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Abstract

In this paper we analyze spin waves in bilayers of two-dimensional van der Waals materials, like Vanadium based
dichalcogenides, VX2 (X=S, Se, Te) and other materials of similar symmetry. We assume that the materials exhibit
Dzialoshinskii- Moriya interaction and in-plane easy-axis magnetic anisotropy due to symmetry breaking induced exter-
nally (eg, by strain, gate voltage, proximity effects to an appropriate substrate/oberlayer, etc). The considerations are
limited to a collinear spin ground state, stabilized by a sufficiently strong in-plane magnetic anisotropy. The theoretical
analysis is performed within the general spin wave theory based on the Hollstein-Primakoff-Bogolubov transformation.
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1. Introduction

In magnetic systems with no inversion symmetry, the
symmetric exchange interactions are accompanied by anti-
symmetric exchange terms, known as Dzialoshinskii-Moriya
interaction (DMI) [1, 2, 3, 4]. This interaction leads, among
others, to noncollinear spin textures and nonreciprocal
spin wave propagation, [ω(k) 6= ω(−k)] [5, 6, 7, 8, 9, 10, 11,
12]. Recent interest in DMI follows mainly from its role in
skyrmion formation in layered metallic structures [13, 14],
while the interest in skyrmions is stimulated by possible
applications in memory elements [15].

There is currently a broad interest in magnetic van-
der-Waals materials, e.g., in Chromium Trihalides (CrI3,
CrCl3) [16], chromium ternary tellurides, Cr2X2Te6 (X=Ge,
P) [17], transition metal dichalcogenides (TMDs) [18, 19,
20], and others. These materials are naturally 2D lay-
ered crystals, that are built of atomic layers with strong
in-plain bounds and weak interlayer couplings. Generally,
magnetic ordering in van-der-Waals materials depends on
the number of monolayers, and additionally can be eas-
ily tuned externally by strain or gating [21, 22, 23, 24].
Moreover, they display many interesting phenomena, like
strong magnetoresitance effects [25], spin-to-charge inter-
conversion, topological (electronic and magnon) transport,
and others. All this makes magnetic van-der-Waals struc-
tures very attractive for applications in future spintronics
(for a review see, for instance [26, 27, 28]).

Spin waves (magnons) in van dr Waals materials are
also of current interest, mainly due to their topological
properties [29, 30], magnon thermal Hall effect [31], and

Email address: wojrudz@amu.edu.pl (Wojciech Rudziński)

others. In recent works we have analysed spin wave spectra
in bilayers of vanadium-based dichalcogenides VX2 (X=S,
Se, Te) in the absence of DMI [32, 33] and in monolayers
of VX2 with DMI taken into account [34]. In this pa-
per, we analyze spin-wave spectra of VX2 bilayers, with
DMI included. The bilayers are interesting as the corre-
sponding magnon band structure is reminiscent of elec-
tronic spectrum in 2D Rashba electron system. As in
Ref [34], the considerations in this paper are limited to
the case when the collinear ground state is not destroyed
by DMI, which happens when the magnetic anisotropy
is sufficiently strong to stabilize the collinear state. We
also assume that the magnetic ground state of an indi-
vidual monolayer is ferromagnetic, and also assume the
easy-plane and in-plane easy-axis anisotropies. From sym-
metry arguments follows that DMI and the in-plane easy-
axis anisotropy are symmetry-forbidden in a free-standing
monolayer of VX2. However, in real systems the symme-
try of VX2 can be easily reduced externally by proximity
to a substrate, external gating, strains, etc. The symme-
try also can be intentionally reduced, as in the so-called
Janus structures, where the monolayer of Vanadium atoms
is sandwiched between two monolayers of different chalco-
genide atoms [13]. All this may lead to nonzero in-plane
easy-axis anisotropy and nonzero DMI. Therefore, in this
paper we analyse a general model, with both DMI and in-
plane easy-axis anisotropy taken into account, and also for
spin number S ≥ 1/2.

To find the spin-wave frequencies we use the general ap-
proach based on the Hollstein-Primakoff-Bogolubov trans-
formation [29, 35, 36]. Accordingly, in section 2 we model
the system under consideration by an appropriate spin
Hamiltonian. Then, in section 3 we derive the spin-wave
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frequencies, while in section 4 we present and discuss nu-
merical results on the spin-wave spectra. Concluding re-
marks are in section 5.

2. Model spin Hamiltonian

We consider a bilayer of TMDs (e.g. of VX2) in the
two stacking geometries, referred to as H (octahedral) and
T (trigonal prismatic) ones. The corresponding atomic
structure in these two geometries is shown schematically
in Fig.1. The bilayer is described by the following spin
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Figure 1: (a,c) Atomic structure of a monolayer of TMDs (eg. of
VX2) in the H (a) and T (c) phases. The large black dots represent
transition metal atoms (e.g., of V), while small green dots represent
chalcogen atoms. The axis y is normal to the atomic plane, while
the x − z plane is the magnetic easy plane. The in-plane easy axis
is along the z axis.Yellow (blue) arrows represent ground state spin
orientation of magnetic atoms along (opposite to) the z-axis. (b) Side
view of TMDs bilayers in the H (b) and T (d) phases. In the T phase,
the TM atoms of one monolayer are strictly above the TM atoms of
the second monolayers, while in the H phase the two monolayers are
shifted.

Hamiltonian:

H =
∑

α

Hα + Hint, (1)

where α = B,T refers to the bottom (α = B) and top (α =
T) monolayers, respectively. Hamiltonian Hα represents
the individual α-th monolayer, while Hint describes cou-
pling between the two (B and T) monolayers. Hamiltonian
Hα can be written as,

Hα = J1
∑

r,δ

Sr,α · Sr+δ,α +
Dy

2

∑

r

(

Sy
r,α

)2

−Dz

2

∑

r

(

Sz
r,α

)2

+ h
∑

r

Sz
r,α + HDM,α , (2)

where the first term on the right side stands for the in-
tralayer exchange interactions, the second and third terms
describe the easy plane and in-plane easy axis anisotropy,
respectively, while the fourth term is the Zeemann energy
in external magnetic field. The exchange coupling J1 of
magnetic atoms in each monolayer is assumed ferromag-
netic, J1 < 0. In turn, the easy-plane and in-plane easy-
axis anisotropy constants, Dy and Dz, are both defined as
positive, whereas the external magnetic field h is taken
here in energy units. The sum over r means here the
sum over lattice sites, while that over δ means the sum
over nearest neighbours, with δ standing for the vectors
connecting a given site to its in-plane nearest neighbours
(NNs) (for simplicity, we limit considerations here to the
exchange coupling between the nearest neighbours).

The last term in Eq. (2) describes the intra-layer Dzialo-
shinskii-Moriya interaction,

HDM,α = −
∑

r,δ

Dr,r+δ,α · (Sr,α × Sr+δ,α), (3)

where the corresponding Dzialoshinskii-Moriya vectors Dr,r+δ,α

have generally two components in the materials under con-
siderations [13],

Dr,r+δ,α = d‖(ûr,r+δ,α×ŷ) + d⊥ŷ, (4)

with

ûr,r+δ1,2,α × ŷ = ∓
(

1

2
x̂−

√
3

2
ẑ

)

,

ûr,r+δ3,4,α × ŷ = ∓x̂,

ûr,r+δ5,6,α × ŷ = ∓
(

1

2
x̂ +

√
3

2
ẑ

)

. (5)

It has been shown in Ref. [13], that the second term in
Eq.(4) does not play an important role, and therefore it
will be omitted in the following. As already mentioned
above, the ideal monolayer possesses the inversion center,
so the relevant DMI vanishes. It may be induced exter-
nally by strain or gate voltage (normal electric field). The
DMI appears also inherently in Janus structures, where the
magnetic plane is sandwiched between two monolayers of
different atoms [13] (which breaks the inversion symme-
try). The DMI Hamiltonian can be written in the form:

Hα
DM = −

∑

r,δ

h
‖
r,r+δ,α, (6)

with

h
‖
r,r+δ1,2,α

= ∓1

2
d‖
(

Sy
rS

z
r+δ1,2,α

− Sz
rS

y
r+δ1,2,α

)

±
√

3

2
d‖
(

Sx
rS

y
r+δ1,2,α

− Sy
rS

x
r+δ1,2,α

)

, (7)

h
‖
r,r+δ3,4,α

= ∓d‖
(

Sy
r
Sz
r+δ3,4,α

− Sz
r
Sy
r+δ3,4,α

)

, (8)
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h
‖
r,r+δ5,6,α

= ∓1

2
d‖
(

Sy
r
Sz
r+δ5,6,α

− Sz
r
Sy
r+δ5,6,α

)

∓
√

3

2
d‖
(

Sx
r
Sy
r+δ5,6,α

− Sy
r
Sx
r+δ5,6,α

)

. (9)

Finally, the last term in Eq.(1) represents the antifer-
romagnetic exchange coupling between the monolayers,

Hint = 2J2
∑

r,δ

Sr,T · Sr+δ,B, (10)

with J2 > 0. In the above formula, the summation is over
lattice sites r in a single monolayer only (therefore, there
is a factor of 2 on the right side). Apart from this, δ is
here the vector connecting inter-layer NNs.

3. Spin wave excitations

We consider the antiferromagnetic phase, which ap-
pears below the transition field to the spin-flop phase.
Therefore, we assume h = 0. The spin moments of the bot-
tom layer are along z axis, while of the top layer are along
the −z axis, see Fig.1. To find the spin wave frequency
we apply the standard procedure based on the Holstein-
Primakoff transformation followed by the Fourier transfor-
mation and finally Bogoliubov transformation. For more
details see Appendix B and also Refs [29, 35, 36]. As a
result we obtain frequencies of the two spin wave modes
given by the formula,

ωk,µ =
1√
2

{

(A+
k

)2 + (A−
k

)2 − 2|Bk|2 − 8C2

±
{

(A+
k
−A−

k
)2
[

(A+
k

+ A−
k

)2 − 4|Bk|2
]

+64C2|Bk|2
}

1

2

}
1

2

, (11)

where

A±
k

= S

[

2J1
(

γk − 6
)

+ 2ξJ2 +
Dy

2
+ Dz

±4
√

3d||γ
DM
k

]

, (12)

Bk = 2η∗kJ2S, and C = −DyS

4
. (13)

Here, the +(−) sign in A±
k

corresponds to the bottom (top)
layer, while the structure factors γk, ξ, γDM

k
and ηk are

defined as

γk = 2

(

cos(kza) + 2 cos(

√
3

2
kxa) cos(

1

2
kza)

)

, (14)

ξ =

{

1 (for T stacking)
3 (for H stacking),

(15)

γDM
k

= sin

(
√

3

2
kxa

)

cos

(

1

2
kza

)

, (16)

ηk =

{

1 (for T phase)

e
i
kxa
√

3 + 2e
−i

kxa

2
√

3 cos(1
2
kza) (for H phase).

(17)

Note, the above dispersion relation holds for the collinear
ground states. To find the condition when the above re-
lation is applicable one needs to determine the magnitude
of the anisotropy constant Dz that stabilizes the collinear
ferromagnetic ground state. Assuming kz = 0, one can de-
termine the minimum magnon energy from the condition
dωk,−

dkx
= 0. From this follows that for a given d‖, the min-

imum in-plane anisotropy Dz, that stabilizes the collinear
ferromagnetic ground state, may be evaluated from the
condition ωk,− = 0.

4. Numerical results

As we already mentioned above, an important prop-
erty of van der Waals materials is tunability of some of
their parameters due to proximity effects, and by exter-
nal strain and electric filed. This especially applies to
the constants of Dzialoshinskii-Moryia interaction and of
magnetic anisotropies. Therefore, to emphasize the DMI-
induced features of the spin wave spectrum, we assumed in
numerical calculations reasonable nonzero values of these
parameters, even if they vanish in free-standing bilayers of
V-based TMDs.

D
z [

m
eV

]

d|| [meV]

Collinear
  spins

Canted
  spins

k x
 

d|| [meV]

TOP LAYER
SPIN  ALONG -z

BOTTOM LAYER
SPIN  ALONG +z

Figure 2: The phase diagram in the space (Dz , d‖). The boundary
between the shaded area (canted spin states) and white area above
(collinear state) defines the minimum value of Dz that stabilizes the
collinear state for a given value of DMI parameter d‖ (and other
parameters as described in the text). The green points correspond
to d‖ and Dz used in the numerical calculations. Inset: Black and
red lines present wavevectors at which the spin wave energy reaches
minimum. The vertical gray dashed line indicates the d|| at which
the canted-spin phase begins when Dz = 0.

Accordingly, in the following we assume a=3.59006 Å,
J=-16.52 meV, Dy=1.93 meV [32], and h=0. To have the
collinear ground state, the anisotropy constant Dz will be
adjusted for each value of d‖, to obey the relevant condi-
tion. The relation between d‖ and Dz is shown in Fig.2,
where the shaded area corresponds to the canted ground

3



(a) (b)

(c) (d)

(e) (f)

w + , d|| > 0

w - , d|| > 0

w + , d|| = 0

Figure 3: Spin wave energy in the whole Brillouin zone for vanishing DMI parameter (a) and for the upper (c) and lower (e) modes in the
case of d‖=5 meV. The corresponding projections on the (kz , kx) plane are shown in the right column, Figs.3(b,d,f). Other parameters as
described in the main text. The white dotted lines in (b) correspond to the crossections, for which the dispersion curves are presented below.
In turn, M1, M2, K1 and M2, as well as the corresponding primed symbols, are the relevant points in the Brillouin zone.

state configuration, while the collinear ground state ap-
pears for larger values of Dz. The parameters used in the
numerical calculations correspond to the green large points
in this diagram.

For the following numerical calculations we assumed
d‖=5 meV and the anisotropy constant Dz=4.46 meV
(see the green points in Fig.2). In the left column of
Fig.3 we show the energy of spin waves in the whole two-
dimensional Brillouin zone for zero DMI, Fig.3(a), and for
d‖=5 meV in Fig.3(c) (upper mode) and in Fig.3(e) (lower
mode). The corresponding projections on the (kz , kx) plane
are shown in the right column, Figs.3(b,d,f).

Dispersion curves of spin waves along the path with
kx ranging from the point M1 to the point M′

1 via the
point Γ (center of the Brillouin zone), M1 → Γ → M′

1, are
shown in Fig.4(a), while the spectrum in the vicinity of the
points Γ and M1 are shown in Fig.4(b) and Fig.4(c), re-
spectively. The black and red solid lines are the dispersion
curves of the two modes for nonzero DMI, while the black

and red dotted lines represent the dispersion curves of the
two modes for zero DMI. The latter modes are not distin-
guished in Fig.4(a) and in Fig.4(c), where the two dotted
lines overlap. However, they are resolved near the the Γ
point, see Fig.4(b), where the two modes are parabolic and
gaped due to the in-plane anisotropy. In the presence of
nonzero DMI, the two modes are well resolved (solid black
and red lines) and the minimum of the low-energy mode
is shifted out of the Γ point towards negative and positive
kx. The spin wave energy vanishes in the minima, as in-
dicated explicitly in Fig.4(a), and the dispersion around
these points is linear in wavevector. These are the Gold-
stone modes. This situation is similar to that in the single
monolayer, where however the minimum appears only on
one side, positive or negative, depending on the orientation
of the spin moments. In the bilayer system there are two
monolayers with opposite spin orientations, so this is why
the minima occur on both sides. In turn, energy of the
second mode increases with increasing |kx|. For nonzero

4



DMI, both spin wave modes in the vicinity of the M1 point
display linear dispersion relation, but with opposite group
velocities. However, in the absence of DMI, the two modes
are almost degenerate and parabolic. It is also worth to
mention, that the whole spin wave spectrum in the pres-
ence of DMI is qualitatively similar to the spectrum of 2D
electronic gas with Rashba spin-orbit coupling.
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Figure 4: (a) Dispersion curves of spin waves along the high sym-
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lines). The zoomed in spectrum around the Γ point is shown in (b)
while that around the M1 point is shown in (c). Other parameters
as described in the text.
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for vanishing DMI parameter, d‖=0, (black
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The zoomed in spectrum around the Γ point is shown in (b) while
that around the K1 point is shown in (c). Other parameters as de-
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From Eqs. (11) to (16) follows that the dispersion rela-
tions along the kz orientation do not depend on the DMI
parameter, so the spin wave propagation along this di-
rection is reciprocal. In turn, the impact of DMI on the
spin waves spectrum is dominant for the path M1 → Γ →
M′

1, discussed above. Between these two limiting situa-
tions, the role of DMI varies monotonously. To show this,
we present in the following the spectra along the paths
K1 → Γ → K′

1, M2 → Γ → M′
2, and along the path

K2 → Γ → K′
2. Let us consider first the path K1 → Γ →

K′
1. The correponding spin wave spectrum is shown in

Fig.5. It is clearly evident that this spectrum is qualita-
tively similar to that along the path M1 → Γ → M′

1 (see
Fig.4), but with the effects due to DMI remarkably re-
duced in comparison to those in Fig.4. The key difference
is the absence of Goldstone modes.
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2
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scribed in the text. Here, the spectrum is independent of DMI, and
the dotted lines overlap with the corresponding solid ones.

In turn, the spin wave spectra along the paths M2 →
Γ → M′

2 and K2 → Γ → K′
2 are shown in Figs. Fig.6

and Fig.7, respectively. In the former case, the spin wave
spectrum is also qualitatively similar to that in Fig.4, and
especially to that in Fig.5, but with the effects due to DMI
reduced further (compare Fig.6 with Fig.5). In the latter
case, i.e. for the path K2 → Γ → K′

2, the spectrum is fully
independent of DMI, as it is clearly visible in Fig.7, where
the two modes marked in previous figures by dotted lines
overlap with the corresponding modes marked by the solid
lines, so they are not resolved in Fig.7.
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5. Summary and discussion

We have derived analytical formulas that describe spin
waves in bilayers of TMDs in the H and T phases, and
also presented numerical results for antiferromagnetically
coupled Vanadium-based dichalcogenides. The main ob-
jective was to study the influence of Dzialoshinskii-Moryia
interaction on the spin wave spectra. In these materials
DMI can be induced externally by electric field due to a
gate voltage or due to substrate and/or external strains.
Relatively strong DMI occurs in so-called Janus structures.
The theoretical analysis is based on the spin Hamiltonian
which apart from the exchange couling and DMI, also in-
cludes easy-plane and in-plane easy-axis anisotropies. The
spin wave frequencies have been derived in terms of the
Hollstein-Primakoff and Bogoliubov transformations.
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Appendix A. Derivation of the dispersion relation

We consider the antiferromagnetic phase, which ap-
pears below the transition field to the spin-flop phase and
for simplicity we assume h = 0. In addition, we assume
that the spin moments of the bottom layer are oriented
along the z axis, while those of the top layer are along the
−z axis, see Fig.1. Upon the Holstein-Primakoff transfor-
mation followed by Fourier transformation, the Hamilto-
nian takes the form

H = Hk + H−k, (A.1)

with

Hk =
∑

k

[(

A+
k

2

)

a+
k,Bak,B +

(

A−
k

2

)

a+
k,Tak,T

+Bka−k,Tak,B + C
∑

α

ak,αa−k,α

]

+ H.c., (A.2)

where a+
r,α (ar,α) is the bosonic creation (anihilation) op-

erator, while the coefficients A±
k

, Bk and C are given by
the following formulas:

A±
k

= S

[

2J1
(

γk − 6
)

+ 2ξJ2 +
Dy

2
+ Dz

±4
√

3d||γ
DM
k

]

, (A.3)

Bk = 2η∗
k
J2S, and C = −DyS

4
, (A.4)

where +(−) sign in A±
k

corresponds to the bottom (top)
layer. The structure factors γk, ξ, γDM

k
and ηk are defined

as

γk = 2

(

cos(kza) + 2 cos(

√
3

2
kxa) cos(

1

2
kza)

)

, (A.5)

ξ =

{

1 (for T stacking)
3 (for H stacking),

(A.6)

γDM
k = sin

(
√

3

2
kxa

)

cos

(

1

2
kza

)

, (A.7)

ηk =

{

1 (for T phase)

e
i
kxa
√

3 + 2e
−i

kxa

2
√

3 cos(1
2
kza) (for H phase).

(A.8)

To diagonalize Hamiltonian Eq.(A.1), we use now Bo-
goliubov transfomation (for more details see Refs [29, 35,
36]) to new bosonic operators Θ±k,µ and Θ+

±k,µ, with µ =
+,− indexing the two magnon modes (to be specified be-
low). This transformation acquires the form









Θk,I

Θk,II

Θ+
−k,I

Θ+
−k,II









=
∑

α









uI,α vI,α
uII,α vII,α
ũI,α ṽI,α
ũII,α ṽII,α









(

ak,α
a+−k,α

)

,(A.9)

where the Bogolubov coefficients uµ,α and vµ,α are evalu-
ated at k while the coefficients ũµ,α and ṽµ,α are evaluated
at −k, and obey the ralations

∑

α

(

|uµ,α|2+|vµ,α|2
)

= 1,
∑

α

(

|ũµ,α|2+|ṽµ,α|2
)

= 1.(A.10)

This procedure finally diagonalizes the Hamiltonian,

H =
∑

k,µ

(

ωk,µΘ+
k,µΘk,µ+ω−k,µΘ+

−k,µΘ−k,µ

)

.(A.11)

Employing Eq. (A.11), one obtains [Θk,µ, H ] = ωk,µΘk,µ,
from which Eqs. (A.2) and (A.9) lead to the dispersion
relation given by Eq.(11) in the main text.
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V. K. Dugaev, J. Barnaś, S.S.P. Parkin, and A. Ernst, Skyrmion

lattice hosted in synthetic antiferromagnets and helix modes,
Physical Review B 106, 104424 (2022); DOI: 10.1103/Phys-
RevB.106.104424
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