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Abstract

The machine learning force field has achieved significant strides in accurately
reproducing the potential energy surface with quantum chemical accuracy. How-
ever, it still faces significant challenges, e.g., extrapolating to uncharted chemical
spaces, interpreting long-range electrostatics, and mapping complex macroscopic
properties. To address these issues, we advocate for a synergistic integration of
physical principles and machine learning techniques within the framework of a
physically informed neural network (PINN). This innovative approach involves
the incorporation of physical constraints directly into the parameters of the neu-
ral network, coupled with the implementation of a global optimization strategy.
We choose the AMOEBA+ force field as the physics-based model for embedding,
and then train and test it using the diethylene glycol dimethyl ether (DEGDME)
dataset as a case study. The results reveal a significant breakthrough in construct-
ing a precise and noise-robust machine learning force field. Utilizing two training
sets with hundreds of samples, our model exhibits remarkable generalization and
DFT accuracy in describing molecular interactions and enables a precise predic-
tion of the macroscopic properties such as diffusion coefficient with minimal cost.
This work provides a crucial insight into establishing a fundamental framework
of PINN.



1 Introduction

Molecular dynamics (MD) simulation is a pivotal tool for understanding the structure,
property, and behavior of molecular systems, significantly advancing the frontiers of
chemistry [1], biology [2, 3], and materials [4] science. Central to MD simulations is
the force field (FF), which encodes interatomic interactions according to the chemical
environment, thereby governing the motion and state of atoms. Attributed to the rapid
and robust calculation of classical FF, MD enable exploration of systems comprising
millions of atoms over microsecond timescales [5, 6], providing fundamental insight into
thermodynamic and dynamic properties. Nevertheless, a FF based on simple physical
expression usually imposes limitations on accurately capturing complex interactions
such as charge penetration and polarization effects [7], resulting in notable deviations
from reality. Hence, there has been a pressing demand for high-precision force fields to
ensure the faithful rendition of the structural, thermodynamics, and dynamics features
of real systems.

In recent years, numerous machine learning (ML) force fields (FFs) achieving
DFT accuracy in simulating interatomic potential have been proposed, e.g., DeepPot-
SE [8], DimeNet [9], PaiNN [10], GemNet-T [11], NequlP [12] and Allegro [13] MLFFs,
etc [14]. The inherent training mechanism and flexible structure of neural network
enable it to efficiently and accurately consider high-dimensional problems [15] such
as many-body interaction [16]. However, in the absence of physical meaning, the tra-
ditional MLFFs are lack of extrapolative generalization, thus leading to significant
model hallucination when applied to untrained data [14, 17-19]. Additionally, most of
MLFFs only focus on learning local atomic environment within a cutoff distance [20].
The absence of long-range interaction renders MLFFs ineffective in simulating charged
systems such as electrolytes [21], and proteins [22]. Fortunately, this challenge can be
addressed by using a physically informed model based on the Particle Mesh Ewald
(PME) technique [23]. That is to say, physical knowledge can act as an inductive bias
that avoids non-physical phenomena and suppresses the model hallucination.

In fact, MLFFs embedded with physical knowledge have gradually caught the
attention of researchers [21, 24-26]. Mishin et al. developed a physics-informed neural
networks based on analytical bond-order potential, significantly improving the gen-
eralization capability of MLFFs [27]. Gao and Remsing proposed a self-consistent
field neural network capable of separately learning long-range and short-range inter-
actions [12]. Moreover, other strategies that integrate neural network with physical
laws are also explored to construct physics-informed MLFFs. [28-30]. However, accu-
rately predicting the more intricate and far-reaching macroscopic properties from a
bottom-up perspective still faces significant challenges, primarily due to the distribu-
tion shift of sampling ensembles [31] and the label noise within training set [18]. To
tackle this obstacle, some experts endeavor to establish end-to-end mapping networks
[32], substituting ensemble-averaged properties with multistate Bennett acceptance
ratio (MBAR) estimators to circumvent gradient explosion [33, 34]. Nevertheless, this
approach is ineffective in predicting kinetic and dynamic properties such as diffusion
coefficient, as well as certain physical and chemical quantities that require substantial
costs to obtain by experiments [35]. Therefore, although embedding physical constraint



can improve MLFFs, bottom-up construction of a transferable and robust MLFF
capable of accurately predicting multiscale properties remains a tremendous challenge.

In this work, we develop a PINN based on the AMOEBA+ potential, hereinafter
referred to as the AMOEBA plus neural network (APNN) model. The network param-
eters of the APNN model are refined under physical constraints. Furthermore, we
design a novel global optimizer, Tabu-Adam algorithm, to prevent the model from get-
ting trapped in undesirable local minima. The APNN integrated with strict physical
constraints and Tabu-Adam optimizer exhibits high-accuracy as well as strong gen-
eralization and robustness. To demonstrate the capabilities of our MLFF model, we
train and test our model using a dataset comprised of DEGDME as an example. The
results show that our model not only reproduce the microscopic physical quantities
such as intra- and inter-molecular interactions with the quantum chemical accuracy,
but also accurately predict the macroscopic properties measured experimentally from
a bottom-up perspective. The integration of machine learning model with deep-rooted
physical knowledges offers a promising technology roadmap for overcoming the inher-
ent limitations of existing MLFF models, paving the way for more accurate and reliable
predictions in molecular dynamics simulations.

2 Results

2.1 AMOEBA Plus Neural Network (APNN) model

To construct a PINN with both well-established physical principles and high com-
putational efficiency, we embed the AMOEBA+ potential [36] into a neural network
to build the APNN model. AMOEBA+ is regarded as one of the most cutting-edge
classical force fields [37, 38] to date. Its physical model not only considers many-
body polarization effects but also encompasses charge penetration and charge transfer
effects. Owing to the advanced iterative algorithms and parallel efficiency within the
Tinker9, the AMOEBA+ force field can also achieve large-scale simulation of com-
plex systems with affordable computational cost (e.g., simulating a system of 10,000
atoms on a GPU4090 with the speed of ~30ns/day). Therefore, the corporation of
AMOEBA+ and neural network is one of the most ideal choices so far.

In the APNN model, all activation functions are custom-defined, each with a clear
physical meaning. The force field parameters are embedded in the activation functions
across each layer and optimized during the training process. The schematic of APNN
as shown in Fig. la. First, the cartesian coordinates and bonding information of atoms
are fed into the input layer. In the second layer, the distance-dependent structural
features are extracted to obtain local environment of atoms. Herein, T; is the distance
perception matrix between multipole moments. The expression is

where r;; means the displacement vector from atom 4 to j and V* is k-order gradient
operator, kK = m + n with m and n denote the expansion orders of the multipole
moments corresponding to atoms ¢ and j, respectively. For example, we set m = 0



and n = 1 when T;; refers to the distance perception matrix between the monopole
of atom ¢ and dipole moment of atom j. f(|r;;|) is the damping function. Besides, the
ik, Pijkl, Xijk represent the angle, dihedral and abnormal dihedral. In the subsequent
hidden layers, we calculate the induced dipole moments ( Eq. (10) ) and each energy
term ( Eq. (5), Eq. (11-13), etc ), Finally, we sum up all interactions of the same type
in the output layer. More details about T;; and AMOEBA+ potential are shown in
the Method section.

2.2 Tabu-Adam Algorithm

Although the strict physical constraint endows APNN with enhanced generalization, it
introduces considerable challenges to the optimization algorithm. The traditional gra-
dient descent method, based on backpropagation neural network and Adam optimizer,
has proven effective in various applications of machine learning[39, 40]. However, its
intrinsic local search mechanism may lead to local minima, particularly in APNN (see
Fig. 3). Inspired by the niche technology, we propose an innovative metaheuristic Tabu
search algorithm that perfectly integrates with the Adam optimizer, substantially
augmenting its capacity for global exploration. Here, we refer to this collaborative
optimization as Tabu-Adam algorithm. As shown in Fig 1b, the search engine of Tabu-
Adam algorithm involves two stages: exploitation and exploration. In the exploitation,
we utilize the Adam optimizer to accelerate convergence within the search space. Once
the convergence is achieved, the exploration (Tabu search) is activated to escape local
optima, which redirects the search towards more promising global solutions based on
accumulated experience. In Tabu search, we aim to find a global point situated in a
previously unexplored area, ideally far away from inferior points. To achieve it, we use
the radiation intensity to represent the fitness of the point 4, which can be calculated
by a surrogate model inspired by niche technique:

Np
Rad; = Z L(pj) ’ D(Tij) + R(pi, Buin, BmaX)' (2)

Jj=1

On the right-hand side of Eq. (2), the first term and the second term respectively
corresponds to the radiation intensities generated by the tabu list and boundary. In
the first term, N, is the total number of points in previous searches, L(p;) means
the loss at the j-th search, and D(r;;) corresponds to the decay function depending
on manhattan distance r;; between the point 7 and j. In the second term, the B,
and Bpa.x represent the lower and upper boundary in parameter space. The details
about surrogate model can be found in the Method section. In general, radiation
intensity is higher near inferior points compared to that near superior points, and also
higher in already explored areas than in unexplored areas. Therefore, we can assess the
fitness of arbitrarily specified point based on its negative correlation with the radiation
intensity. The computational cost of evaluating radiation intensity is negligible, so we
can evaluate a large number of points distributed randomly, and then filter them to
obtain the optimal point. After the pre-screening, we calculate the loss function of the
optimal point. If the loss is deemed acceptable, we designate this point as the initial



point for the Adam search; otherwise, we continue iterating the Tabu search. In this
alogrithm, Tabu search provides a macroscopic orientation for navigating the entire
searching space by summarizing previous exploratory experiences. As a complement,
the Adam algorithm is dedicated to meticulously probing a better solution nearby.
Hence, the combination of these two distinct approaches fosters a more robust and
effective solution-finding mechanism, adept at navigating complex problem spaces to
unearth optimal solutions [41].

2.3 Training framework

Fig. 1c presents the training process of our APNN model. The entire training frame-
work includes three aspects: preparing training data, physical refinement and model
training. The left flowchart in Fig. 1c depicts the creation of training dataset includ-
ing mono- and bi-molecular conformations. A framework that automatically manages
the rotation-translation operator is employed for traversing the required conforma-
tions. On the right of Fig. 1c is the physical refinement framework of neural network
parameters, which is achieved through different physical models. The initial param-
eters are obtained by poltype2[42]. The equilibrium structure and force constants
are refined to match optimized geometries and vibrational frequencies obtained from
B3LYP-D3(BJ)/def-TZVP. The polarizabilities are corrected according to GDMA
code[43, 44] and atoms-in-molecules (AIM)[45] analysis. Subsequently, the perma-
nent multipoles can be derived from Eq. 15 by updating polarizabilities. The physical
refinement process establishes an intuitive mapping relationship between the neural
network parameters and macroscopic properties. When the above processes are suc-
cessfully completed, we start training our APNN model using the physical refinement
parameters as the initial model parameters. First, the range of parameters insensitive
to the loss function are narrowed based on sensitivity analysis. Then, the backprop-
agation and Tabu-Adam algorithm are employed to train the parameters of APNN.
In this process, certain constraints remain, such as penalizing for the deviation from
initial parameter (Eq. S6 in Supporting information), maintaining small difference for
parameters with similar chemical environments (Eq. S7 in Supporting information),
and ensuring the net charge equal to the preset value (Eq. S8 in Supporting informa-
tion). Furthermore, the constraint of the net charge is regarded as a hard constraint
which provides positive guide for the evolution of APNN. To ensure a thorough train-
ing, the boundary tracking strategy is also employed to adaptively adjust the boundary
of parameter space.

2.4 Example: DEGDME

Accurately simulating organic electrolyte systems remains challenge due to the impre-
cise description of certain interactions, such as many-body polarization, short-range
charge penetration, and charge transfer. DEGDME is widely used in the fields of elec-
trolyte due to its excellent solubility, safety, and electrochemical performance [46, 47].
Here, we take DEGDME as an example to train APNN model and test its ability
to describe the micro- and macro-property. In this case, we will provide a detailed
explanation for all processes.
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Fig. 1 |Schematic of APNN, Tabu-Adam algorithm, and the training framework. (a)
Diagram of the neural network structure of APNN. (b) Schematic of Tabu-Adam algorithm, the yel-
low arrow indicates Tabu search (exploration), while the blue arrow corresponding to Adam search
(exploitation). The yellow shading represents the radiation intensity. (c) The pipeline of whole train-
ing framework, which consists of three parts: dataset construction, physical refinement and model
training.

In the construction of training dataset, MD-enhanced sampling or active learn-
ing sampling are typically employed to capture molecular conformations. However,
attributed to the embedding of the physical model, it’s sufficient for APNN to extrapo-
late the interactions across all conformational spaces relying on the primary structural
features. Therefore, we do not use the typical method but develop an automatic
alogrithm to construct a non-redundant dataset for APNN training. To alleviate
the error compensation arising from intra- and inter-molecular interactions, we indi-
vidually create mono- and bi-molecular conformations to train their corresponding
interactions in our following work. The training dataset for intramolecular interactions
consists of 600 monomolecular structures, obtained by simulating annealing dynamics
from 500K to 50K. The frequency distributions of bonds, angles and dihedrals within



two different size of training sets are shown in Fig. S1 in Supporting information (SI).
It is observed that the distribution of bonds, angles and diheadrals in small dataset,
comprising 600 structures, shows no noticeable deviation from that in a larger dataset.
That is to say, despite its small size, this dataset retains comprehensive topologi-
cal structural information. To ensure accurate description of intramolecular energy,
we employ double-hybrid density functionals, revDSD-PBEP86-D3(BJ)/aug-cc-pVTZ
[48], to label the training dataset.

As shown in Fig. 2a, we construct the bimolecular conformations by automati-
cally adjusting the relative spatial positions between two single molecules. First, we
extract two molecules form the monomolecule dataset and operate on one of these
two molecules through rotation and shift matrix, then adjust it constantly by series
of judgments and decisions until the ideal conformation is found (see details in SI).
Through this method, we obtained a training dataset composed of 442 bimolecular
conformations. This method is highly designable and flexible and can evenly traverse
the required conformations. To analyze the distribution of intermolecular distance,
we plot the heat maps in Fig. 2 to characterize the occurrence frequencies of all
atom pairs within the distance ranges of (b) 0.6~0.7R, (c) 0.7~0.9R, (d) 0.9~1.1R,
and (e) 1.1R ~ oo, where R is the equilibrium distance of the corresponding atom
pair. Figures 2(b)-(e) encompass majority of the distances between atom pairs in two
molecules. Typically, the sampling of bimolecular conformations focuses on distances
greater than 0.7R since extremely close intermolecular distances are regarded as rare
events due to the strong repulsive interactions [36]. However, we found that neglect-
ing to train the conformations featuring the interatomic distances within the range of
0.6~0.7R may lead to inaccurate descriptions of short-range Van der Waals energy,
resulting in deviations in macroscopic properties like diffusion coefficients. As shown
in Figures 2(b)-(e), in each distance range, the occurrence frequency distribution of
the atom pairs primarily concentrates within 1.5 standard deviations. It means that
the occurrence frequency of each atom pair within different distance ranges is close to
the corresponding average frequency. That is to say, the bimolecule dataset comprising
only 442 samples can rationally traverse the majority of the expected distance ranges.
For a molecule with 23 atoms, the sample size of 442 is considerably smaller than the
expected value (23x23x4, where 4 is the number of distance ranges). It suggests that
the dataset construction strategy proposed in this work can be used to create a low-
redundancy training dataset. Finally, we employ the SAPT2+/aug-cc-pVTZ method
to label the intermolecular energy of bimolecular dataset and divide it into three parts:
electrostatics, induction, Van der Waals (exchange + dispersion) term. This energy
decomposition offers a seamless match to the energy terms in APNN model.

In APNN model, the majority of parameters hold intrinsic physical meaning, e.g.,
force constant, polarizability, permanent multipole, equilibrium geometry structure
and so on. These parameters establish direct mapping to the macroscopic proper-
ties. Among these parameters, polarizability serves as a direct factor determining the
extent of the atomic polarization effects, crucial for precisely predicting the diffusion
coefficient in electrolyte systems. The polarizability can be defined as:

a=— lim 22 (3)



F-w/s
I +5.0
+2.5

+1.5

(@

+0.5

=, 22182211222129212717 7 9 13 7 121210111217 1310 8 1 122 [ o102 0 a0 40 a0 11 2 1 1 e 0.2 2.

whfi31210716151926 1710101 11 0 @ 9 1213127212 8 1

3 875

52426 2431 25343028 25 1521 14 19 122922 1922 1325 1924 1
o1 23 20827 a1 5
2528 192221 2724 2390 16 10 1419 1315 1921 2010 1515 22 24

Fig. 2 |Construction of training data. (a) Schematic of automatically constructing bimolecular
conformation. The occurrence frequencies of all atom pairs within the distance ranges of (b) 0.6~0.7R,
(c) 0.7~0.9R, (d) 0.9~1.1R, and (e) 1.1R~+o00. The row and column respectively stand for the atomic
index of each molecule, and occurrence frequency of the corresponding atomic pairs is represented by
the grid values. The occurrence frequency close to the mean frequency trends to be light color.

where p and E are the dipole moment and external electric field, respectively. The
polarizability can be obtained by combining GDMA [43, 44] with AIM [45] theory
(See details of physical refinement process of polarizability and other parameters in
SI). Table 1 shows the parameter values of polarizability before and after the physical
refinement. The refined oxygen atom has a larger polarizability value than the carbon
atom due to its lone pair electron and higher electronegativity. The terminal hydro-
gen atom (Hoyt) receives less shielding from surrounding atoms, thus exhibits greater
sensitivity to external electric fields. Obviously, the revised polarizability parameters
align better with chemical intuition.

Table 1 The polarizability before and after the physical refinement

Polarizability

Initial Refined
Ojn 0.8370 0.9983
Oout 0.8122 0.9900
Cin 1.3340 0.9039
Cmid 1.4150 0.8827
Cout 1.6196 0.7075
Hin 0.4960 0.4115
Hmiq 0.4960 0.4105
Hout 0.4960 0.4608

Note: The element subscript denotes atoms that located in different
chemical environments, where the in, mid and out respectively refer
to atoms in the inner layer, middle layer and outer layer.



To preserve the underlying physical interpretation of the refined parameter, we
train the intra- and inter-molecular interactions under stringent physical constraints,
which is analogous to fine-tuning a pre-trained model for a specific downstream task.
During training process, the L2 penalty function is used to penalize the deviations from
refined parameters. Moreover, other physical constraints are employed to maintain the
relationships between parameters. For example, the parameters with similar chemical
environments should maintain minimal difference, and the net charge of each molecule
should be equal to its preset value. The sensitivity analysis is also implemented to
narrow down the range of parameter that are insensitive to the energy. On the other
hand, the boundary tracking technology is employed to ensure a thorough optimization
for parameters whose ideal value lies outside the initial boundary, as shown in the flow
chart of Fig. lc.

However, the strict physical constraints usually leads the model to converge to
an unsatisfactory local minima. To address this problem, we propose the Tabu-Adam
algorithm to equip the optimizer with global search capability as mentioned above.
Fig. 3 shows the variation of the lowest loss achieved thus far with respect to the num-
ber of iterations using different optimization algorithm. The efficiency of the particle
swarm optimization (PSO) algorithm, relying on population information, is signifi-
cantly inferior compared to that of the Adam series optimizers. The Adam optimizer is
an efficient local search alogrithm benefiting to its adaptive learning rate and backprop-
agation mechanism. However, as shown in Fig. 3, the Tabu-Adam optimizer proposed
in this work is not only high efficient but also shows strong global search capability,
which can overcome the limitations of the gradient-based algorithm in APNN.

The net charge constraint is a hard constraint that cannot be fulfilled solely
by adding penalty term. Therefore, we continuously correct the net charge of each
molecule in accordance with its preset value. Frequent correction will make the
optimization inefficient, whereas sparse correction may lead the solution away from
physical constraints. In this work, we correct the charge distribution every 50 steps.
Fig. 4 shows the change of loss components in the lowest loss achieved thus far with
respect to the number of iterations during the training of intermolecular interaction.
The loss of each component changes remarkably when the verification of net charge
constraint is imposed at 50 and 250 epochs. This finding suggests that the correction
of net charge introduces a positive guidance steering the model towards more rational
evolution.

A strong constraint is also added to penalty deviation from the refined parame-
ter during training intramolecular interaction. (see Fig. S2 in SI). As the equilibrium
geometry structure and force constants have been corrected during physical refine-
ment. Our focus lies primarily on the energy description of torsion and crossing
stretch-bend term. After training, a slight decrease in the loss of intramolecular energy
is observed, and convergence is achieved around 7000 iterations. The result is reason-
able as the energy error of torsion and crossing stretch-bend term contribute only a
small fraction to the loss of total intramolecular energy. Furthermore, a comparison
between the energies of trained APNN and high-precision quantum mechanical method
is also presented in Fig. S3 in SI, revealing a substantial agreement between them.
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Fig. 3 |The variation of lowest loss achieved thus far with respect to the number of
iterations using different alogrithm. In PSO alogrithm, the total iteration is equal to the iteration
times the number of populations.

To validate the generalizability of the trained APNN, we further assess its
energy error on a test dataset. This dataset is constructed and labeled following
the same methodology applied to the training data, ensuring consistency in eval-
uation. The results in Fig. S4 in SI indicates that the well-trained APNN model
performs exceptionally well on the test dataset as well. Furthermore, we compare the
accuracy of our APNN model with commonly used ab-initio methods, sSAPT0/jun-
ccpVDZ and B3LYP/6-31G(d), in describing inter- and intra-molecular energies. The
quantum mechanical methods such as SAPT2+/augcc-pVTZ and revDSD-PBEPS6-
D3(BJ)/aug-cc-pVTZ are employed as the benchmark. Table 2 presents the root mean
square errors (RMSEs) of the results obtained by different methods on the training
and test datasets. The subtle discrepancy of APNN predictions on training and test
datasets again underscore the outstanding generalization of APNN force field. For
predicting the intermolecular energy, the RMSE from our APNN model is remarkable
lower than the one from sSAPTO/jun-ccpVDZ (0.56 vesus 1.141 kcal/mol). More-
over, for calculating the intramolecular energy, the RMSE from our APNN model is
slightly higher than the one from B3LYP/6-31G(d) (2.94 versus 2.142 kcal/mol). These
comparisons suggest that our APNN model achieves quantum chemical accuracy in
predicting the microscale energies. This viewpoint is also supported by the compari-
son among the three methods in Fig. S5 in SI. In the meanwhile, we have to note that
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Fig. 4 |The change of loss components in the lowest loss with respect to the number
of iterations. The Egec, Eing and E,qy signify the loss of electrostatic energy, induction energy
and Van der Waals energy; Lnet, Lsimi and Linit represent the losses of physical constraints regarding
net charge, difference between parameters with similar chemical enviroments and deviation from the
intial value. The Tabu-Adam algorithm is employed to train the intermolecular interactions.

the APNN model possesses superior computational efficiency that surpass those of its
counterpart by several orders of magnitude, particularly in large-scale systems.

Table 2 The RMSE of energy using APNN and

medium-precision ab-initio method.

RMSE to high-precision ab-initio

TRAIN DATA TEST DATA
Einter (SAPT) 1.156 1.141
Einter (APNN) 0.534 0.560
Eintra (B3LYP) 2.139 2.142
Eintra (APNN) 2.786 2.960

Furthermore, in order to investigate the predictive accuracy of APNN for macro-
scopic properties, we conduct a series of simulations on bulk DEGDME at varying
temperatures for calculations of the density, dielectric constant, and self-diffusion coef-
ficient. Moreover, we compute the vibrational frequencies from equilibrium structures,
which serve as a key information in infrared spectroscopy. Fig. 5 shows the comparisons
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between the results from the molecular simulations based on our APNN force field
and the experimental measurements[49-51] , revealing a great consistency between
experiments and APNN predictions. As shown in Fig. 5a, we compare the results from
our APNN model with experimental data over a wide temperature range. The results
indicate that the maximum relative error is less than 5%. At certain temperatures,
the APNN model nearly perfectly reproduce the experimental measurements. In pre-
dicting the dielectric constant, our APNN model shows an excellent agreement with
experiment measurement, with negligible errors observed at all temperatures except
for relatively high temperatures (see Fig. 5b). In addition, the vibrational frequency
obtained by our APNN model perfectly reproduce the results from B3LYP-D3(BJ)/6-
31G(d) method (see Fig. 5c). This consistence is primarily due to the fitting of force
constants to vibrational frequencies during the physical refinement process. Moreover,
we also compare the diffusion coefficient calculated using our APNN model with the
experiment data. As illustrated in Fig. 5d, our results agree well with experiments
with the maximum relatively error being less than 3x1071%m2s~!. The macroscopic
properties are governed by numerous microscopic behaviors, exhibiting considerable
sensitivity to the microscale energy and force. Therefore, while force fields constructed
using a bottom-up approach typically exhibit strong generalization and transferabil-
ity, accurately predicting the macroscopic properties remains challenging. Conversely,
the top-down approach exhibits the opposite characteristics. However, our APNN not
only demonstrates exceptional generalization and transferability but also accurately
predicts the macroscopic properties without the assistance of any experimental data
and empirical parameter.

3 Conclusions

In summary, we introduce a skillful strategy to integrate physical principle and
machine learning method, which endows the resulting model (APNN) with excellent
generalization, robustness, and accuracy. We attribute the success of our model to the
following three aspects. First, embedding the AMOEBA+ potential into neural net-
work provides our APNN model with reliable extrapolation capability. Second, the
network parameters are refined in accordance with several physical models offering
more straightforward mapping to macroscopic properties. Moreover, we develop an
efficient global Tabu-Adam optimizer, which greatly drives the model to the opti-
mal solution under the stringent constraint of prior knowledge. Take DEGDME as an
example, the well-trained APNN not only achieves comparable accuracy to ab-initio
methods in predicting microscopic interactions such as intra- and inter-molecular ener-
gies, but also exhibits excellent agreement with experiments in predicting macroscopic
properties such as density, dielectric constant, diffusion coefficient and so on. This
bottom-up approach does not depend on experimental data, requiring only minimal
computational resources to effectively predict both microscopic and macroscopic prop-
erties of emerging materials. Beyond that, this method that collaboratively integrates
physical constraints and machine learning is not limited to the AMOEBA+ force field,
but also can extend to other physically meaningful models.
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Fig. 5 |Comparison of macroscopic properties between reference (experiments[49—-51]
or DFT result) and predictions from APNN. The (a) density, (b) dielectric constant, (c)
vibration frequency and (d) self-diffusion coefficient of DEGDME are compared.

In this work, we advocate for physics-informed machine learning potentials as one
of the most effective approaches to overcome the limitations of traditional force fields
and non-physically embedded MLFFs. In fact, there are various ways to embed physics
models into neural networks. To maximize the generalization capability of our model,
we propose an “extreme” approach: impose strict physical constraints on the neural
network, which both encapsulates physical principles with high fidelity and assures
computational efficiency on par with traditional force fields. However, this highly cus-
tomized model may result in limitation for approximating interactions not captured
by the embedded knowledge. To address this possible issue, we can replace the fuzzy
part of the physical model with a flexible neural network architecture. However, bal-
ancing the flexibility of neural networks with the rigor of physical knowledge remains
a significant challenge.

4 Methods

4.1 AMOEBA+ potential

The total potential energy of the AMOEBA+ model consists of the bonded and
nonbonded energy terms. The bonded interactions retain the formulas in AMOEBA
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model[37]. The nonbonded interactions (Eq. (4)) include permanent, charge trans-
fer and polarized electrostatics as well as Van der Waals, which is the core of the
polarization force field.

Enonbonded = Eelec + Epol + Echg + Evdw- (4>

The electrostatic interaction (Feec) is computed by multipoles truncated at
quadrupoles, and is incorporated with the charge penetration effect

AVA
Eelec = Z + Z; TdampM + Z TdamPM + MTToverlapM (5)

(%] T”
where Z;, Z; are nuclear charges and M;, M; are the permanent multipole moments,
the T?jamp and T?}'erlap are the distance perception matrix as mentioned in Eq. (1),

these two interaction tensors can be separated by different damping functions f damp(T)
and foverlaP(r) which are derived by Gordon et al[52]:

FR(r) = 1= e, (©

| B B?
Jr ) =1 g e M (7)
In Eq. (7), the charge penetration effect is considered, where f; and §; are charge
penetration parameters for atom ¢ and j, respectively. The induced dipole u; of atom
i is polarized by the total electric field:

D= (ZT M +ZT“;MJ>, ®)

where «; is the polarizability of atom 3, T?j and T}; are the interaction for direct and
mutual induction, respectively, which can be derived from the Eq. (1) with different
damping functions, i.e.,

f 1 3rijr); I
™™ — 2 — " » J )= 9
ij Vv (|I'ij dmeg s (7‘]) T?j s (rj)r?j ) 9)

s'(r;;) and s”’(r;;) are the first and second derivatives of the damping function with

respect to 7, respectively. For mutual induction: s'(r;;) = 1 — e—aw’(rig), s"(ri;) =
1-(1+ aug(rij))e*aﬁ(rij); for direct induction: §'(r;;) =1 — e—au??(ri;) s"(rij) =
1— (1+ 1/2aud(r;;))e="*("0)  where u(ri;) = ri;/(cs;)'/6 is the scaled distance
between atoms 4, j. We can get the mapping between distance dependence matrix and
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dipoles by arranging the Eq. (8):

ayt TH T\ ¥T%MJ
1 12 " iy d
Tgi a;l . T72r§\] Zj: TQij
p=1 . . : (10)
';n ;n ;1 :
TR TRy - ayn ZT(I{,ij

j
Thus, the induced dipoles can be iteratively calculated according to Eq. (10) using

the self-consistent field procedure. The many-body polarization effect in AMOEBA+
potential can be represented as:

1
Epol = —3 ZHiTiij- (11)
ij

The charge transfer term is formulated as a pairwise exponential function between
two atoms at near covalent distances

1 .
Eug = 2 3 aggeltom), (12)
i

where a;; determines the magnitude of the energy associated with the transfer and
bi; controls the decay rate. The combining rules for two atoms i and j are given as
a;; = \/a;a; and b;; = % (b; + bj). The Van der Waals interactions capturing repulsion
and dispersion effects are modeled with the buffered 14-7 equation

107 \'[ 112
Eoaw =3 2y _9). 13
d Ze](piﬁom) (p,?j+0.17 ) (13)

In Eq. (13), p;; = mj/r?j with r;; being the distance between atoms i and j
and 79, = ((r9)* 4+ (r9;)*)/((r5)? + (19;)?), the e;; has the combing rule &;; =

1 1
deiigjj/((€ii)? + (€55)%)-

The AMOEBA+ potential has been encoded within the Tinker software, which
is an efficient parallel molecular simulation tool designed for large-scale simulation. In
the AMOEBA+ model, the forward propagation from atomic acoordinates to energy
has already been achieved. Building upon this, we integrate a backward propagation
chain to complete the loop of forward and backward propagation. By incorporating
the Tabu-Adam optimizer, we proceed the model training and optimize the force
field parameters informed in neural network. The advantage of this approach lies in
the high degree of ease-of-use and expandability, without altering the default settings
of the original AMOEBA+ force field. Moreover, the trained parameters are highly
integrated with the original Tinker, facilitating rapid molecular dynamics simulations
within the existing Tinker ecosystem.
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4.2 Tabu search

In Tabu search we use the radiation intensity to define the fitness of the point 4, which
can be quantitatively calculated by a surrogate model:

Np
Rad; = Z L(pj) ’ D(”j) + R(pi7 Bonin, Bmax)s (14)
j=1

where NN, is the total number of iterations in previous search, L(p;) and p; are the
position and loss function at the j-th search, respectively. The p; is the position of
the evaluated point ¢, r;; is the distance between the point ¢ and j, and D(r;;) is the
decay function depend on r;;:

D(ri;) = exp(—rij/T0 ), (15)

where r;; is the manhattan distance presented by:

Nd
rig = > |pi (k) = p; (k)], (16)
k=1

Where p; (k) and p;(k) denote the values of p; and p; in the k-th dimension. The
N, is the number of dimension of the parameter space. Moreover, in the Eq. (14), the
R(pi, Bmin, Bmax) represents the radiation intensity generated by the boundary:

Ng
R (pinmina Bmax) = LO Z (|Bmax(k) —Pi (k)| - ‘Bmin(k) —Pi (k)|) : Nd; (17)
k=1

with Bpin(k) and Bpax(k) being the vectors of the lower and upper boundary in the
k-th dimension, respectively. Ly is the preset loss of the boundary.
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