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Abstract. We address the crucial yet underexplored stability properties of the Hamilton–Jacobi–

Bellman (HJB) equation in model-free reinforcement learning contexts, specifically for Lipschitz con-

tinuous optimal control problems. We bridge the gap between Lipschitz continuous optimal control
problems and classical optimal control problems in the viscosity solutions framework, offering new in-

sights into the stability of the value function of Lipschitz continuous optimal control problems. By

introducing structural assumptions on the dynamics and reward functions, we further study the rate of
convergence of value functions. Moreover, we introduce a generalized framework for Lipschitz continu-

ous control problems that incorporates the original problem and leverage it to propose a new HJB-based
reinforcement learning algorithm. The stability properties and performance of the proposed method

are tested with well-known benchmark examples in comparison with existing approaches.

1. Introduction

Reinforcement learning (RL) is known to be an effective approach for sequential decision-making
problems or optimal control problems, particularly for discrete-in-time settings [19, 15]. One of the well-
known data-driven approaches to tackle such problems is Q-learning [19], which is built upon Bellman’s
dynamic programming principle [3]. However, the classical Q-learning and its variants such as the Deep-
Q-learning algorithm are often limited to discrete-in-time problems. For the extension of RL algorithm
to the continuous-in-time problem, various methods have been proposed such as [10, 11, 20]. In [10],
authors provide a rigorous justification of Q-function for continuous stochastic optimal control problem
under the presence of entropy-regularizer in the reward function, which is motivated by [18]. On the
other hand, [11] proposed a model-free reinforcement learning algorithm called Hamilton–Jabobi deep
Q-learning (HJDQN) to tackle continuous-in-time deterministic optimal control problems based on the
viscosity solution framework. Their idea is to introduce a value function that contains both initial state
and action restricting the action to be Lipschitz continuous while the value function only includes the
state variable and is defined to be an optimal reward or cost corresponding to the initial state given in
standard optimal control theory. This way, one can admit the viscosity solution to the corresponding
Hamilton–Jacobi equation as a Q-function which consists of a pair of an initial state and an action,
denoted by QL(x, a) for some L > 0 given. However, such an extension is meaningful only if we restrict
the class of admissible controls to be L-Lipschitz continuous, and hence, the value function depends on
L. It is also studied in the paper that the choice of hyperparameter L is essential for better performance
in practical applications while the optimal choice of L is unknown. Nevertheless, their approach is still a
stepping stone to understanding continuous time Q-learning through the lens of the theory of viscosity
solution.

In this paper, we rigorously analyze the stability property of QL(x, a) on the Lipschitz constraint as
well as the convergence of QL(x, a) as L grows to infinity. We also demonstrate the rate of convergence
under some structural assumptions on the dynamics and reward function. Furthermore, we introduce a
slightly general landscape for admitting Q-function as a solution to a Hamilton–Jacobi–Bellman equation
by considering a general norm and extending the existing HJDQN algorithm accordingly. Our idea is
to consider different metric when defining the Lipschitz continuity of action, which allows flexibility for
choosing actions.

Organization of paper. The paper is organized as follows. In Section 2, the problem setup and
motivation are presented. We then provide some stability and regularity results on the viscosity solution
to the Hamilton–Jacobi–Bellman equations via the theory of viscosity solutions in Section 3. In the
following section, a rate of convergence is discussed. Finally, we introduce a different class of compact
control to generalize the Lipschitz continuous optimal control problem and present empirical results in
Section 5 and Section 6 respectively. We then conclude with Section 7.
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2 CHO AND KIM

Notations. We need a set of notations used throughout the paper. Let n, k ∈ N, x = (x1, ..., xn) ∈ Rn

and p ≥ 1.

• We denote ∥x∥p := (
∑n

i=1 |xi|p)1/p).
• Dxf(x) := ( ∂f

∂x1
, ..., ∂f

∂xn
) and ∆f :=

∑n
i=1

∂2f
∂x2

i
.

• Define k-dimensional ball as

Ba,k(y) := {x ∈ Rk : ∥x− y∥2 ≤ a},

for y ∈ Rk.
• For k-continuosly differentiable function f : Rn 7→ R,

∥f∥Ck(Rn) :=
∑

α1+...+αn≤k

sup
Rn

∥Dαf(x)∥2.

• We denote

ηε(x) :=
1

ε
η(
x

ε
), (1.1)

where

η(x) :=

{
e−1/(1−∥x∥2

2) for ∥x∥2 ≤ 1,

0 else.
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2. Setup and Preliminaries

Let us introduce the collection of control

A := {a(·) : [0,∞)→ Rm, a(·) is measurable}. (2.1)

Given a(·) ∈ A, we consider a dynamics evolving under{
x′(s) = f(x(s), a(s)),

x(0) = x,

where x(t) is the system state and f(x, a) : Rn 7→ Rm → Rn is smooth. Hence, it is known that
x(t) is absolutely continuous. Then, the standard infinite-horizon discounted optimal control problem is
formulated as

Q(x) = sup
a∈A

{∫ ∞

0

e−γsr(x(s), a(s))ds : x(0) = x ∈ Rn

}
,

where γ > 0 denotes the discount factor, and r(x, a) : Rn × Rm → R is a smooth reward function.
Given L > 0, we introduce the class of the Lipschitz controls denoted by

AL := {a(·) ∈ A : ∥a(s1))− a(s2)∥2 ≤ L|s1 − s2| for all s1, s2 ∈ [0,∞)}, (2.2)

and define the value function as

QL(x, a) = sup
a∈AL

{∫ ∞

0

e−γsr(x(s), a(s))ds : x(0) = x, a(0) = a

}
. (2.3)

Assumption 2.1. Throughout the paper, we assume that f and r are Lipschitz continuous, that is,
there exists C > 0 such that

∥f∥L∞(Rn×Rm) + ∥r∥L∞(Rn×Rm) + ∥f∥Lip(Rn×Rm) + ∥r∥Lip(Rn×Rm) ≤ C.

Under the assumption above, it is known that Q(x) and QL(x, a) solve

γQ− sup
a∈Rm

(DxQ · f(x, a) + r(x, a)) = 0,

and

γQL −DxQ
L · f(x, a)− L∥DaQ

L∥2 − r(x, a) = 0, (2.4)

respectively in viscosity sense [17, 2, 11].
We end this section by reminding of the regularity property of Q. A further investigation on QL will

be presented in the following section. In the classical infinite-horizon optimal control problem, it is often
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assumed that the control takes values in a compact set as opposed to our setting. Nevertheless, we still
have the same regularity property.

Proposition 2.2. Under Assumption 2.1, the unique viscosity solution Q to

γQ− sup
a∈Rm

(DxQ · f(x, a) + r(x, a)) = 0

is Lipschitz continuous if γ > ∥f∥Lip(Rn×Rm).

Proof. See [17]. □

In the following section, it is shown that QL is also Lipschitz continuous. In addition to that we study
the stability of QL in L as well as the convergence as L grows to infinity.

3. Some quantitative properties of QL

In this section, we explore some quantitative behaviors of QL by employing standard methods [17]
used for analyzing the regularity properties of viscosity solutions to Hamilton-Jacobi-Bellman (HJB)
equations. We first show that QL is uniformly Lipschitz in the state and action variable and derive the
estimate for the rate of change in L.

3.1. Lipschitz Regularity. Let us begin by providing a result on Lipschitz continuity of QL in state
and action variables. The following lemma suggests that the Lipschitz constant is independent of L. To
show this, as demonstrated in [11], we introduce a new state variable z := (x, a) and control variable
b(·) := ȧ(·) such that ∥b(·)∥2 ≤ L.

Lemma 3.1. Let L > 0 be given and suppose that QL is the solution of (2.4), and f and r satisfy
Assumption 2.1. In addition, we assume that

γ > ∥f∥Lip(Rn×Rm).

Then, QL(x, a) is Lipschitz continuous in x and a. Furthermore, we have the estimate

|QL|+ ∥DxQ
L∥2 + L∥DaQ

L∥2 ≤ C (3.1)

for some C > 0.

Proof. Let BL := {b(·) : [0,∞) → Rm, b(·) is measurable and ∥b(·)∥2 ≤ L}. Given z := (x, a) ∈ Rn+m

and b(·) ∈ BL, let us define

V L
b(·)(x, a) :=

∫ ∞

0

e−γsr(x(s), a(s))ds,

subject to 
x′(s) = f(x(s), a(s)) for s > 0,

a′(s) = b(s) for s > 0,

x(0) = x,

a(0) = a.

Fixing z̃ = (x̃, ã) ∈ Rn+m and b(·) ∈ BL as well as the trajectory z̃(s) := (x̃(s), ã(s)) satisfying
x̃′(s) = f(x̃(s), ã(s)) for s > 0,

ã′(s) = b(s) for s > 0,

x̃(0) = x̃,

ã(0) = ã,

and letting z(s) := (x(s), a(s)), we have that

∥z′(s)− z̃′(s)∥2 ≤ ∥f∥Lip(Rn×Rm)∥z(s)− z̃(s)∥2.

For simplicity, let γ0 := ∥f∥Lip(Rn×Rm). Invoking Gronwall’s inequality, we have that

∥z(s)− z̃(s)∥2 ≤ eγ0s∥z(0)− z̃(0)∥2 = eγ0s(∥x− x̃∥2 + ∥a− ã∥2).



4 CHO AND KIM

Now observing

|V L
b(·)(x, a))− V

L
b(·)(x̃, ã)| =

∣∣∣∣ ∫ ∞

0

e−γsr(x(s), a(s))ds−
∫ ∞

0

e−γsr(x̃(s), ã(s))ds

∣∣∣∣
≤ ∥r∥Lip(Rn×Rm)

∫ ∞

0

e−γs(∥x(s)− x̃(s)∥2 + ∥a(s)− ã(s)∥2)ds

≤ ∥r∥Lip(Rn×Rm)(∥x− x̃∥+ ∥a− ã∥2)
∫ ∞

0

e(−γ+γ0)sds

≤ C(∥x− x̃∥2 + ∥a− ã∥2),
for some C > 0 since γ > γ0, we deduce that

|QL(x, a)−QL(x̃, ã)| ≤ C(∥x− x̃∥2 + ∥a− ã∥2)
by taking supremum over b ∈ BL.

The inequality (3.1) follows from the equation (2.4) and we finish the proof. □

3.2. Error Bounds of QL+ℓ −QL for L, ℓ ≥ 0. Using the Lipschitz estimate above, one can estimate
the rate of change of QL with respect to L based on the standard doubling variable argument [17, 12, 8, 7].
The result we propose implies that the value functionQL does increase abruptly as L increases. Numerical
justification for this property is also presented in Section 6.

Lemma 3.2. Let Assumption 2.1 be enforced and γ > ∥f∥Lip(Rn×Rm). Given L > 0 and ℓ > 0, let

QL(x, a) and QL+ℓ(x, a) be solutions to (2.4) repsectively where the latter is associated with L+ℓ instead
of L. Then, there exists a constant C satisfying

0 ≤ QL+ℓ(x, a)−QL(x, a) ≤ Cℓ

L+ ℓ
, (3.2)

and hence,

lim sup
ℓ→0

QL+ℓ(x, a)−QL(x, a)

ℓ
≤ C

L
.

Proof. Since QL is defined as (2.3) and AL, the set of Lipschitz continuous controls, increases in L, it
follows that

QL(x, a) ≤ QL+ℓ(x, a) for every (x, a) ∈ Rn × Rm.

Therefore, the left side of inequality (3.2) holds.
To show the right side of inequality (3.2), we use the doubling variable technique [17, 1, 7, 12]. Let

µ(x) ∈ C1(Rn) µ̃(a) ∈ C1(Rm) satisfy

∥Dxµ∥2 ≤ 1 and ∥Daµ̃∥2 ≤ 1. (3.3)

For δ, ε > 0 and (x, y, a, b) ∈ R2n × R2m, we define an auxiliary function as follows:

Ψ(x, y, a, b) := QL+ℓ(x, a)−QL(y, b)− ∥x− y∥
2
2 + ∥a− b∥22
2ε

− δ (µ(x) + µ(y) + µ̃(a) + µ̃(b)) .

We choose a point (x̄, ȳ, ā, b̄) ∈ R2n × R2m satisfying

Ψ(x̄, ȳ, ā, b̄) = sup
(x,y,a,b)∈R2n×R2m

{Ψ(x, y, a, b) : (x, y, a, b) ∈ R2n × R2m}.

From the inequality Ψ(ȳ, ȳ, ā, b̄) ≤ Ψ(x̄, ȳ, ā, b̄), we see that

QL+ℓ(ȳ, ā)− δµ(ȳ) ≤ QL+ℓ(x̄, ā)− ∥x̄− ȳ∥
2
2

2ε
− δµ(x̄).

Recalling Lemma 3.1 and (3.3), we establish that

∥x̄− ȳ∥22
2ε

≤ QL(x̄, ā)−QL(ȳ, ā)− δ(µ(ȳ)− µ(x̄))

≤ C(1 + δ)∥x̄− ȳ∥2
for some constant C > 0. Rearranging inequality above gives

∥x̄− ȳ∥2 ≤ C(1 + δ)ε. (3.4)

Similarly, we start with the inequality Ψ(x̄, ȳ, b̄, b̄) ≤ Ψ(x̄, ȳ, ā, b̄). Invoking Lemma 3.1 and (3.3) once
again,

∥ā− b̄∥22
2ε

≤ QL+ℓ(x̄, ā)−QL+ℓ(x̄, b̄) + δ(µ̃(b̄)− µ̃(ā))
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≤ C∥ā− b̄∥2
L+ ℓ

+ δ∥ā− b̄∥2.

Dividing both side by ∥ā− b̄∥2, we derive that

∥ā− b̄∥2 ≤
(

C

L+ ℓ
+ 2δ

)
ε. (3.5)

Since the map

(x, a) 7→ QL+ℓ(x, a)− ∥x− ȳ∥
2
2 + ∥a− b̄∥22
2ε

− δ(µ(x) + µ̃(a))

obtains a local maximum value at (x̄, ā), we have that

γQL+ℓ(x̄, ā)− f(x̄, ā) ·
(
x̄− ȳ
ε

+ δDxµ(x̄)

)
− (L+ ℓ)

∥∥∥∥ ā− b̄ε + δDaµ̃(ā)

∥∥∥∥
2

− r(x̄, ā) ≤ 0, (3.6)

by the subsolution test.
Similarly, the map

(y, b) 7→ QL(y, b)−
(
−∥y − x̄∥

2
2 + ∥b− ā∥22
2ε

− δ(µ(y) + µ̃(b))

)
obtains a local minimum value at (ȳ, b̄). From the definition of viscosity supersolution, we see that

γQL(ȳ, b̄) + f(ȳ, b̄) ·
(
ȳ − x̄
ε
− δDxµ(ȳ)

)
− L

∥∥∥∥ ā− b̄ε + δDaµ̃(b̄)

∥∥∥∥
2

− r(ȳ, b̄) ≥ 0. (3.7)

Subtracting (3.7) from (3.6), we have

γ
(
QL+ℓ(x̄, ā)−QL(ȳ, b̄)

)
≤ (f(x̄, ā)− f(ȳ, b̄)) ·

(
x̄− ȳ
ε

)
+ (r(x̄, ā)− r(ȳ, b̄)) + ℓ

∥∥∥∥ ā− b̄ε
∥∥∥∥
2

+ δ
(
∥f(x̄, ā)∥2∥Dxµ(x̄)∥2 + ∥f(ȳ, b̄)∥2∥Dxµ(ȳ)∥2 + (L+ ℓ)∥Daµ̃(ā)∥2 + L∥Daµ̃(b̄)∥2

)
.

(3.8)

Combining (3.3), (3.4) and (3.5), there exists a constant C satisfying

γ
(
QL+ℓ(x̄, ā)−QL(ȳ, b̄)

)
≤ C

(
∥x̄− ȳ∥2 + ∥ā− b̄∥2

) ∥x̄− ȳ∥2
ε

+ C
(
∥x̄− ȳ∥2 + ∥ā− b̄∥2

)
+ ℓ

∥∥∥∥ ā− b̄ε
∥∥∥∥
2

+ δ (C + 2L+ ℓ)

≤ C
(
∥x̄− ȳ∥2

ε
+ 1

)
(∥x̄− ȳ∥2 + ∥ā− b̄∥2) + ℓ

∥∥∥∥ ā− b̄ε
∥∥∥∥
2

+ δ(C + 2L+ ℓ)

≤ Cε+ Cℓ

L+ ℓ
+ δ(C + 2L+ ℓ).

Finally, invoking the inequality

Ψ(x, x, a, a) ≤ Ψ(x̄, ȳ, ā, b̄) ∀(x, a) ∈ Rn × Rm,

we have that

γ(QL+ℓ(x, a)−QL(x, a))− 2δ(µ(x) + µ̃(a)) ≤ Cε+ Cℓ

L+ ℓ
+ δ(C + 2L+ ℓ).

We complete the proof by taking δ, ε→ 0. □

4. Convergence of QL(x, a) to Q(x)

4.1. General convergence result. We provide the general convergence result based on the stability
properties of viscosity solutions. Let us recall the following definition of upper or lower half-relaxed
limit [14, 1]. It is crucial to note that the limit functions are subsolution and supersolution to the
limiting equation.

Definition 4.1. For a family of locally bounded functions on Rn denoted by {uα}α∈R. We define the
upper and lower half-relaxed limits u∗ and u∗ of uα as

u∗(x) = lim sup∗α→∞uα(x) := lim
α→∞

sup{uβ(y) : ∥x− y∥2 ≤
1

β
, β ≥ α},

and

u∗(x) = lim inf∗α→∞uα(x) := lim
α→∞

inf{uβ(y) : ∥x− y∥2 ≤
1

β
, β ≥ α}.



6 CHO AND KIM

Let us state one of the main results, the convergence of QL to Q as L grows to infinity.

Theorem 4.2. Let QL := QL(x, a) : Rn × Rm → R be a viscosity solution to

γQL −DxQ
L · f(x, a)− L∥DaQ

L∥2 − r(x, a) = 0.

Then we have that

QL(x, a)→ Q(x) locally uniformly as L→∞,
where Q := Q(x) is a unique viscosity solution to

γQ− sup
a∈Rm

(DxQ · f(x, a) + r(x, a)) = 0.

Proof. By the comparison principle, we have that

−
∥r∥L∞(Rn×Rm)

γ
≤ QL(x, a) ≤

∥r∥L∞(Rn×Rm)

γ
.

Noticing that ∥DaQ(x)∥2 = 0, Q(x) satisfies

γQ(x)−DxQ · f(x, a)− r(x, a)− L∥DaQ(x)∥2 ≥ 0,

which implies that

QL(x, a) ≤ Q(x).

Since QL is bounded, we also get

Q∗ := lim sup∗L→∞Q
L(x, a) ≤ Q(x).

Similarly,

Q∗ := lim inf∗L→∞Q
L(x, a).

Our goal is to show Q∗ = Q∗ = Q(x), which is equivalent to

lim
L→∞

QL(x, a) = Q(x).

Rewriting (2.4), one can see that QL is a viscosity solution to

−∥DaQ
L∥2 +

1

L
(γQL −DxQ

L · f(x, a)− r(x, a)) = 0.

Taking L→∞ and invoking the stability result on the viscosity solution [1], the lower half-relaxed limit
Q∗ is indeed a supersolution to

−∥DaQ∗∥2 ≥ 0,

and hence, |DaQ∗| ≤ 0. Therefore Q∗ is independent of a, that is,

Q∗(x, a) ≡ Q∗(x).

Additionally, QL also satisfies

γQL −DxQ
L · f(x, a)− r(x, a) = L∥DaQ

L∥2 ≥ 0.

Again by the stability property of viscosity solutions, taking the limit of L, we derive that Q∗ is a
supersolution to

γQ∗ −DxQ∗ · f(x, a)− r(x, a) ≥ 0,

and

γQ∗ − sup
a∈Rm

{DxQ∗ · f(x, a)− r(x, a)} ≥ 0,

since Q∗ is independent of a. Therefore, again by the comparison principle,

u∗ ≥ u,

and we finish the proof as Q∗ = Q∗ = Q implying

lim
L→∞

QL(x, a) = Q(x).

□

The convergence property can be achieved only under the boundedness assumptions on the dynamics
and reward functions, f and r. One can show further how fast this convergence occurs introducing some
structural assumptions on f and r.
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4.2. Rate of convergence for some special cases. In the previous section, we show that QL(x, a)
converges to Q(x) using the classical stability result on viscosity solutions. We now further investigate
the rate of convergence of QL(x, a) → Q(x) as L → ∞ under appropriate assumptions. We begin by
showing the existence of optimal control for Q and QL based on [2]. To prove the existence of an optimal
control achieving the optimal value Q, we enforce the following assumption.

Assumption 4.3. A Borel function α(x, p) : Rn × Rn → Rm is uniquely determined to satisfy

f(x, α(x, p)) · p+ r(x, α(x, p)) = max
a∈Rm

(f(x, a) · p+ r(x, a)).

We further assume that there exists C > 0, satisfying

∥f(x+ h)− 2f(x, a) + f(x− h, a)∥2 ≤ C∥h∥22,
r(x+ h)− 2r(x, a) + r(x− h, a) ≥ −C∥h∥22.

Proposition 4.4. Let γ > 2∥f∥Lip(Rn×Rm) and Assumption 4.3 be enforced. For any given x ∈ Rn,
there exists a(·) ∈ A from (2.1) such that

Q(x) =

∫ ∞

0

e−γsr(x(s), a(s))ds, (4.1)

where {
x′(s) = f(x(s), a(s)) for s > 0,

x(0) = x.
(4.2)

Proof. By [17][Theorem 2.8], we have Q(x) is bounded and Lipschitz continuous in Rn. Denoting Q̃(x) :=
−Q(x), we have

Q̃(x) +Hγ(x,DxQ̃(x)) = 0,

where

Hγ(x, p) := sup
a∈Rm

(
−f(x, a)

γ
· p+ r(x, a)

γ

)
.

We will show that Q̃L(x) is semiconcave. By Assumption 4.3, for all x, p, q ∈ Rn, we find

Hγ(x, p)−Hγ(x, q) = sup
a∈Rm

(
−f(x, a)

γ
· p+ r(x, a)

γ

)
− sup

a∈Rm

(
−f(x, a)

γ
· q + r(x, α(x, p))

γ

)
≤
(
−f(x, α(x, p))

γ
· p+ r(x, α(x, p))

γ

)
−
(
−f(x, α(x, p))

γ
· q + r(x, α(x, p))

γ

)
≤
∥∥∥∥−f(x, α(x, p))γ

∥∥∥∥
2

∥p− q∥2.

We may assume that the left-hand side is positive. Otherwise, we change p and q. Hence,

|Hγ(x, p)−Hγ(x, q)| ≤ C∥p− q∥2
for some C > 0. We claim that there exists C̃ > 0

Hγ(x+ h, p+ C̃h)− 2Hγ(x, p) +Hγ(x− h, p− C̃h) ≥ −C̃∥h∥22, (4.3)

for all x, h ∈ Rn and p ∈ Rn satisfying ∥p∥2 ≤ 3∥Q(x, a)∥Lip(Rn). We observe that

Hγ(x+ h, p+ C̃h) +Hγ(x− h, p− C̃h)

≥ sup
a∈Rm

(
−f(x+ h, a)

γ
· (p+ C̃h)− f(x− h, a)

γ
· (p− C̃h) + r(x+ h, a)

γ
+
r(x− h, a)

γ

)
.

= sup
a∈Rm

(
−f(x+ h, a) + f(x− h, a)− 2f(x, a)

γ
· p+ r(x+ h, a) + r(x− h, a)− 2r(x, a)

γ

−f(x+ h, a)− f(x− h, a)
γ

· (C̃h)− 2
f(x, a)

γ
· p+ 2

r(x, a)

γ

)
=: I.

Note that we have

∥f(x+ h, a)− f(x− h, a)∥2
γ

≤
2∥f∥Lip(Rn×Rm)∥h∥2

γ
.

From the inequality above and the Assumption 4.3, we estimate I by

I ≥ −

(
C1(∥Q(x)∥Lip(Rn) + 1) +−2C̃

γ
∥f∥Lip(Rn×Rm)

)
∥h∥22 + 2Hγ(x, p),
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for some constant C1 > 0. By choosing C̃ large enough to satisfy

C̃ >
C1γ(∥Q(x)∥Lip(Rn) + 1)

γ − 2∥f∥Lip(Rn×Rm)
,

the inequality (4.3) holds. Note that such C̃ can be chosen since γ > 2∥f∥Lip(Rn×Rm). Recalling [2][Theorem

4.9, Chapter II], Q̃(x) is semiconcave in x.

By [2][Proposition 4.7, Chapter II], we have D+
x Q̃(x) = ∂xQ̃(x) ⊃ D∗

xQ̃(x) ̸= ∅ for all x ∈ Rn.1 Let
us define a function ψ : Rn → Rn satisfying

ψ(x) =

{
DxQ̃(x) if Q̃ is differentiable at x ∈ Rn,

some p ∈ D+
x Q̃(x) ∩D∗

xQ̃(x) otherwise.
(4.4)

For a given state x(s), we choose a action a(s) = α(x(s),−ψ(x(s))). For the moment, let us assume

that we can choose p ∈ D+Q̃(x) ∩D∗
xQ̃(x) ∩D∗

xQ̃(x) so that ψ(x) is a Borel function. Then clearly, we
have a(·) ∈ A. The details of the proof can be found in Appendix 8.1. Then from Assumption 4.3 and
the definition of ψ, we have

f(x(s), a(s)) · ψ(x(s))− r(x(s), a(s))
= − (f(x(s), a(s)) · (−ψ(x(s))) + r(x(s), a(s)))

= − max
a∈Rm

(f(x(s), a) · (−ψ(x(s))) + r(x(s), a))

= min
a∈Rm

(f(x(s), a) · ψ(x(s))− r(x(s), a)).

Since ψ(x) ∈ D+
x Q̃(x), the assumption of [2][Theorem 2.52, Chapter III] is satisfied.2 Therefore, we have

Q̃(x) =

∫ ∞

0

e−γs(−r(x(s), a(s))ds,

which implies

Q(x) =

∫ ∞

0

e−γsr(x(s), a(s))ds.

This completes the proof. □

In the following proposition, we show the existence of optimal control for QL. Some of the arguments
in the proof overlap with the previous proposition, but we shall provide details for the convenience of
the reader.

Proposition 4.5. Assume further that γ > 2∥f∥Lip(Rn×Rm) and let (x, a) ∈ Rn × Rm be given. Then,

there exists aL(s) ∈ AL from (2.2) such that

QL(x, a) =

∫ ∞

0

e−γsr(xL(s), aL(s))ds, (4.5)

where 
x′L(s) = f(xL(s), aL(s)) for s > 0,

xL(0) = x,

aL(0) = a.

(4.6)

Proof. We first prove the theorem under the assumption

f(x, a), r(x, a) ∈ C2(Rn × Rm) and ∥f∥C2(Rn×Rm) + ∥r∥C2(Rn×Rm) is bounded. (4.7)

Applying Lemma 3.1, we have Q(x, a) is bounded and Lipscthiz continuous in Rn × Rm. We introduce
extended state variable z(s) and dynamics G : (Rn × Rm)× Rm → Rn × Rm satisfying

z(s) = (xL(s), aL(s)) and G(z, b) = (f(z), b).

Then (4.6) can be written as {
z′(s) = G(z(s), b(s)) for s > 0,

z(0) = (x, a).

1Here, D+
x Q(x) and D−

x Q(x) denote the super-differential and sub-differential of the function Q(x).The notation ∂xQ(x)
refers to a generalized gradient or Clarke’s gradient and D∗

xu = {p ∈ Rn : p = limDxu(xn), xn → x}. For details about

super-, sub-differential, and Clarke’s gradient, see [2][Chapter II.4.1].
2Although the action spaces are non-compact set, with the same argument, the results of [2][Theorem 2.52, Chapter

III] still hold.
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Rewriting (2.4), in terms of z(t) and G(z, b) and Q̃L(x, a) := −QL(x, a), we have

Q̃L(x, a) +Hγ(z,DzQ̃
L(z)) = 0,

where

Hγ(z, p) := sup
∥b∥2≤L

(
−G(z, b)

γ
· p+ r(z)

γ

)
.

We will show that Q̃L(z) is semiconcave.
It is clear that

|Hγ(z, p)−Hγ(z, q)| ≤ C∥p− q∥2,
for some C > 0. We claim that there exists C̃ > 0 such that

Hγ(z + h, p+ C̃h)− 2Hγ(z, p) +Hγ(z − h, p− C̃h) ≥ −C̃∥h∥22 (4.8)

for all z, h ∈ Rn × Rm and p ∈ Rn × Rm satisfying ∥p∥2 ≤ 3∥QL(x, a)∥Lip(Rn×Rm). For justification, let
us first observe that

Hγ(z + h, p+ C̃h) +Hγ(x− h, p− C̃h)

≥ sup
∥b∥2≤L

(
−G(z + h, b)

γ
· (p+ C̃h)− G(z − h, b)

γ
· (p− C̃h) + r(z + h)

γ
+
r(z − h)

γ

)
.

= sup
∥b∥2≤L

(
−G(z + h, b) +G(z − h, b)− 2G(z, b)

γ
· p+ r(z + h) + r(z − h)− 2r(z)

γ

−G(z + h, b)−G(z − h, b)
γ

· (C̃h)− 2
G(z, b)

γ
· p+ 2

r(z)

γ

)
=: I.

By the mean value theorem, we find

∥G(z + h, b)− 2G(z, b) +G(z − h, b)∥2
γ

≤
C∥f∥C2(Rn×Rm)∥h∥22

γ
,

|r(z + h)− 2r(z) + r(z − h)|
γ

≤
C∥r∥C2(Rn×Rm)∥h∥22

γ
,

∥G(z + h)−G(z − h)∥2
γ

≤
2∥f∥Lip(Rn×Rm)∥h∥2

γ
.

From the inequalities above, we estimate I by

I ≥ −

(
C1

γ
(∥f∥C2(Rn×Rm)∥QL(x, a)∥Lip(Rn×Rm) + ∥r∥C2(Rn×Rm)) +

2C̃

γ
∥f∥Lip(Rn×Rm)

)
∥h∥22

+ 2Hγ(z, p).

By choosing C̃ large enough to satisfy

C̃ >
C1(∥f∥C2(Rn×Rm)∥QL(x, a)∥Lip(Rn×Rm) + ∥r∥C2(Rn×Rm))

γ − 2∥f∥Lip(Rn×Rm)
,

the inequality (4.8) holds. Note that such C̃ can be choosen since γ > 2∥f∥Lip(Rn×Rm). Recall-

ing [2][Theorem 4.9, Chapter II], Q̃L is semiconcave on Rn. By [2][Proposition 4.7, Chapter II], we

have D+
z Q̃

L(z) = ∂zQ̃
L(z) for all z ∈ Rn × Rm. Finally, by [11][Theorem 1], there exists an optimal

control aL(·) ∈ AL and a corresponding state xL(s) that satisfy (4.5) and (4.6).
Next, we remove the assumption (4.7). For all ε > 0, let η̃ε be a mollifier, as defined in (1.1), but

with the domain Rn replaced by Rn × Rm. By defining mollified functions

fεi (z) := fi ∗ η̃ε(z) and rεi (z) := ri ∗ η̃ε(z),
where the subscript i denotes the ith component.

From [8][Theorem 6, Appendix C.4], we have fε(x, a), rε(x, a) ∈ C2(Rn × Rm) and

fε(z)→ f(z), rε(z)→ r(z) locally uniformly.

For all z1, z2 ∈ Rn × Rm, we find

∥fε(z1)− fε(z2)∥2 ≤
∫
Rn×Rm

∥(f(z1 − z)− f(z2 − z))η̃ε(z)∥2 dz

≤ ∥f∥Lip(Rn×Rm)|z1 − z2|
∫
{∥z∥2≤ε}

η̃ε(z) dz
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≤ ∥f∥Lip(Rn×Rm)|z1 − z2|.

Therefore, ∥fε∥Lip(Rn×Rm) ≤ ∥f∥Lip(Rn×Rm) and as a result, γ > 2∥fε∥Lip(Rn×Rm) holds for all ε > 0. As
a direct consequence of the previous argument, there exist xεL(s) and aεL(·) ∈ AL satisfying (4.5) and
(4.6) replacing f, r and QL by fε, rε and QL,ε, respectively.

For all s ∈ [0, s0] with any fixed s0 > 0, we have the following estimates:

∥xεL(s)∥+
∥∥∥∥dxεL(s)ds

∥∥∥∥
2

+ ∥aεL(s)∥2 +
∥∥∥∥daεL(s)ds

∥∥∥∥
2

≤ ∥x∥2 +
∫ s0

0

∥∥∥∥dxεL(s)ds

∥∥∥∥
2

ds+

∥∥∥∥dxεL(s)ds

∥∥∥∥
2

+ ∥a∥2 +
∫ s0

0

∥∥∥∥daεL(s)ds

∥∥∥∥
2

ds+

∥∥∥∥daεL(s)ds

∥∥∥∥
2

≤ ∥x∥2 + (s0 + 1)
γ

2
+ ∥a∥2 + (s0 + 1)L.

Given n ∈ N, we can find a sequence {εnk}∞k=1 ↘ 0 such that

a
εnk
L → ânL and x

εnk
L → x̂nL locally uniformly on [0, n] as k →∞,

by Arzelá–Ascoli theorem. By taking a further subsequence, we may assume that

aεkL → âL and xεkL → x̂L locally uniformly on [0,∞) as k →∞.

Clearly, âL is L-Lipschitz continuous on [0,∞). From

xεL(t) =

∫ t

0

f(x̂εL(s), â
ε
L(s))ds+ x,

and the local uniform convergence, we also have that

x̂L(t) =

∫ t

0

f(x̂L(s), âL(s))ds+ x.

Finally, we will show that

QL(x, a) =

∫ ∞

0

e−γsr(x̂L(s), âL(s))ds

using the stability property of the viscosity solution. To this end, let us define Q̂L(x, a) as

Q̂L(x, a) :=

∫ ∞

0

e−γsr(x̂L(s), âL(s)) ds.

and gL(x, a, t) : (Rn × Rm)× [0,∞)→ Rn × Rm satisfy gL(x, a, t) = (x̃L(t), ãL(t)), where x̃(t) and ã(t)
satisfies 

x̃′L(s) = f(x̃L(s), ãL(s)),

x̃L(0) = x,

ãL(0) = a,

together with ∥ ˙̃a(s)∥2 ≤ L for all s > 0.
For any compact set K ⊂ Rn × Rm and s0 > 0 to be choose later, we define UL := gL(K, [0, s0]).

Then for all (x, a) ∈ K, we find that

|QL,εk(x, a)− Q̂L(x, a)| ≤
∫ ∞

0

e−γs|rεk(xεkL (s), aεkL (s))− r(x̂L(s), âL(s))| ds

≤
∫ s0

0

e−γs|rεk(xεkL (s), aεkL (s))− r(x̂L(s), âL(s))| ds + Ce−γs0

≤
∫ s0

0

e−γs|rεk(xεkL (s), aεkL (s))− rεk(x̂L(s), âL(s))| ds

+

∫ s0

0

e−γs|rεk(x̂L(s), âL(s))− r(x̂L(s), âL(s))| ds + Ce−γs0

≤ C1|s0|
(
∥xεk − x̂∥L∞([0,s0]) + ∥a

εk − â∥L∞([0,s0])

)
+ |s0|∥rεk − r∥L∞(UL) + C2e

−γs0 ,

where the last inequality comes from

∥fε∥Lip(Rn×Rm) ≤ ∥f∥Lip(Rn×Rm) and ∥rε∥Lip(Rn×Rm) ≤ ∥r∥Lip(Rn×Rm).
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For small δ > 0 given, we choose s0 > 0 such that

C2e
−γs0 <

δ

2
.

Then U is determined and we choose εk > 0 sufficiently small to satisfy

C1|s0|
(
∥xεk − x̂∥L∞([0,s0]) + ∥a

εk − â∥L∞([0,s0])

)
+ |s0|∥rεk − r∥L∞(UL) <

δ

2
.

This implies that QL,εk(x, a) converges to Q̂L(x, a) uniformly on compact sets. Moreover, QL,ε is the
unique viscosity solution of

γQL,ε − fε(x, a) ·DxQ
L,ε − L∥DaQ

L,ε∥2 − rε(x, a) = 0.

Then, by the stability of the viscosity solution [2][Proposition 2.2, Chapter II], we find that Q̂L(x, a)

is the viscosity solution of (2.4). Consequently, Q̂L = QL. Since â(·) ∈ AL and x̂(·), â(·) satisfy the
dynamic equation (4.6), it follows that âL(·) is the desired optimal policy. This completes the proof. □

We now get back to our original interest, the rate of convergence of QL to Q as L→∞. To understand
such a quantitative property, we introduce structural assumptions on the dynamics and reward function.

Assumption 4.6. There exists C > 0 such that

∥f(x, a)∥2 + |r(x, a)| ≤
C

∥a∥σ2
for some σ > 0.

The following assumption indicates that an optimal control from Proposition 4.4 is not changing
abruptly.

Assumption 4.7. Given x ∈ Rn, let a(·) ∈ A be an optimal control obtained in Proposition 4.4, that
is,

Q(x) =

∫ ∞

0

e−γsr(x(s), a(s))ds.

For this control, we assume that there exists β > 0,

∥ã(s)− aε(s)∥L2(R) ≤ O(εβ).

where aε(s) = ã(s) ∗ ηε and ã(s) is odd extension of a(s) 3.

Remark 4.8. If a(·) is piecewise continous and |a(·)| ≤ M for some M > 0, then β = 1. In general if
ã ∈W k,2(R) for some k ≥ 1, then we can choose β = k.

We now state the result on a rate of convergence of QL → Q. The idea of the proof is that we truncate
the optimal control a(s) and consider the mollification of this function to relate it with the feasible class
AL.

Theorem 4.9. Let γ ≥ ∥f∥Lip(Rn×Rm) + 1 and (x, a) ∈ Rn × Rm be given. Under Assumption 4.7, we
have that

|QL(x, a)−Q(x)| = O

(
logL

Lσ/2
+ (

logL√
L

)β +
1√
L

)
.

Proof. Throughout the proof, we will use the mollifier ηε defined for n = 1 in (1.1). Let (x(s), a(s))
and (xL(s), aL(s)) be optimal state trajectory and control pairs associated with Q(x) and QL(x, a)
respectively.

Given R > 0 and a(s) = (a1(s), ..., am(s)), define

aRi (s) := ai(s)1|ai(s)|≤R +R1{ai(s)≥R} −R1{ai(s)≤−R}

and let aR(s) := (aR1 (s), ..., a
R
m(s)).

3The measurable function a : [0,∞) → Rm can be extended to ã : (−∞,∞) → Rm in a way that a(−s) = −a(s) and

mollified with ηε with n = 1 in (1.1).
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Since Q(x) ≥ QL(x, a), we only need to estimate Q(x)−QL(x, a). Fixing T > 0, we have that

Q(x)−QL(x, a) ≤
∫ ∞

0

e−γs

(
r(x(s), a(s))− r(xL(s), aL(s))

)
ds

≤
∫ T

0

e−γs

(
r(x(s), a(s))− r(x(s), aR(s))

)
ds

+

∫ T

0

e−γs

(
r(x(s), aR(s)− r(xL(s), aL(s))

)
ds+ Ce−T

(4.9)

for some C depending only on γ and C1 from Assumption 2.1. We notice that the first term of (4.9) can
be bounded as

∫ T

0

e−γs

(
r(x(s), a(s))− r(x(s), aR(s))

)
ds ≤ CT min{ 1

Rσ
, ∥a(s)− aR(s)∥2}

≤ CT

Rσ
.

For the second part of (4.9), we assume for the moment that R and ε satisfy

|da
R,ε(s)

ds
| ≤ eR

ε
= L,

where aR,ε
i (s) := aRi (s) ∗ ηε, and hence, aR,ε(s) ∈ AL. Therefore, the second term in (4.9) is estimated

as

∫ T

0

e−γs

(
r(x(s), aR(s))− r(xL(s), aL(s))

)
ds =

∫ T

0

e−γs

(
r(x(s), aR(s))− r(xL(s), aL(s))

)
ds

≤
∫ T

0

e−γs

(
r(x(s), aR(s))− r(xR,ε(s), aR,ε(s)

)
ds︸ ︷︷ ︸

(a)

,

where xR,ε(s) satisfies


(xR,ε)′(s) = f(xR,ε(s), aR,ε(s)) fors > 0,

xR,ε(0) = x,

aR,ε(0) = a.

Now observing (a),

(a) ≤
∫ T

0

e−γs|r(x(s), aR(s))− r(x(s), aR,ε(s))|ds+
∫ T

0

e−γs|r(x(s), aR,ε(s))− r(xR,ε(s), aR,ε(s))|ds

≤ C∥aR(s)− aR,ε(s)∥2L2([0,∞)) +

∫ T

0

e−γs|r(x(s), aR,ε(s))− r(xR,ε(s), aR,ε(s))|ds

≤ C∥a(s)− aε(s)∥2L2([0,∞)) +

∫ T

0

e−γs|r(x(s), aR,ε(s))− r(xR,ε(s), aR,ε(s))|ds,

(4.10)

where aε(s) := (a1(s) ∗ ηε, ..., am(s) ∗ ηε).
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Let w(s) := 1
2∥x(s)− x

R,ε(s)∥22 and C̃ = 2∥f∥Lip(Rn×Rm).

w′(s) = (x(s)− xR,ε(s)) ·
(
f(x(s), a(s)− f(xR,ε(s), aR,ε(s)

)
= (x(s)− xR,ε(s)) ·

(
f(x(s), a(s))− f(x(s), aR,ε(s)) + f(x(s), aR,ε(s))− f(xR,ε(s), aR,ε(s))

)
≤ ∥x(s)− xR,ε(s)∥2×(

∥f(x(s), a(s))− f(x(s), aR(s))∥2 + ∥f(x(s), aR(s))− f(x(s), aR,ε(s))∥2 +
C̃

2
∥x(s)− xR,ε(s)∥2

)
≤ C̃w + ∥x(s)− xR,ε(s)∥2

(
∥f(x(s), a(s))− f(x(s), aR(s))∥2 + ∥f(x(s), aR(s))− f(x(s), aR,ε(s))∥2

)
≤ C̃w + 2w +

1

2

(
∥f(x(s), a(s))− f(x(s), aR(s))∥22 + ∥f(x(s), aR(s))− f(x(s), aR,ε(s))∥22

)
≤ (C̃ + 2)w +

C

R2σ
+
C̃

4
∥aR(s)− aR,ε(s)∥22.

By the Gronwall’s inequality, for any t ∈ [0, T ], we have that

e−(C̃+2)t∥x(t)− xR,ε(t)∥22 ≤ C
(

1

R2σ
+

∫ t

0

∥aR(s)− aR,ε(s)∥22ds
)

≤ C
(

1

R2σ
+ ∥a(s)− aε(s)∥2L2([0,∞))

)
.

Noticing that 2γ ≥ C̃ + 2, we have∫ T

0

e−γs|r(x(s), aR,ε(s))− r(xR,ε(s), aR,ε(s))|ds ≤ C
∫ T

0

e−γs∥x(s)− xR,ε(s)∥2ds

≤ C
(∫ T

0

1ds

)1/2(∫ T

0

e−2γs∥x(s)− xR,ε(s)∥22ds
)1/2

≤ CT
(

1

R2σ
+ ∥a(s)− aε(s)∥2L2([0,∞))

)
.

Finally, we set R =
√
L, T = logR, and ε = eR

L ,

Q(x)−QL(x, a) ≤ C( T
Rσ

+ T∥a(s)− aε(s)∥2L2([0,∞)) + e−T )

≤ O(
T

Rσ
+ Tε2β +

1√
L
)

≤ O
(
logL

Lσ/2
+ (

logL√
L

)β +
1√
L

)
.

□

5. Generalized Hamilton–Jacobi based Q-learning

The core idea of Hamilton–Jacobi based Q-learning for the Lipschitz continuous control problem
proposed by [11] is to restrict the derivative of the action a(·) to be bounded, that is, |ȧ(·)| ≤ L for some
L > 0, which results in

γQL −DxQ
L · f(x, a)− L∥DaQ

L∥2 − r(x, a) = 0

for QL defined as (2.3). We now generalize the constraint by introducing

AL
p := {a(·) ∈ AL : ∥ȧ(·)∥p ≤ L for all s ∈ [0,∞)}

for p ∈ [1,∞]. Here, we note that AL
2 = AL when p = 2.

The value function is defined as

QL
p (x, a) = sup

a∈AL
p

{∫ ∞

0

e−γsr(x(s), a(s))dt : x(0) = x, a(0) = a

}
, (5.1)

and we obtain a slightly different Hamilton–Jacobi equation

γQL −DxQ
L · f(x, a)− r(x, a)− sup

∥b∥p≤L

b ·DaQ = γQL −DxQ
L · f(x, a)− r(x, a)− L∥DaQ∥q = 0,



14 CHO AND KIM

where 1
p + 1

q = 1.

5.1. Demonstration of optimal action. Given L and p, let us examine the structural property of
optimal action when the value function QL

p (x, a) is differentiable everywhere.
Let us illustrate some special cases p = 1 or p =∞ first and consider general p ∈ (1,∞). When p = 1,

QL := QL
1 is a viscosity solution to

γQL −DxQ
L · f(x, a)− r(x, a)− L max

i∈[1,m]
{|DaiQ

L|} = 0.

The optimal action a(·) = (a1(·), ..., am(·)) satisfies that

ȧj(·) =

{
±L if j = maxi∈[1,m] |Dai

QL(x(·), a(·))|,
0 if Dai

QL(x(·), a(·)) ̸= 0 and i ̸= j.

On the other hand, if p =∞, we also derive that QL := QL
∞(x, a) solves

γQL −DxQ
L · f(x, a)− r(x, a)− L

m∑
i=1

|DaiQ
L| = 0

in the viscosity sense. Similarly, the optimal action satisfies that

ȧi(·) =

{
L if DaiQ

L(x(·), a(·)) > 0,

−L if DaiQ
L(x(·), a(·)) < 0.

One interesting feature of implementing ℓ∞ constraint is that the rate of change of control ȧi(·) is
independent of the coordinate while that under ℓ2 constraint is not. Specifically, ȧ1(t) = L for some t
fixed does not affect the choice of ȧ2(t) under ℓ∞ constraint but the condition forces ȧi(t) = 0 for i ̸= 0.

We now characterize the optimal control associated with p ∈ (1,∞).

Proposition 5.1. Let p ∈ (1,∞) and QL
p (x, a) from (5.1) be differentiable. If Dai

QL
p (x, a) ̸= 0 for all

i, then optimal action a(·) satisfies

ȧi(·) = ±L
(Dai

QL)1/(p−1)

∥DaQL∥q/pq

,

where 1
p + 1

q = 1.

5.2. Convergence result. Regardless of the choice of p, invoking the same argument presented in
Theorem 4.2, we still have the general convergence result.

Corollary 5.2. Let p ∈ [1,∞] and QL := QL
p (x, a) : Rn × Rm → R be a viscosity solution to

γQL −DxQ
L · f(x, a)− L∥DaQ

L∥q − r(x, a) = 0 (5.2)

for q satisfying 1
p + 1

q = 1. Then we have that

QL(x, a)→ Q(x) locally uniformly as L→∞,

where Q := Q(x) is a unique viscosity solution to

γQ− sup
a∈Rm

(DxQ · f(x, a) + r(x, a)) = 0.

6. Numerical experiment

This section presents numerical experiments conducted using the HJDQN learning framework, with
different values of L and p. We assess performance in the Hopper-v2, HalfCheetah-v2, and Walker2d-v2
environments from the OpenAI Gym suite [6], simulated using the MuJoCo engine [16]. Additionally, we
include a 20D linear quadratic regulator (LQR) control problem as a benchmark task. Our experiments
are based on the code provided by [11]4. Unless otherwise stated, the hyperparameters remain consistent
with those reported in [11].

6.1. Proposed algorithm. Yet almost identical to the procedure presented in [11], we include the
modified algorithm for completeness.

4https://github.com/HJDQN/HJQ

https://github.com/HJDQN/HJQ
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Algorithm 1 Modified Hamilton–Jacobi DQN (p-HJDQN)

1: L, p and h are given;
2: Initialization: Initialize Q-function by a neural network with random weight θ as Qθ, and the

target Q-function as Qθ− with weights θ− = θ;
3: Initialize replay buffer with fixed capacity;
4: for episode=1 to M do
5: Sample initial state-action pair (x0, a0);
6: for k=0 to K do
7: Execute action ak and observe reward rk and the next state xk+1;
8: Store (xk, ak, rk, xk+1) in buffer;
9: Sample the random mini-batch {(xj , aj , rj , xj+1)} from buffer;

10: Compute η via Proposition 5.1;

11: Set y−j := hrj + (1− γh)Qθ−(xj+1, a
′
j) for all j where a′j := aj ± hL

(Dai
QL)1/(p−1)

∥DaQL∥q/p
q

.

12: Update θ by minimizing
∑

j(y
−
j −Qθ(xj , aj))

2;

13: θ− ← (1− α)θ− + αθ for α small positive;
14: Set the next action as ak+1 := ak + hη + ε, where ε ∼ N(0, σ2Im);
15: end for
16: end for

6.2. Numerical analysis on convergence result. This subsection provides empirical evidence on the
convergence result in Lemma 3.2. To this end, we respectively sample 500 states and actions and then
compute max1≤i,j≤500 |QL(xi, aj)−QL+10(xi, aj)| for different values of L from L = 10, ..., 150.

The numerical values of max1≤i,j≤500 |QL(xi, aj)−QL+10(xi, aj)| for four different tasks are presented
in Table 1. Figure 2 illustrates the corresponding line graphs derived from the data in Table 1. A
decreasing trend of ∥QL+10 −QL∥Lip(Rn×Rm) is observed as L increases, providing empirical support for
Lemma 3.2. However, this convergence trend exhibits fluctuations and instability, particularly in the
HalfCheetah-v2 and 20-dimensional LQ problem environments. Further investigation is warranted to
understand the causes of instability and to refine the HJDQN learning framework.

Figure 1. Plot for the Table 1

6.3. Numerical analysis on different values of 1 ≤ p ≤ ∞. In this section, we explore the impact
of varying p values on the results. We examine p values of 1, 2, 10, 100 and ∞. As a benchmark, we
utilize the DDPG algorithm, as introduced in [13]. We present the learning curves for different tasks and
p values below.

It’s noteworthy that in the HalfCheetah-v2 environment, DDPG consistently outperforms all HJDQN
variants for p = 1, 2, 10, 100 and ∞. Also, the standard HJDQN setting (p = 2) demonstrates superior
performance over other p values.

Conversely, the HJDQN framework exhibits enhanced performance in theWalker2d-v2 and 20-dimensional
LQ problems. Specifically, in Walker2d-v2, we observe an upward trend in the average return as p in-
creases, highlighting the influence of p can differ across various tasks.

Subsequently, we compare action trajectories between DDPG and HJDQN across different p values,
as illustrated in Figure 3, 4 and 5, 6 and 7. A notable observation is the increased oscillation frequency
in the actions with rising p values, indicating a potential impact on system stability or efficiency.
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Hopper-v2 Walker2d-v2 HalfCheetah-v2 LQR-20D
|Q20 −Q10| 7.0607 7.5138 1.9608 522.4116
|Q30 −Q20| 0.2177 0.7117 0.8246 1082.9729
|Q40 −Q30| 0.6256 0.0996 0.4034 1323.8116
|Q50 −Q40| 0.0577 0.3741 0.8640 922.2965
|Q60 −Q50| 1.4704 0.0268 1.9657 646.7611
|Q70 −Q60| 1.9120 0.1756 2.9905 408.9908
|Q80 −Q70| 0.0351 1.3410 0.5117 18.6145
|Q90 −Q80| 0.0746 1.7137 0.7575 126.5660
|Q100 −Q90| 0.0093 0.2049 0.0248 151.0665
|Q110 −Q100| 0.8314 0.4649 0.1005 140.7522
|Q120 −Q110| 0.0557 0.2555 0.1706 208.1184
|Q130 −Q120| 0.0317 0.2358 1.0160 291.1623
|Q140 −Q130| 0.0586 2.2847 0.0063 184.8106
|Q150 −Q140| 0.0155 2.3188 0.7942 53.1037
|Q160 −Q150| 0.3373 3.3487 0.4554 86.3219.

Table 1. Numerical calculation of ∥QL+10 −QL∥L∞(Rn×Rm) for different tasks.

Figure 2. Learning curves for different tasks.

7. Discussions

We study the behavior of the value function for optimal control problems where the control is restricted
to be L-Lipschitz continuous, which arises in a novel HJB-based Q-learning. By augmenting the control
variable, we formulate the problem in the standard optimal control problem where the control takes
value in a compact set and investigates the effect of L, particularly, stability properties and the rate of
convergence. We extend the theory by introducing p-norm and discover that different choice of p indeed
leads to different features of optimal control. We observe that the larger p induces a more frequent
change of control.

The choice of p is subtle. HJDQN with p = 2 and DDPG are not always leading to.
Conflict of interest The authors declare that they have no conflict of interest.
Data availability Data sharing does not apply to this article as no datasets were generated or

analyzed during the current study.

References

1. Yves Achdou, Guy Barles, Hitoshi Ishii, Grigory L Litvinov, and Guy Barles, An introduction to the theory of viscosity

solutions for first-order Hamilton–Jacobi equations and applications, Hamilton-Jacobi Equations: Approximations,

Numerical Analysis and Applications: Cetraro, Italy 2011, Editors: Paola Loreti, Nicoletta Anna Tchou (2013), 49–
109.

2. Martino Bardi, Italo Capuzzo Dolcetta, et al., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman
equations, vol. 12, Springer, 1997.

3. Richard Bellman, Dynamic programming, Science 153 (1966), no. 3731, 34–37.

4. Kim C Border, Introduction to correspondences, 2013.
5. Jonathan M Borwein, Jon D Vanderwerff, et al., Convex functions: constructions, characterizations and counterex-

amples, vol. 109, Cambridge University Press Cambridge, 2010.



HJB 17

Figure 3. Action trajectories obtained by different values of p in HJDQN and DDPG
for HalfCheetah-v2.

6. Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba,

Openai gym, arXiv preprint arXiv:1606.01540 (2016).
7. Michael G Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton–Jacobi equations, Transactions of the

American Mathematical Society 277 (1983), no. 1, 1–42.

8. Lawrence C Evans, Partial Differential Equations, vol. 19, American Mathematical Society, 2022.
9. A Hitchhiker’s Guide, Infinite dimensional analysis, Springer, 2006.

10. Yanwei Jia and Xun Yu Zhou, q-learning in continuous time, Journal of Machine Learning Research 24 (2023), no. 161,
1–61.

11. Jeongho Kim, Jaeuk Shin, and Insoon Yang, Hamilton–Jacobi deep Q-learning for deterministic continuous-time
systems with Lipschitz continuous controls, The Journal of Machine Learning Research 22 (2021), no. 1, 9363–9396.

12. Yeoneung Kim, Hung V Tran, and Son N Tu, State-constraint static Hamilton–Jacobi equations in nested domains,

SIAM Journal on Mathematical Analysis 52 (2020), no. 5, 4161–4184.

13. Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra, Continuous control with deep reinforcement learning, arXiv preprint arXiv:1509.02971 (2015).

14. Hiroyoshi Mitake and Hung V Tran, Dynamical properties of Hamilton–Jacobi equations via the nonlinear adjoint
method: large time behavior and discounted approximation, Dynamical and geometric aspects of Hamilton-Jacobi and
linearized Monge–Ampere equations—VIASM 2183 (2016), 125–228.

15. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al., Human-level control through deep reinforcement
learning, Nature 518 (2015), no. 7540, 529–533.

16. Emanuel Todorov, Tom Erez, and Yuval Tassa, Mujoco: A physics engine for model-based control, 2012 IEEE/RSJ
international conference on intelligent robots and systems, IEEE, 2012, pp. 5026–5033.

17. Hung V Tran, Hamilton–Jacobi equations: Theory and Applications, vol. 213, American Mathematical Society, 2021.

18. Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou, Reinforcement learning in continuous time and space: A
stochastic control approach, Journal of Machine Learning Research 21 (2020), no. 198, 1–34.

19. Christopher JCH Watkins and Peter Dayan, Q–learning, Machine Learning 8 (1992), 279–292.



18 CHO AND KIM
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8. Appendix

8.1. Existence of ψ in (4.4). In this subsection, we prove the existence a Borel function satisfying (4.4)

using Borel selection theorem for set-valued functions. Since Q̃ is a semiconcave, there exists a constant
C > 0 and a convex function u : Rn → R such that

Q̃(x) = C|x|2 − u(x).
It is enough to show that there exists a Borel function satisfying g(x) ∈ D∗

xu(x). We denote by 2R
n

the power set of Rn. Let us define a set-valued function T : Rn → 2R
n

by T (x) = D−
x u(x) and

TD∗
xu(x) = D∗

xu(x).
By [5][Proposition 6.1.1], for all closed set F ⊂ Rn, we have

T−1(F ) := {x ∈ Rn : T (x) ∩ F ̸= ∅} is closed.

From the definition of D∗
xu, it is clear that TD∗

x
(x) is a closed multi-valued function, see [4][Definition 16],

for the details. Since Q̃ is Lipschitz for each x ∈ Rn, so is u which implies that T (x) is compact-valued

for each x ∈ Rn. By the definition, for T̃ (x) := T (x) ∩ TD∗
x
(x), T̃ (x) = TD∗

x
(x) and it also satisfies the

condition
T̃−1(F ) = {x ∈ Rn : T̃ (x) ∩ F ̸= ∅} is closed for any closed set F ,

by [9][Theorem 17.25]. Next, according to the Kuratowski–Ryll-Nardzewski Selection Theorem, as ref-
erenced in [9][18.13], there exists a Borel function such that g(x) ∈ D∗

xu, which completes the proof. For
more details, we refer to [9][Chapters 17 and 18], [5][Chapter 6] and [4], which discuss selection theory
related to set-valued functions and convex functions.

8.2. Action plots on Walker2d-v2 and 20-dimensional LQ problems. We provide action trajec-
tories plots for Walker-2D and 20-dimensional LQ problems in this subsection.
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Figure 4. Action trajectories obtained by different values of p in HJDQN and DDPG
for Walker2d-v2.
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Figure 5. Action trajectories obtained by HJDQN with p = 2 and DDPG for 20D LQR problem.
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Figure 6. Action trajectories obtained by HJDQN with p = 1 and p = 10 for 20D LQR problem.
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Figure 7. Action trajectories obtained by HJDQN with p = 100 and ∞ for LQR
problem with 20 dimension.
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