
Extrapolation and generative algorithms for
three applications in finance

Philippe G. LeFloch∗, Jean-Marc Mercier†, and Shohruh Miryusupov†

April 2024

Abstract
For three applications of central interest in fi-
nance, we demonstrate the relevance of numerical
algorithms based on reproducing kernel Hilbert
space (RKHS) techniques. Three use cases are
investigated. First, we show that extrapolating
from few pricer examples leads to sufficiently
accurate and computationally efficient results
so that our algorithm can serve as a pricing
framework. The second use case concerns re-
verse stress testing, which is formulated as an
inversion function problem and is treated here
via an optimal transport technique in combina-
tion with the notions of kernel-based encoders,
decoders, and generators. Third, we show that
standard techniques for time series analysis can
be enhanced by using the proposed generative al-
gorithms. Namely, we use our algorithm in order
to extend the validity of any given quantitative
model. Our approach allows for conditional anal-
ysis as well as for escaping the ‘Gaussian world’.
This latter property is illustrated here with a
portfolio investment strategy.

1 Introduction
Motivation. We build on, and further expand,
our earlier research study [5, 6], which led us
to a novel class of kernel-based algorithms and
allowed us to deal with applications of central
interest in finance. Kernel-based methods are
extremely efficient for financial analytics thanks
to several fundamental advantages: they provide
critical interpretability for audit and regulatory
compliance, offer robustness in sparse data sce-

∗Laboratoire Jacques-Louis Lions, Sorbonne Univer-
sity and Centre National de la Recherche Scientifique,
4 Place Jussieu, 75258 Paris, France. Email: con-
tact@philippelefloch.org

†MPG-Partners, 136 Boulevard Haussmann, 75008
Paris, France. Email: jean-marc.mercier@mpg-
partners.com, shohruh.miryusupov@mpg-partners.com.

narios, and maintain computational efficiency
which is critical for real-time analysis. Such
methods have become increasingly valuable in
finance, and become recognized for their ability
to perform complex nonlinear transformations

—in turn enhancing the predictive power of any
given model without compromising algorithmic
efficiency.

State of the art and main contribution. This
Note introduces to several applications which
employ (either now standard or recently devel-
oped) kernel-based algorithms. Among the tradi-
tional techniques, we focus first on the so-called
predictive machines, formulated as methods for
interpolation and extrapolation of data, showcas-
ing their relevance in different financial contexts.
We present a novel generative method, which
combines ideas from optimal transport theory
and kernel-based methods. Generative meth-
ods became popular under the name of Genera-
tive Adversarial Networks (GANs), which have
emerged as a powerful class of models and allow
one to generate very realistic images. The latter
have not only captured the imagination of the
public through, for instance, Midjourney1, but
have also spurred extensive research and develop-
ment, eventually leading to the creation of over
500 GAN variants2. Among the diverse fami-
lies of GANs, conditional GANs stand out for
their unsupervised learning capability and pro-
duce images based on conditional inputs, while
TimeGan [11] allows the generation of realistic
time series data. In parallel with the evolution of
GANs, another significant strand of research in
generative modelling takes it roots in traditional
kernel methods, such as Sinkhorn autoencoders
[10] and Schröodinger bridge generative models
[4] for image and time series data. In agree-
ment with optimal transport-based generative
techniques, our methodology for constructing

1https://www.midjourney.com/home
2https://github.com/hindupuravinash/the-gan-zoo

1

ar
X

iv
:2

40
4.

13
35

5v
1 

 [
m

at
h.

N
A

] 
 2

0 
A

pr
 2

02
4

https://www.midjourney.com/home
https://github.com/hindupuravinash/the-gan-zoo


suitable algorithms was inspired by the method
of Nadaraya-Watson kernel regression [9], which
guided us to design our sampling algorithm for
conditioned density estimations. At the core of
our method is a sampling algorithm that em-
ploys optimal transport and maps a white-noise
latent space directly to the target distribution
space. This process is uniquely implemented by
using permutation indices of samples: the map-
pings arising in the computation can be traced
back and interpreted in the applications, which
is an essential feature in complex distribution
analysis.

Applications in finance. We illustrate the per-
formance of our algorithms in three practical
applications within quantitative finance.

• Online predictions of PnL and its sen-
sitivities. By adapting our prediction al-
gorithm, we provide a framework for online
forecasting of profit and loss (PnL) state-
ments and their sensitivities, enhancing the
robustness of financial decision-making pro-
cesses.

• Reverse-stress test (PnL function in-
version). A novel application of our per-
mutation algorithms allows us to perform
reverse-stress testing. By inverting the PnL
function, we can better understand the con-
ditions that lead to extreme financial out-
comes, preparing for worst-case scenarios in
risk management.

• Quantitative models and generative
methods. Traditional financial models fre-
quently rely on predefined stochastic pro-
cesses, such as Brownian motions, which
might not capture the full spectrum of
market complexities and dynamics. Our
methodology progresses in two significant
directions: Initially, we ascertain that a ma-
jority of quantitative models can be concep-
tualized as mappings, transforming time se-
ries data into white noise. This insight paves
the way for our novel contribution, where we
employ optimal permutations and mappings
to enhance the sophistication of quantita-
tive models, exemplified through the refine-
ment of the GARCH process. This inno-
vation marks a significant advancement in
our ability to model intricate market behav-
iors. Additionally, we employ a conditional
probability estimator to devise a portfolio
management strategy, anchored in precise

market indicators. This strategy not only
deepens our understanding of market dy-
namics but also facilitates the formulation
of superior investment strategies.

2 Performing stress tests
via an extrapolation algo-
rithm

Aim. We present our extrapolation algorithm,
particularly designed for asset pricing applica-
tions when dealing with potentially large multi-
asset portfolios. Our motivation for proposing
this test stems from the fact that pricing engines
in the finance industry are often computationally
intensive and therefore struggle with real-time
deployment. Our aim here is to demonstrate
that learning a pricing function offline and then
using extrapolation provide an approach that is
sufficiently accurate for dynamical use as a real-
time risk/pricing framework for stress testing or
for Profit and Loss (PnL) analysis.

Notation: market data and time series. We con-
sider time series denoted by t 7→ X(t) ∈ RD

which is observed on a time grid t−Tx < . . . < t0.
In this context, t0 denotes the pricing date and
our notation is as follows:

X =
(

xn,k
d

)k=1,...,Tx

d=1...D
∈ RD,Tx . (2.1)

In our example, the observed data comprise
253 closing values denoted x−252, . . . , x0, for the
S&P500 market index during the period of time
from t−252 = June 1, 2021 to t0 = June 1, 2022.
(These data were retrieved from Yahoo Finance.)
In the notation (2.1), this dataset is represented
by a matrix with dimensions D = 3, Tx = 253
and the corresponding charts are displayed in
Figure 1.

The integer Tx is the number of historical obser-
vations of the time series X, D represents the
number of components of the observed process,
and, for the sake of simplicity in the presentation,
our example is based on three assets.

Notation: portfolio. We focus on a function
P (t, x) ∈ RDP , where x ∈ RD and which rep-
resents an external pricing engine, evaluating
a portfolio of DP instruments, based on assets
valued at x at time t. This setup allows us to
calculate the portfolio’s value at any given time,
especially at its maturity T , where the payoff

2



Figure 1: Charts for Apple, Amazon, and Google

is specifically defined as P (T, x). To simplify
our presentation, we assume a single instrument,
DP = 1, focusing on a basket option with under-
lying assets. The payoff for this basket option
is computed as P (T, x) = max(⟨ω, x⟩ − K, 0),
where ⟨ω, x⟩ represents the weighted sum of the
basket’s asset values with ω being the equal
weights. Here, K represents the strike price
of the option and T denotes its maturity. Fig-
ure 2 displays, on the left-hand side, the pay-
off as a function of the basket values and, on
the right-hand side, the pricing engine values
as a function of time. For demonstration pur-
poses, we use a simplified Black-Scholes model,
denoted as P (t, x) := BS(S, T − t, σ, K) with
S = K =< ω, X0 >, implying the initial bas-
ket value equals the strike price. Of course,
our framework can accommodate many different
types of pricing functions.

Figure 2: Payoff (left), and pricer (right) values

A kernel-based extrapolation algorithm. Using
historical data, we generate synthetic data for a
future date t1 = t0 + H days through time series
forecasting, as described earlier, with H = 10
days in this example, in order to simulate stress
tests scenarios. These data are denoted by
X :=

(
xn

d

)n=1...Nx

d=1...D
∈ RNx,D. Similarly, we

produce another set of scenarios Z ∈ RNz,D

using the same methodology. Consequently,
we simulate learning the pricing engine values
P (X) ≡ P (t1, X) from the market data X, re-
ferred to as the training set, and then extrapolate
this function onto the set Z, referred to as the
test set, to compare against the actual pricing
engine values P (Z).

To describe the extrapolation procedure, we in-
troduce basic notions relative to kernel operators,
and refer to [1] for a comprehensive overview of
reproducing kernel Hilbert space RKHS theory.
Let X ⊂ RD a convex set, we call a function
k : X × X 7→ R a kernel if it is a symmetric
and positive definite (see [1] for a definition).

If (X, Y ) :=
(

xn
d

)n=1...Nx

d=1...D
,
(

yn
d

)n=1...Ny

d=1...D
are two

set of distinct points, we define k(X, Y ) :=
k(xi, yj)j=1...Ny

i=1...Nx
the Gram matrix. Let P be

any function taking values on X , and denote
P (X) := P (x1), . . . , P (xNX ) its discrete values.
Then, for any z ∈ RD, we define the projection
as

Pk(X, Y )(z) := k(Y, z)k(X, Y )−1P (X). (2.2)

In this equation, the inverse of the Gram matrix
k(X, Y )−1 is computed by applying a standard
least-square method. Extrapolation is defined as
z 7→ Pk(X, X)(z), denoted P X

k (z) for short, and
is a reproducible operation, in the sense that it
satisfies Pk(X) = P (X); namely, it is exact on
the training set. In a similar way, we can define
other types of derivative operators such as, for
instance, the gradient operator

∇Pk(X, Y )(z) := (∇k(Y, z))k(X, Y )−1P (X),
(2.3)

and we denote ∇P X
k (z) for short in the extrap-

olation mode. To benchmark the proposed ap-
proach, we compute the prices on the test set Z
using three methods and display our results in
Figure 3.

• Analytical prices : it is computed as
P (t1, Z), and is the reference values for our
tests.

• Predicted prices or PnL: the price function
P (t1, Z) is approximated using the formula
(2.2), as Pk(Z).

• ∆-Γ approximation: the price function
P (t1, Z) is computed using a second or-
der Taylor formula approximation around
P (t0, x0), hence involving the price, four

3



derivatives (three for each asset, one for
time), and sixteen second order derivatives.

3

Figure 3: A benchmark of PnL extrapolation
methods

In the same vein, we can also compute greeks
using (2.3), resulting in four plot, three deltas
for each asset, one theta for time, in Figure 4.

15 10 5 0 5
Basket Values (% K)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Va
lu

es

Theta
Exact
Codpy
Taylor

15 10 5 0 5
Basket Values (% K)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Va
lu

es

Delta-AAPL
Exact
Codpy
Taylor

15 10 5 0 5
Basket Values (% K)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Va
lu

es

Delta-GOOGL
Exact
Codpy
Taylor

15 10 5 0 5
Basket Values (% K)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Va
lu

es

Delta-AMZN
Exact
Codpy
Taylor

Figure 4: A benchmark of PnL greeks from an
extrapolation methods

In conclusion. The above experiments show that
extrapolation methods achieve basis point ac-
curate method4, even with a limited number of
pricing examples, demonstrating their viability
for real-time pricing applications. We point out
that our approach ofers multiple ways for further
improvement and optimization. For instance, the
selection of stress test scenarios, denoted by X,
can be refined through clustering-based strate-
gies, for instance by relying on sharp discrepancy
sequences; see [5].

3We benchmarked against a Taylor approximation, as
this method is currently used by some banks to estimate
their PnL on a real time basis.

4See [7] for further testing.

3 Reverse stress tests as en-
coders

Aim. Reverse stress testing stands in contrast
to traditional stress testing by starting with a
specific outcome, such as portfolio values or PnL
losses denoted as p ∈ RDp , and backtracking
to uncover the market scenarios that could lead
to such outcomes. This approach is invaluable
for identifying vulnerabilities within a portfolio
and enhancing risk management strategies. We
illustrate this concept by considering portfolio or
PnL values p ∈ RDp , aiming to reverse-engineer
the market data scenarios x = P −1(t1, p) us-
ing a pricer function P , known from discrete
values P := P 1, . . . , P NX ∈ RNx,Dp , where
P n = P (t1, Xn) is evaluated on market data
X := X1, . . . , XNx . The challenge arises when
this mapping, x 7→ P (x), from RD to RDP , lacks
an obvious inverse due to its non-invertibility.
We address this challenge by introducing the con-
cept of encoders and decoders, borrowed from
machine learning, but using kernel-RKHS meth-
ods.

Encoders, decoders and generators. Encoders in
this particular numerical experiment are concep-
tualized as smooth, invertible maps, x 7→ P (x)
from RD to RDP that bridge the gap between the
market data X and the portfolio values P , and
we denote this maps as x 7→ L(X, P )(x), while
its inverse is formally denoted p 7→ L(P, X)(p).
The extrapolation operator (2.2), denoted by
the equation below, initially suggests a direct
inversion approach:

k(P, p)k(P, P )−1X. (3.1)

Yet, this direct approach may falter due to the
inherent non-invertibility of P as a mapping from
RDp to RD. To enhance stability, we propose
a refined method, relying on a permutation σ :
[1, . . . , Nx] 7→ [1, . . . , Nx] of the original data set,
written as

L(P, X)(p) := k(P, p)k(P, P )−1Xσ (3.2)

In the particular case where spaces have match-
ing dimensions, that is Dx = D in our nota-
tion (cf. also [2]), considering a distance function
d(x, y), optimal transport theory proposes to
determine this permutation as

σ = arg inf
σ∈Σ

Nx∑
n=1

d(Xσ(n), P n) (3.3)

4



where Σ, the set of all permutations. For ker-
nels methods, a natural distance is given by
dk(x, y) = k(x, x) + k(y, y) − 2k(x, y), called the
kernel discrepancy or maximum mean discrep-
ancy, see [3].

However, the existing literature seems less pro-
fuse when the function maps unrelated spaces,
that is Dx ̸= D in our notation. Hence we intro-
duced the following Ansatz in this case, based
on the gradient formula (2.3)

σ = arg inf
σ∈Σ

∥(∇k(P, P ))k(P, P )−1Xσ∥2
2. (3.4)

This approach is reminiscent of a generalized
traveling salesman problem5 and is not equiva-
lent to the one in 3.3, however it allows for the
determination of a smooth mapping between the
original and target spaces, as desired.

Encoders and decoders allows to define the no-
tion of generators, needed later on. Let X,Y
two continuous distributions taking values in
RDx ,RDy , and consider X ∈ RN,Dx , Y ∈ RN,Dy

two variates of equals length. Then (3.1) pro-
vides a method to generate a sample y, from
a sample x, according to the formula y =
k(X, x)k(X, X)−1Y σ. In particular, if one con-
sider X as a known distribution, as for instance
a uniform one, this provides a modeling of any
distribution Y by a continuous one, that is sta-
tistically similar to the observed data Y .

In conclusion. Using (3.4), we produced the fol-
lowing picture, corresponding to a reverse stress
test, that we comment thereafter.

Figure 5: Reverse prices (left) and benchmark
(right)

Consider the original set of market data X =
X1, . . . , XNx and corresponding PnL P =
P 1, . . . , P Nx . Using a generator, as described

5see wikipedia page https://en.wikipedia.org/wiki/Tr
avelling_salesman_problem

in the previous section, we sampled new exam-
ples P = P 1, . . . , P Nx . These simulated distri-
bution of prices is used with the reverse stress
test method to compute the corresponding sce-
narios at left, notation X = X1, . . . , XNx . To
benchmark this result, we computed the error
distribution P (X1) − P 1), . . . , P (XNx − P NX ).
This distribution is plot as the red line at right,
expressed in basis points.

4 Modeling time series via a
generative algorithm

Mapping time series. Our approach consists in
a general model framework where a time series
X is transformed into a latent variable ε, inter-
preted as white noise, through a continuous and
invertible map F . With this approach, the trans-
formation F (X) = ε isolate the inherent noise
within the data, facilitating a deeper analysis
and manipulation of the underlying stochastic
processes. Let us give a first simple example
to fix ideas. Consider any time series X of the
form (2.1), then the following simple random
walk provides such a modeling:

εk = Xk+1 − Xk, F −1(ε)k = X0 +
∑
n≤k

εn.

A time series model can then be interpreted as
an invertible mapping from X ∈ RDx,Tx into
ε ∈ RDε,Tε . As demonstrated wiht the GARCH
model in the following, most quantitative models
can be interpreted through such mappings F ,
and we provide numerous other examples in [7].
The purpose of such an approach is to provide a
framework to deal with time series enjoying the
following properties.

• The time series X is reproducible, meaning
that X = F −1(ε). This property ensures
that X, the historical dataset, is in the range
of the model.

• The variable ε ∈ RDε,Tε can be reproduced
from any other random variable η ∈ RDη,Tη ,
for instance a uniform sampling, using a
generator, as described earlier. Note that
the distribution that generates the variate
ε can be rather arbitrary, and we are not
restricted to assuming Gaussian distribu-
tions for time series, as is usually the case
in classical modeling of time series.

• It provides a simple Monte-Carlo framework,

5

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem


as sampling new ε generates a new trajec-
tory defined as X = F −1(ε).

From an economical point of view, these models
simulates new trajectories that are calibrated
to the observed dynamics of the financial time
series, as they rely on reproducing historically
observed white noise. This way of modeling
ensures that short-term dynamics of time series
are easily and better captured. It provides also
a powerful tool for forecasting, risk assessment,
and strategy benchmarking, as we can apply this
framework in the following areas.

• Benchmarking strategies, where we resam-
ple the original signal X on the same time-
lattice to draw several simulated trajectories
and compare them to the original one using
various performance indicators.

• Monte-Carlo forecast simulations for future
time points, allowing for the exploration of
potential future scenarios based on historical
data.

• Forward Calibration, where we frame it as
a minimization problem with constraints,
optimizing the generation of new samples
that meet specific financial criteria.

• PDE pricers, enabling the computation of
forward prices or sensitivities by solving
backward Kolmogorov equations in a multi-
dimensional tree structure, see [5].

The GARCH(p,q) model as an example. We show
an example of such an model extension consid-
ering the GARCH model, in order to illustrate
its flexibility and adaptability to any quantita-
tive model, but also its potential to enhance
the modeling and simulation of financial time
series. This approach is not exclusive to GARCH
models; it is equally applicable to the broader
ARIMA family, as well as a wide range of both
discrete and continuous stochastic processes, as
local or rough volatility ones.

The generalized autoregressive conditional het-
eroskedasticity (GARCH) model, particularly in
its (p, q) order formulation, captures financial
markets’ volatility clustering—a phenomenon
where high-volatility events tend to cluster to-
gether in time. The defining equations of a
GARCH(p, q) model are as follows:{

Xk = µ + σkZk,

(σk)2 = α0 +
∑p

i=1 αi(Xk−i)2 +
∑q

i=1 βi(σk−i)2,

where µ is the mean, σk denotes the time-varying

volatility, and Zk symbolizes a white noise pro-
cess. The coefficients αi and βi govern the
model’s responsiveness to changes in volatility
and the inertia of past volatility, respectively.

The variance equation of GARCH can be com-
pactly expressed using the backshift operator B,
leading to

(1 − β(B))(σk)2 = α0 + α(B)(Xk)2,

where α(B) =
∑p

i=1 αiB
i and β(B) =∑p

i=1 αiB
i and backshift BiXk = Xk−i al-

lows for the compact expression of lagged ef-
fects on the stochastic process. By defining
φ(B) = α0 +

∑p
i=1 αiB

i, θ(B) = 1 −
∑q

i=1 βiB
i,

the stochastic variance σk can be derived as

σk =
√

φ−1(B)θ(B)(Xk)2 =
√

π(B)(Xk)2.

with π(B) = φ−1(B)θ(B) encapsulating the vari-
ance transformation.

Our methodology integrates the GARCH model
within a broader generative framework, identi-
fying the ‘GARCH map’, G : Xk 7→ Zk, which
translates the observable time series Xk into a
latent white noise process Zk:

Zk = G(Xk) =
√

π−1(B)(Xk)2(Xk − µ).

This GARCH map forms the basis of our three-
stage generative process for financial time series,
specifically demonstrated through the example
of stock prices in Figure 1.

• By applying the GARCH map to the his-
torical stock prices X, we extract the la-
tent noise ε = G(X). This latent noise en-
capsulates the fundamental stochastic pro-
cesses driving the volatility modeled by the
GARCH framework.

• Utilizing the permutation algorithm (3.3)
as a generator, we produce new instances
of the latent variable ε̃, simulating alterna-
tive realizations of the market’s stochastic
behavior.

• Employing the inverse GARCH transforma-
tion, symbolically represented as G−1, we
map these new latent samples back to the
domain of stock prices, thereby generating
new trajectories X̃ = G−1(ε̃), consistent
with the GARCH dynamics.

Figure 6 displays ten simulated trajectories of
one of the three stock, Amazon’s ones, using the

6



GARCH(1,1) model, the others two producing
quite similar patterns. This visualization exem-
plifies how the generative process can give us a
diverse set of plausible future paths for the stock
price, rooted in the historical volatility patterns
captured by the GARCH model.

Figure 6: Ten examples of generated paths with
the GARCH(1,1) model

5 Extending quantitative
models through condition-
ing

Further applications. We finally demonstrate
that the generative algorithms presented so far
can be safely used for conditional analysis; this
is done on a numerical experiment in the context
of portfolio management. For the sake of illustra-
tion, we consider a time series given by closing
of a basket of 106 crypto currencies during the
period from 19/07/2021 to 28/04/2023, which
was observed on a daily basis and corresponds
to a time series X with D, Tx = 106, 649. We
rely here on our notation (2.1), and we present
the plot in Figure 7 after suitable normalization
at the initial time.

To this aim, consider a integer W defining a slid-
ing window tn+k, k = 0, . . . , W , n = 0, . . . Tx −
W . At each time labelled n, we define sev-
eral portfolios determined by their components
ωn,d, and their wealth P n :=< ωn, Xn+W >=∑

d ωn,dxn+W
d . Each strategy corresponds to

an investment at the time tn+W , and portfolio

Figure 7: A time series of 106 crypto assets

performances are compared together with, and
without, conditional analysis. In the next para-
graph, we describe the investment strategies that
we used, and how conditional analysis can be
used to enhance them.

Portfolio management usually build upon a sim-
ple quantitative model, determined by returns
of the assets, that is, following the notation in-
troduced in the previous section, returns are
determined as the discrete distributions ϵn =(

Xn+k+1

Xn+k − 1
)

k=1,...,W
, and the inverse map is

F −1
n (ϵ) =

(
Xn Πn≤k(1 + ϵn+k)

)
k=0,...

.

Efficient portfolio. Let us recall the Markowitz
mean-variance optimization, providing a classical
investment strategy. It consists in finding a set
of portfolio weights ω := (ωd)d=1,...,D as the
solution of the quadratic programming problem

ω(ϵ) = arg inf
ω

1
2ωT Qω − ϵωT ϵ + β(|ω − ω0|).

(5.1)
The terms β represent the transaction costs,
which are proportional to the portfolio change
in weights, symbolized here in the term |ω − ω0|.
This comes usually with constraints over the
weights, and we used

∑
d ωd = 0 (long / short

strategy) together with |ωi| ≤ 1.

As our strategies are determined via a random
variable modeling the asset returns ϵ 6, we con-

6as point out earlier, this conditional method can be
used with any other quantitative modeling of the assets

7



sider two quite comparable situations, where this
random variable is conditioned by two different
observed random variable η, that is we consid-
ered the distribution ϵ|η = ηn for each time tn,
n = W, . . . Tx. Now, we are going to describe how
the generative methods of the previous section
can be applied to conditioning random variables.

Conditioned random variables and latent spaces.
Let X ∈ RDX ,Y ∈ RDY two dependent random
variables and consider Z =

(
X, Y

)
∈ RDX +DY

the joint random variable. Let Z = (X, Y ) ∈
RN,Dx+Dy be a variate of Z. Relying on (3.1), we
consider another variate ϵ drawn from any known
distribution, say ϵ = (ϵn)n=1...N , which is called
the latent and is decomposed as ϵ := (ϵx, ϵy).
Elaborating on the two encoders map in (3.1),
namely L(X, ϵx) and L(ϵ, Z), the following con-
struction provides a generator of the conditioned
law Y|X = x:

ηy 7→ L(ϵ, Y )(ηx, ηy), ηx = L(X, ϵx)(x).

There is a lot of freedom in choosing the dis-
tributions ϵx, ϵy. We can pick up, for instance,
uniform distributions, or the trivial map ϵx = X,
which can be handy in certain applications.

Benchmarks results. Next, we provide an illus-
tration of allocation strategies. We compared
four strategies in figure 8, listed as follows.

• The first one is given by an equiweighted
portfolio, which we call ‘index’ and serves
as a reference.

• The second one (LS) is a Long Short strat-
egy, determined as approximating the mean
variance problem (5.1).

• The third one is also a Long Short strategy,
but where the return distribution at time tn,
ϵn, is conditioned to the capital asset pricing
model, that is, bn = rf + βk(ωk − rf ), in
which βk is the regression coefficients of the
weights ωk.

• The third one is very similar to the previ-
ous one, except that the distribution ϵn at
time tn is conditioned with a distribution
bn contains for each assets liquidity values,
time averages on different windows as well
as differences between them.

We reported the daily performance of each port-
folio Pj ,j = 1, .., 4, as P n

j := Πk≤n
<ωk

j ,Xk+1>

<ωk
j

,Xk>
.

As we can see, strategies based on conditional
returns outperformed non conditioned ones on

Figure 8: Benchmark of different portfolio strate-
gies

these examples. Of course, this experiment has
to be considered as a simple validation of our
algorithms, as we conditioned our returns values
ϵn with distributions that are known at time tn.
In an operational context, the available informa-
tion for conditioning comes from the past, that
is the time tn−1. In particular, given a condition-
ing distribution, this test does not answer the
quite interesting question whether there exists a
time frequency of observations below which such
an approach could be profitable or not.

References
[1] A. Berlinet and C. Thomas-Agnan, Re-

producing kernel Hilbert spaces in probabil-
ity and statistics, Springer US, Kluwer Aca-
demic Publishers, 2004.

[2] H. Brezis, Remarques sur le problème
de Monge–Kantorovich dans le cas discret,
Comptes Rendus Math. 356 (2018), 207–213.

[3] A. Gretton, K.M. Borgwardt, M.
Rasch, B. Schölkopf, and A.J. Smola,
A kernel method for the two sample problems,
Proc. 19th Int. Conf. on Neural Information
Processing Systems, 2006, pp. 513–520.

[4] M. Hamdouche, P. Henry-Labordere,
and H. Pham, Generative modeling for time
series via Schrödinger bridge. Available as
arXiv:2304.05093.

[5] P.G. LeFloch and J.-M. Mercier, A
class of mesh-free algorithms for some prob-
lems arising in finance and machine learning,
J. Scientific Comput. 95 (2023), 75.

8

http://arxiv.org/abs/2304.05093


[6] P.G. LeFloch and J.-M. Mercier, The
transport-based mesh-free method: a short
review, Wilmott journal, 2020, pp. 52–57.

[7] P.G. LeFloch, J.-M. Mercier, and
S. Miryusupov, CodPy: a Python li-
brary for numerics, machine learning, and
statistics, Monograph, 2024. Available as
ArXiv.2402.07084.

[8] H.D. Liu, Y. Guo, N. Lei, Z. Shu, S.-
T. Yau, D. Samaras, and X. Gu, Latent
space optimal transport for generative mod-
els, 2018. Available as arXiv:1809.05964.

[9] E. A. Nadaraya, On estimating regression,
Theory Proba. and Appl.. 9 (1964)), 141.

[10] G. Patrini, R. van den Berg, P.
Forré, M. Carioni, S. Bhargav, M.
Welling, T. Genewein, and F. Nielsen,
Sinkhorn auto-encoders, 2018. Available as
arXiv:1810.01118.

[11] J. Yoon, D. Jarrett, and M. van der
Schaar, Time-series generative adversarial
networks, Neural Information Processing Sys-
tems (NeurIPS), 2019.

[12] O. Zhang, R.-S. Lin, and Y. Gou, Opti-
mal transport-based generative autoencoders,
2019. Available as arXiv:1910.07636.

9

http://arxiv.org/abs/1809.05964
http://arxiv.org/abs/1810.01118
http://arxiv.org/abs/1910.07636

	1 Introduction
	2 Performing stress tests via an extrapolation algorithm
	3 Reverse stress tests as encoders
	4 Modeling time series via a generative algorithm
	5 Extending quantitative models through conditioning

