direction n⃗, the vectors e⃗q and e⃗r are fixed, and we can

specify the orientation j⃗ in terms of the inclination angle
I and the polarization angle ψ (see Fig. 1). We have the
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FIG. 1: Schematic picture for a binary configuration. All the
seven vectors are unit vectors. The vectors n⃗ and j⃗ repre-
sent the direction and orientation of the binary. The Galactic
plane is normal to the vector q⃗. The angles I and θ are re-
spectively between j⃗-n⃗ and j⃗-q⃗. The gray plane is normal to
the line-of-sight direction n⃗, and the vectors e⃗j and e⃗q are the

projections of j⃗ and q⃗, with the polarization angle ψ between
them. The two remaining vectors e⃗k and e⃗r are respectively
perpendicular to e⃗j and e⃗q.

following relations

e⃗k = e⃗r cosψ + e⃗q sinψ, e⃗j = −e⃗r sinψ + e⃗q cosψ. (3)

Our next task is to generate the distribution function
p(I, ψ) given in the observer’s frame, using the aforemen-
tioned one PA(cos θ) given in the Galactic frame. To this
end, we first discuss the mismatch between q⃗ and e⃗q. Our
solar system is almost on the mid Galactic plane. The
distance to the bulge is ∼ 8.3kpc and its scale height is
∼ 0.5kpc [24]. Therefore, the vector q⃗ is nearly normal to
n⃗, and we have q⃗ ≃ e⃗q with the typical mismatch angle
(in radians) γ ∼ 0.5/8.3 ≪ 1. We then have

cos θ = j⃗ · q⃗ ≃ j⃗ · e⃗q = sin I cosψ (4)

and correspondingly

p(I, ψ) ≃ PA(sin I cosψ). (5)

Below, we apply equalities to the relations (4) and (5) (a
distant observer approximation). It is a straightforward
but cumbersome task to derive the function p(I, ψ) with-
out the approximation. Importantly, our approximation
does not introduce artificial anisotropies to p(I, ψ) from

the originally isotropic function P (⃗j) = 1/(4π). In terms
of the harmonic expansion p(I, ψ) =

∑
lm blmYlm(I, ψ),

the coefficients blm at l ≲ 1/γ ∼ 15 will be virtually unaf-
fected by our approximation (i.e. ignorable at the lower
degrees such as l ≲ 4). Geometrically, Eq. (5) can be
regarded as a 90◦ rotation of the polar direction (from
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θ = 0 to I = 0), thus keeping the degrees l at the corre-
spondence of their expansion coefficients (see e.g. [25]).
Even if we start from an axisymmetric model PA(cos θ)
as in Eq. (1), the transformed one p(I, ψ) can depend on
the polarization (azimuthal) angle ψ.

III. GW OBSERVATION

A. Waveform Model

We now focus on a nearly monochromatic GW from a
circular CWDB with an orbital frequency f/2. We keep
the essential aspects for our study, dropping irrelevant
details.

In the lowest quadrupole approximation, the gravita-
tional waveform at a given position is expressed as

h(t, n⃗, I, ψ) = A+(I) cos(2πft+ α)e+(n⃗, ψ)

+A×(I) sin(2πft+ α)e×(n⃗, ψ) (6)

with the phase constant α and the two amplitudes
A+(I) ∝ (1 + cos2 I) and A×(I) ∝ 2 cos I (see e.g. [15]).
The transverse-traceless tensors e+,×(n⃗, ψ) are given by

e+(n⃗, ψ) = e⃗k⊗ e⃗k− e⃗j⊗ e⃗j , e×(n⃗, ψ) = e⃗k⊗ e⃗j+ e⃗j⊗ e⃗k
(7)

with the vectors e⃗k and e⃗j defined in Eq. (3).
From Eqs. (3) and (7), we readily obtain the identities

e+,×(n⃗, ψ + π) = e+,×(n⃗, ψ) and resultantly

h(t, n⃗, I, ψ + π) = h(t, n⃗, I, ψ). (8)

This degeneracy between ψ and ψ + π is fundamental,
originating from the spin-2 nature of the gravitational
radiation.

From Eqs. (3) and (7), we can also confirm the identi-
ties e+,×(n⃗, ψ + π/2) = −e+,×(n⃗, ψ) and thus

h(t, n⃗, I, ψ + π/2) = −h(t, n⃗, I, ψ) (9)

(see e.g. [26, 27]). Correspondingly, the π/2- rota-
tion of the polarization angle ψ can be effectively ab-
sorbed by the phase shift α + π in Eq. (6). Therefore,
we observationally have the degeneracy between ψ and
ψ + π/2 at the lowest Newtonian order. By observing
the higher post-Newtonian waveforms at frequencies f/2
and 3f/2 and measuring their phases relative to that of
the Newtonian one (6), we can, in principle, distinguish
the two states at ψ and ψ + π/2 (see e.g. Eq. (11.295b)
in [15]). Unfortunately, compared with the Newtonian
waveform (6), the higher ones are suppressed by the post-
Newtonian parameter β = O(c2/v2). For our CWDBs,
we have

β =

(
πGMtf

c3

)2/3

∼ 10−5

(
f

5mHz

)2/3 (
Mt

1M⊙

)2/3

(10)

where Mt is the total mass of the binary. Unlike bi-
nary black hole mergers observed by ground-based detec-
tors (see e.g. [28]), the small post-Newtonian waveforms
of the CWDBs are easily masked by the measurement
noises, and we cannot practically solve the degeneracy
between ψ and ψ+ π/2. From Eqs. (8) and (9), we have
a similar degeneracy between ψ and ψ + 3π/2.
In summary, GW observation is a geometrical mea-

surement and intrinsically has a good affinity for study-
ing the configurations of the Galactic CWDBs. However,
because of the symmetry of the system, we have the four-
fold degeneracy between the angles ψ,ψ+π/2, ψ+π and
ψ + 3π/2.

B. Fourfolded Distribution Function

As discussed in the previous subsection, our observable
is not the full distribution function p(I, ψ) but the folded
one

p̄(I, ψd) ≡
3∑
k=0

p(I, ψd + kπ/2) (11)

defined in the parameter ranges 0 ≤ I ≤ π and 0 ≤ ψd ≤
π/2. Interestingly, unless the order m is a multiple of 4
(e.g. m = 0,±4,±8, · · · ), the folding operation erases its
ψd-dependent pattern

3∑
k=0

Ylm(I, ψd + kπ/2) ∝
3∑
k=0

exp(imkπ/2) = 0. (12)

Correspondingly, the azimuthal patterns of the function
p(I, ψd) come only from l ≥ 4.
As commented in Sec. II, an l-th order pattern Yl0(θ)

in the original function Eq. (1) generates the term pro-
portional to Ll(sin I cosψ) in the transformed one p(I, ψ)
in Eq. (5). From Eq. (2), we have

Ll[sin I cosψ] + Ll[sin I cos(ψ + π)] = 0

Ll[sin I cos(ψ + π/2)] + Ll[sin I cos(ψ + 3π/2)] = 0

for odd numbers l. Thus, the fourfolding operation (11)
cancels out all the contributions from the odd order pat-
terns in Eq. (1).
Using Eqs. (5) and (11) and keeping the even orders

l ≤ 4, we obtain

p̄(I, ψd) ∝ Y00 −
a20
2
Y20(I) +

3a40
8

Y40(I) (13)

+
a40
8

(
35

2

)1/2

[Y44(I, ψd) + Y4−4(I, ψd)] ,

which is symmetric at I = π/2. We should point out that
the full function p(I, ψ) (generated from Eq. (1) by Eq.
(5)) has the components Y2±2(I, ψ), but they disappear
at the folding operation as in Eq. (12) for m = ±2.
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FIG. 2: The fourfolded orientation distributions p̄(I, ψd)
(normalized by the factor π−1). We apply the area preserv-
ing projection (x, y) = 2 sin(I/2)(cosψd, sinψd). The origi-
nal distribution functions are axisymmetric model PA(cos θ)
in Eq. (1) characterized by the two anisotropy parame-
ters a20 and a40. Panel (a) for the isotropic model with
(a20, a40) = (0, 0), (b) with (−0.3, 0), (c) with (−0.3,−0.04)
and (d) with (−0.3,−0.1).

In Fig 2, we plot the folded distribution function (13)
in the coordinate

(x, y) = 2 sin[I/2](cosψd, sinψd) (14)

identical to the Lambert azimuthal equal-area projection
centered on the face-on direction I = 0. Given the sym-
metry at I = π/2, we present only the range 0 ≤ I ≤ π/2.

For a hierarchical case |a20| ≫ |a40|, the azimuthal
dependence is weak, as expected from Eq. (13). For
a20 < 0 (corresponding to the equatorial enhancement in
Eq. (1)), we have higher probability around the face-on
configuration (I = 0 and π).

From the folded distribution function p̄(I, ψd), we can
easily evaluate the polarization degree of the associated
GW background. The Stokes parameters (Is, Qs, Us, Vs)
are its conventional measures [29, 30]. Using the nota-

tion {· · ·}ψdI
≡

∫ π
0
dI

∫ π/2
0

dψd sin I p̄(I, ψd)[· · · ] for the
angular averagings, we obtain the expressions such as

Qs + iUs
Is

=

{
e−4iψd [(1 + cos2 I)2 − 4 cos2 I]

}
ψdI

{[(1 + cos2 I)2 + 4 cos2 I]}ψdI

(15)

(defined for the axes e⃗r and e⃗q). For the concrete pro-

file (13), we have Qs/Is = 35a40/(336− 48
√
5a20 + 3a40)

and Us/Is = Vs/Is = 0.

IV. PROBING ANISOTROPIES

We now discuss how to probe the anisotropies of the
original function P (⃗j), by analyzing the observable func-
tion p̄(I, ψd), which is sampled by a finite number of
CWDBs. For a probability distribution function defined
on a sphere, following e.g. [31], we can deal with the dis-
crete sampling effects on the spherical harmonic expan-
sion. Here, paying attention to the roughly concentric
profiles in Fig. 2, we rather examine a simple dualistic
approach.
We divide our binary sample (in total N) into the fol-

lowing two subsets: (i) the low-inclination group with
| cos I| ≥ 1/2 and (ii) the high-inclination group with
| cos I| < 1/2. We put their numbers by NL and NH
(NL +NH = N) and define the asymmetric ratio by

A ≡ NL −NH
N

. (16)

For the isotropic (random) profile P (⃗j) = const, we
have the vanishing mean ⟨A⟩ = 0 and the shot noise
∆A = N−1/2 for the very basic binomial distribution.
Below, we conservatively take the reference number N ∼
2000, considering the expected fraction of bulge CWDBs
[14].

For an anisotropic profile P (⃗j), we can estimate the
mean fractions such as

⟨NH⟩
N

=

∫ 2π/3

π/3

dI

∫ π/2

0

dψd sin I p̄(I, ψd) (17)

and obtain

⟨A⟩ = −192
√
5a20 + 135a40
1024

(18)

for the function (13). Therefore, if we have the condition
| ⟨A⟩ | > ∆A, we can probe the intrinsic anisotropy in

P (⃗j) (at 1-σ level). Dropping the term ∝ a40 in Eq.
(18), the inequality can be expressed as

|a20| > 0.053

(
N

2000

)−1/2

. (19)

This result would serve as a rough guidance for the detec-
tion limit of the intrinsic alignment of the bulge CWDBs.
We have some comments on the above simple argu-

ments, in view of the selection effects at actual observa-
tional analysis. As shown in Eq. (6), the signal-to-noise
ratio ρ depends on the sky position n⃗ of the binary and
its orientation angles (I, ψ). For given parameters (n⃗, ψ),
the signal-to-noise ratio ρ generally becomes smallest for
an edge-on binary with cos I = 0, as indicated by the ex-
pressions A+,×(I). How about the dependence on the re-
maining parameters (n⃗, ψ) for edge-on binaries? In fact,
due to the annual rotation of the detector plane of LISA,
the dependence is effectively averaged out, and the as-
sociated scatter is largely suppressed. We can quanti-
tatively examine this, by (i) using the standard frame-
work for nearly monochromatic binaries with LISA-like
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detectors [16] and (ii) randomly sampling the parameters
(n⃗, ψ). For an observational period of an integer times
1yr, the minimum signal-to-noise ratio ρ of the edge-on
binaries is only ∼ 10% smaller than the rms value of the
whole edge-on sample (corresponding to the large num-
ber limit of detectors in [32]). In any case, the selection
effect can be avoided by using CWDBs in the appropri-
ate region in the (f, ḟ)-space so that the Galactic survey
is expected to be complete (e.g. f > 3mHz) [11]. Al-
ternatively, when preparing the binary sample, we can
introduce dependence on the angular variables (n⃗, I, ψ)
to the threshold of the signal-to-noise ratios.

Meanwhile, the estimation errors for the parameter
cos I induce missclassifications of binaries around the
boundary | cos I| = 1/2, and we might need numerical
studies to examine the potential biases for the asymmet-
ric ratio A. The Fisher matrix analysis roughly gives
∆ cos I ∼ 1/ρ (except for cos I ∼ ±1) for a signal-to-noise
ratio ρ (typically at ∼ 10-100 for a Galactic CWDB) [11].
Therefore, such confusions are relevant for a small frac-
tion (∼ 1/ρ) of the binaries, eventually increasing the
shot noise ∆A only slightly (order of N−1/2ρ−1).

V. DISCUSSION AND SUMMARY

So far, we have mainly discussed the orientations of
bulge CWDBs. Using LISA, from the ampluitude and
frequency modulations, we can also measure the direc-
tions n⃗ of the binaries [16]. In addition, we will be able to
estimate the distances to some of the inspiraling CWDBs
by analyzing their orbital decay rates ḟ > 0 [17]. These

pieces of positional information will help us to roughly
select the bulge components. However, alignment stud-
ies will be intriguing also for disk components, and we do
not need to stick too much with a separation between the
two components. In any case, if the observed anisotropies
p̄(I, ψd) are turned out to be strong, we could addition-
ally explore the spatial correlation of the orientations, by
combining the two- or three-dimensional positional infor-
mation.

Let us briefly summarize our study. Compact binaries
emit GWs, encoding their orbital motions. GW observa-
tion is intrinsically geometrical and enables us to measure
the configurations of binary sources. Meanwhile, it was
recently reported that, the orientations of the planetary
nebulae associated with short-period bulge binaries are
preferentially aligned to the Galactic plane, possibly re-
flecting the frozen initial conditions of the binaries [18].
In the near future, LISA will separately detect ∼ 104

Galactic CWDBs and will become an ideal tool to exam-
ine their alignments, based only on the first principles of
physics. In spite of the fourfold degeneracy of the po-
larization angles, LISA could enable us to measure the
axisymmetric quadrupole pattern a20 as small as ∼ 0.05
and could serve as an interesting tool for geometrically
delving into the fossil records in our Galaxy.
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