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Nirenberg problem on high dimensional spheres:

Blow up with residual mass phenomenon
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Abstract: In this paper, we extend the analysis of the subcritical approximation of the Niren-
berg problem on spheres recently conducted in [28, 27]. Specifically, we delve into the scenario
where the sequence of blowing up solutions exhibits a non-zero weak limit, which necessarily
constitutes a solution of the Nirenberg problem itself. Our focus lies in providing a comprehen-
sive description of such blowing up solutions, including precise determinations of blow-up points
and blow-up rates. Additionally, we compute the topological contribution of these solutions to
the difference in topology between the level sets of the associated Euler-Lagrange functional.
Such an analysis is intricate due to the potential degeneracy of the involved solutions. We also
provide a partial converse, wherein we construct blowing up solutions when the weak limit is
non-degenerate.
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1 Introduction and main Results

Given a smooth positive function K defined on the standard sphere S
n, where n ≥ 3, equipped

with its standard metric g0, the Nirenberg problem aims to determine a Riemannian metric g
conformally equivalent to g0 such that the scalar curvature Rg = K. This can be formulated as
solving the following nonlinear problem involving the critical Sobolev exponent:

(NK) Lg0u = Ku(n+2)/(n−2), u > 0 on S
n,

where Lg0 := −∆g0 + n(n− 2)/4 denotes the conformal Laplacian.

This problem has garnered significant attention over the past half-century, with extensive re-
search contributions.. See [3, 5, 6, 10, 13, 14, 15, 16, 17, 18, 21, 22, 25, 26, 32] and the references
therein.
Due to Kazdan-Warner topological obstructions [11, 22], the Nirenberg problem is not solvable
for every function K . Thus, the central inquiry revolves around identifying sufficient conditions
on K for the problem to be solvable.
Regarding existence results, Euler-Poincaré type criteria have been established by Bahri-Coron
[6] and by Chang-Gursky-Yang [14] on S

3, and by Ben Ayed et al. [10] and Yanyan Li [26] on
S
4. Furthermore, these results have been extended to higher-dimensional spheres under various
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2 Ahmedou, Ben Ayed & El Mehdi

conditions, including flatness conditions near the critical point of K [25], in the perturbative
framework [13], or under pinching conditions [18] and [29].
The Nirenberg problem has a variational structure. Indeed its solutions correspond to the
positive critical points of the functional

IK(u) :=
1

2
‖u‖2 −

1

p+ 1

∫

Sn

K|u|p+1, with p :=
n+ 2

n− 2
, (1)

defined on H1(Sn) equipped with the scalar product

〈u,w〉 :=

∫

Sn

∇u∇w +
n(n− 2)

4

∫

Sn

uw

and its associated norm

‖u‖2 =

∫

Sn

| ∇u |2 +
n(n− 2)

4

∫

Sn

u2.

The functional IK fails to satisfy the Palais-Smale condition and the reason for such a lack of
compactness is the existence of almost solutions of the equation (NK). These almost solutions
called bubbles are defined as follows:

δ̃(a,λ)(x) = c0
λ(n−2)/2

(
2 + (λ2 − 1)(1 − cos dg0(x, a))

)(n−2)/2
, with a ∈ S

n and λ > 0, (2)

where dg0 is the geodesic distance on (Sn, g0) and c0 = (n(n− 2))(n−2)/4.

After performing a stereographic projection Π with the point −a as pole, the function δ̃(a,λ) is
transformed into

δ(0,λ)(y) = c0
λ(n−2)/2

(1 + λ2 | y |2)(n−2)/2
, y ∈ R

n, (3)

which is a solution of the problem [12]

−∆u = u
n+2
n−2 , u > 0 in R

n.

One way to overcome the lack of compactness of the functional IK , which goes back to Yamabe
[36], is to lower the exponent and first consider the subcritical approximation

(NK,τ ) Lg0u = Ku((n+2)/(n−2))−τ , u > 0 on S
n,

and its associated Euler-Lagrange functional

IK,τ (u) :=
1

2
‖u‖2 −

1

p+ 1− τ

∫

Sn

K|u|p+1−τ , u ∈ H1(Sn) with p :=
n+ 2

n− 2
.

Thanks to elliptic estimates either the solution uτ remains uniformly bounded as τ → 0 and
hence converges strongly to a solution ω of the Nirenberg problem (NK) or it blows up. In the
latter case, following Schoen [31], Yanyan Li [25, 26], Chen-lin [16, 17] or Druet-Hebey-Robert
[20], one performs a refined blow up analysis. It follows from such a blow up analysis that
on S

3 only single blow up can occur, whereas on S
4 multiple blow up can occur, yet they are

isolated simple, see [6, 14, 25, 26]. However, the scenario shifts notably in higher-dimensional
spheres. While on S

5,S6 blowing up solutions have finite energy [17], Chen-Lin [15] constructed a
sequence blowing up solutions of infinite energy. A fact that underscores the profound challenge
presented by higher-dimensional spheres. Recentyl Malchiodi-Mayer [28, 27] have shown, that
finite energy blowing up solutions having zero weak limit are all isolated simple. Motivated by
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the intricate question of multiplicity of solutions to the Nirenberg problem, we undertake in
this paper a systematic analysis of the scenario where a sequence of energy bounded solution of
(NK,τ ) has a non zero weak limit. We point out that such a weak limit is necessarily a solution
of (NK) and it is known that such a situation does not occur if the dimension of the sphere is
less than six, see [10, 25, 26, 5]. For spheres of dimension n ≥ 7 our main result can be stated
as follows:

Theorem 1.1 Let n ≥ 7, 0 < K ∈ C3(Sn) having only non-degenerate critical points y1, · · · , yq
with ∆K(yi) 6= 0 for 1 ≤ i ≤ q. Let (uτ ) be a sequence of energy bounded solutions of (NK,τ )
converging weakly but not strongly uτ ⇀ ω 6= 0. Then ω is a solution of (NK). Furthermore
there exists N ∈ N such that uτ has to blow up and takes the following form

uτ = ω +

N∑

i=1

1

K(ai,τ )(n−2)/4
δ̃ai,τ ,λi,τ

+ vτ ,

where δ̃ is defined in (2) and vτ → 0 in H1(Sn).
Furthermore we have that:

i) ai,τ converges to a critical point yi of K with ∆K(yi) < 0.

ii) λi,τ → ∞, τ lnλi,τ → 0 and λi,τdg0(ai,τ , yi) → 0 as τ → 0.

iii) For i 6= j, dg0(ai,τ , aj,τ ) ≥ 1
2 min{dg0(yk, yℓ) : yk 6= yℓ ∈ K∞} where

K∞ := {y ∈ S
n : ∇K(y) = 0 and ∆K(y) < 0}. (4)

iv) There exists a dimensional constant κ1(n) > 0 such that

1

λ2i,τ
= −κ1(n)

K(yi)

∆K(yi)
τ(1 + oτ (1)). (5)

In addition, if ω is a non-degenerate critical point of IK , then uτ is a non-degenerate critical
point of IK,τ and

Morse index(IK,τ , uτ ) = (N + 1) +Morse index(IK , ω) +

N∑

i=1

(n−Morse index(K, yi)).

Regarding the proof strategy of Theorem 1.1, it is essential to provide some insights. While con-
ventional blow-up analysis techniques typically rely heavily on precise pointwise C0-estimates of
the blowing-up solutions uτ and extensively employ Pohozaev identities [16, 17, 20, 23, 25, 26, 28,
31], our approach diverges from this path. Our strategy hinges on deriving balancing conditions
governing the parameters of concentration, utilizing refined asymptotic estimates of the gradi-
ent within the so-called ”neighborhood at infinity”. These balancing conditions emerge through
testing the equation with vector fields representing the leading terms of the gradient concerning
the concentration parameters. By analyzing these conditions, we can extract all pertinent infor-
mation regarding the blow-up phenomenon. We highlight that the potential degeneracy of the
weak limit introduces an additional challenging dimension to the problem. Estimating parame-
ters within the nontrivial kernel of the linearized operator becomes particularly arduous in such
scenarios. It is worth noting that circumventing the reliance on pointwise estimates and Po-
hozaev identities can be advantageous, especially in the exploration of non-compact variational
problems where non-simple blow-ups may arise, such as in the singular mean-field equation with
quantized singularities [9, 24, 34, 35, 19], and in the Nirenberg problem on half-spheres [2]. The
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presence of non-simple blow-up points significantly complicates the task of establishing pointwise
C0-estimates, making our method particularly valuable in such contexts.

In the next theorem we provide, under generic condition, the following converse of Theorem 1.1.

Theorem 1.2 Let n ≥ 7, 0 < K ∈ C3(Sn). Let y1, · · · , yN be distinct non-degenerate critical
points of K with ∆K(yi) < 0 and ω be a non-degenerate solution of (NK). Then, as τ → 0,
there exists a unique solution uτ,ω,y1,...,yN of (NK,τ ) satisfying: uτ,ω,y1,...,yN − ω develops exactly
one bubble at each point yi and converges weakly to zero in H1(Sn) as τ → 0. More precisely
there exist λ1,τ ,..., λN,τ having the same order as τ−1/2 and points ai,τ → yi for all i such that

∣∣∣∣
∣∣∣∣uτ,ω,y1,...,yN − ω −

N∑

i=1

K(ai)
2−n
4 δ̃ai,τ ,λi,τ

∣∣∣∣
∣∣∣∣→ 0 and

Iτ (uτ,ω,y1,...,yN ) →
1

n
||ω||2 +

1

n
Sn

(
N∑

i=1

K(ai)
2−n
2

)
,

as τ → 0, where

Sn := c
2n/(n−2)
0

∫

Rn

1

(1 + |x|2)n
dx. (6)

In addition, uτ,ω,y1,...,yN is non-degenerate for IK,τ and

Morse index(IK,τ , uτ,ω,y1,...,yN ) = (N + 1) +Morse index(IK , ω) +

N∑

i=1

(n−Morse index(K, yi)).

We would like to underscore that our main findings in this paper, namely Theorems 1.1 and 1.2,
serve as fundamental components in our subsequent work [1]. Specifically, they play a pivotal
role in demonstrating the existence of infinitely many solutions to Nirenberg’s problem under
perturbative conditions.

The subsequent sections of the paper are structured as follows: In Section 2, we perform a
finite-dimensional reduction while Section 3 delves into providing a meticulous expansion of
the gradient within the neighborhood at infinity. The refined blow-up analysis of finite energy
approximated solutions to problem (NK,τ ), with a non-zero weak limit, is detailed in Section 4
and Section 5 is dedicated to the proof of Theorem 1.2. Lastly, in the appendix, we gather some
indispensable estimates crucial for substantiating various assertions throughout this paper.

2 Finite dimensional reduction

Let ω be a solution of (NK) and let N0(ω) be the kernel of the associated quadratic form defined
by:

Qω(h) := ‖h‖2 −
n+ 2

n− 2

∫

Sn

Kω4/(n−2)h2 for h ∈ H1(Sn). (7)

Let m2 be the dimension of N0(ω) and (e1, · · · , em2) be an orthonormal basis of N0(ω). We set

H0(ω) := span(ω)⊕ span(e1, · · · , em2).

Following M. Mayer, see Lemma 3.6 and Proposition 3.7 in [30], we parameterize a neighborhood
of ω by

uα,β := α(ω +

m2∑

i=1

βiei + h(β)) with h(β) ⊥ H0(ω); h(β) = O(||β||2) and ‖h(β)‖C2 → 0, (8)
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where β := (β1, · · · , βm2) ∈ R
m2 , α close to 1 and the function uα,β satisfies

〈∇IK(uα,β), h〉 := 〈uα,β , h〉 −

∫

Sn

Kupα,βh = 0 for each h ∈ H0(ω)
⊥. (9)

Next for ω a solution of (NK) whose Kernel is of dimension m2, N ∈ N0 and µ a small positive
constant, we define the so called neighborhood at infinity V (ω,N, µ) as follows:

V (ω,N, µ) :=
{
u ∈ H1(Sn) : ∃λ1, · · · , λN > µ−1 ; ∃ a1, · · · , aN ∈ S

n, with

εij < µ; ∃α0 ∈ (1− µ, 1 + µ); ∃ β ∈ R
m2 with ‖β‖ ≤ c µ

such that ‖u−
N∑

i=1

K(ai)
(2−n)/4δ̃ai,λi

− uα0,β‖ < µ
}
, (10)

where

εij :=
(λi
λj

+
λj
λi

+
1

2
λiλj(1− cos d(ai, aj))

)(2−n)/2
. (11)

Following Bahri-Coron [7] we consider, for u ∈ V (ω,N, µ), the following minimization problem

Min

{
‖u −

N∑

i=1

αiδ̃ai,λi
− uα0,β‖;αi > 0;β ∈ R

m2 ;λi > 0, ai ∈ S
n

}
. (12)

We then have the following proposition whose proof is identical, up to minor modification, to
the one of Proposition 7 in [7].

Proposition 2.1 For any N ∈ N0 there exists µ0 > 0 such that if µ < µ0 and u ∈ V (ω,N, µ)
the minimization problem (12) has, up to permutation of the indices, a unique solution.

Hence it follows from Proposition 2.1 that every u ∈ V (ω,N, µ) can be written in a unique way
as

u =
N∑

i=1

αiδ̃ai,λi
+ uα0,β + v, where (13)

ai ∈ S
n, i ≤ N, α

4/(n−2)
i K(ai) = 1 + o(1) ∀ i ≥ 1, α0 = 1 + o(1), (14)

and v ∈ H1(Sn) satisfying

‖v‖ < µ, < v, ψ >= 0, for ψ ∈ E⊥
ω,a,λ where (15)

Eω,a,λ := span{δ̃i,
∂δ̃i
∂λi

,
∂δ̃i
∂ai

, uα0,β,
∂uα0,β

∂βk
; 1 ≤ i ≤ N ; ; k ≤ m2}, (16)

where δ̃i := δ̃ai,λi
. Furthermore a refined Struwe energy type decomposition ([33]) has been

proved in [28]. Namely the following result holds:

Proposition 2.2 [[28], Proposition 3.1] Let uτ be an energy bounded solution of (NK,τ ) which
blows up. We assume that there exists a positive solution ω of (NK) such that uτ ⇀ ω (but
uτ 9 ω). Then there exists N such that uτ can be written as

uτ := uα,β +

N∑

i=1

αiδ̃ai,λi
+ vτ ∈ V (ω,N, µ) with vτ ∈ E⊥

ω,a,λ and τ lnλi = oτ (1) ∀ i. (17)
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In what follows, we assume that uτ is decomposed as in (17). Now, we are going to estimate
the remainder term vτ in Proposition 2.2. To this aim, we need to give some information about
the second variation of the Euler-Lagrange functional with respect to the infinite dimensional
variable v. First, for a solution ω of (NK) (not necessary a non-degenerate one), we decompose
H1(Sn) as follows:

H1(Sn) := N−(ω)⊕H0(ω)⊕N+(ω) where H0(ω) := span{ω} ⊕N0(ω) (18)

where N−(ω), N0(ω) and N+(ω) are respectively the space of negativity, of nullity and of pos-
itivity of the quadratic form Qω (defined by (7)) in span{ω}⊥. Note that these spaces are
orthogonal spaces with respect to 〈., .〉 and the bilinear form Bω(., .) (:=

∫
Sn
Kωp−1..). Further-

more, the sequence of the eigenvalues (denoted by (σi)) corresponding to Qω satisfies σi ր 1.
Therefore, there exists a constant c > 0 such that

Qω(h) ≤ −c ‖h‖2 for each h ∈ N−(ω) ; Qω(h) ≥ c ‖h‖2 for each h ∈ N+(ω). (19)

Lemma 2.3 Assume that the εij ’s are small. Let v ∈ E⊥
ω,a,λ (defined in (16)). Written v as

v := v− + v0 + v+ with v− ∈ N−(ω) ; v0 ∈ H0(ω) ; v+ ∈ N+(ω) (see (18)).

Let us define

Qω,a,λ(v) := ‖v‖2 − p
∑∫

Sn

δ̃p−1
i v2 − p

∫

Sn

Kωp−1v2. (20)

Then, Qω,a,λ is a non-degenerate quadratic form on E⊥
ω,a,λ . More precisely, there exists a

positive constant c such that

‖v0‖ = o(‖v‖), (21)

Qω,a,λ(v−) = Qω(v−) + o(‖v−‖
2) ≤ − c ‖v−‖

2, (22)

Qω,a,λ(v+) ≥ c ‖v+‖
2 + o(‖v‖2), (23)

where Qω is defined in (7).

Proof. First, we remark that, (21)-(23) imply that Qω,a,λ is non-degenerate on E⊥
ω,a,λ.

Second, note that the spaces H0(ω), N−(ω) and N+(ω) are orthogonal spaces with respect to
〈., .〉 and the associated bilinear form Bω(., .) (:=

∫
Sn
Kωp−1..).

We start by proving (21). Since v0 ∈ H0(ω), it follows that v0 = γ0ω+
∑
γiei where (e1, · · · , em2)

is an orthonormal basis of N0(ω). Using the fact that v ∈ E⊥
ω,a,λ (which implies that v ⊥ uα,β

and v ⊥ ∂uα,β/∂βi for each i), it follows that

γ0 = 〈v0, ω〉 = 〈v, ω〉 = (1/α)〈v, uα,β 〉 − (1/α)
∑

βi〈v, ei〉 − 〈v, h(β)〉 = o(‖v‖),

γi = 〈v0, ei〉 = 〈v, ei〉 = 〈v, ei + (∂h(β)/∂βi)〉 − 〈v, ∂h(β)/∂βi〉 = o(‖v‖) ∀ 1 ≤ i ≤ m2

(by using the smallness of β and h(β) in the C1 sense with respect to β). This ends the proof
of (21).
Concerning (22), we have

Qω,a,λ(v−) = ‖v−‖
2 − p

∑∫
δ̃p−1
i v2− − p

∫
Kωp−1v2− = Qω(v−)− p

∑∫
δ̃p−1
i v2−.

Observe that, since v− belongs to a fixed finite dimensional space, we derive that ‖v−‖∞ ≤ c‖v−‖
and therefore ∫

δ̃p−1
i v2− ≤ ‖v−‖

2
∞

∫
δ̃p−1
i = o(‖v−‖

2) for each i.
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Hence the proof of (22) follows by using (19).
It remains to prove (23). Note that, using Proposition 3.1 of [4], there exists a constant c1 > 0
such that

‖h‖2 −
n+ 2

n− 2

N∑

i=1

∫

Sn

δ̃
4

n−2

ai,λi
h2 ≥ c1‖h‖

2 for each h ∈ E⊥
a,λ. (24)

where E⊥
a,λ is introduced in (16) (with ω = 0).

In addition, the sequence of the eigenvalues (denoted by (σi)) corresponding to Qω (defined by
(7)) satisfies σi ր 1. Let Nk(ω) be the eigenspace associated to the eigenvalue σk. These spaces
are orthogonal with respect to 〈., .〉 and the bilinear form Bω. Let σk0 := min{σi : σi > 0}.
Hence it is easy to see that N+(ω) = ⊕k≥k0Nk(ω). Furthermore, for k ∈ N, it holds

Qω(h) ≥ σk‖h‖
2 for each h ∈ ⊕j≥kNj(ω). (25)

Let k1 be such that σk1 ≥ 1− c1/4. We decompose N+(ω) as follows:

N+(ω) := (⊕k0≤k≤k1Nk(ω))⊕ (⊕k>k1Nk(ω)) := N0,1
+ (ω)⊕N1

+(ω).

Note that N0,1
+ (ω) is a fixed finite dimensional space. Now, since v+ ∈ N+(ω), it holds that

v+ := v+0 + v+1 where v+0 ∈ N0,1
+ (ω) and v+1 ∈ N1

+(ω). (26)

Hence, using the orthogonality of the spaces N0,1
+ (ω) and N1

+(ω), it follows that

Qω,a,λ(v+) = ‖v+0 ‖
2 + ‖v+1 ‖

2 − p
N∑

i=1

∫

Sn

δ
4

n−2

ai,λi
{(v+0 )

2 + (v+1 )
2 + 2v+0 v

+
1 }

− p

∫

Sn

Kω
4

n−2 {(v+0 )
2 + (v+1 )

2}.

Observe that

‖v+0 ‖
2 −

n+ 2

n− 2

∫

Sn

Kω
4

n−2 (v+0 )
2 = Qω(v

+
0 ) ≥ σk0‖v

+
0 ‖

2 (by using (25))

∫

Sn

δ̃
4

n−2

ai,λi
(v+0 )

2 ≤ ‖v+0 ‖
2
∞

∫

Sn

δ̃
4

n−2

ai,λi
= o(‖v+0 ‖

2)

∫

Sn

δ̃
4

n−2

ai,λi
|v+0 ||v

+
1 | ≤ ‖v+0 ‖∞

∫

Sn

δ̃
4

n−2

ai,λi
|v+1 | = o(‖v+0 ‖‖v

+
1 ‖) = o(‖v+1 ‖

2 + ‖v+0 ‖
2)

− p

∫

Sn

Kω
4

n−2 (v+1 )
2 = Qω(v

+
1 )− ‖v+1 ‖

2 ≥ (σk1 − 1)‖v+1 ‖
2 ≥ −(c1/4)‖v

+
1 ‖

2

where, for the last formula, we have used (25) and the choose of k1. Combining these estimates,
we get

Qω,a,λ(v+) ≥ {‖v+1 ‖
2 − p

N∑

i=1

∫

Sn

δ̃
4

n−2

ai,λi
(v+1 )

2}+ σk0‖v
+
0 ‖

2 −
c1
4
‖v+1 ‖

2 + o(‖v+1 ‖
2 + ‖v+0 ‖

2). (27)

Note that the function v+1 is not necessarily in E⊥
a,λ. For this reason we write v+1 :=

∑
tiψi+ ṽ

+
1

with ṽ+1 ∈ E⊥
a,λ where the ψi’s are the functions δ̃j ’s and their derivatives with respect to λj and

akj . Let ψi ∈ {δ̃i, λi∂δ̃i/∂λi, (1/λi)∂δ̃i/∂α
k
i }, it follows that

ti + o(
∑

|tk|) = 〈v+1 , ψi〉 = 〈v, ψi〉 − 〈v0, ψi〉 − 〈v−, ψi〉 − 〈v+0 , ψi〉

= O
( ∫

δ̃pi (|v0|+ |v−|+ |v+0 |)
)
= o(‖v0‖+ ‖v−‖+ ‖v+0 ‖) = o(‖v‖)
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by using the fact that these functions are in fixed finite dimensional spaces. Thus we derive that
‖v+1 ‖

2 = ‖ṽ+1 ‖
2 + o(‖v‖2) and therefore, using (24), we get

‖v+1 ‖
2 − p

N∑

i=1

∫

Sn

δ̃
4

n−2

ai,λi
(v+1 )

2 = ‖ṽ+1 ‖
2 − p

N∑

i=1

∫

Sn

δ̃
4

n−2

ai,λi
(ṽ+1 )

2 + o(‖ṽ+1 ‖
2 + ‖v‖2)

≥
1

2
c1‖v

+
1 ‖

2 + o(‖v‖2). (28)

Combining (26), (27) and (28), we get

Qω,a,λ(v+) ≥
1

4
c1‖v

+
1 ‖

2 + σk0‖v
+
0 ‖

2 + o(‖v+1 ‖
2 + ‖v+0 ‖

2) + o(‖v‖2) ≥ c‖v+‖
2 + o(‖v‖2).

Thus the result follows.

Next, we prove the following proposition which gives the estimate of the infinite dimensional
part of uτ .

Proposition 2.4 Let vτ be the remainder term defined in Proposition 2.2. Then there holds:

‖vτ‖ ≤ cR(τ, a, λ) with R(τ, a, λ) := τ +

N∑

i=1

|∇K(ai)|

λi
+

1

λ2i
+
∑

ε
n+2

2(n−2)

ij (ln ε−1
ij )

n+2
2n .

Proof. Using (18), vτ can be decomposed as follows

vτ := v−τ + v0τ + v+τ where v0τ ∈ H0(ω) ; v
−
τ ∈ N−(ω) and v

+
τ ∈ N+(ω). (29)

Since vτ ∈ E⊥
w,a,λ, using Lemma 2.3, we get that v0τ = o(‖vτ ‖). For the other parts, note that

v+τ and v−τ are not necessarily in E⊥
a,λ but they are in H0(ω)

⊥.

Now we will focus on estimating v−τ . Since uτ is a solution of (NK,τ ), we get

〈∇IK,τ (uτ ), v
−
τ 〉 = 0

which is equivalent to (by using (46) and (82))

∑
αj〈δ̃j , v

−
τ 〉+ 〈uα,β, v

−
τ 〉+ ‖v−τ ‖

2 =

∫
Kup−τ

τ v−τ

=

∫
Kup−τ

τ v−τ + p

∫
Kup−1−τ

τ vτv
−
τ + o(‖vτ‖‖v

−
τ ‖) (30)

where uτ := uτ −vτ . Using (81), (14) and the fact that v−τ is in a finite dimensional space (which
implies that ‖.‖∞ ≤ c‖.‖), we derive that

∫
Kup−1−τ

τ vτv
−
τ =

N∑

i=1

∫
K(αiδ̃i)

p−1−τvτv
−
τ +

∫
Kup−1−τ

α,β vτv
−
τ + o(‖vτ‖‖v

−
τ ‖)

=

N∑

i=1

O
(
|v−τ |∞

∫
δ̃p−1
i |vτ |

)
+

∫
Kωp−1(v0τ + v−τ + v+τ )v

−
τ + o(‖vτ‖‖v

−
τ ‖)

=

∫
Kωp−1(v−τ )

2 + o(‖vτ‖‖v
−
τ ‖) (31)

where we have used the orthogonality of v−τ , v
0
τ and v+τ with respect to

∫
Kωp−1.. . Thus (30)

and (31) imply that

−Qω(v
−
τ ) + o(‖vτ‖‖v

−
τ ‖) =

∑
αj〈δ̃j , v

−
τ 〉+ 〈uα,β , v

−
τ 〉 −

∫
Kup−τ

τ v−τ := ℓ(v−ε ). (32)
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Observe that, using ‖v−τ ‖∞ ≤ c‖v−τ ‖, it holds that

|〈δ̃i, v
−
τ 〉| ≤ c

∫
δ̃pi |v

−
τ | ≤ c‖v−τ ‖∞

∫
δ̃pi ≤ c

‖v−τ ‖

λ
(n−2)/2
i

;

∫
δ̃i|v

−
τ | ≤ c

‖v−τ ‖

λ
(n−2)/2
i

. (33)

∫
Kup−τ

τ v−τ =

∫
Kup−τ

α,β v
−
τ +

∑
O
( ∫

up−1
α,β δi|v

−
τ |+

∫
δp−τ
i |v−τ |

)

=

∫
Kupα,βv

−
τ +O

(
‖v−τ ‖

(
τ +

∑ 1

λ
(n−2)/2
i

))
. (34)

Therefore, combining (19), (32)-(34) and (9), we get

c ‖v−τ ‖
2 ≤ −Qω(v

−
τ ) ≤ c ‖v−τ ‖

(
τ +

∑ 1

λ
(n−2)/2
i

+ o(‖vτ‖)
)
. (35)

It remains to estimate the v+τ -part. Recall that v+τ ∈ N+(ω) and it is not necessarily in E⊥
a,λ.

Note that Eq (30) holds with v+τ instead of v−τ . Observe that, using (81) and (14), it holds

∫
Kup−1−τ

τ vτv
+
τ =

N∑

i=1

∫
K(αiδ̃i)

p−1−τvτv
+
τ +

∫
Kup−1−τ

α,β vτv
+
τ + o(‖vτ‖‖v

+
τ ‖)

=

N∑

i=1

∫
δ̃p−1
i vτv

+
τ +

∫
Kωp−1(v0τ + v−τ + v+τ )v

+
τ + o(‖vτ‖‖v

+
τ ‖)

=

N∑

i=1

∫
δ̃p−1
i (v+τ )

2 +

∫
Kωp−1(v+τ )

2 + o(‖vτ‖‖v
+
τ ‖), (36)

by using the fact that ‖v−τ ‖∞ ≤ c‖v−τ ‖ ≤ c‖vτ‖, ‖v
0
τ‖∞ ≤ c‖v0τ‖ ≤ c‖vτ‖ and the fact that∫

Kωp−1v−τ v
+
τ =

∫
Kωp−1v0τv

+
τ = 0 . Hence we obtain

Qω,a,λ(v
+
τ ) + o(‖vτ‖‖v

+
τ ‖) = −

∑
αj〈δ̃j , v

+
τ 〉 − 〈uα,β, v

+
τ 〉+

∫
Kup−τ

τ v+τ := −ℓ(v+τ ). (37)

Using Lemma 2.3, we derive that Qω,a,λ(v
+
τ ) ≥ c‖v+τ ‖

2 + o(‖vτ‖
2), hence it remains to estimate

the linear part ℓ(v+τ ). In fact, using (81), we have

∫
Kup−τ

τ v+τ =
∑∫

Sn

K(αiδ̃i)
p−τv+τ +

∫

Sn

Kup−τ
α,β v

+
τ

+O
(∑

i 6=j

∫
(δ̃iδ̃j)

p/2|v+τ |+
∑∫

(δ̃iω)
p/2|v+τ |

)
. (38)

Concerning the remainder terms, it follows that

∫
(δ̃iδ̃j)

p/2|v+τ | ≤ ‖v+τ ‖
( ∫

(δ̃iδ̃j)
n/(n−2)

)(n+2)/(2n)
≤ c‖v+τ ‖ε

n+2
2(n−2)

ij ln
n+2
2n (ε−1

ij ), (39)

∫

Sn

δ̃
p/2
i |v+τ | ≤ ‖v+τ ‖

( ∫

Sn
δ̃
n/(n−2)
i

)(n+2)/(2n)
≤ c‖v+τ ‖

ln(n+2)/(2n)(λi)

λ
(n+2)/4
i

, (40)

where we have used the following estimate (see (E2) of [4])

∫

Sn

(δ̃k δ̃j)
n/(n−2) =

∫

Rn

(δkδj)
n/(n−2) ≤ c ε

n/(n−2)
kj ln(ε−1

kj ) ∀ k 6= j. (41)
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For the other integrals in (38), we recall that v+τ ∈ N+(ω) and therefore it follows that v+τ ∈
H0(ω)

⊥. Hence using (9), we derive that

−〈uα,β, v
+
τ 〉+

∫

Sn

Kup−τ
α,β v

+
τ = −〈uα,β, v

+
τ 〉+

∫

Sn

Kupα,βv
+
τ +O(τ ‖v+τ ‖) = O(τ ‖v+τ ‖). (42)

Furthermore, using Lemma 6.1, it holds that

∫

Sn

K(αiδ̃i)
p−τv+τ =

αp−τ
i c−τ

0 K(ai)

λ
τ(n−2)/2
i

∫

Sn

δ̃pi v
+
τ +O

( ∫

Sn

|K(x)−K(ai)|δ̃
p
i |v

+
τ |

+ τ

∫
δ̃pi ln[2 + (λ2i − 1)(1− cos d(ai, x))]|v

+
τ |
)

=
αp−τ
i c−τ

0 K(ai)

λ
τ(n−2)/2
i

〈δ̃i, v
+
τ 〉+O

(
‖v+τ ‖

(
τ +

|∇K(ai)|

λi
+

1

λ2i

))
. (43)

Therefore we get

αi〈δ̃i, v
+
τ 〉−

∫

Sn

K(αiδ̃i)
p−τv+τ = αi

(
1−

αp−1−τ
i K(ai)

cτ0λ
τ(n−2)/2
i

)
〈δ̃i, v

+
τ 〉+O

(
‖v+τ ‖

(
τ +

|∇K(ai)|

λi
+

1

λ2i

))
.

(44)
Finally, using the fact that vτ ∈ E⊥

w,a,λ, as in the computations of (33), we derive that

〈δ̃i, v
+
τ 〉 = 〈δ̃i, vτ 〉 − 〈δ̃i, v

0
τ 〉 − 〈δ̃i, v

−
τ 〉 = O

(
‖vτ‖/λ

(n−2)/2
i

)
∀ 1 ≤ i ≤ N.

Thus, using (19), (37) becomes

c‖v+τ ‖
2 ≤ Qω,a,λ(v

+
τ ) ≤ o(‖vτ‖

2) +O
(
‖vτ‖

(
R(τ, a, λ)

))
. (45)

Thus using (29), (35) and (45), we derive that

‖vτ‖
2 = ‖v+τ ‖

2 + ‖v−τ ‖
2 + o(‖vτ‖

2) ≤ c‖vτ‖
(
R(τ, a, λ)

)

which completes the proof.

Next we are going to give some expansions of the gradient of IK,τ in V (ω,N, µ).

3 Expansion of the gradient in the neighborhood at infinity

In this section we perform refined asymptotic expansions of the gradient of the Euler-Lagrange
functional IK,τ in the neighborhood at infinity V (ω,N, µ). These asymptotic expansions give rise
to balancing conditions for the parameters of the concentration. We first provide the expansions
with respect to the gluing parameter αi’s. Namely we prove:

Proposition 3.1 Let u := uα,β +
∑N

i=1 αiδ̃i + v ∈ V (ω,N, µ) with v satisfies (15) and τ lnλj
is small for each j. For 1 ≤ i ≤ N , it holds:

〈∇IK,τ (u), δ̃i〉 = αiSn

(
1− λ

−τ n−2
2

i α
4

n−2

i K(ai)

)
+O

(
Rαi

+ ‖v‖2
)

where Sn is defined in Theorem 1.2 and Rαi
:= τ + 1

λ2
i

+
∑

j 6=i εij .
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Proof. We first observe that:

〈∇IK,τ (u), h〉 = 〈u, h〉 −

∫

Sn

K|u|p−1−τuh for each h ∈ H1(Sn). (46)

We take h = δ̃i in (46). Observe that, since v ∈ E⊥
w,a,λ, we get 〈v, δ̃i〉 = 0. Furthermore, using

the fact that uα,β is L∞ bounded, easy computations imply that

〈δ̃j , δ̃i〉 =

∫

Rn

δpj δi = O(εij) ∀ j 6= i, 〈uα,β, δ̃i〉 =

∫

Sn

δ̃pi (uα,β) = O
( 1

λ
(n−2)/2
i

)
, (47)

‖δ̃i‖
2 =

∫

Sn

δ̃p+1
i =

∫

Rn

δp+1
i = cp+1

0

∫

Rn

dx

(1 + |x|2)n
:= Sn. (48)

For the second part, let u := u− v then it holds

∫

Sn

K|u|p−1−τuδ̃i =

∫

Sn

Kup−τ δ̃i + (p− τ)

∫

Sn

Kup−1−τvδ̃i +O(‖v‖2). (49)

Concerning the first integral, it holds

∫

Sn

Kup−τ δ̃i = αp−τ
i

∫

Sn

Kδ̃p+1−τ
i +O

(∑

j 6=i

∫

Sn

((δ̃pj + upα,β)δ̃i + δ̃pi (δ̃j + uα,β))
)
. (50)

Note that

∫

Sn

δ̃pj δ̃i + δ̃j δ̃
p
i = O(εij) ;

∫

Sn

uα,β δ̃
p
i ≤

c

λ
(n−2)/2
i

;

∫

Sn

upα,β δ̃i ≤ c

∫

Sn

δ̃i ≤
c

λ
(n−2)/2
i

. (51)

Now, since we assumed that τ lnλi is small then expanding K around ai, we get

∫

Sn

Kδ̃p+1−τ
i = c−τ

0 λ
−τ n−2

2
i

∫

Sn

Kδ̃p+1
i +O

(∫

Sn

|δ̃−τ
i − c−τ

0 λ
−τ n−2

2
i |δ̃p+1

i

)
(52)

= c−τ
0 λ

−τ n−2
2

i

∫

Rn

Kδp+1
i +O

(
τ
)

= K(ai)λ
−τ(n−2)/2
i Sn +O

(
τ +

1

λ2i

)

by using (48), Lemma 6.1 and the fact that c−τ
0 = 1 + O(τ). Hence the estimate of the first

integral is complete.
For the second integral in the right hand side of (49), using (85), it follows that

∫

Sn

Kup−1−τvδ̃i = αp−1−τ
i

∫

Sn

Kδ̃p−τ
i v +O

(∑

j 6=i

∫

Sn

|v|(δ̃iδ̃j)
p/2 +

∫

Sn

|v|(δ̃iuα,β)
p/2
)

= O
(
‖v‖
(
τ +

|∇K(ai)|

λi
+

1

λ2i
+
∑

j 6=i

ε
n+2

2(n−2)

ij ln
n+2
2n (ε−1

ij )
))

by using (39), (40) and (43) with v instead of v+τ . Thus the proof follows.

Next we provide a balancing condition involving the rate of the concentration λi and the mutual
interaction of bubbles εij .
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Proposition 3.2 Let u := uα,β +
∑N

i=1 αiδ̃i + v ∈ V (ω,N, µ) with v satisfies (15) and τ lnλj
is small for each j. For 1 ≤ i ≤ N , it holds:

〈∇IK,τ (u), λi
∂δ̃i
∂λi

〉

= c2
∑

j 6=i

αjλi
∂εij
∂λi

(
1−

αp−1
j K(aj)

λ
τ(n−2)/2
j

−
αp−1
i K(ai)

λ
τ(n−2)/2
i

)
+

αp
i

λ
τ(n−2)/2
i

(
c4
∆K(ai)

λ2i
+ 2c5K(ai) τ

)

+O
(∑

j 6=k

ε
n

n−2

kj ln(ε−1
kj ) + τ2 +

∑ lnλk

λ
n/2
k

+
|∇K(ai)|

2

λ2i
+

1

λ3i
+

1

λ
(n−2)/2
i

+ ‖v‖2
)

where

c2 := cp+1
0

∫

Rn

1

(1 + |x|2)(n+2)/2
dx; ,

c4 :=
n− 2

2n
cp+1
0

∫

Rn

|x|2(|x|2 − 1)

(1 + |x|2)n+1
; c5 :=

(n− 2)2

4
cp+1
0

∫

Rn

(|x|2 − 1) ln(1 + |x|2)

(1 + |x|2)n+1
dx.

Proof. We take h = λi∂δ̃i/∂λi in (46) and we will estimate each term. Observe that, since
v ∈ E⊥

w,a,λ, it holds: 〈v, λi∂δ̃i/∂λi〉 = 0. Furthermore,

〈δ̃i, λi
∂δ̃i
∂λi

〉 =

∫

Rn

δpi λi
∂δi
∂λi

= 0, (53)

〈uα,β , λi
∂δ̃i
∂λi

〉 = p

∫

Sn

δ̃p−1
i λi

∂δ̃i
∂λi

uα,β = O
(∫

Rn

δpi

)
= O

( 1

λ
(n−2)/2
i

)
.

In addition, we have (see Estimate (E1) of [4])

〈δ̃j , λi
∂δ̃i
∂λi

〉 = c2λi
∂εij
∂λi

+O
(
ε
n/(n−2)
ij ln ε−1

ij

)
∀ j 6= i. (54)

Concerning the second part, let u := u− v, we have

∫

Sn

K|u|p−1−τuλi
∂δ̃i
∂λi

=

∫

Sn

Kup−τλi
∂δ̃i
∂λi

+ (p− τ)

∫

Sn

Kup−1−τvλi
∂δ̃i
∂λi

+O(‖v‖2). (55)

For the second integral, let Ωi := {x :
∑

j 6=i αj δ̃j + uα,β ≤ αiδ̃i/2}, it holds

∫

Sn

Kup−1−τvλi
∂δ̃i
∂λi

=

∫

Sn

K(αiδ̃i)
p−1−τvλi

∂δ̃i
∂λi

+O
(∑

j 6=i

∫

Ωi

δ̃p−1
i δ̃j |v|

)
(56)

+O
( ∫

Sn\Ωi

δ̃p−1
j δ̃i|v|+

∫
δ̃p−1
i uα,β|v|+

∫
δ̃iu

p−1
α,β |v|

)
.

For the last remainder term, using the Holder’s inequalities, we obtain
∫
δ̃p−1
i uα,β|v| +

∫
δ̃iu

p−1
α,β |v| ≤ c‖v‖

1

λ2i
. (57)

Observe that, since n ≥ 7, it follows that p − 1 < 1. Thus, using the Holder’s inequalities and
(41), we obtain

∑

j 6=i

∫

Ωi

δ̃p−1
i δ̃j |v|+

∫

Sn\Ωi

δ̃p−1
j δ̃i|v| ≤ c

∑

j 6=i

∫
(δ̃iδ̃j)

p/2|v| ≤ c‖v‖ε
p/2
ij ln(ε−1

ij )
n+2
2n .
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Concerning the first integral of the right hand side of (56), following the same computations in
(43) and using the fact that 〈∂δ̃i/∂λi, v〉 = 0, we obtain

∫

Sn

Kδp−1−τ
i vλi

∂δi
∂λi

= O
(
‖v‖(τ +

|∇K(ai)|

λi
+

1

λ2i
)
)

(58)

which completes the estimate of (56).
It remains to estimate the first integral of the right hand side of (55). Using (83), it holds

∫

Sn

K(u)p−τλi
∂δ̃i
∂λi

=
N∑

k=1

∫

Sn

K(αk δ̃k)
p−τλi

∂δ̃i
∂λi

+

∫

Sn

K(uα,β)
p−τλi

∂δ̃i
∂λi

(59)

+ (p− τ)

∫

Sn

K(αiδ̃i)
p−τ−1(

∑

j 6=i

αj δ̃j + uα,β)λi
∂δ̃i
∂λi

+
∑

k 6=j

O
(∫

(δ̃k δ̃j)
n

n−2 +

∫
(uα,β δ̃k)

n
n−2

)
.

The estimate of the first one of the remainder terms is given in (41). Furthermore, it holds
∫

Sn

δ̃
n

n−2

a,λ u
n

n−2

α,β ≤ c

∫

Sn

δ̃
n

n−2

a,λ ≤ c
lnλ

λn/2
. (60)

In addition, using (41), (54) and Lemma 6.1, we get, for k 6= i,

∫

Sn

Kδ̃p−τ
k λi

∂δ̃i
∂λi

=
c−τ
0

λ
τ(n−2)/2
k

K(ak)

∫

Sn

δ̃pkλi
∂δ̃i
∂λi

+O
( ∫

Sn

d(x, ak)δ̃
p
k δ̃i +

∫

Sn

|δ̃−τ
k −

c−τ
0

λ
τ(n−2)/2
k

|δ̃pk δ̃i
)

=
1

λ
τ(n−2)/2
k

K(ak)c2λi
∂εik
∂λi

+O
(
ε
n/(n−2)
ik ln ε−1

ik + (
1

λk
+ τ) εik(ln ε

−1
ik )(n−2)/n

)
.

In the same way, it holds

p

∫

Sn

Kδ̃p−τ−1
i δ̃kλi

∂δ̃i
∂λi

=
1

λ
τ n−2

2
i

K(ai)c2λi
∂εik
∂λi

+O
(
ε

n
n−2

ik ln ε−1
ik + (

1

λi
+ τ) εik(ln ε

−1
ik )

n−2
n

)
.

Concerning the first term of (59) for k = i, using Lemma 6.1, we get

∫

Sn

Kδ̃p−τ
i λi

∂δ̃i
∂λi

=
c−τ
0

λ
τ n−2

2
i

(∫

Sn

Kδ̃pi λi
∂δ̃i
∂λi

+ τ
n− 2

2

∫

Sn

Kδ̃pi λi
∂δ̃i
∂λi

ln[2 + (λ2i − 1)(1 − cos d(x, ai))]
)
+O(τ2). (61)

In addition, using (53), it holds

∫

Sn

Kδ̃pi λi
∂δ̃i
∂λi

=

∫

Rn

K̃δpi λi
∂δi
∂λi

=
1

2

∑

1≤k,j≤n

∂2K̃

∂xk∂xj
(ãi)

∫

Rn

(x− ãi)k(x− ãi)jδ
p
i λi

∂δi
∂λi

+O(
1

λ3i
)

=
1

2

∑

1≤k≤n

∂2K̃

∂x2k
(ãi)

∫

Rn

(x− ãi)
2
kδ

p
i λi

∂δi
∂λi

+O(
1

λ3i
)

=
1

2
∆K̃(ãi)

n− 2

2

c
2n/(n−2)
0

λ2i

1

n

∫

Rn

|y|2(1− |y|2)

(1 + |y|2)n+1
dy +O(

1

λ3i
),
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∫

Sn

Kδ̃pi λi
∂δ̃i
∂λi

ln[2 + (λ2i − 1)(1 − cos d(x, ai))] =

∫

Rn

K̃δp0,λi
λi
∂δ0,λi

∂λi
ln[

(2 + 2λ2i |y|
2)

1 + |y|2
] (62)

=

∫

Rn

K̃δp0,λi
λi
∂δ0,λi

∂λi
ln(2 + 2λ2i |y|

2) +O
(∫

Rn

δp+1
0,λi

ln(1 + |y|3)
)

= K(ai)c
2n
n−2

0

n− 2

2

∫

Rn

(1− |y|2) ln(1 + |y|2)

(1 + |y|2)n+1
dy +O(

1

λ2i
),

which achieve the estimate of (61). Note that, for the estimate of the remainder term in (62)
we used the fact that ln(1 + |t|3) ≤ c|t|3 for each t ∈ R.
It remains to estimate the integrals which appear in (59) and contain uα,β. Using (51), there
hold ∫

Sn

K(α0uα,β)
p−τλi

∂δ̃i
∂λi

= O
( ∫

Sn

δ̃i

)
= O

( 1

λ
(n−2)/2
i

)
,

∫

Sn

Kδ̃p−τ−1
i uα,βλi

∂δ̃i
∂λi

= O
(∫

Sn

δ̃pi

)
= O

( 1

λ
(n−2)/2
i

)
.

Combining the previous estimates, the proof follows.

Finally, we provide the following balancing condition involving the point of concentration ai.

Proposition 3.3 Let u := uα,β +
∑N

i=1 αiδ̃i + v ∈ V (ω,N, µ) with v satisfies (15) and τ lnλj
is small for each j. For 1 ≤ i ≤ N , it holds:

〈∇IK,τ (u),
1

λi

∂δ̃i
∂ai

〉 = αp
i (c+ o(1))

∇K(ai)

λi
+O

( 1

λ3i
+

1

λ
(n−2)/2
i

+
∑

j 6=i

εij + ‖v‖2
)
.

Proof. The proof follows as the previous one. Hence we will omit it here.

In the next section, we are going to prove Theorem 1.1.

4 Asymptotic behavior of blowing up solutions

The focus in this section is a refined blow up analysis of finite energy solutions of the subcritical
approximated problem (NK,τ ). Namely, our aim is to prove Theorem 1.1. To do this, we need
to fix some important facts.
Let (uτ ) be a sequence of energy bounded solutions of (NK,τ ) converging weakly but not strongly
uτ ⇀ ω 6= 0. It follows from Propositions 3.1, 3.2 and 3.3 (by taking uτ instead of u) that the
following system holds:

|1− λ
−τ n−2

2
i α

4
n−2

i K(ai)| = O
(
Rαi

+R(τ, a, λ)2
)

∀ i ≤ N,

(Ei) − c2
∑

j 6=i

αjλi
∂εij
∂λi

+ αi

(
c4

∆K(ai)

λ2iK(ai)
+ 2c5τ

)
= O(R2,λ) ∀ i ≤ N,

(Fi)
|∇K(ai)|

λi
≤ c
( 1

λ3i
+
∑

j 6=i

εij +R2(τ, a, λ) +
∑ lnλk

λ
n/2
k

)
∀ i ≤ N,

where R(τ, a, λ) is defined in Proposition 2.4 and

R2,λ :=
∑

j 6=k

ε
n

n−2

kj ln(ε−1
kj ) + τ2 +

∑ 1

λ
5/2
k

+
∑ |∇K(ak)|

2

λ2k
. (63)

Now, we order the λi’s as: λ1 ≤ λ2 ≤ · · · ≤ λN and we start by the following estimate.
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Lemma 4.1 For each solution uτ in V (ω,N, τ), it holds

∑

k 6=i

εik +
∑ |∇K(ak)|

λk
+ τ ≤ c

1

λ21
.

Furthermore, R2,λ, defined in (63), satisfies : R2,λ = o(1/λ
2(n−1)/(n−2)
1 ).

Proof. We first notice that

− λi
∂εij
∂λi

− λj
∂εij
∂λj

≥ 0 for each i 6= j and − λi
∂εij
∂λi

≥ cεij if λi ≥ c′λj . (64)

Hence, summing 2iαi(Ei), we obtain

∑

k 6=i

εik + τ ≤ c
(
R2,λ +

1

λ21

)
.

The result follows by using (Fi) and the definition of R2,λ given in (63).

Lemma 4.2 For i ∈ {1, · · · , N}, we define

Γi := λ2i
∑

k 6=i

εik +
|∇K(ai)|/λi∑
εki + 1/λ2i

. (65)

Let D′
1 := {i : lim Γi = ∞} and D1 := {1, · · · , N} \D′

1.
(i) For each i ∈ D1, there exists a critical point yi of K such that λi|ai − yi| ≤ C.
(ii) If there exists an index i ∈ D′

1, then it holds that

∑

j≥i

( |∇K(ai)|

λi
+
∑

k 6=j

εkj + τ
)
= o
( 1

λ
2(n−1)/(n−2)
1

)
.

(iii) There exists a critical point y of K such that a1 converges to y .

Proof. Let i ∈ D1, it follows that Γi is bounded and therefore it holds that |∇K(ai)| ≤ C/λi
which implies the first assertion. Concerning the second one, let i ∈ D′

1, summing 2jαj(Ej) +
(Fj)/m for j ≥ i where m is a small constant, it holds that

∑

j≥i

( |∇K(aj)|

λj
+
∑

k 6=j

εkj + τ
)
= O

( 1

λ2i
+R2,λ

)
.

Since i ∈ D′
1, it follows that 1/λ2i is small with respect to the left hand side. Thus the proof

follows from the estimate of R2,λ (see Lemma 4.1).
Concerning the proof of Claim (iii), observe that, if 1 ∈ D1, the result follows from Claim (i),

however, if 1 ∈ D′
1, from Claim (ii), we deduce that |∇K(a1)| = o(λ

−n/(n−2)
1 ) which implies the

result in this case. Thus the proof of the lemma is complete.

Lemma 4.3 For each i 6= j, it holds that : εij = o(1/λ21).

Proof. Observe that, if i or j belongs to D′
1, then the result follows from Lemma 4.2. In the

other case, that is i, j ∈ D1, using again Lemma 4.2, there exist critical points yi and yj such
that λkd(ak, yk) ≤ c for k = i, j. Two cases may occur:
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(a) Either yi 6= yj, and in this case we get d(ai, aj) ≥ c and therefore the result follows easily,

(b) or yi = yj. Since we have λkd(ak, yk) ≤ c and εij is small, it follows that λi/λj → 0 or ∞.
Taking λi ≤ λj and using the fact that Γj is bounded, it holds

εij ≤
c

λ2j
= c

λ2i
λ2j

1

λ2i
= o
( 1

λ2i

)
= o
( 1

λ21

)
.

Hence the proof is completed.

Next we are going to complete the proof of Theorem 1.1. Using the above lemmas, Equations
(Ei) can be improved and we get

(E′
i) : 2c5τ + c4

∆K(ai)

λ2iK(ai)
= o
( 1

λ21

)
. (66)

Now, we claim that

(a)
λN
λ1

≤ C and (b) D′
1 = ∅. (67)

Arguing by contradiction, assume that λN/λ1 → ∞. It follows from (E′
N ) that τ = o(1/λ21).

Putting this information in (E′
1) and using Claim (iii) of Lemma 4.2, we derive a contradiction.

Hence all the λi’s are of the same order. Concerning assertion (b), it follows from assertion (a)
and Lemma 4.1. This completes the proof of the claim.

Combining (67) and assertion (i) of Lemma 4.2, we derive that, for each i, there exists yji
such that λid(ai, yji) ≤ c. Assume that, for i 6= k, we have yji = yjk . Thus we obtain that
λiλkd(ai, ak)

2 ≤ c. This information and the fact that the λi’s are of the same order contradict
the smallness of εik. Therefore we derive that d(ai, ak) ≥ c for each i 6= k which implies that
εik = O(1/λn−2

i ) for each k 6= i. Now, putting the previous informations in the right hand side
of (Fi) we derive that λid(ai, yji) → 0 as τ → 0.

Regarding (5), it follows from (E′
i) and the fact that the λi’s are of the same order.

Finally, concerning the morse index of the solution uτ , the result is done for ω = 0 in [27].
However, for ω 6= 0 and non-degenerate, it follows that uα,β = αω. In this case, we need to add
the contribution of α and ω in the morse index formula. Note that, by easy computations, we
see that

D2IK,τ (uτ )(
∂uτ
∂α

,
∂uτ
∂α

) = D2IK,τ (uτ )(ω, ω) +O

(∣∣∣
∣∣∣
∂vτ
∂α

∣∣∣
∣∣∣
)
.

Note that D2IK,τ (uτ )(ω, ω) ≤ −c < 0 and
∣∣∣
∣∣∣∂vτ∂α

∣∣∣
∣∣∣ = o(1) (see Lemma 6.3). This implies that

the variable α belongs to the negative space. For the contribution of ω, using Lemma 2.3, we
see that it is equal to

dim (N−(ω)) = morse index (IK , ω).

This completes the proof of the theorem.

5 Construction of blowing up solutions for the approximate

problem

Let n ≥ 7, 0 < K ∈ C3(Sn) and let y1, · · · , yN be distinct non-degenerate critical points of
K with ∆K(yi) < 0 and ω be a solution of (NK). In Theorem 1.2 we assume that ω is non-
degenerate and therefore the variable β introduced in the function uα,β has to be equal to zero,
that is, uα,β = αω.
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As in [8], the strategy of the proof is the following: we will define a set Mτ whose elements
are some points M := (α, λ, x, v) ∈ (R+)

N+1 × (R+)
N × (Sn)N ×H1(Sn) where v satisfies (15),

the other variables satisfy some conditions and N is the number of the bubbles in the desired
constructed solution. Precisely, let

Mτ := {M :=(α0, α, λ, x, v) ∈ R+ × (R+)
N × (R+)

N × (Sn)N ×H1(Sn) : (68)

v satisfies (15); |α
4/(n−2)
i K(xi)− 1| < τ ln2 τ ∀ i ≥ 1;

|α
4/(n−2)
0 − 1| < τ ln2 τ ; C−1τ ≤ λ−2

i ≤ Cτ ; d(xi, yi) ≤ Cτ ∀ i ≥ 1},

where C is a large positive constant.
We remark that, for M := (α0, α, λ, x, v) ∈ Mτ , it holds that u := α0ω +

∑N
i=1 αiδ̃xi,λi

+ v ∈
V (ω,N, µ) for some µ small.
In addition, we define a function

Ψτ :Mτ → R; M = (α0, α, λ, x, v) 7→ IK,τ

(
α0ω +

N∑

i=1

αiδ̃xi,λi
+ v

)
(69)

and we need to find a critical point of Ψτ .
Recall that the variable v satisfies some orthogonality conditions. Thus using the Lagrange
multiplier theorem, it is easy to get the following proposition.

Proposition 5.1 Let M = (α0, α, λ, x, v) ∈ Mτ . M is a critical point of Ψτ if and only if
α0ω+

∑N
i=1 αiδ̃xi,λi

+ v is a critical point of IK,τ , i.e. if and only if there exists
(
A0, A,B,C

)
∈

R× R
N ×R

N ×
(
R
n
)N

such that the following holds :

(Eαi
)

∂Ψτ

∂αi
(α0, α, λ, x, v) = 0, ∀ i = 0, 1, · · · , N,

(Eλi
)

∂Ψτ

∂λi
(α0, α, λ, x, v) = Bi〈λi

∂2δ̃i
∂λ2i

, v〉+
n∑

j=1

Cij〈
1

λi

∂2δ̃i

∂xji∂λi
, v〉, ∀ i = 1, · · · , N,

(Exi
)

∂Ψτ

∂xi
(α0, α, λ, x, v)⌊Txi

(Sn)= Bi〈λi
∂2δ̃i
∂λi∂xi

, v〉 +
n∑

j=1

Cij〈
1

λi

∂2δ̃i

∂xji∂xi
, v〉, ∀ i = 1, · · · , N,

(Ev)
∂Ψτ

∂v
(α0, α, λ, x, v) = A0ω +

N∑

i=1

(
Aiδ̃i +Biλi

∂δ̃i
∂λi

+
n∑

j=1

Cij
1

λi

∂δ̃i

∂xji

)

where δ̃i := δ̃xi,λi
.

The results of Theorem 1.2 will be obtained through a careful analysis of the previous equations
on Mτ . Note that

∂Ψτ

∂v
(α0, α, λ, x, v) = ∇IK,τ(u);

∂Ψτ

∂α0
(α0, α, λ, x, v) = 〈∇IK,τ (u), ω〉

and for each i ≥ 1, we have

∂Ψτ

∂αi
(α0, α, λ, x, v) = 〈∇IK,τ (u), δ̃i〉;

∂Ψτ

∂xi
(α0, α, λ, x, v)⌊Txi (Sn)

= 〈∇IK,τ (u), αi
∂δ̃i
∂xi

〉⌊Txi (Sn)
;

∂Ψτ

∂λi
(α0, α, λ, x, v) = 〈∇IK,τ (u), αi

∂δ̃i
∂λi

〉
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where u := α0ω +
∑N

i=1 αiδ̃xi,λi
+ v.

We remark that the last three equations are estimated in Propositions 3.1, 3.2 and 3.3.

Proposition 5.2 Let u := α0ω +
∑N

i=1 αiδ̃xi,λi
∈ V (ω,N, µ). Then there exists a unique v ∈

E⊥
ω,x,λ satisfying

〈∇IK,τ (u+ v), h〉 = 0 ∀ h ∈ E⊥
ω,x,λ. (70)

This function v satisfies

‖v‖ ≤ cR(τ, a, λ)

where R(τ, a, λ) is defined in Proposition 2.4.

Proof. To prove (70), we need to expand IK,τ (u+ v) with respect to v ∈ E⊥
ω,a,λ. Recall that

IK,τ (u+ v) :=
1

2
‖u+ v‖2 −

1

p+ 1− τ

∫

Sn

K|u+ v|p+1−τ .

Note that, for each x, y ∈ R and γ ∈ (2, 3), we have

|x+ y|γ = |x|γ + γ|x|γ−2xy +
1

2
γ(γ − 1)|x|γ−2y2 +O(|y|γ).

For n ≥ 7 and τ small, it holds that p+ 1− τ ∈ (2, 3) and therefore we get

∫

Sn

K|u+ v|p+1−τ =

∫

Sn

K|u|p+1−τ + (p+ 1− τ)

∫

Sn

K|u|p−1−τuv

+
1

2
(p+ 1− τ)(p− τ)

∫

Sn

K|u|p−1−τv2 +O
(∫

Sn

K|v|p+1−τ
)
.

Since u ∈ V (ω,N, µ) with τ lnλi is small for each i, it follows that

∫

Sn

K|u|p−1−τv2 =
N∑

i=1

∫

Sn

δ̃p−1
i v2 +

∫

Sn

Kωp−1v2 + o(‖v‖2).

Hence we get

IK,τ (u+ v) = IK,τ (u)− f(v) +
1

2
Qω,a,λ(v) + o(‖v‖2) (71)

where

f(v) :=

∫

Sn

K|u|p−1−τuv and Qω,a,λ(v) := ‖v‖2 − p

N∑

i=1

∫

Sn

δ̃p−1
i v2 − p

∫

Sn

Kωp−1v2.

Thus (70) follows from Proposition 2.3 (which tells us that Qω,a,λ is non-degenerate on the space
E⊥

ω,a,λ).
Now it remains to estimate ‖v‖. Note that, using the Lagrange multiplier theorem, (70) implies
the existence of some constants (A0, A,B,C) ∈ R× R

N × R
N × (Rn)N such that

∇IK,τ (u+ v) = A0ω +

N∑

i=1

(
Aiδ̃i +Biλi

∂δ̃i
∂λi

+ Ci ·
1

λi

∂δ̃i
∂xi

)
(72)

where δ̃i := δ̃xi,λi
. Since ω is assumed to be non-degenerate, we derive that

H1(Sn) = N−(ω)⊕ span{ω} ⊕N+(ω), (73)
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that is H0(ω) (defined in (18)) becomes H0(ω) = span{ω}.
As in the proof of Proposition 2.4, we divide v into

v = v− + v0 + v+

and we have ‖v0‖ = o(‖v‖) (by using Proposition 2.3).
Multiplying (72) by v− and using the fact that 〈v−, ω〉 = 0, we get

〈∇IK,τ (u+ v), v−〉 =
∑

O
(∫

Sn

δ̃pi |v−|
)
=
∑

O
( ‖v−‖

λ
(n−2)/2
i

)

(since v− belongs to a fixed finite dimensional space which implies that ‖v−‖∞ ≤ c‖v−‖).
The left hand side is computed in (30) with vτ instead of v. Following the computations done
in (30)-(35), we derive that

‖v−‖
2 ≤ c ‖v−‖

(
τ +

∑ 1

λ
(n−2)/2
i

+ o(‖v‖)
)
.

Now multiplying (72) by v+ and using the fact that 〈v+, ω〉 = 0, we get

〈∇IK,τ (u+ v), v+〉 =
∑(

Ai〈δ̃i, v+〉+Bi〈λi
∂δ̃i
∂λi

, v+〉+ 〈Ci ·
1

λi

∂δ̃i
∂ai

, v+〉
)
.

The left hand side is computed in (30) with vτ instead of v. Recall that v+ does not belong to
E⊥

ω,a,λ but v ∈ E⊥
ω,a,λ. Thus

〈δ̃i, v+〉 = 〈δ̃i, v〉 − 〈δ̃i, v−〉 − 〈δ̃i, v0〉 = O
(∫

δ̃pi (|v−|+ |v0|)
)
= O

( ‖v‖

λ
(n−2)/2
i

)
.

The same holds for the other scalar products.
Following the computations done in the proof of Proposition 2.4, we get

‖v+‖
2 ≤ o(‖v‖2) + c ‖v‖R(τ, a, λ),

where R(τ, a, λ) is introduced in Proposition 2.4.
Finally, since ‖v‖2 = ‖v+‖

2 + ‖v−‖
2 + ‖v0‖

2 we derive the desired estimate.
The proof of Proposition 5.2 is thereby completed.

Proposition 5.3 Let u := α0ω +
∑N

i=1 αiδ̃xi,λi
+ v. For each 1 ≤ i ≤ N , It holds:

〈∇IK,τ (u), ω〉 = α0‖ω‖
2 (1− αp−1

0 ) +O
(
τ + ‖v‖2 +

∑ 1

λ
(n−2)/2
i

+
1

λ4i

)
.

Proof. Since v satisfies (15), using (46) and (47), it holds

〈∇IK,τ (u), ω〉 = 〈u, ω〉 −

∫
K|u|p−τ−1uω = α0‖ω‖

2 +
∑

O
( 1

λ
(n−2)/2
i

)
−

∫
K|u|p−τ−1uω.

Furthermore, let u := α0ω +
∑N

i=1 αiδ̃xi,λi
, we have

∫

Sn

K|u|p−1−τuω =

∫

Sn

Kup−τω + (p− τ)

∫

Sn

Kup−1−τvω +O(‖v‖2).
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Using (57) and the fact that 〈w, v〉 = 0, it follows that

∫

Sn

Kup−1−τvω = αp−1−τ
0

∫

Sn

Kωp−τv +
∑

j≥1

O
(∫

ωp−1δ̃j |v|+

∫
ωδ̃p−1

j |v|
)

= O
(
‖v‖(τ +

∑ 1

λ2j
)
)
.

In addition, using (51), it holds

∫

Sn

Kup−τω =

∫

Sn

K(α0ω)
p−τω +

∑

j≥1

O
(∫

ωpδ̃j +

∫
ωδ̃pj

)
= αp

0‖ω‖
2 +O

(
τ +

∑

j≥1

1

λ
(n−2)/2
j

)
.

Hence the proof follows.

Proof of Theorem 1.2 Let (α0, α, λ, x, 0) ∈Mτ . The proof goes along the ideas introduced in
[8]. We need to solve the system ((Eα0), (Eα), (Eλ), (Ex), (Ev)) introduced in Proposition 5.1.
Proposition 5.2 implies that v is a critical point of IK,τ in the space E⊥

ω,x,λ. Thus we get

∇IK,τ

(
α0ω +

N∑

i=1

αiδ̃xi,λi
+ v
)

⌊E⊥

ω,x,λ

= 0

and therefore (by the Lagrange multiplier theorem) there exist some constants (A0, A,B,C) ∈
R× R

N ×R
N × (Rn)N such that

∇IK,τ

(
α0ω +

N∑

i=1

αiδ̃xi,λi
+ v
)
= A0ω +

N∑

i=1

(
Aiδ̃xi,λi

+Biλi
∂δ̃xi,λi

∂λi
+ Ci ·

1

λi

∂δ̃xi,λi

∂xi

)

which implies that the equation (Ev) in Proposition 5.1 is satisfied.

Next, we estimate the numbers A0, A,B,C by taking the scalar product of (Ev) with ω, δ̃i,
λi∂δ̃i/∂λi and λ

−1
i ∂δ̃i/∂xi respectively. Thus we derive a quasi-diagonal system in the variables

A0, A, B and Ci’s. The right hand side is given by (using Propositions 3.1, 3.2, 3.3 and 5.3, the
fact that (α0, α, λ, x, 0) ∈Mτ and ∂Ψτ/∂v = ∇Iτ (u) with u := α0ω +

∑N
i=1 αiδ̃i + v)

〈
∂Ψτ

∂v
, ω〉 = O(τ ln2 τ) ; 〈

∂Ψτ

∂v
, δ̃i〉 = O(τ ln2 τ);

〈
∂Ψε

∂v
, λi

∂δi
∂λi

〉 = O(τ) ; 〈
∂Ψτ

∂v
,
1

λi

∂δ̃i
∂xi

〉 = O(τ ln2 τ).

Hence we deduce that

A0 = O(τ ln2 τ) ; Ai = O(τ ln2 τ) ; Bi = O(τ) ; Ci = O(τ ln2 τ) for i = 1, · · · , N. (74)

Furthermore, since (α0, α, λ, x, 0) ∈ Mτ then Proposition 5.2 implies that ‖v‖ = O(τ) and
therefore the system ((Eα0), (Eαi

), (Eλi
), (Exi

)) (introduced in Proposition 5.1) is equivalent to

(S) :





〈∇IK,τ (u), ω〉 = 0

〈∇IK,τ (u), δ̃i〉 = 0 for i = 1, · · · , N ;

〈∇IK,τ (u), λi∂δ̃i/∂λi〉 = O(τ2 ln2 τ) for i = 1, · · · , N ;

〈∇IK,τ (u), λi
−1∂δ̃i/∂xi〉 = O(τ2 ln2 τ) for i = 1, · · · , N.
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Now we introduce the following change of variables:

β0 := 1− α
4/(n−2)
0 , (75)

βi := 1− α
4/(n−2)
i K(xi) , i = 1, · · · , N ; (76)

1

λ2i
:= −

c4K(yi)

c3(∆K(yi)
τ(1 + Λi) , i = 1, · · · , N ; (77)

xi :=
yi + ξi
|yi + ξi|

with ξi ∈ Tyi(S
n) , i = 1, · · · , N. (78)

Using this change of variables and Propositions 3.1, 3.2, 3.3 and 5.3, the previous system (S)
becomes

(S′)





βi = O(τ ln τ) , for i = 0, 1, · · · , N,

Λi = O(τ1/5) , for i = 1, · · · , N,

D2K(yi)(ξi, .) = O(|ξ2|+ τ2/n ln2 τ + τ1/5) , for i = 1, · · · , N.

(79)

Since the critical points yi’s are assumed to be non-degenerate, then, using the fixed point
theorem, we derive the existence of (βτ0 , β

τ , ξτ ,Λτ ) such that the system (S′) is satisfied. Hence
the existence of a critical point of IK,τ (by Proposition 5.1).
Note that, for ω = 0, the unicity of such a solution is proved in [27]. The same argument holds
for ω 6= 0 non-degenerate.
Lastly, for the Morse index, the same argument used in the proof of Theorem 1.1 holds which
completes the proof of Theorem 1.2.

6 Appendix

In this appendix we collect various estimates needed through the paper.

Lemma 6.1 [2] Let a ∈ S
n and λ > 0 be large.

(i) Assume that τ lnλ is small enough, then it holds

δ−τ
a,λ(x) =c

−τ
0 λ−τ(n−2)/2

(
1 +

n− 2

2
τ ln(2 + (λ2 − 1)(1 − cos d(a, x)))

)
(80)

+O
(
τ2 ln(2 + (λ2 − 1)(1 − cos d(a, x)))

)
for each y ∈ S

n.

(ii) For each γ > 0 and each β ∈ [0, n/(n − 2)), it holds

0 <

∫

Sn

δp+1−β
a,λ (x) lnγ

(
2 + (λ2 − 1)(1 − cos d(a, x))

)
dx = O

( 1

λβ(n−2)/2

)
.

Next, we state some elementary estimates needed in the paper. Their proofs follow from Taylor’s
expansion.

Lemma 6.2 i) Let ti > 0 and a, b ∈ R, there hold

|(
∑

ti)
γ −

∑
tγi | ≤ c

{∑
i 6=j(titj)

γ/2 if 0 < γ ≤ 2
∑

i 6=j t
γ−1
i tj if γ > 2

. (81)

||a+ b|γ − |a|γ − γ|a|γ−2ab| ≤ c

{
|b|γ + |a|γ−2b2 if γ > 2

|b|γ if 1 < γ ≤ 2
. (82)
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ii) For 1 < γ ≤ 3 and t1, · · · , tN+1 > 0, it holds

|(
∑

ti)
γ −

∑
tγi − γtγ−1

1 (
∑

j 6=1

tj)|t1 ≤ c
∑

k 6=j

(tktj)
(γ+1)/2. (83)

iii) For γ > 1, and x, y > 0, it holds

(x+ y)γ = xγ +O(xγ−1y + yγ). (84)

iv) For γ < 1, and x, y > 0, it holds

(x+ y)γx = xγ+1 +O((xy)(γ+1)/2). (85)

Finally, we prove a crucial estimate of the derivative of the infinite dimensional variable with
respect to the parameter α.

Lemma 6.3 The function vτ , defined in Proposition 2.2, satisfies

∣∣∣
∣∣∣
∂vτ
∂α

∣∣∣
∣∣∣ = o(1).

Proof. Recall that we are in the case where uτ =
∑N

i=1 αiδ̃ai,λi
+ αω + vτ .

First, we claim that ∂vτ/∂α ∈ E⊥
ω,a,λ .

Indeed, since vτ ∈ E⊥
ω,a,λ, it follows that 〈δ̃ai,λi

, vτ 〉 = 0 for each α. Therefore, taking the

derivative with respect to α, we deduce that 〈δ̃ai,λi
, ∂vτ/∂α〉 = 0. The other orthogonality

constraints can be proved in the same way. Hence our claim follows.
Second, note that uτ satisfies the problem (NK,τ ) and therefore the function vτ satisfies the
following PDE

Lg0vτ :=
(
−∆+

n(n− 2)

4

)
vτ = Kup−τ

τ −
N∑

i=1

αiδ̃
p
ai,λi

− αKωp

which implies that

(
−∆+

n(n− 2)

4

)∂vτ
∂α

= (p − τ)Kup−τ−1
τ

(
ω +

∂vτ
∂α

)
−Kωp. (86)

Following the proof of Lemma 5.2 and using (73), we write

∂vτ
∂α

=
(∂vτ
∂α

)
−
+
(∂vτ
∂α

)
0
+
(∂vτ
∂α

)
+
. (87)

Since ∂vτ/∂α ∈ E⊥
ω,a,λ, from (21), we deduce that

∥∥∥
(∂vτ
∂α

)
0

∥∥∥ = o
(∥∥∥
∂vτ
∂α

∥∥∥
)
. (88)

Concerning the other components, for example (∂vτ/∂α)+, multiplying (86) by (∂vτ/∂α)+ and
integrating over Sn, we get

∥∥∥
(∂vτ
∂α

)

+

∥∥∥
2
= (p− τ)

∫

Sn

Kup−τ−1
τ

(
ω +

∂vτ
∂α

)(∂vτ
∂α

)

+
−

∫

Sn

Kωp
(∂vτ
∂α

)

+
. (89)
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Note that, since (∂vτ/∂α)+ ∈ N+(ω), it follows that the last integral in (89) is equal to zero.
For the other integral, we have

∫

Sn

Kup−τ−1
τ ω

(∂vτ
∂α

)
+

= αp−τ−1

∫

Sn

Kωp−τ
(∂vτ
∂α

)

+
+

N∑

i=1

O
(∫

Sn

{
ωp−1δ̃ai,λi

+ δ̃p−1
ai,λi

ω
}∣∣∣
(∂vτ
∂α

)

+

∣∣∣
)

= o
(∥∥∥
(∂vτ
∂α

)

+

∥∥∥
)

(90)

and

(p− τ)

∫

Sn

Kup−τ−1
τ

∂vτ
∂α

(∂vτ
∂α

)
+

= p

N∑

i=1

∫

Sn

δ̃p−1
ai,λi

∂vτ
∂α

(∂vτ
∂α

)
+
+ p

∫

Sn

Kωp−1∂vτ
∂α

(∂vτ
∂α

)
+
+ o
(∥∥∥
∂vτ
∂α

∥∥∥
∥∥∥
(∂vτ
∂α

)
+

∥∥∥
)
. (91)

Since H0(ω), N−(ω) and N+(ω) are orthogonal spaces for 〈., 〉 and the bilinear form
∫
Kωp−1..,

we derive that ∫

Sn

Kωp−1∂vτ
∂α

(∂vτ
∂α

)

+
=

∫

Sn

Kωp−1
(∂vτ
∂α

)2
+
. (92)

Now, since H0(ω) and N−(ω) are finite dimensional spaces, we get
∫

Sn

δ̃p−1
ai,λi

∂vτ
∂α

(∂vτ
∂α

)
+

=

∫

Sn

δ̃p−1
ai,λi

(∂vτ
∂α

)2
+
+O

((∥∥∥
(∂vτ
∂α

)
0

∥∥∥
∞

+
∥∥∥
(∂vτ
∂α

)
−

∥∥∥
∞

) ∫

Sn

δ̃p−1
ai,λi

∣∣∣
(∂vτ
∂α

)
+

∣∣∣
)

=

∫

Sn

δ̃p−1
ai,λi

(∂vτ
∂α

)2
+
+ o
(∥∥∥
∂vτ
∂α

∥∥∥
∥∥∥
(∂vτ
∂α

)
+

∥∥∥
)
. (93)

However, since ω is bounded and 〈∂vτ/∂α, ω〉 = 0, the first integral in (89) satisfies

∫

Sn

Kup−ε−1
τ ω

∂vτ
∂α

= αp−ε−1

∫

Sn

Kωp−ε∂vτ
∂α

+O
( N∑

i=1

∫

Sn

{
ωp−ε−1δ̃ai,λi

+ δ̃p−ε−1
ai,λi

ω
}∣∣∣
∂vτ
∂α

∣∣∣
)

= o
(∥∥∥
∂vτ
∂α

∥∥∥
)
.

Thus, using (90)-(93), the equation (89) becomes

∥∥∥
(∂vτ
∂α

)

+

∥∥∥
2
= p

∫

Sn

Kωp−1
(∂vτ
∂α

)2
+
+p

N∑

i=1

∫

Sn

δ̃p−1
ai,λi

(∂vτ
∂α

)2
+
+o
(∥∥∥
∂vτ
∂α

∥∥∥
∥∥∥
(∂vτ
∂α

)

+

∥∥∥+
∥∥∥
(∂vτ
∂α

)

+

∥∥∥
)

which implies, by using Lemma 2.3, that

c
∥∥∥
(∂vτ
∂α

)
+

∥∥∥
2
≤ Qω,a,λ

((∂vτ
∂α

)
+

)
= o
(∥∥∥
∂vτ
∂α

∥∥∥
∥∥∥
(∂vτ
∂α

)
+

∥∥∥+
∥∥∥
(∂vτ
∂α

)
+

∥∥∥
)

and therefore ∥∥∥
(∂vτ
∂α

)
+

∥∥∥ = o(1) + o
(∥∥∥
∂vτ
∂α

∥∥∥
)
. (94)

In the same way, multiplying (86) by (∂vτ/∂α)− and integrating over Sn, we get

∥∥∥
(∂vτ
∂α

)
−

∥∥∥ = o(1) + o
(∥∥∥
∂vτ
∂α

∥∥∥
)
. (95)
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Combining (88), (94) and (95), we get that

∥∥∥
∂vτ
∂α

∥∥∥ = o(1)

which completes the proof of the lemma.
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