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Abstract
Learned sparse models such as SPLADE have successfully shown how to incorporate the benefits of
state-of-the-art neural information retrieval models into the classical inverted index data structure.
Despite their improvements in effectiveness, learned sparse models are not as efficient as classical
sparse model such as BM25. The problem has been investigated and addressed by recently developed
strategies, such as guided traversal query processing and static pruning, with different degrees of
success on in-domain and out-of-domain datasets. In this work, we propose a new query processing
strategy for SPLADE based on a two-step cascade. The first step uses a pruned and reweighted version
of the SPLADE sparse vectors, and the second step uses the original SPLADE vectors to re-score a
sample of documents retrieved in the first stage. Our extensive experiments, performed on 30 different
in-domain and out-of-domain datasets, show that our proposed strategy is able to improve mean and
tail response times over the original single-stage SPLADE processing by up to 30× and 40×, respectively,
for in-domain datasets, and by 12× to 25×, for mean response on out-of-domain datasets, while not
incurring in statistical significant difference in 60% of datasets.

1. Introduction
Learned Sparse Retrieval (LSR) models [10,11,20,22,
33] aim at combining the best of two worlds: the tra-
ditional search infrastructure, based on an inverted
index of interpretable terms, and the representation
power of Pretrained LanguageModels (PLMs) [8]. Such
models recompute term weights for documents and
queries to improve effectiveness, going as far as learn-
ing how to expand texts to be even more effective in
IR tasks. LSR underpinning hypothesis is that exist-
ing search infrastructure, namely the inverted index
and its efficient algorithms can easily be used to serve
such models [30]. However, a mismatch exists between
the posting lists score distribution of LSR models and
traditional models like BM25, leading to inefficiency
issues [18]. One could argue that first-stage retrieval
for bag-of-word models has been heavily optimized
for years leading to better algorithms such as MaxS-
core [31], WAND [2], and Block-Max WAND [9]; and
that LSR models would need better optimisations when
used with a traditional inverted index. Therefore, re-
cent works based on Guided Traversal (GT) [21,24]
have adapted existing algorithms to improve the latency
of LSR models, where the main goal is to reuse BM25
to guide the selection of scored documents during the
retrieval phase.

In this work, we address the same research question:

given the mismatch between LSR models and tradi-
tional search algorithms, how can we better use the
existing search algorithms and how can we improve the
latency of LSR models. While several learned sparse
retrieval works have been proposed, we focus this work
on SPLADE [10], due to its popularity and effectiveness.
Our goal is to increase the flexibility of the end user
(directly be able to modulate efficiency/effectiveness
at retrieval time), while limiting the amount of change
needed on the overall system for the provider of the
search engine.

Following recent works, where LSR is used as first stage
retriever in a multi-stage ranking pipeline [20], the
main goal of this work is to further split the first stage
retrieval in two parts. More precisely, our method relies
on the observation that SPLADE sparse vectors can be
approximated by sparser vectors obtained with top pool-
ing. Moreover, based on the discussion in [12] about
saturation function and dynamic pruning, we add a
term re-weighting to the SPLADE scoring function that
improves the efficiency of dynamic pruning for SPLADE
vectors via a trade-off with effectiveness1. In other
words, a very good approximation of a sparse vector is
a sparser re-weighted version of this vector. Therefore,
we can first compute the approximated results with
sparser vectors, extract a top 𝑘 sample and then only
1 c.f. right part of Figure 3
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perform the full score computation with the original
vectors in this sample. Note that this is similar to what
is done in an approximated nearest neighbor for dense
retrieval, leading to an approximated nearest neighbor
for sparse retrieval models.

Overall, the contributions of this paper are the follow-
ing:

• We show that SPLADE first-stage retrieval can be
approximated by a two-step algorithm relying on
sparser term re-weighted SPLADE vectors.

• Our approximation allows us to propose new rank-
ing models as efficient as GT, i.e., between 12× to
40× faster than SPLADE but more effective than GT,
i.e., with statistically significant gains in 50% of the
tested datasets and without statistically significant
losses in 87% of the tested datasets.

The remaining of this paper is organised as follows:
Section 2 discusses the related work, Section 3 illus-
trates our Two-Step SPLADE, Section 4 presents our
experiments, and Section 5 reports our conclusions.

2. Related Works
The re-usability hypothesis of LSR models, i.e., the hy-
pothesis that learned sparse models may be seamlessly
adopted with inverted indexes, has been a source of
debate. In [18], the authors showed that while these
new methods may be used in the current infrastructure,
they are not at all optimized for it, with a large decrease
in efficiency. This led to an influx of recent works [3,14,
21,24] that look into achieving cost/latency parity with
BM25. Nevertheless, there often exists a performance
drop or robustness issue to achieve that result. We
separate these works by how they deal with dynamic
pruning [30]. In the first line of work (a), the LSRmodel
is adapted to the current search algorithm, while, in
the second case (b), the dynamic pruning/search im-
plementation is adapted to the models.

Adapted Models (a): Efficient SPLADE [14] propose
a dedicated way to train more efficient models with L1
regularization on the query side and better pretraining
while in LSR pruning [15] standard pruning techniques
are applied to LSR models and demonstrate efficiency
gains. Even if such works demonstrate latency figures
comparable to BM25, such methods still suffer from
losses on out-of-domain data, i.e, zero shot on BEIR
benchmark. We note that there exists a vast literature
on static pruning that we could draw from [1,5,6,7]
but we focus on the simpler methods from [15] that
have already been shown to work well with SPLADE.

Adapted Search Mechanism(b): Term Impact De-
composition [17] showed that splitting posting lists
and completely redesigning retrieval leads to greatly im-
proved efficiency without any effectiveness cost. Guided
Traversal (GT) [21] first showed how to use the BM25
scores to choose which documents to score, but it re-
quires posting lists to be shared between BM25 and the
LSR method, which excludes most LSR methods. This
constraint is later relaxed in Optimized GT (OGT) [24],
which makes GT available to any LSRmethod, by chang-
ing from purely guidance as in GT to parametrized guid-
ance, where weights are balanced between BM25 and
LSR methods. OGT is further optimized for SPLADE
in [23], by adding a stricter pruning scheme during
training based on soft and hard thresholds for docu-
ments and queries, which require specific model train-
ing on top of using OGT.

Beyond this dichotomy, other works aim to improve
the effectiveness/efficiency trade-off. The GAR [16]
approach relies on graphs in document space and mix-
ing the efficiency of sparse retrieval, e.g. BM25, and
the effectiveness of cross-encoder rerankers, but still
completely changes the architecture of retrieval and
increases computational cost due to the use of cross-
encoder rerankers. In the case of lexically-accelerated
dense retrieval (LADR) [13], which combines GAR and
GT by using BM25 as a first-stage for dense retrieval
and are thus restricted by the choice of BM25 as the
“first-stage”. Finally, there are sketching and clustering
works such as [3,4] which convert the sparse retriever
into a dense retriever thanks to hashing, which is a
completely different paradigm to the one we analyze
here and would not let us continue to use the same
architecture for retrieval.

3. Two-Step SPLADE
Given recent results [14,15,24], a prominent way to
improve SPLADE latency has been to reduce the number
of query terms, then by pruning document terms or
by using GT. However, for very fast models (≈ BM25
latency), there is actually a sharp drop in effectiveness,
especially for out-of-domain experiments 2. Ideally, one
would like to have at the same time i) fast retrieval;
and ii) out-of-domain effectiveness.

To do so, we split our first-stage SPLADE ranking into
two steps: approximate and rescoring. In the first step,
both queries and documents are pruned or compressed
aggressively to yield an efficient approximation to the
original SPLADE model. Then, in the rescoring step3,
2 cf experimental section 3 We prefer to use rescoring instead
of reranking as it may confuse the reader with the cross-encoder
reranking case.
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the initial top 𝑘 documents retrieved during the first
step are rescored using the full documents and queries
from the original SPLADE model.

This is indeed how most systems are implemented, with
a “first-stage“ and ”second-stage“ retrieval, where most
of the time the first-stage is a vector-based retrieval and
the second stage a cross-encoder. In other words, we
actually propose to split the first-stage into two steps:
the first step is a rough approximation of the repre-
sentations (aggressive document and query pruning
associated with term re-weighting) and the second step
using the actual representations, although in a small
subset of the original corpus. We illustrate the method
in Figure 1.

3.0.1 Indexing

Starting from a trained SPLADE model, we use a top
pooling as in [15,22,28] to prune both documents and
queries to the average size of the dataset (with upper
limits of 128 and 32 tokens). For example, in the case
of MSMARCO, we prune documents to the 50 tokens
with the highest SPLADE-weights and queries to the
highest 5. In other words, we rely on the observation
that SPLADE sparse vectors can be approximated by
sparser vectors based on the highest weights outputted
by SPLADE. Note that hashing [3] could in theory be
used here to convert embeddings to a dense representa-
tion and perform classical dense retrieval ANN on it [4]
but that is outside the considerations of this work. More-
over, in GT [21,24], i) the approximation step requires
paired posting lists, including the same amount of query
tokens; and ii) ranking is conducted with BM25 weight-
ing, which is ideal for some datasets (especially ones
where the annotation is based on BM25 results [29]),
but not for all datasets, as we will see in our experi-
ments. The indexing process is described in Algorithm 1

Algorithm 1 Indexing
Require: 𝑇 collection, 𝑄 collection, preprocessed for
SPLADE

1: Compute averages of 𝑇 and 𝑄 and store as 𝑙𝑑 and 𝑙𝑞

2: Initialize 𝐼𝑎 as an empty index // Approximate
index

3: Initialize 𝐼𝑟 as an empty index // Rescoring index
4: for each document 𝑑 in 𝑇 do
5: 𝑑′ = Prune 𝑑 to size 𝑙𝑑 by selecting the highest
values

6: Add 𝑑′ to 𝐼𝑎 ; Add 𝑑 to 𝐼𝑟

7: end for

3.0.2 Retrieval

The retrieval process is divided into two steps: approxi-
mate and rescoring, and it is described in Algorithm 2.

Algorithm 2 Two-step Retrieval Algorithm
Require: Indexes 𝐼𝑎 and 𝐼𝑟, a query 𝑞, an average query
size 𝑙𝑞, a saturation factor 𝑘1 and the amount of
documents to return 𝑘

1: 𝑞′ =Prune 𝑞 to size 𝑙𝑞 by selecting the highest values
2: scores𝑑′ , D = SearchForTopkDocu-

ments(𝑞′, 𝐼𝑎, 𝑘, 𝑘1, null) // Approximate
step: Search on smaller index with smaller
query, 𝑘1 saturation, and without filters

3: scores𝑑 , D = SearchForTopkDocu-
ments(𝑞, 𝐼𝑟, 𝑘,∞, 𝐷) // Rescoring step: Search on
larger index, without saturation, and with larger
query while filtering to include only elements in 𝐷

4: Return scores𝑑 and D

Approximate step: we first rely on pruning, but also
add a term-reweighting function. The main motiva-
tion for adding such a function is, as we will see, to
get some speedup for the first step. Indeed, one of the
main problems of LSR models like SPLADE is that the
posting lists score distribution radically changes com-
pared to BM25, making it harder for dynamic pruning
to work effectively. This is due to the absence of the
“BM25’s saturation effect” which is central, for example,
to WAND [2,12].

In order to fix this we propose to reuse the BM25 term
weighting, but with SPLADE-based term frequencies4 in
order to re-weight the SPLADE vectors. Note that this
creates an additional approximation, as SPLADE itself
is not trained for this scoring function. Considering
that we have previously pruned the documents, the 𝑏
correction from BM25 is not necessary, leading to the
following simpler formulation:

𝑠(𝑞, 𝑑) =
∑︁
𝑡∈𝑞

𝐵(𝑡, 𝑞) (𝑘1 + 1) 𝑇𝐹 (𝑡, 𝑑)
𝑇𝐹 (𝑡, 𝑑) + 𝑘1

, (1)

where 𝑠(𝑞, 𝑑) is the score of document 𝑑 for query 𝑞, 𝑡 is a
term in query 𝑞, 𝑇𝐹(𝑡, 𝑑) is the term frequency/SPLADE
weight of term 𝑡 on document 𝑑, 𝐵(𝑡, 𝑞) is the SPLADE
weight of term 𝑡 on the query 𝑞, and 𝑘1 is the satura-
tion parameter. The higher the 𝑘1 parameter, the more
important the actual value of TF will actually be, while
for smaller values of 𝑘1, large values of TF will not be
that important, achieving saturation via reduced differ-
ence of top TF values. Balancing 𝑘1 means changing
the scoring function from a constant, i.e. 𝑘1 = 0, to
4 The BM25 function would also have IDF, but we only consider the
TF here.
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Figure 1: Two-Step SPLADE

heavily approximate SPLADE, i.e., 𝑘1 = 1), to approx-
imately the original SPLADE (as in the limit 𝑘1 ≈ ∞
the scoring simplifies to just the query and document
term weights), i.e., 𝑘1 = 10, 000. Note that the more
saturated our TFs are, the faster that retrieval will be
when using dynamic pruning. We tested a large set of
values and choose 𝑘1 = 100 as the best trade-off, with
𝑏 set to 0.

Rescoring Step. In the second step, we rescore each
document from the document set, selected by the first
step, with the uncompressed, full sparse vectors (both
query and document) coming from the initial SPLADE
models. In other words, we are basically using the
full SPLADE to rescore the top 𝑘 documents generated
in the approximate step. In this work we always use
𝑘 = 100 (c.f. left part of Figure 3). Note that this
rescorer can be easily used in current search engines
such as PISA [19] or Anserini [32]. In this work we
implement restoring as a full index search that skips
by document id using the ‘nextgeq‘ function from PISA,
but many implementations are possible. This is dif-
ferent from a SPLADE GuidedTraversal that uses two
different indexes for thresholding (BM25) and scoring
(SPLADE).

Discussion
The main benefit of our approach is that we can control
the quality or the speed of the approximation. Instead,
GT is limited by the effectiveness of BM25 or requires
the introduction of extra parameters to balance BM25
vs SPLADE [24]. We do not change anything on training
time compared to [14,23], meaning that our approach
could be applied to any out-of-the-shelf LSR. We reuse
pruning as suggested by [15] but we also allow for
control after the level of pruning is chosen (via term
re-weighting and query pruning), without the need to
index multiple pruned versions.

The main drawbacks of GT compared to our work are:
i) the lack of flexibility of the approximation due to the
use of BM25; ii) the need of posting list sharing between
steps, making it complicated to use with BERT-based vo-
cabularies and/or different terms between stages, e.g. a
shortened query on the first-stage and full query on the
second-stage. Compared to GAR [16] our approach has
the advantage of not needing a cross-encoding reranker.
However, we have the trade-off of indexing and search-
ing on a SPLADE index (that we show is not slower
than twice as BM25). Compared to sketching [3,4],
our approach has the advantage of staying in the sparse
retrieval paradigm and not needing to change current
infrastructure.

Finally, we discuss here some limitations of our study:
a) while we reach almost parity with BM25 in terms
of retrieval efficiency, we do not consider the cost of
the query encoder, which would be closer to the dense
retrievers from LADR [13] and smaller than the cross en-
coding rerankers of GAR [16], but still large compared
to retrieval cost; b) Our method also still requires some
choice of parameters, such as the static and dynamic
pruning strategies to employ.

Nonetheless we believe our method has the best trade-
offs that we will showcase empirically in the next sec-
tion. Ideally we desire the following properties: a) keep
existing infrastructure intact; b) propose models with
at most 2 times the retrieval latency as BM25; c) do
not have a significant (t-test with p-value of 0.01) de-
crease of effectiveness compared to full SPLADE on at
least half of datasets; d) allow for controllability of the
trade-off at the end-user level.

Rescoring vs Reranking

One thing that we do not touch in this work is the
comparison of rescoring and reranking (with a cross-
encoder or a stronger model). Both rescoring and
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reranking aim at improving the ranking quality via a
trade-off of spending more computational power, they
do so in different levels of cost. Rescoring only uses
precomputed representations, meaning that it can be
executed with low cost, while reranking does not nor-
mally allow for precomputed information. In other
words, in a perfect world, one should be able to com-
bine both (e.g rescoring top 1k and reranking top-10)
and obtain scores that match costlier rerankings (e.g
directly reranking the top 100 or 1000).

Storage requirements

One drawback of the proposed two-step SPLADE im-
plementation is that it requires storing two inverted-
indexes: the full SPLADE index and the pruned SPLADE
index. Compared to a SPLADE approach this is a small
overhead as the pruned SPLADE indexes are in general
much smaller than the full index, but it is still a nonzero
difference. Compared to a SPLADE with Guided Traver-
sal, the difference is almost negligible with the pruned
SPLADE index taking around the same space as a BM25
index.

Effectiveness metric (Recall vs nDCG)

In the following we do not report Recall values, only
nDCG. We prefer to report nDCG for two reasons: 1)
Easier to use across a multitude of datasets with differ-
ent granularities of annotation; 2) A better recall does
not mean that future reranking will be easier, especially
with the current methods reranking methods that have
similar biases to the first-stage.

4. Experiments
In our experiments, we want to demonstrate several
findings:

1. The validity of our approximation: we study several
pruning and term re-weighting and show that our
first-stage approximation is more accurate than
BM25;

2. Rescoring is a very efficient and effective technique
to reduce the gap between the approximation and
the full retrieval;

3. Two-Step SPLADE (approximation + rescoring) is
efficient and effective not only for in-domain ex-
periments but also for maintaining its performance
on zero-shot benchmarks (BEIR and LoTTe).

4.0.1 Search Engine and Dynamic Pruning

All of our experiments are done with the PISA [19]
search engine. PISA has different implementations of
dynamic pruning algorithms and choosing which one to

use is an important aspect of any system. We verify this
by testing all our methods with the three most used al-
gorithms: WAND [2], Block-Max WAND [9] and MaxS-
core [31]. In the case of BM25 retrieval differences
were small, with a slight advantage to MaxScore, while
for original SPLADE (i.e. no pruning, no approxima-
tion), the best performing algorithm was also MaxScore
which was twice as fast as the next one. However, prun-
ing the SPLADE model, made Block-Max WAND was
the most efficient. Finally, by adding term re-weighting
on top of pruning, WAND becomes the most efficient.
Due to the differences in these algorithms, we decided,
in this work, to always report the result for the most
efficient algorithm of the three. Code is available at
https://github.com/naver/splade/

4.0.2 Datasets

We consider most datasets available in the literature to
conduct our benchmark on effectiveness and efficiency.
More importantly, we want to assess the out-of-domain
effectiveness performance drop that most approxima-
tion methods incur. In order to evaluate this, we com-
pare methods on 30 datasets 5. Finally, note that for
computing statistical significance we drop datasets that
are composed of other datasets such as “Pooled” from
LoTTe and CQADupStack from BEIR. Note that BEIR
is heavily biased towards BM25, as noted on their own
paper [29], and thus we added LoTTe [25] exactly due
to the fact that BM25 not being as effective. Ideally, a
system should work on both.

Secondly, we use the Ranger library [26] to detect sta-
tistically significant changes (𝑝 ≤ 0.01). In this case, we
count the number of datasets for which a method is sta-
tistically significantly better, similar to a meta-analysis
process [27].

4.0.3 Models

Finally, our study is based on SPLADE-v3 models6 mod-
els as done in related works [14,24]. In fact, the public
SPLADE-v2 or SPLADE++ checkpoints are not state-of-
the-art anymore. Therefore, we adopt the SPLADE-v3,
which are based on SPLADE++ Self-Distil but trained
for slightly more time and with better distillation scores
by adding L1 regularization as in [14].

In terms of baselines, we compare our Two-Step
SPLADE to a single-step pruned version, following [15],
and a version of (Optimized) Guided Traversal [21,24].
Note that GT (our implementation) is not exactly GT,

5 3 from MSMARCO, being the MSMARCO-dev, TREC-DL 19
and TREC-DL 20, 17 from BEIR [29] and 10 from LoTTe [25]
6 https://huggingface.co/naver/splade-v3
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nor OGT, but something in the middle. Our implemen-
tation of GT is based on our SPLADE models and works
in two separate phases: approximation BM25, and then
rescoring full SPLADE. We do so, because it would not
be possible to have aligned posting lists between BM25
and our SPLADE (and thus traverse them concurrently)
as in GT, and we did not want to modify the retrieval
procedure as in OGT [24] which would require hyper-
parameter tuning for each dataset and using a different
version of PISA compared to our other experiments.
This baseline is a best-case scenario in terms of effec-
tiveness for GT+SPLADE, while adding at most a 30%
penalty in efficiency when compared to BM25.

Additional comparisons: EfficientSPLADE [14] is also
matched against Two-Step SPLADE, most notably the
available EFF-V-Large, but they are omitted from tables
to avoid confusion between what SPLADE is being dis-
cussed. Finally, we do not compare directly to Term Im-
pact Decomposition [17] and Optimized Guided Traver-
sal for SPLADE [23] because they require changes to
the PISA software and SPLADE model, and while code-
bases are advertised in the respective papers, they were
not available at the time of writing. However, we do
present comparison numbers against both OGT [23,24],
but only as a hint of relative efficiency/effectiveness, as
the comparison is not totally fair due to not using the
same machine/setting.

4.1. Approximation Validity
We study the validity of the approximation step for
SPLADE. To do so, we measure the top 𝑘 intersection
of the approximate step with the original top 𝑘 from
SPLADE. First, choosing the optimal pruning values
turns out to be complicated when dealing with a multi-
tude of datasets. Therefore, we will assess our use of a
simple heuristic: the original statistics from the dataset.
Secondly, for the approximation step we can vary the
term re-weighting function in order to play with the
efficiency/effectiveness trade-off.

4.1.1 Approximate Step Parameters

During indexing, we can now control the level of prun-
ing for the approximate stage. Ideally, we would want
something that already speeds up retrieval substan-
tially, without losing effectiveness. Following [15]
this would be around half or a quarter of the original
SPLADE document size. In order to check this we look
into SPLADE retrieval of MSMARCO-dev and climate-
FEVER, and prune documents (V-D) into multiple sizes
(8,16,32,64,128,𝑁/𝐴) and also to the lexical size (L-D)
of the dataset (50 for MSMARCO and 67 for climate-
fever). We also include query pruning (V-Q) with dif-

ferent values (5,10,16,𝑁/𝐴), with 5 and 16 being the
lexical size (L-Q) for MSMARCO and Climate-FEVER.
Note that such query pruning was not included in the
previous work. Results are presented in Figure 2.

What we first notice is that the effects are very different
depending on the dataset. MSMARCO seems quite easy
to prune, with our methods easily keeping more than
90% intersection of the top 10 (i.e. in average 9 out
of the top10 documents from the original search are
in the top 100 of the approximate search), however,
the results are not as good in climate-FEVER. In other
words if we selected the values solely using the charac-
teristics of MSMARCO the method would underperform
in climate-fever and vice-versa. This effect is what mo-
tivates us to test in so many datasets and to look into
both efficiency and effectiveness in all of them and not
solely in MSMARCO (as many methods do). Nonethe-
less, a simple heuristic that seemed good enough to
us is just using the average token size (document and
query), which we call lexical size (red dot).

4.1.2 Fixed Pruning, change 𝑘1

Now that we have chosen the pruning, we can use
all our datasets to test different versions of term re-
weighting functions by varying 𝑘1. We present the re-
sults in Figure 3, where on the left we look into varying
the top 𝑘 retrieval and 𝑘1 values and on the right we fix
𝑘 = 100 and display the efficiency-effectiveness trade-
off of different values of 𝑘1, with the efficiency being
measured as the average of average latencies over large
BEIR datasets (>1M documents). The results show
that the larger 𝑘1 is, the more accurate the approxi-
mate is, but the larger 𝑘1 is, the larger the latency is.
Therefore, the saturation function allows to easily con-
trol the efficiency-effectiveness trade-off. Finally, a top
𝑘 of 100 and a saturation with 𝑘1 = 100 seem to be
appropriate parameters, as they achieve around 91%
intersection with the “full-scale” retrieval, with a .99
confidence interval between 88% and 94% intersection,
while keeping efficiency close to BM25/GT.

4.2. Effectiveness and Efficiency Benchmark
After having demonstrated the validity of our approx-
imation, and analysed the parameter’s sensitivity, we
can now proceed with the full benchmark. We present
results by statistical differences and relative latency to the
BM25 baseline in Table 1, while raw latencies and aver-
age effectivenesses are presented in Table 2. From these
tables of results, we draw the following conclusions:

1. Approximate SPLADE (row e): term re-weighting
improves efficiency in out-of-domain datasets com-
pared to the pruned-only version (row c) (1.1 vs

6
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Figure 2: Intersection of the original retrieval top-10 and the pruned retrieval. We represent the different
combinations by: F: No pruning; V: Varying pruning; L: Lexically-pruned. D: Document, Q: Query. So F-Q, V-D
means we vary document length and keep the query untouched.
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Figure 3: Intersection of the original retrieval top-10 and the first approximate step. P-SPLADE means the L-Q,
L-D version from the previous figure with the applied 𝑘1 saturation. AvG L is the average latency for BEIR datasets
that have more than 1M documents.

2.3 and 1.4 vs 2.7 on BEIR and LoTTe, but reduces
effectiveness.

2. Two Step SPLADE (row f and g): can keep reason-
able retrieval efficiency compared to BM25 (less
than 2 times average latency increase with the
approximate SPLADE) while having similar effec-
tiveness to the full SPLADE (row b). Note that this
means a latency improvement of 12x to 40x on
full SPLADE depending on the dataset and that in
MSMARCO it is even faster than BM25, especially
when considering p99 latency.

3. Comparison to previous work (row (c) and (d) GT
): we see clear improvements in effectiveness and
efficiency. Against GT, TwoStage is strictly superior
for 14 out of 30 datasets and only worse on 4, while
having similar latencies.

Concerning latencies, on the table we report p99 solely
to MSMARCO as averaging p99 does not make sense.
For p99 over BEIR our method (row g) is faster than
BM25 (row c) in 9 out of the 17 datasets (excluding
CQAdupstack) and 3 out of the 10 in LoTTe. We also sep-
arate the average latencies into all and just the largest
in BEIR to isolate the smaller and larger dataset contri-
butions and show that our method is stable over dataset
sizes.

It is also interesting to look into the raw numbers in
Table 2. If we only looked into average numbers, and
not the statistical differences over a large collection of
datasets, conclusions would change. For example, in
average terms, there is almost no difference on BEIR
between SPLADE, GT and Two-Step. However, when
we add LoTTe to the mix and look into it dataset by
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Table 1: Effect size analysis (𝑝 ≤ 0.01) of methods against SPLADE (b) and our implementation of Guided Traversal
(GT) (d). ≥ is the number of datasets where the row model does not present statistical drop of effectiveness
against the column one, > the ones with statistical improvement and < statistical drop. Latency is normalized by
BM25 (1.0 is = to BM25) and thus is the lower the better. >1M means the subset of datasets of BEIR that have at
least 1M documents on the corpus. AvG L is the average latency of the dataset or the average of dataset averages
(for BEIR and LoTTe).

Method
Effect size against MSMARCO BEIR Lotte

SPLADE (b) GT (d) Latency 18 >1M
≥ (>) < ≥ (>) < Average p99 AvG L AvG L

Baselines

a BM25 7 (1) 23 7 (1) 23 1.0 1.0 1.0 1.0 1.0
b SPLADE-v3 N/A 27 (16) 3 19.1 12.4 24.8 32.6 22.1

Advanced Baselines

c Approx. First Step [15] over (b) 7 (1) 23 16 (2) 14 0.7 0.4 2.3 2.6 2.6
d GT (Our Implementation) (𝑎 −→ 𝑏) 14 (3) 16 N/A 1.1 1.0 1.2 1.2 1.3

This work

e Approx. First Step (c) with 𝑘1 = 100 4 (1) 26 5 (1) 25 0.5 0.3 1.1 1.2 1.6
f Two-Step (𝑐 −→ 𝑏) 22 (0) 8 26 (15) 4 0.8 0.4 2.5 2.7 3.0
g Two-Step (𝑒 −→ 𝑏) 18 (2) 12 26 (14) 4 0.6 0.3 1.4 1.3 1.8

dataset, and not as an average of nDCG@10 as per the
current usage in most papers, we can see the differences
between methods7.

4.2.1 Additional Comparisons

First, we compare our model to EFF-V-Large [14] (not
shown on tables for clarity), where our method is
faster (around 8x on MSMARCO) and more effective (0
datasets with statistical significant drop and 22 improve-
ments). Furthermore, we note that we have also done
all the previous sets of experiments using a SPLADE that
is publically available: SPLADE++ CoCondenser Self-
Distil from [11] and have noted similar results (same
effectiveness in 17 out of 30 instead of 18), although
with higher latencies due to the different statistics of
the models. We omit these tables due to lack of space.

Finally, looking into raw values we can be tempted to
compare with raw numbers from other papers, such
as [23,24]. These papers report a MSMARCO latency
of 22 and 6.9ms for retrieving the top 10 documents,
while we report 2.4 ms with our method to retrieve the
top 100 documents. Looking at zero-shot over BEIR,
we can compare the speed-up over the baseline, where
our method improves more than 15 times over running
the full SPLADE, while [24] improves it by 2.7 times
and [23] improves it by 3.6 times. However, due to
7 Due to lack of space, we had to omit the figure showing per-dataset
comparison.

experiments being run on different machines and base
models, these comparisons only hint that our model is
better, but cannot be concluded without proper experi-
ments.

5. Conclusion
In this work, we have shown that by separating the first-
stage of SPLADE into two steps we are able to mostly
conserve its effectiveness and reduce latency by 12x
to 40x. The proposed approach is more flexible than
existing approaches while being directly applied to any
search engine as a Two-Step search (unfiltered and
then filtered to the top 𝑘 of the first search). This is
another step into making LSR models more production-
ready, which seems to show that in terms of retrieval
latency LSR methods can compete with BM25 without
problem. There are however two last barriers due to
document/query inference i) indexing time and ii) ac-
tual full-scale latency measurements including query
inference time, that we do not touch in this work and
leave as future work.
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