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Abstract

Graphene corrugations affect hybridization of π and σ orbitals of carbon atoms in graphene

based systems. It can as well break differently the symmetry of the electron transfer integrals for

different strip boundaries. Using these facts, we found that the momentum distribution of electrons

in ballistically propagating beam can be selective without external electric and/or magnetic fields

in the graphene strip under experimentally feasible periodic potential. Such a potential is created

by means of the superlattice that consists of periodically repeated graphene elements (flat+rippled

junction) with different hybridization of carbon orbits, produced by variation of the graphene

surface curvature. As a result it gives rise to the valley dependent focusing effects that can be

controlled by alteration of number of superlattice elements.

I. INTRODUCTION

The exceptionally high charge carrier mobility in graphene has generated enormous ex-

perimental and theoretical activity, with various potential applications in nanotechnology

in mind (see textbooks [1, 2]). The remarkable graphene properties have been explained as

a consequence of linear energy dispersion of the gapless low-energy excitations, provided by

graphene crystal structure that consists of two equivalent carbon sublattices. Consequently,

one can introduce graphene quasiparticles with different pseudospin quantum numbers as-

sociated with the corresponding sublattices. It is notable that this linear energy dispersion

in the low-energy spectrum of graphene is similar to the Dirac-Weyl equation for massless

neutrino [3].

It was shown in [4] that the conservation of the pseudospin forbids strictly charged carrier

backscattering in a graphene monolayer with electrostatic potential scattering that mimics

the n–p junction. The barrier always remains perfectly transparent for the normal incidence

of electrons, while the transmission decreases for other angles. By virtue of this fact, electron

focusing analogous to optical effects that occur in negative refractive index material is pre-

dicted [5]. It is noteworthy to mention that above discussed results are based on assumption

of use external electrical or magnetic accessories to control the focusing of electron flow.

We recall, however, that graphene sheets are not perfectly flat, and ripples are considered
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as most natural sources that might be used to control the electron mobility as well. A

number of proposals have been suggested in support of this idea. It was predicted in the

tight-binding approximation that a corrugation (ripple) could create in graphene electron

scattering, caused by the change in nearest-neighbor hopping parameters by the curvature

[6, 7]. Further on, it was found that electrons in opposite valleys can be perfectly transmitted

or totally reflected in the presence of strain [8]. In Ref. [9] it was shown how inhomogeneous

strains can be used to create waveguides for valley polarized transport of Dirac fermions in

graphene.

Note, that the lattice deformation changes the distance between ions, pz orbital orienta-

tion, and is leading to shift of the on-site energies of pz orbitals. This affects the effective

Dirac equation that could simulate the low energy electron states as a result of a deformation-

induced gauge field [10]. Moreover, the lattice deformation changes the relative orientation

of the orbitals of the corrugated graphene sheet, leading to the hybridizations of the π- and

σ-bonds (see details in Appendix A). The π orbital dependence on the surface curvature

means that the local chemical potential varies with the curvature. In fact, the hybridiza-

tions leads to inhomogeneous charge distribution, and acts as potential barriers for electrons

leading to their localization [11]. This effect becomes important once it would be possible

to create a graphene system with controlled variation of the surface curvature. In fact, the

DFT and molecular dynamics simulations predict that graphene sheet can be stretched up

to about 20%-30%, without being damaged [12]. The amplitude and the orientation of the

unidirectional ripples can be controlled with the aid of the applied strain [13]. And further,

it was shown that using the hydrogenation it is possible to induce periodic ripples with

various thermal conductivity [14].

The discussed above theoretical ideas are supported, indeed, by a few experimental tech-

niques that demonstrate evidently a spatial variation in graphene sheets nowadays. The

strain effect can be achieved by putting the material on substrate that is micro-structured

[15] or mechanically deformed [16]. Ripples can be formed by means of the electrostatic

manipulation without any change of doping [17]. Periodically rippled graphene can be fab-

ricated by the epitaxial technique (e.g., [18]). In this case, in contrast to free-standing

graphene, a strong modification of the electronic structure of graphene is observed, that

gives rise to localized phonon [19] and plasmon [20] modes. Periodic nanoripples can be

created as well by means of the chemical vapor deposition [21]. It is found that ripples or
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wrinkles act as potential barriers for charged carriers leading to their localization [22], in

agreement with the theoretical estimations [11].

One of the main aims of the present paper is to demonstrate that strain effects could

provide the ability of the valleytronics to manipulate and detect the valley degree of freedom

of the ballistic electron transport. To this aim we employ the model of rippled graphene

superlattice discussed in [23, 24]. In the present paper we extended this model by considering

the dependence of the hopping integrals between π orbitals in zig-zag and armchair graphene

surface curvatures following the approach developed by Ando [25]. We recall that a typical

transition lengths for n-p junction are less 100 nm (e.g., [26]), which allows to employ a

ballistic transport model for the study of physics n-p junction devices [27]. To demonstrate

the effect of valleytronics various authors introduced either electrical/magnetic fields or

additional potentials to simulate strain effects (see for a review [28]). We will show that

the effective potential determined by the variation of the local curvature of the graphene

sheet provides an additional design degree of freedom for both fundamental studies and

graphene-based electronic devices.

II. SCATTERING MODEL

We suppose that incident ballistic electrons move from the left planar graphene piece to

the right planar piece passing through N elements of the superlattice. The unit element

of the superlattice is composed of one ripple+one planar piece. The graphene strip (the

superlattice) is terminated in the x direction by zigzag or armchar boundaries, while it

infinitely long in the y direction. Each element represents a single junction described below.

A. Eigenvalue problem

The corrugated graphene structure is modelled by a curved surface in a form of arc of

a circle connected from the left-hand and the right-hand sides to two flat graphene sheets

(see Fig.1). Hereafter, we consider a wide enough graphene sheet W≫M, where W and M

being, respectively, as the width along the y axis and the length along x axis of the graphene

sheet. It means that we keep the translational invariance along the y axis and neglect the

edge effects.
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FIG. 1. The corrugated graphene structure. The flat graphene pieces are located in: the region

(I), −∞ < x < −R cos θ0, −∞ < y < ∞; and the region (III), R cos θ0 < x < ∞, −∞ < y < ∞. In

the region (II), −R cos θ0 < x < R cos θ0 and −∞ < y < ∞, we consider a ripple (a curved surface

in a form of arc of a circle). The ripples are ordered in x direction with the symmetry y-axis.

To analyse our junction, we take into account: i) the variation of the hybridization of the

carbon atom orbitals with a surface curvature of a graphene sheet (see Appendix A); ii)the

modification of the electron transfer integrals, caused by the variation of the surface curva-

ture. The variation of the hybridization can be described by an effective electric potential

ε(x). The modification of the electron transfer integrals can be calculated as a shift of a

vector potential ∆k̂ in the matrix Hamiltonian in the effective mass approximation. In order

to find these modifications we extended the approach, developed by Ando (see discussion

in Ref.[25]), and derived the corresponding Hamiltonian (the details will be published else-

where). Thus, in the effective mass approximation the eigenvalue problem for the envelope

function can be written in the following form




ε(x) Dτ

D−τ ε(x)









FA

FB



 = E





FA

FB



 , (1)

Dτ = γ[(k̂x +∆kx)− iτ(k̂y +∆ky)] , (2)

where τ = + corresponds to K point, while τ = − corresponds to for K ′ point. The two

components of the wavefunction refer to the two sublattices of carbon atoms. The additional

spin degeneracy of the excitations do not important in our consideration.

As it is shown in Appendix A, the dependence of energy επ on the local surface curvature

can be expressed in the form

επ = ε2p + α
( a

R

)2

. (3)

Here ε2p = 〈pz|H|pz〉 is the |pz〉 orbital energy of carbon atom, R is the ripple radius, and

α = −0.58eV . Thus, the energy difference between the π orbitals in the curved and flat
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graphene is

ε = ε2p − επ = ∆ε = |α|
( a

R

)2

≈ 0.58
( a

R

)2

eV . (4)

This difference can be considered as a contribution of the effective electric field produced by

the curvature dependence of the hybridization. In the case of the flat graphene R → ∞ and,

consequently, ε(x) = ε2p. The difference between επ (curved region) and ε2p (flat region) is

important when the systems with different surface curvature are coupled. Hereafter, for the

sake of simplicity we assume that επ = 0.

In the flat region (I and III) the eigenstate of Eq. (1) has the following form

F (x, y) = eikxxeikyy
1√
2





se−iτϕ

1



 , s = ±1 , (5)

and the eigenenergy is

E = ε+ sγ
√

k2
x + k2

y , (6)

where s = +1(−1) is associated with the conductance (valence) band. Here

e−iϕ =
kx − iky
√

k2
x + k2

y

. (7)

The eigenfunction and eigenenergy in the region II (a ripple) are obtained in the following

forms

F (x, y) = eiκxxeikyy
1√
2





se−iτχ

1



 , (8)

E = sγ
√

(κx +∆kx)2 + (ky +∆ky)2 . (9)

Here

e−iχ =
(κx +∆kx)− i(ky +∆ky)

√

(κx +∆kx)2 + (ky +∆ky)2
. (10)

The vector field ∆~k depends on the graphene surface curvature. The concrete form of this

field will be used to investigate the transport properties of a corrugated graphene with

zig-zag and armchair boundaries.

We assume that the flat segment has the length L1, while the a ripple has the length

L2 = Rφ, see Figs.1,2. We consider the scattering at the interface introduced by different

hybridizations in the flat and the curved graphene regions. The interface is assumed to be

smooth on the length scale of a graphene unit cell (an inverse Brilloin momentum 2π/K).

Consequently, it does not induce the intervalley (K → K ′) scattering.
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FIG. 2. A schematic illustration of the scattering process in the superlattice that composed of N

elements. Each element contains the flat region of the length L1 connected to the ripple of the

length L2. The energy ε is brought about by the curvature dependence of the hybridization effect

(see text). For a separate undoped flat graphene sheet (F), the Fermi energy lies exactly at the

Dirac point ε2p (indicated by a solid line that crosses the Dirac point, the left side). Similar picture

takes place for a separate curved graphene piece (C), where the position of the Fermi energy επ,

indicated by the dotted line on the right side. For the hybrid system that consists of F + C pieces,

there are two cases with the electron incident energies indicated by the lines A and B.

B. Transport phenomena

1. Single junction

Before to analyse the ballistic transport through the superlattice S we have to consider

transmission of electron, travelling with energy E through the hybrid subsystem F + C (the

unit element), at two most typical cases: above and below the effective potential ε (see

Fig.2). In the both cases we have to match the corresponding wave functions in the flat and

curved graphene pieces.

In the first flat (F) sector of the S region [XL ≤ x < XL + L1, |y| < W ] we consider the

wave function in the form

Ψ(x, y) =
eikyy

√
2











eikxx







e−iϕ

1






+ re−ikxx







−eiϕ

1

















, (11)

and for the first rippled (C) sector of the S region [XL + L1 ≤ x < XL + L1 + L2, |y| < W ]

we define the wave function in the form

Ψ(x, y) =
eikyy

√
2











α1e
iκxx







e−iχ

1






+ β1e

−iκxx







−eiχ

1

















, (12)
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and so on. For the last flat region [XL +N(L1 + L2) ≤ x < M , |y| < W ] we have

Ψ(x, y) =
eikyy√

2
teikxx





e−iϕ

1



 . (13)

The unknown coefficients αi, βi can be obtained from the continuity conditions on the bound-

aries.

Let us consider the specific features of the transmission, related to the incident electron

energy E with regard to the effective potential ε.

• E > ε.

In this case we have the following condition for the incident electron energy E (denoted

as a line B in Fig.2):

E = ε+ γ
√

k2
x + k2

y = γ
√

(κx +∆kx)2 + (ky +∆ky)2 . (14)

For this particular case we obtain for transmission coefficients

T11 = eikxL1

[

cosκxL2 − i sin κxL2f
(−)

]

, (15)

T11 = T ∗
22 , (16)

where

f (±) =
1± sinϕ sinχ

cosϕ cosχ
. (17)

And

T21 = e−iϕeikxL1 sin κxL2
sinχ− sinϕ

cosϕ cosχ
, (18)

T21 = T ∗
12 . (19)

Based on the above relations, we have the following useful equation

T11 + T22

2
= a1 − a2f

(−) , (20)

a1 = cos kxL1 cosκxL2 , (21)

a2 = sin kxL1 sin κxL2 . (22)

The valley dependence relations between quantities ky, kx, κx are defined by Eq.(14).
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• 0 < E < ε.

In this case we have the following condition for the incident electron energy E (denoted

as a line A in Fig.2):

E = ε− γ
√

k2
x + k2

y = γ
√

(κx +∆kx)2 + (ky +∆ky)2 . (23)

For transmission coefficients we obtain the following results

T11 = e−ikxL1

[

cosκxL2 + i sin κxL2f
(+)

]

, (24)

T21 = e−iϕeikxL1 sin κxL2
sinχ+ sinϕ

cosϕ cosχ
. (25)

The same relations Eqs.(16), (19), are valid as well, that yield another useful equation

T11 + T22

2
= a1 + a2f

(+) . (26)

Here, the relations between ky, kx, κx are defined by Eq.(23).

2. Superlattice

Using the continuity conditions on boundaries, we arrive to the equations for the transmis-

sion coefficient t through the block of N ripples and the corresponding reflection coefficient

r




1

r



 =





T11 T12

T21 T22





N

=





N11 N12

N21 N22









t

0



 . (27)

These equations yield the obvious relations

t = 1/N11; r = N21 t . (28)

With the aid of Eqs.(15)-(19), (24), (25) it is readily to show that

det (T ) = 1 . (29)

We recall that the T -matrix is subject to the condition

(

T11 T12

T21 T22

)(

a

b

)

= λ

(

a

b

)

. (30)
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With the aid of Eqs.(29), (30), we obtain the eigenvalues

λ1,2 = β ±
√

β2 − 1 , β = (T11 + T22)/2 . (31)

The transformation U (that diagonalizes the matrix T )

U =





a1 a2

b1 b2



 ⇒ U−1TU =





λ1 0

0 λ2



 (32)

yields, in virtue of Eqs.(27), (32), the following relation

U





λN
1 0

0 λN
2



U−1 =





N11 N12

N21 N22



 . (33)

By means of the standard procedure it is readily to obtain the matrices U and U−1 (UU−1 =

1). As a result, taking into account that λ1λ2 = 1, we obtain the following definitions

N11 =
T11(λN

1
−λN

2
)+λN−1

2
−λN−1

1

λ1−λ2

= N∗
22 , (34)

N12 = T12
λN
2
−λN

1

λ2−λ1

= N∗
21 . (35)

Evidently, the relation (27) between the matrices T and N , and Eq.(29) yield the fulfilment

of the following condition

det (N) =

∣

∣

∣

∣

∣

∣

N11 N12

N21 N22

∣

∣

∣

∣

∣

∣

= |N11|2 − |N21|2 = 1 . (36)

This secures that the condition |r|2 + |t|2 = 1 is fulfilled, taking into account the defini-

tions Eq.(28). As a result, by means of Eqs.(28), (36), and the definition (35), we obtain

the following expression for the total transmission probability through N elements of the

superlattice

TN = |t|2 = 1

|N11|2
=

1

1 + |N21|2
=

=
1

1 + |T12|2
(

λN
2
−λN

1

λ2−λ1

)2 . (37)

Evidently, the transmission probability (37) is a function of the incident electron energy

E that determines the motion along the superlattice (i.e., the wave numbers kx and ky; see

Eqs.(6), (9)). It is convenient to determine the transmission probability as a function of the
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wave number ky which together with the wave number kF = |E − ε|/γ determine details of

electron transport. With the aid of the transmission probability, the conductance is given

by the Landauer formula

GN = 4
e2

h

∫ kF

−kF

TN(ky)
dky

2π/W
= 4

e2

h

kFW

π
IN . (38)

Here, the integral IN , defined by the expression

IN =
1

2

∫ 1

−1

TN(u)du, u =
ky
kF

, (39)

characterizes the efficiency of the selection specific electron trajectories entering into the

considered system.

For the perfect transmission, i.e., for T (ky) = 1 the conductance

Go = 4
e2

h

∫ kF

−kF

dky
2π/W

= 4
e2

πh
kFW (40)

is the natural unit, since GN = GoIN . For the discussion below we introduce the following

terms

G+
N =

G0

2

∫ 1

0

TN(u)du, G−
N =

G0

2

∫ 0

−1

TN(u)du . (41)

III. DISCUSSION

Let us analyse common and distinctive properties of the transport through the superlat-

tice with zig-zag and armchair graphene surface curvatures. In order to illuminate the effect

of the dependence on two interfaces, we have to calculate the shift in the origin of kx,y by

∆kx,y, produced by terms of the order of (a/R)2. In our analysis we follow the arguments

discussed by Ando (see §5 in [25]). The most interesting case is the transport phenomena at

the incident electron energy 0 ≤ E ≤ ε (see Fig.2, line A), which we study below in details.

• Zig-zag surface.

In the effective mass approximation for the zig-zag interface we obtain

∆kx = ∓ a

4
√
3R2

(

1− 3

8

γ′

γ

)

, (42)

∆ky = 0 , (43)
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where the upper sign corresponds to the K point, while the lower sign to the K
′

point.

The parameter γ =
√
3γ0a/2 = −

√
3V π

ppa/2, γ
′

=
√
3(V σ

pp − V π
pp)a/2, where V π

pp and

V σ
pp are the hopping integrals for π and σ orbitals, a is the length of the primitive

translation vector. We recall that in our model it is assumed that V π
pp ≈ −3 eV and

V σ
pp ≈ 5 eV. Therefore, we have γ

′

/γ ≈ 8/3, i.e., ∆kx ≈ 0. Thus, in the case of zig-zag

interface the shifts are negligibly small, i.e., ∆kx ≈ 0, ∆ky = 0. It seems that in this

case the symmetry between K and K ′ is conserved.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

T
N

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

T
N

(a) (b)

FIG. 3. Zig-zag surface. Transmission probabilities TN as a function of x = ky/kF for: N = 10

elements (dotted line); N = 20 elements (dashed line); N = 50 elements (solid line). The energy

of the incoming electrons is E = ε/2, L1 = 10a, a ≃ 2.46 Å, φ = π; (a) R = 8Å; (b)R = 18Å.

In order to trace the dependence of the transmission probability on the incident an-

gle of electrons, we calculate numerically Eq.(37) as a function ky (see Fig.3). It is

noteworthy that the superlattice leads to the selective transmission of electrons. For a

small number of N elements in the S subsystem the transmission probability is nonzero

for a wide range of values of ky (see results for N = 10, 20). However, the larger the

number of N elements in the superlattice, the stronger the selectivity effect for ballistic

electrons. Our system focuses the electronic flow, selecting the transmission of those

trajectories that are close to the normal incidence. In fact, for a large enough number

N elements of the superlattice the selection does not depend on the incident direction

of an electron flow at all ! Indeed, at N ≫ 1, only for the direction perpendicular to

the surface of the S subsystem there is almost the ideal transmission, while for the

other angles (ky 6= 0) there is only reflection. Note, however, that the increase of the
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ripple radius decreases the selectivity effect (see Fig.3b).
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FIG. 4. The conductivity GN/G0 as a function of the length L1 of the flat region in a units. Similar

parameters are used as for Fig.3.

The selective electrons transmission across the interface created by N units is demon-

strated on Fig.4, where the dependence of GN/Go on the length of the flat region L1

is depicted. The electron conductivity GN across the interface with N units is much

smaller in comparison to Go for enough large N at relatively small value of the flat

region L1 ≤ 10a in the superlattice at the small value of the ripple radius R = 8

Å. With the increase of the flat region L1 ≥ 18a the conductivity tends to the limit

manifested for small number of ripples, simultaneously losing the selective properties.

For a large ripple radius R = 18 Å the selectivity effect and the conductivity decrease

with the increase of the flat region L1 (see Fig.4b). Thus, there is an optimal set

of parameters such as: the ripple radius R, the flat region length L1, the number of

elements of the superlattice, that provide the most efficient focusing effect. We return

to this point below.

• Armchair surface.

In the effective mass approximation for the armchair interface we obtain

∆kx = 0 , (44)

∆ky = ∓ 1

4
√
3a

( a

R

)2
(

5

8

γ′

γ
− 1

)

∼ ∓ 1

6
√
3a

( a

R

)2

. (45)
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FIG. 5. Armchair surface. Transmission probabilities TN as a function of x = ky/kF for: i)N = 15

elements (valley K, long dashed line), (valley K ′, short dashed line); ii)N = 70 elements (valley K,

solid line), (valley K ′, dotted line). Filtering in ϕ-space, induced by N elements of the superlattice,

results in valley focusing effect. The action of a ϕ-filter allows for electrons in valley K to be

transmitted freely, while blocking them in valley K ′ at the same value of the angle ϕ. The energy

of the incoming electrons is E = ε/2, L1 = 10a, a ≃ 2.46 Å, φ = π, R = 8Å.

In many ways, the transport properties of this system are similar to those of the

zig-zag surface (see Figs.3, 4). The basic difference consists in the asymmetry of the

focusing effects in K and K ′ valleys (see Fig.5). It was speculated in Ref.[29] that the

vector fields arising from strain might be utilized to impose a valley-dependent filtering

in a corrugated graphene sheet. Indeed, our results demonstrate evidently that the

replacement ϕ → −ϕ leads to a mirror image of the conductivity behavior in the

other valley (K ⇔ K ′). It is notable to mention that the electron conductivity in very

similar to the one studied above. Indeed, the conductivity decreases with increase of

ripple radius (see Fig.6). However, for the zig-zag edge termination there is a decrease

of the both contribution G±
N/G0 around the position x = 0. In contrast, with a total

decrease of the conductivity in the system with the armchair edge termination there

is a prevailing of the G+
N/G0 contribution over the G−

N/G0 contribution around the

position of the supercollimation angle (see Figs.5,6) with the increase of the number
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FIG. 6. The conductivity G±
N/G0 as a function of the ripple radius R in a units for: N = 5

elements (dotted line); N = 15 elements (dashed line); N = 60 (solid line). The incident electron

energy is E = ε/2, L1 = 10a, φ = π, armchair surface. The results are given for valley K.

of N elements. We return to this point below in detail.

To illuminate the basic features of the transport in the superlattice, let us compare the

selectivity effects of the latter case with that produced by the smooth step [4, 30]. We recall

that the estimation for the smooth step (which produces the focusing) yields the value

Gsm = 2
e2

πh
W

√

kF
l

=
Go

2
√
kF ℓ

, (46)

that describes the conductivity at the condition kF ℓ ≫ 1 (ℓ is the step length). In order to

achieve the smooth step effect, the corrugations with gradually increasing curvature can be

used in our case. This conditions leads to the inequality

Gsm > GN ⇒
√

2πℓ/λF × IN < 1/2 . (47)

If we hold fixed the condition ℓ = N(L1 + L2), this inequality determines the number of

elements N and their length L1 + L2 at the same length ℓ for the smooth potential and the

superlattice. Thus, by appropriate choice of the product N(L1+L2) one can always use the

advantage of electron flow focusing through the superlattice, which number of elements can

be controlled externally. Moreover, one can use additionally the fine turning of the ripple

radius and change carrier charge densities on different sides of our hybrid system.

For completeness we present the results for transmission probabilities at E > ε for dif-

ferent surfaces (see Fig.7). Again, we observe the conservation of symmetry between K and
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FIG. 7. Transmission probabilities TN as a function of x = ky/kF for K ′ valley. The energy of the

incoming electrons is E = 1.001ε, L1 = 10a, R = 18Å, φ = π; (a) armchair surface; (b) zig-zag

surface. The number of elements of the superlattice is similar to Fig.3.

K ′ valleys in a graphene sheet with a zig-zag surface, while it is broken in that with an

armchair surface. We found that the number of the ripples has a slight influence on the

electron transmission.

Depending on the energy of the incident electron beam it is possible to determine an-

alytically the angle of the supercollimation in the case of the zig-zag and armchair edge

terminations. Evidently, this angle is subject to the condition TN = 1 ⇒ |T12|2 ≡ |T21|2 = 0

(see Eq.(37)), which holds for the incident electron energy E > ε and E < ε. Let us consider

each case in detail.

• E > ε : In this case the condition |T12|2 = 0 ⇒ sinϕ = sinχ (see Eq.(18)). Since the

energy of incoming electron in the flat graphene piece E = ε + γ
√

k2
x + k2

y, we have

(see also Eq.(7))

sinϕ =
ky

(E − ε)/γ
. (48)

Taking into account the definition of energy of transmitted electrons in the curved

graphene piece E = γ
√

(κx +∆kx)2 + (ky +∆ky), we have (see also Eq.(10))

sinχ =
ky +∆ky

E/γ
. (49)

As a result, we obtain

sinχ = sinϕ ⇒ x =
ky
kF

=
γ∆ky
ε

(50)
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where kF = (E − ε)γ, and ∆ky is determined by Eq.(45).

• E < ε. In this case the condition |T12|2 = 0 ⇒ sinϕ = − sinχ (see Eq.(25)). Since in

the flat graphene piece the energy of incoming electron (moving in the valence band,

see Fig.2) is E = ε− γ
√

k2
x + k2

y (see also Eq.(23)), we have

sinϕ =
ky

(ε−E)/γ
. (51)

Taking into account Eq.(49), we obtain

sinϕ = − sinχ ⇒ x =
ky
kF

= −γ∆ky
ε

. (52)

Thus, we obtain the definition of the supercollimation angle that is determined by the

contribution ε produced by a curvature dependence hybridization, and by a magnitude of

the vector field ∆~k brought about by a graphene surface curvature. In particular, at the

incident electron energy E < ε we obtain for valley K

sinϕ = −(
γτ |∆ky|

ε
) =

[√
3

2
aγ0

1

6
√
3a

( a

R

)2
]

/

[

0.58
( a

R

)2
]

≈ 0.43 , τ = −1 , (53)

which corresponds to the angle ϕ ≈ 25.5
◦

.

The existence of transmissions associated with valley quantum numbers raised the lovely

discussion on exploiting of the valley degree of freedom for development carbon-based elec-

tronics named graphene valleytronics [33]. Valley polarization, valley inversion [34] and

valley-contrasting spatial confinement [35] of massless Dirac fermions were demonstrated

experimentally in strained graphene under inhomogeneous pseudomagnetic fields and tun-

able real magnetic fields.

The results for transmission at N ≫ 1 and ε > E (see Figs.3, 5) indicate that propagating

modes with the wavevector k ∈ [0, kF ] lie in theK valley, whereas modes with the wavevector

k ∈ [0,−kF ] lie in the K ′ valley. At ε < E we have the opposite situation. Therefore, for

the sake of discussion we consider the most interesting case ε > E. With the aid of Eqs.(37,

38, 40) the valley polarization of the transmitted current is quantified by

P τ
N =

∫ kF
0

T τ
N(ky, τξ)

dky
2π/W

−
∫ 0

−kF
T τ
N(ky, τξ)

dky
2π/W

∫ kF
−kF

T τ
N (ky), τξ)

dky
2π/W

(54)

where ξ = |∆ky|, and the valley dependent ∆ky is defined by Eqs.(43, 45); τ = (−/+)

corresponds to K/K ′ valley, respectively. Taking into account the results of calculations for
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the transmission probability (see Fig.3), we obtain that PK
N = PK ′

N = 0 for the superlattice

with zig-zag edge termination for the both valleys. It is notable, that the conductivity is

decreasing with the increase of the number N -elements, focusing between ϕ ≤ |20◦|, being
symmetric for the superlattice with zig-zag edge termination. For superlattice with armchair

edge termination the polarization P ∈ [−1, 1], with P = 1 if the transmitted current lies

fully in the K valley and P = −1 if it lies fully in the K ′ valley (see Fig.5). In this case the

conductivity decreases with the increase of the number of N -elements of the superlattice.

IV. SUMMARY

Based on the fact of the different type of hybridization of carbon atom orbitals in the flat

and the corrugated graphene pieces, we developed the model that simulate n-p junction by

means of the superlattice and describes the valley focusing effect. In the approximation of the

effective mass Hamiltonian, the curvature dependence of the π-orbitals yields the variation of

the local chemical potential. This fact corresponds to the effective electric field that depends

on the electron localization. The variation of the graphene curvature affects the transfer

integrals as well, that together with the hybridization provides the necessary conditions for

the implementation of the valley focusing effect. It is notable that the modification of the

transfer integrals becomes important in the corrugated graphene sheet with the armchair

surface, while it negligible in the case of corrugated sheet with the zig-zag surface.

Our analysis of the superlattice system that consists of the periodically repeated flat+ripple

pieces demonstrates the strong selectivity effect of transmitted electron trajectories with

the increase of number N (elements of the superlattice). This effect becomes essential for

incident electrons, moving in the energy interval 0 < E < ε; where ε is the energy difference

between the π orbitals in the curved and flat graphene sheet. The ballistic electron trans-

mission depends on the radius of the ripple, on the length of the arc of the ripple and on the

width of the flat region between ripples. It is remarkable, however, that in a multi-rippled

graphene structure the maximum of the transmission for the both valleys is reached at

different angles that are characteristic constants: ϕ = 0
◦

for the structure with zig-zag edge

termination; |ϕ| ≈ 25.5
◦

for the one with armchair termination. The superlattice, described

in the paper, enables to one to control the filtering effect without any additional electrical

or magnetic sources. The larger is the number of elements N, the stronger is the selectivity.
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At N ≫ 1, only for the direction perpendicular to the surface of the S subsystem there is

almost the ideal transmission, while for the other angles (ky 6= 0) there is the strong reflec-

tion for the superlattice with zig-zag edge termination. In the superlattice with armchair

edge termination similar filtering takes place at the supercollimation angle |ϕ| ≈ 25.5
◦

.

This phenomenon is due to the Klein tunneling that is grown in our system by virtue of

controlled graphene surface curvature.
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Appendix A: Hybridization in a curved graphene

Let us compare the hybridization of π and σ orbitals in the flat and curved graphene

systems. We consider the Hamiltonian for the K point (similar approach can be applied for

K
′

point). It depends on two operators k̂x = −i ∂
∂x
, k̂y = −i ∂

∂y
, and yields the equation for

the envelope function of the flat graphene in the effective mass approximation (e.g., [31])





ε2p γ(k̂x − ik̂y)

γ(k̂x + ik̂y) ε2p









FK
A

FK
B



 = E





FK
A

FK
B



 . (A1)

Here, the parameter γ =
√
3γ0a/2 depends on the length of the primitive translation vector

a =
√
3d ≃ 2.46 Å with d being the distance between atoms in the unit cell, and it is assumed

that γ0 ≈ 3 eV. The energy ε2p = 〈2pz|H|2pz〉 is the energy of 2pz-orbitals of carbon atoms

in the flat graphene, directed perpendicular to the graphene surface; H is the tight-binding

Hamiltonian of the graphene. The solution of Eq. (A1) determines the wave function

F (x, y) = eikxxeikyy
1√
2





se−iϕ

1



 , (A2)

e−iϕ = (kx − iky)/
√

k2
x + k2

y ,

and the energy

E = ε2p + sγ
√

k2
x + k2

y . (A3)
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Here, the sign s = −1(+1) is associated with the valence (conductance) band. In the flat

graphene we have the following hybridization of π and σ orbitals:

|π〉 = |2pz〉 , (A4)

|σ1〉 = 1√
3
|2s〉+

√

2
3
|2py〉 , (A5)

|σ2〉 = 1√
3
|2s〉+

√

2
3

(√
3
2
|2px〉 − 1

2
|2py〉

)

, (A6)

|σ3〉 = 1√
3
|2s〉 −

√

2
3

(√
3
2
|2px〉+ 1

2
|2py〉

)

. (A7)

Let us discuss in details the hybridization of σ and π orbitals in the graphene with

nonzero curvature. The σ orbitals create the bonds between carbon atoms, while the π

orbitals determine the electronic properties of the graphene. For the sake of illustration we

consider a zig-zag nanotube.

For the curved graphene (the arc, characterised by the radius R) we obtain the space

coordinates of the three nearest-neighbor vectors ~τi in the following form:

~τ1 = d(0, 1, 0) , (A8)

~τ2 = d(
√
3
2
cos ϑ,−1

2
,−

√
3
2
sin ϑ) , (A9)

~τ3 = d(−
√
3
2
cos ϑ,−1

2
,−

√
3
2
sin ϑ) , (A10)

where sinϑ = a/4R. At the limit R → ∞, the vectors ~τi transform to those of the flat

graphene. Evidently, the σi -orbitals are determined by the vectors ~τi. As a result, the σi

and π orbitals can be expressed as follows

|π〉 = d1|2s〉+ d2|2px〉+ d3|2py〉+ d4|2pz〉 , (A11)

|σ1〉 = c1|2s〉+
√

1− c21|2py〉 , (A12)

|σ2〉 = c2|2s〉+
√

1− c22 (|χ1〉 − |χ2〉) , (A13)

|σ3〉 = c3|2s〉 −
√

1− c23 (|χ1〉+ |χ2〉) , (A14)

|χ1〉 =
√
3
2
cosϑ|2px〉 , (A15)

|χ2〉 = 1
2
|2py〉 −

√
3
2
sinϑ|2pz〉 . (A16)

With the aid of the orthonormality conditions 〈σi|σj〉 = δij , 〈π|σj〉 = 0, and 〈π|π〉 = 1,

we determine the parameters {ck, dl} and obtain the following expressions for the π and σ
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orbitals in the lowest order of the ratio a/R:

|π〉 ≈ |2pz〉+ a
2
√
6R
|2s〉+ a

4
√
3R
|2py〉 , (A17)

|σ1〉 = 1√
3
|2s〉+

√

2
3
|2py〉 , (A18)

|σ2〉 = 1√
3
|2s〉+

√

2
3

(√
3
2
|2px〉 − |χ3〉

)

, (A19)

|σ3〉 = 1√
3
|2s〉 −

√

2
3

(√
3
2
|2px〉+ |χ3〉

)

, (A20)

|χ3〉 = 1
2
|2py〉+

√
3a

8R
|2pz〉 . (A21)

The π orbitals are the same for the zig-zag and armchair nanotubes in the lowest order of

a/R. They are used to create the Bloch function in the tight-binding approximation. As a

result, we obtain the following π orbital energy of the curved graphene surface of radius R

επ = 〈π|H|π〉 = 〈2pz|H|2pz〉+
1

24

( a

R

)2

〈2s|H|2s〉

+
1

48

( a

R

)2

〈2py|H|2py〉 = ε2p + α
( a

R

)2

, (A22)

α =
1

24
〈s|H|s〉+ 1

48
〈py|H|py〉 . (A23)

Note, that the orbitals 2py,z, 2s are localized on the same carbon atom and contribute to

the π orbital energy [31], while there is no such a contribution from the nondiagonal matrix

elements. As a result, we obtain that the energy of the curved graphene consists of the

energy of the flat graphene ε2p, and the energy of the 2s, 2py orbitals brought about by the

curvature.

Using the numerical values for the energies of the |s〉 and |py〉 orbitals of the carbon atom

〈s|H|s〉 = −12eV, 〈py|H|py〉 = −4eV (e.g., [32]), we obtain for the parameter α ≃ −0.58eV.
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B. H. Hong, B. Özyilmaz, Quasi-periodic nanoripples in graphene grown by chemical vapor

deposition and its impact on charge transport, ACS Nano 6, 1158 (2012).
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