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Abstract—In recent years, the field of Transfer Evolutionary
Optimization (TrEO) has witnessed substantial growth, fueled by
the realization of its profound impact on solving complex prob-
lems. Numerous algorithms have emerged to address the chal-
lenges posed by transferring knowledge between tasks. However,
the recently highlighted “no free lunch theorem” in transfer opti-
mization clarifies that no single algorithm reigns supreme across
diverse problem types. This paper addresses this conundrum by
adopting a benchmarking approach to evaluate the performance
of various TrEO algorithms in realistic scenarios. Despite the
growing methodological focus on transfer optimization, existing
benchmark problems often fall short due to inadequate design,
predominantly featuring synthetic problems that lack real-world
relevance. This paper pioneers a practical TrEO benchmark suite,
integrating problems from the literature categorized based on
the three essential aspects of Big Source Task-Instances: volume,
variety, and velocity. Our primary objective is to provide a
comprehensive analysis of existing TrEO algorithms and pave the
way for the development of new approaches to tackle practical
challenges. By introducing realistic benchmarks that embody the
three dimensions of volume, variety, and velocity, we aim to
foster a deeper understanding of algorithmic performance in the
face of diverse and complex transfer scenarios. This benchmark
suite is poised to serve as a valuable resource for researchers,
facilitating the refinement and advancement of TrEO algorithms
in the pursuit of solving real-world problems.

Index Terms—Optimization experience, transfer evolutionary
optimization, no free lunch theorem, practical test problems,
benchmark suite.
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I. INTRODUCTION

Evolutionary algorithms (EAs) have gained widespread ap-
plications in solving a diverse range of optimization prob-
lems due to their versatility and ease of use [1]. These
algorithms find utility in industrial applications, including
resource scheduling [2], [3], mechanical design [4], [5], cyber
security [6], [7], [8], vehicle routing [9], [10], and machine
learning [11], [12]. However, a limitation of conventional
evolutionary optimization methods is their tabula rasa design,
by which they often start an optimization process from scratch
assuming little prior knowledge about solutions to the problem
at hand. It is crucial to recognize that real-world problems
seldom exist in isolation [13]; they often share commonalities
with numerous instances solved in the past (e.g., within a
specific industry) [14]. This realization has spurred a growing
interest in the development of efficient optimizers capable of
enhancing their performance by automatically transferring and
reusing acquired knowledge across related problems [15].

In particular, transfer evolutionary optimization (TrEO)
has emerged as a computational intelligence paradigm that
facilitates knowledge transfer in evolutionary computation
from previously solved source tasks to address a new target
task of interest [15]. In recent years, numerous TrEO algo-
rithms have showcased their efficacy across various domains,
emphasizing the potential for specialization in evolutionary
optimization [16], [17]. Despite these advancements, the re-
cently proven “no free lunch theorem” (NFLT) in transfer
optimization [18] highlights a critical observation - no single
algorithm universally outperforms others across diverse prob-
lem types. A comprehensive literature review, exemplified by
studies like [18], substantiates the NFLT’s validity, revealing
no algorithm’s supremacy over others across numerous syn-
thetic problems. This phenomenon is conjectured to become
even more apparent in practical scenarios, where a multitude
of generated source tasks often exhibit higher diversity and
complexity.

Existing TrEO studies often focus on empirical analyses
of optimization performance using synthetic benchmark func-
tions in idealized settings [19], [20], [21]. Many of these
functions are perceived as disconnected from reality. A re-
cent paper has offered proof of faster convergence through
transfer in the surrogate-assisted optimization setting [22].
However, aside from a handful of such work, the general
shortage of formal results offering performance guarantees
for TrEO, coupled with the need for better evaluation and
benchmarking [18], poses challenges in understanding how
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the proposed algorithms would perform in real applications.
Without appropriate benchmark problems, a comprehensive
assessment of TrEO’s efficacy in coping with the implications
of the NFLT in real-world situations is difficult.

To address this limitation, this paper adopts a benchmarking
approach to evaluate the performance of several TrEO algo-
rithms in realistic scenarios. Our objective is to gain a deeper
understanding of algorithmic performance when confronted
with diverse and complex transfer scenarios, each possessing
its unique strengths and weaknesses. The paper pioneers a
practical TrEO benchmark suite, integrating problems from
the literature categorized based on three postulated V’s of
Big Source Task-Instances: Big Volume (given a static but
substantial number of source tasks), Big Variety (under a wide
range of source tasks with varying elements of optimization
problems), and Big Velocity (for efficient transfer optimiza-
tion in time-sensitive environments). By introducing realistic
benchmarks embodying the three dimensions of volume, vari-
ety, and velocity, we aim to provide a comprehensive analysis
of existing TrEO algorithms and foster a deeper understanding
of algorithmic performance in the face of diverse and complex
transfer scenarios.

In practice, the increasing volume of source tasks presents
obstacles such as memory cost and the computational burden
of selecting relevant information with prospects for positive
transfers [23]. The variety of possible characteristics of source
task-instances, in terms of input features, dimensionality,
objective function landscapes, etc., points to the importance
of enhancing the generality of TrEO methods in exploiting
transferred knowledge in optimization problems [15]. What’s
more, in online or lifelong learning scenarios with growing
velocity of source information streams, there is a pressing need
for better learning agility to quickly and effectively utilize
time-sensitive “fresh” information, given the possible sparsity
of relevant sources to the target task [24].

The organization of the rest of this paper is as follows.
Section II presents a brief background of TrEO. Section III
analyzes the characteristics of practical problems related to Big
Source Task-Instances and categorizes the problems included
in our test suite. Section IV gives a description and a measure
of similarity between tasks of the three proposed bench-
mark problems. Section V offers comprehensive experimental
details and presents baseline results derived from several
mainstream algorithms, providing empirical support for the
“no free lunch theorem”. Section VI concludes the paper.

II. BACKGROUND

This section lays the groundwork for transfer optimization.
It introduces the basic problem formulation and discusses
several state-of-the-art transfer evolutionary algorithms.

A. Preliminaries on Transfer Optimization

In a canonical case with no transfer, an optimization prob-
lem/task T with an objective function f(x) to be maximized
can be stated as:

max
x∈X

f(x), (1)

where X represents the search space of the problem and
x ∈ X denotes a candidate solution [25][26]. f(x) may be
a black box whose mathematical form and derivatives are
unknown/inaccessible. A run of an optimization algorithm
could then be called successful if the set of solutions X∗

evaluated satisfy the following condition:

f(x) ≥ f∗ − ϵ, x ∈ X∗. (2)

Here, f∗ represents the true global optimum of the objective
function, and ϵ is a small (positive) tolerance threshold.

Standard optimization methods often suffer from high com-
putational costs as they begin every optimization task from
scratch without dedicated mechanisms for utilizing experien-
tial knowledge. In contrast, transfer optimization harnesses
the power of knowledge gained from previously solved tasks,
leading to faster convergence and enhanced performance.

In the sequential transfer optimization setting, we consider a
collection of K−1 previously solved source problems denoted
as T1, T2, ..., TK−1. Each task is associated with an objective
function, represented as f1, f2, ..., fK−1. In the context of
probabilistic evolutionary search, let a population’s underlying
probability distribution model be denoted as p(x). Then,
for those previously optimized source tasks, their respective
optimized search distributions, p∗1(x), p

∗
2(x), ..., p∗K−1(x), are

seen as building blocks of knowledge available for reuse. For
the specific target task TK with an objective function fK , let
pK(x) be the probabilistic model of the population in TK.

Under this scenario, we can reformulate equation (1) in
an information-geometric form [27] where it is possible to
optimize the population distribution of the target task TK while
leveraging the source priors as [25],

max
w1,w2,...,wK ,pK(x)

∫
X
fK(x)

·

[
K−1∑
s=1

ws · p∗Ms
(x) + wK · pK(x)

]
· dx,

s.t.,

K∑
i=1

wi =1 and wi ≥ 0,∀i ∈ {1, ...,K − 1,K} .

(3)
Here, x represents a candidate solution for the target task

TK . Ms represents a mapping function designed to trans-
form solutions from the sth source to the target, enabling
comprehensive utilization of stored knowledge derived from
the source tasks. p∗Ms

(x) signifies the adaptation of p∗s(x)
through the mapping function Ms. w1, . . . , wK−1, wK are
transfer coefficients that describe the probabilistic mixture
model

[∑K−1
s=1 ws · p∗Ms

(x) + wK · pK(x)
]
. These transfer

coefficients play a crucial role in determining the extent of
knowledge (i.e., the number of solutions) transferred from
the various components of the mixture model to the target.
If a particular source is highly correlated with the target task,
then achieving a high transfer coefficient corresponding to that
source will facilitate rapid target optimization.

However, fine-tuning the transfer coefficients is nontriv-
ial due to the absence of precise knowledge of inter-task
correlations, especially in black-box optimization settings.
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Fig. 1: In sequential transfer optimization, knowledge from pre-
optimized tasks is extracted and stored in a knowledge base. This
accumulated knowledge is later utilized to solve the target task.

The repercussions of incorrect transfer coefficient assignments
are two-fold. On one hand, allocating an unreasonably high
transfer coefficient to an unrelated source model introduces
useless or even harmful solutions into the target’s search
space, thus potentially impeding overall search performance.
Conversely, the inability to assign an appropriately high value
to a related source model hampers the transfer of valuable
solutions, limiting potential optimization enhancements for the
target task. Therefore, it becomes crucial for a transfer opti-
mization algorithm to accurately calibrate the mixture transfer
coefficients of equation (3), leveraging solution-evaluation data
generated during the target optimization search.

B. State-of-the-Art Transfer EAs

Transfer evolutionary optimization (TrEO) is a promising
approach for reusing source priors for efficient target problem-
solving [15], [28]. Recently, a variety of TrEO algorithms
have been proposed in a multitude of areas, including neuro-
evolution [29], multi-objective optimization [30], objective-
heterogeneous optimization [31], dynamic optimization [32],
[33], combinatorial optimization [34], [35], symbolic regres-
sion [36], [37], learning classifier systems [38], [39], evo-
lutionary robotics [40], image classification [41] and rein-
forcement learning [42]. Many of these algorithms align with
the concept described in equation (3) and generally exhibit
superior performance compared to those approaches that do
not utilize transfer optimization [43].

In terms of implementation of the concept, there are two
main strategies to extract knowledge from prior source tasks1:
model-free transfer and model-based transfer. While this paper
does not offer a comprehensive methodological review of each
strategy, it does spotlight several noteworthy state-of-the-art
examples for illustration purposes.

(1) Model-Free Transfer: The objective of this strategy is to
transfer supplementary information linked to solutions into the
target task. Solutions from analogous source tasks previously
solved are archived in a knowledge base. When addressing the
target task, pertinent auxiliary details are extracted from these
stored solutions and introduced into the optimization proce-
dure. Several model-free transfer optimization algorithms have

1Table I provides additional categorization details for existing TrEO algo-
rithms.

TABLE I: Representative transfer evolutionary algorithms.

Algorithms Probabilistic
Model-based?

Transformation-/
Mapping-based?

Adaptive
Transfer?

CAMA-M [35] no yes yes
MIPBIL [33] no no no

KT [37] no no yes
TEMO-MPS [30] yes no yes
TLGP-criptor [41] no no yes

AMTEA [44] yes no yes
MFEA-DV [45] no no no

MSSTO [46] no yes yes
tNES [29] yes no yes

DVA-ESTO [31] no yes no
KAES [47] no yes no

AT-MFEA [48] no yes no
sTrEO [24] yes no yes

MSTL-DMOEA [49] no yes yes
EKT [18] no no no

been proposed in the literature, including CIGAR [13], [50],
MFEA-DV [45], MSSTO [46], KAES [47], AT-MFEA [48],
and MSTL-DMOEA [49], among others. For instance, CIGAR
combines Genetic Algorithms (GA) and case-based memory
to continuously improve performance on sets of similar prob-
lems. It periodically injects suitable intermediate solutions
from similar previously solved source tasks into the GA’s
population, rather than starting the optimization process anew
for the target task. In other works such as [51] and [42], the
approach is simpler, where the best solution from a similar
previously solved source task is incorporated to initialize the
GA’s initial population, and the rest of the procedure follows
a standard GA.

(2) Model-Based Transfer: This strategy leverages prob-
abilistic models or other models generated from candidate
solutions of previously solved source tasks to reuse prior
knowledge. The models built from candidate solutions of
solved source tasks are stored and utilized for subsequent
optimization of similar target tasks. In the field of model-based
sequential transfer methods, several representative algorithms
include KBOA [52], MOI-MBO [53], AMTEA [44], MAB-
AMTEA [23], DVA-ESTO [31], and sTrEO [24]. For example,
AMTEA is an adaptive model-based transfer evolutionary
algorithm designed to minimize the risk of negative transfer.
However, its source-target similarity capture exhibits limita-
tions as the number of source tasks increases rapidly. To
address this issue, the Multi-Armed Bandit (MAB) theory was
recently introduced to the AMTEA. However, MAB-AMTEA
selects only one source to extract knowledge, which may
be challenging when useful sources represent only a small
percentage of the overall source tasks. In contrast, sTrEO
focuses on both scalability against a growing number of source
instances and online learning agility against sparsity of highly
related source tasks to the target task. Experimental results
show that sTrEO achieves superior performance compared to
the aforementioned algorithms.
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III. BENCHMARK CATEGORIZATION

In this section, we analyze the characteristics of transfer op-
timization of big task instances and present the benchmarking
problem-suite categories.

The rise of Big Source Task-Instances and the increasing
number of potentially similar historical source tasks pose
challenges in efficiently reusing knowledge for TrEO. We
investigate three fundamental characteristics of TrEO problems
related to Big Volume, Big Variety, and Big Velocity, which
shape the performance and effectiveness of TrEO algorithms
in real-world problem-solving scenarios. These characteristics
play a crucial role in determining the scalability, adaptability,
and efficiency of TrEO algorithms in handling large and
diverse source tasks, as well as in addressing transient and
rapidly changing optimization landscapes. By categorizing our
benchmarking test suite based on these characteristics, we aim
to provide a comprehensive evaluation of TrEO algorithms’
capabilities and limitations across different problem domains
and complexities.

A. Big Volume of Source Task-Instances

Definition 1: A Big Volume of Source Task-Instances: a
static but substantial number of previously solved source
tasks.

The masses of source tasks could contain potentially useful
knowledge for optimizing a target task. TrEO with a big
volume of source task instances poses several challenges in
practical optimization scenarios. One major challenge is the in-
creased computational cost required to handle large volumes of
source data [23]. Furthermore, the transfer of knowledge from
a multitude of related problems becomes more difficult, and
the risk of negative transfer increases. Identifying relevant and
transferable knowledge among the large pool of source tasks
becomes a critical task [24]. The issue is compounded when a
significant proportion of the source tasks are not relevant to the
target optimization task. This necessitates the development of
specialized techniques and the use of powerful computational
resources to effectively tackle the challenges posed by big
volumes of source tasks. For instance, in the large-scale cloud-
based platforms of today, online services catering to thousands
of diverse clients worldwide have emerged. Locating the rele-
vant source priors among these large volumes of “pre-solved”
cases could have a significant impact on enhancing service
efficiency as well as the quality of solutions recommended to
any new target client.

B. Big Variety of Source Task-Instances

Definition 2: A Big Variety of Source Task-Instances: a
large range of source tasks with different elements of op-
timization problems, including differing dimensionalities
and solution representation of variables, heterogeneity of
the search space, differing objectives and constraints, etc.

In a significant body of TrEO studies, researchers often
assumed the configuration of identical optimization elements

across source and target tasks [25]. Therefore, the well-
optimized knowledge extracted from source tasks can posi-
tively direct the search process of target tasks. In real-world
scenarios, the mismatch in optimization elements between
source and target tasks often occurs. However, this does not
necessarily imply that the unrelatedness across tasks and their
true relationship may be concealed. This necessitates finding
appropriate transformations or mappings of search spaces
between mismatched optimization elements to increase the
overlap in solution distributions and uncover latent similarities
or connections between tasks [54]. To illustrate this, consider
the example of a planar robotic arm task, where the goal is
to reach a pre-specified point with a robotic arm possessing
specific characteristics. In this scenario, the source tasks may
exhibit variations in optimization elements, such as dimension-
alities and robot arm length, leading to differences in variable
and objective features. Consequently, knowledge derived from
source tasks needs to undergo a mapping or a transformation
before it can be effectively utilized, as the variations in
the optimization elements create different domains for each
task. Therefore, addressing the wide variety of source task-
instances demands the development of transfer optimization
methods that can adapt to transfer between tasks with diverse
optimization elements by mapping or transforming knowledge
from different domains for efficient knowledge transfer.

C. Big Velocity of Source Task-Instances

Definition 3: A Big Velocity of Source Task-Instances:
the high speed of optimizing target problems towards a
certain level of fitness performance (often by leveraging
knowledge from a considerable number of source tasks)
given limited time and computational power.

It is a requirement for efficient transfer optimization in
time-sensitive environments and poses a significant challenge
in practical transfer optimization problems. As the size of
the source data increases, the algorithm’s analysis time also
grows. In many real-world optimization scenarios, the need to
find an optimal solution within the shortest possible time is
crucial [55]. Furthermore, some practical problems demand
algorithms to achieve satisfactory objective values within
strict time constraints as well [56]. For instance, consider
the context of attacking a pre-trained policy in a sequential
decision-making setting, where the optimization algorithm
must add perturbations to an agent’s observations to deceive
it into altering its actions. Such attacks can be seen as a
form of defense against an offensive adversary. Here, time
is limited, and the algorithm must launch a successful attack
within a tight time window before the key frame vanishes.
In such contexts, time efficiency becomes a critical consid-
eration alongside data efficiency. The focus shifts towards
algorithms that can efficiently leverage prior knowledge and
past experiences to converge rapidly towards high-quality
solutions within a shorter timeframe [23]. The ability to adapt
and transfer knowledge effectively is crucial for prompting
decision-making and achieving near-optimal solutions.

Addressing the challenge of big velocity in source task-
instances necessitates the development of agile and time-
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efficient transfer optimization algorithms. Techniques that cap-
italize on the temporal context of the target task and leverage
sophisticated transfer learning strategies can enable algorithms
to make swift and informed decisions. Integration of real-time
optimization methodologies and online learning approaches
can further enhance the time efficiency of transfer optimization
algorithms.

D. Summary
Having thoroughly examined the characteristics discussed

in the preceding sections, we propose a problem test suite
comprising three practical optimization problems. Each prob-
lem is selected to represent distinct facets of complexity
and diversity commonly encountered in real-life applications.
The knapsack problem is a classical combinatorial (discrete)
challenge with a focus on Big Volume of previously solved
source tasks. The planar arm problem represents a continuous
optimization scenario, characterized by both Big Volume and
Big Variety of source tasks. Minimalistic attacks encompass
mixed optimization problems that exhibit characteristics of Big
Volume and Big Velocity. The properties of the aforementioned
problems can be summarized as follows:

• Knapsack Problem:
– Representation: Discrete
– Characteristic: Big Volume

• Planar Arm Problem:
– Representation: Continuous
– Characteristic: Big Volume and Big Variety

• Minimalistic Attacks:
– Representation: Mixed (Continuous and Discrete)
– Characteristic: Big Volume and Big Velocity

The visualization of the benchmark suite categories is
depicted in Fig. 2. To assess the adaptability of algorithms and
address the challenges posed by Big Source Task-Instances in
TrEO, we examine two transfer scenarios: multi-to-one and
many-to-one.

In the multi-to-one scenario, the process starts with active
source task selection, in contrast to the one-to-one transfer
scenario, where the algorithm directly transfers knowledge
from a given source task without selection considerations.
The multi-to-one scenario often involves a higher proportion
of relevant source tasks, facilitating the algorithm’s ability
to identify pertinent sources effectively. Additionally, this
scenario provides an opportunity to leverage knowledge from
all source tasks, enabling the extraction of valuable insights
while mitigating the risk of negative transfer. Conversely, the
many-to-one transfer scenario involves a substantial number of
source tasks, thereby challenging the scalability of algorithms.
This scenario also tests the agility of algorithms when faced
with variations in the sparsity of relevant source tasks for the
target task of interest. In what follows, we present detailed
descriptions of the proposed optimization problems, capturing
diverse complexities encountered in real-world applications.

IV. PROBLEMS DESCRIPTION

In this section, we present a concise introduction to the
three practical problems included in our benchmarking prob-

Continuous
Discrete

Mixed
Knapsack Problem
⚫ Discrete
⚫ Volume

Planar Arm Problem
⚫ Continuous
⚫ Volume & Variety

Minimalistic Attacks
⚫ Mixed
⚫ Volume & Velocity

Fig. 2: Categorization of our benchmarking problem suite, which
comprises three representative problems, namely, the Knapsack Prob-
lem, Planar Robotic Arm Problem, and Minimalistic Attacks. These
problems exemplify discrete, continuous, and mixed optimization
domains, respectively. Remarkably, Knapsack Problems have only the
volume characteristic. While, Planar Robotic Arm Problems possess
volume and variety features, and Minimalistic Attacks exhibit volume
and velocity characteristics.

lem suite: the 0/1 knapsack problem, the planar robotic
arm problem, and minimalistic attacks. Additionally, we out-
line the methodology used to measure source-target correla-
tion/similarity within these problems.

A. Constructing 0/1 Knapsack Problem Benchmarks

The knapsack problem is one of the most studied discrete
NP-hard problems [57]. A formal definition of the 0/1 knap-
sack problem is given below:

max

n∑
i=1

vixi,

s.t.

n∑
i=1

wixi ≤ C and xi ∈ {0, 1},
(4)

where n indicates the number of indivisible items, vi repre-
sents the value of the ith item, and wi denotes the weight of the
ith item. The binary variable xi is used to indicate whether the
ith item is selected (xi = 1) or not (xi = 0). When employing
EAs to solve the knapsack problem, there is a possibility of
violating the capacity constraint for certain individuals. In such
cases, we employ Dantzig’s greedy approximation algorithm
to ensure compliance with the capacity constraint [58].

Practical problems with similarities to knapsack problems
are widespread, and researchers are actively seeking more
efficient solutions that require less time and computational
resources. For example, in a cloud service that recommends
packages to clients, the process of finding customized pack-
ages to recommend to a new target client can be cast as the
NP-hard 0/1 knapsack problem [24]. However, many current
algorithms still approach these problems from scratch, leading
to significant time and computational demands. This is where
transfer optimization algorithms come into play, offering
valuable benefits as problems rarely exist in isolation and
often share common mathematical abstractions. By leveraging
knowledge from previously solved tasks, transfer optimization
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can greatly enhance the optimization process and alleviate the
burden of starting the search from scratch each time.

In this study, we generate synthetic instances for the knap-
sack problem (KP) with attributes similar to those found
in [58], [44], [23]. We categorize the instances based on the
relationships between wi and vi and randomly generate three
instances as follows: (1) uncorrelated (uc), where both wi

and vi are uniformly generated random real numbers within
the range [1, 10]; (2) weakly correlated (wc), where wi is a
uniformly generated random real number within [1, 10], and
vi is obtained by adding wi to another uniformly generated
random real number within the range [-5, 5] (if, for any i,
vi < 0, we discard the sample and repeat the process until
vi ≥ 0); and (3) strongly correlated (sc), where wi is still
a uniformly generated random real number within [1, 10],
and vi is defined as wi + 5. Additionally, we define two
types of knapsacks based on their capacity: (1) restrictive
capacity (rk), where C = 20 and only a small number of
items can be selected; and (2) average capacity (ak), where
C = 0.5

∑n
i=1 wi and the number of items is larger.

Based on the categorization above, we can build six different
types of KP tasks (i.e., KP uc rk, KP wc rk, KP sc rk,
KP uc ak, KP wc ak, and KP sc ak). Note two tasks are
considered to be more closely related when they both have an
average capacity. This often manifests in a significant degree of
similarity between them as a relatively large number of items
need to be selected for both tasks and hence their optimum
solutions could depict a substantial overlap [23].

B. Planar Robotic Arm Problem

For this study, we selected a 2D robotic arm problem
inspired by [59]. This problem entails a robotic arm comprised
of d joints, where each joint possesses an identical length
L and the ability to rotate up to a maximum angle αmax

(encoded in (0,1]). The objective is to determine suitable
angles for each joint, within the specified boundaries, in order
to position the tip of the robotic arm at a given target point.
This scenario resembles a human arm reaching out to grasp
an object.

To solve the problem, we aim to determine the optimal an-
gles α = (α1, α2, ..., αd) for each joint such that the position
of the robotic arm’s tip is as close as possible to a predefined
target in the two-dimensional plane. The dimensionality of the
problem denoted as d, corresponds to the number of joints or
links in the robotic arm. The number of joints thus introduces
variety by instilling heterogeneity in the search spaces of
different tasks.

We define the task TL,αmax by two parameters: the length of
the links, denoted as L (assumed to be the same for all links),
and the maximum angle αmax for each joint (assuming equal
limits for all joints for simplicity). The objective function,
f(α, TL,αmax

), evaluates a solution α in the context of the
task TL,αmax . It computes the Euclidean distance between the
tip position, denoted as pd, and the target position denoted as
T . The recursive calculation of pd is as follows:

M0 = I, (5)

Mi = Mi−1 ·


cosα′

i − sinα′
i 0 L′

sinα′
i cosα′

i 0 0

0 0 1 0

0 0 0 1

 , (6)

pi =Mi · (0, 0, 0, 1)
T
, (7)

where, αi = 2π · αmax · (αi − 0.5), ∀i ∈ {1, ..., d} and
L′ = L/d. Under these settings, we can describe the objective
function as follows:

f(α, TL,αmax
) = −∥pd − T∥. (8)

Here, we define the target position T as the point (1, 1) in
the two-dimensional plane. Moreover, we consider this as
a maximization problem, aiming to maximize the negative
distance between the tip position pd and the target position
T in equation (8).

After clarifying the definition of the planar robotic arm
problem, understanding the similarity/correlation between the
tasks is necessary for designing benchmarking problems in the
transfer optimization domain. In the present study, we consider
two cases involving 10 and 20 joints. The target task is defined
as T√2,1 for both scenarios. We generate numerous source
instances with different lengths L in the range (0,

√
2) and

angles αmax in the range (0, 1). The similarity estimation
process between source and target tasks is performed by the
following steps. First, we optimize all the source tasks using
a continuous canonical genetic algorithm (CGA) [60]. Then,
after constructing probabilistic models [61] of the source tasks,
a number of solutions are sampled from each source task
model and evaluated using the objective function of the target
task. The objective values form the cells of the heat maps,
as shown in Fig. 3, which provide valuable insights into the
correlation between the source and target tasks. Note that the
dimensionalities of the source and target tasks are kept the
same to ensure the reliability of the similarity estimation.

In the heat maps, cells with higher fitness values appear
hotter (brighter), indicating a stronger correlation with the
target task. Conversely, colder (darker) cells represent weaker
or no correlation due to the useless or negative knowledge
transfer. Essentially, the degree of correlation between the
source tasks and the target task is determined by the effective-
ness of the transfer process. By analyzing this heat map, we
gain a clear understanding of the similarity between the source
task constructed with specific αmax and L and the target task.
This valuable insight not only streamlines the creation of the
benchmark for the planar robotic arm problems but also lays
the groundwork for its future development.

C. Minimalistic Attacks

The rapid advancements in artificial intelligence (AI) have
led to significant breakthroughs, but they have also brought
forth new challenges, particularly in AI security. One such
challenge is exemplified in [51], where the vulnerability of
neural network-based reinforcement learning policies is ex-
posed. Moreover, recent research showcases the transferability
of perturbations applied to similar frames, enabling attacks
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Fig. 3: Heatmaps of source-target relatedness for diverse combina-
tions of L and αmax, ranging between (0,

√
2) and (0, 1], respectively,

for (a) 10 joints and (b) 20 joints. According to the sidebar on the
right which marks the fitness range, the hotter (brighter) cells indicate
more relatedness to the target (as their fitness values are greater)
whereas the colder (darker) ones show less or no relatedness.

on specific frames [42]. In light of the above, we have
incorporated minimalistic attacks as the third test problem in
our benchmarking suite. This problem provides a valuable
platform for evaluating the algorithms’ ability to deceive
systems and create adversarial attacks in realistic AI scenarios.

Minimalistic attacks represent a type of reinforcement learn-
ing (RL) adversarial attack problem that encompasses three
key settings [51]: (1) black-box policy access; (2) fractional-
state adversary, and (3) tactically-chanced attack. The main ob-
jective of these attacks is to deceive RL policies by perturbing
a specific number of pixels in selected keyframes, assuming a
black-box setting (see Fig. 4).

In an RL example, the agent takes action at based on
the state st and receives a reward rt from the environment
at time step t. Assuming a finite set of n available actions
a1t , a

2
t , ..., a

n
t , the action probability distribution π(·|st) over

those n actions can be described as:

π(·|st) = [p(a1t ), p(a
2
t ), ..., p(a

n
t )],

s.t.

n∑
j=1

p(ajt ) = 1.
(9)

Herein, p(ajt ) represents the probability that the agent
chooses action ajt . As expected, the agent selects the action

o = argmaxj p(a
j
t ). With this, the goal of minimalistic attacks

is to maximize the discrepancy between action distributions
before and after the attack, which can be formulated as
follows:

max
δt

max
e̸=o

π(·|st + δt)e − π(·|st + δt)o, (10)

where δt represents the perturbation to be added to the original
state st at time step t. Further, o and e represent the action
taken by the trained agent before and after the attack and
π(·|st)e represents the probability that the agent chooses action
j under the guidance of π(·|st). In the context of minimalistic
attacks, δt is limited to perturb only a small fraction of the
input state.

Remarkably, a successful attack is achieved when the fitness
value in equation (10) is greater than 0, indicating that the
agent has been deceived and takes a different action. Under
such circumstances, the time for the algorithm to compute
an attack is relatively short due to the transient nature of
the frames. Recently, researchers introduced a novel approach
to accelerate the computation of perturbation δt by exploit-
ing the correlation between similar frames [42]. This tech-
nique, referred to as Init-GA, involves incorporating the best-
performing individual (with the highest fitness value) from the
final population of an already optimized attack into the initial
population of the target attack. This method effectively utilizes
correlations between the source and target tasks, resulting in
more efficient optimization.

Based on these insights, we classify the source tasks into
two groups: those that strongly correlate with the target task
and those that weakly correlate. This is determined by the
observed transfer outcomes during the optimization process.
To elaborate, our approach involves two steps: (1) optimizing
each source task using CGA, and (2) sequentially transferring
an individual (or candidate solution) from the final population
of optimized source tasks to the initial population of the target
task. This sequential transfer process repeats until each indi-
vidual in the source task’s final population has been transferred
to the target task. For each source task, we conduct an equal
number of independent experiments as its population size. It’s
worth noting that only a single individual is transferred from
the source task at a time. An individual is considered positive if
it contributes to the successful completion of an attack within
a reduced number of generations during the optimization of
the target task. Moreover, we define a source task as related
to the target task when the majority (i.e., at least 60%) of its
population consists of positive individuals. To ensure statistical
significance and reduce the influence of random noise, we
repeat this process 30 times.

V. PROBLEM SPECIFICATION AND BASELINE RESULTS

This section provides a detailed discussion of our bench-
mark problem settings, thoroughly testing the algorithms’ ca-
pabilities in solving the challenges of Big Volume, Big Variety,
and Big Velocity. Besides, we provide comprehensive results
and analysis of state-of-the-art algorithms for comparison and
evaluation.
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enemy

agent

(a) Original State

perturbation

(b) Attacked State

Fig. 4: Minimalistic Attacks: In the original BeamRider keyframe (a),
an enemy is directly in front of the agent. At this point, the trained
agent fires, resulting in an increase in the game’s score. However, if
the keyframe is disturbed due to an attack (b), causing the agent to
mistakenly perceive a bullet, the trained agent becomes more inclined
to move left or right to avoid it. Consequently, this alteration in
behavior ultimately leads to a successful attack as the agent’s original
actions are changed.

A. Big Volume

Multi-to-one Problem: In this scenario, we consider three
different configurations for defining source and target tasks
(see Table II). Each configuration includes four types of KPs as
source tasks. Note that only the last source task with average
knapsack capacity (labeled as KP sc ak (task4), KP uc ak
(task4), and KP wc ak (task4)) is strongly related to their
corresponding target task, while the others are weakly related.

TABLE II: Configuration details of multi-to-one scenario for the 0/1
knapsack problem.

Configuration Source Tasks Target Task

A KP uc rk(task1), KP sc rk(task2),
KP wc rk(task3), KP sc ak(task4) KP uc ak

B KP uc rk(task1), KP sc rk(task2),
KP wc rk(task3), KP uc ak(task4) KP wc ak

C KP uc rk(task1), KP sc rk(task2),
KP wc rk(task3), KP wc ak(task4) KP sc ak

Many-to-one Problem: In this scenario, the number of
source tasks is 1000 in alignment with the big volume condi-
tion. The type of source tasks include KP uc rk, KP sc rk,
KP wc rk, KP sc ak and the target belongs to KP uc ak. We
consider four different settings where the related tasks (i.e.,
KP sc ak) account for 22%(220), 16%(160), 10%(100), and
4%(40) of the total of 1000 source tasks, respectively. This can
assess the algorithm’s performance when dealing with sparse
relationships between the source and target tasks. As the ratio
of related source tasks decreases, the algorithm’s ability to
extract useful knowledge from a large volume of previously
optimized tasks is demanded.

Experimental Settings: For each knapsack problem, the
dimensionality is set to 2000, meaning there are 2000 items
available for selection. While there are a plethora of exist-
ing methods for addressing transfer optimization problems,

applying them directly in the context of discrete 0/1 knap-
sack problems proves to be challenging. In this work, we
choose to utilize the following four methods: (i) Canonical
Genetic Algorithm [60] (CGA, a classical genetic algorithm
with no transfer), (ii) Evolutionary Knowledge Transfer [18]
(EKT, a simple transfer through population seeding/case-
injection), (iii) Adaptive Model-based Transfer Evolutionary
Algorithm [44] (AMTEA, a model-based transfer with stacked
density estimation), and (iv) scalable Transfer Evolutionary
Optimization [24] (sTrEO, a model-based transfer with two
co-evolving species for joint evolution). In our experiments,
we begin by optimizing the source tasks of each configuration
using the binary CGA [60]. The populations of the first and
final generations are saved for aiding target task optimization
later on. This process incorporates a stopping condition to
ensure the diversity of the population. The optimization of the
knapsack problem is carried out under the following settings:

1) Representation: Binary coded.
2) Repetition: 30.
3) Population size: 50.
4) Maximum function evaluations: 5000.
5) Evolutionary operators:

a) Uniform crossover [62] with probability pc=1.
b) Bit-flip mutation with probability pm = 1/d, where

d is the dimensionality of the target optimization
problem.

6) For model-based transfer algorithm(s):
a) Probabilistic model: Univariate marginal frequency

(factored Bernoulli distribution) [63].
b) Transfer interval: 2.

All source tasks and the target task employ CGA of the
same genetic operators (as listed above) as the basic solvers.
Moreover, the settings (i.e., hyper-parameters) of AMTEA and
sTrEO in the experiments are kept consistent with previous
studies [44], [24].

Performance Metrics: In knapsack problems, we consider
the averaged objective value, performance score, and wall
clock time as the metrics to measure the performance of
all algorithms. Suppose there are N optimization algorithms
applied to this problem, and each algorithm runs for L repeti-
tions. The final objective value obtained by the ith algorithm
in the lth repetition for the optimization problem is denoted as
yil, where i ∈ 1, 2, ..., N and l ∈ 1, 2, ..., L. The three metrics
of the ith algorithm can be given as:

• Averaged Objective Value: The averaged objective value
means the average fitness of the population and can be
computed as 1

L

∑L
l=1 yi,l. A higher average objective

value is better for optimizing a maximization problem.
• Performance Score: To calculate the performance score

for each algorithm, we compute the mean (µ) and stan-
dard deviation (σ) of the objective values obtained by all
N algorithms over the L repetitions. Upon which, the
performance score for the ith algorithm is calculated as
follows:

scorei =
1

L

L∑
l=1

yil − µ

σ
. (11)
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The highest performance score refers to its corresponding
algorithm outperforming the others.

• Wall Clock Time: The wall clock time represents time
cost during the optimization process. A smaller wall clock
time implies an algorithm can optimize the problem at a
lower time cost.

Comparison Results and Analysis:
(1) Data Efficiency: Tables III and IV summarize the

averaged objective values and performance scores of the CGA,
EKT, AMTEA, and sTrEO on completing 5000 function
evaluations. The best values are shown in boldface. The results
show that there is a small difference between the averaged
objective values obtained by the four above optimization algo-
rithms. Overall, in the multi-to-one transfer scenario, AMTEA
is slightly superior to the others. However, in the many-to-
one transfer scenario, sTrEO obtained the most competitive
performance among all methods.

Fig. 5 and Fig. 6 show the convergence trends of the aver-
aged objective values obtained by four algorithms in the multi-
to-one and many-to-one scenarios for 0/1 knapsack problems,
respectively. It can be seen that CGA obtained comparatively
worse convergence performance among all methods as it
does not leverage the knowledge from source tasks. AMTEA
and sTrEO show a faster convergence than EKT. This is
because AMTEA and sTrEO can extract useful knowledge
from previously solved tasks continuously, leading to more
efficient optimization than EKT with only a simple transfer
of solution injection at the population initialization stage. As
the ratio of closely relevant source tasks decreases in the
many-to-one transfer scenario, AMTEA and sTrEO still obtain
a promising optimization performance, hence demonstrating
their superiority in dealing with the sparsity of the “Big
Volume” of source task instances.

(2) Time Efficiency: The time efficiency of an algorithm is
evaluated based on the averaged objective value achieved over
the wall clock time in seconds. Fig. 7 illustrates the averaged
objective values of all four algorithms in solving multi-to-one
knapsack problems. Accordingly, we can see that AMTEA and
sTrEO obtained better performance in the early optimization
process, hence demonstrating their efficiency in identifying
the pertinent sources from the small number of source tasks.
Nevertheless, in many-to-one scenarios (see Fig. 8), AMTEA
has reported the worst performance among four algorithms as
it needs to estimate the similarity between each pair of source-
target tasks for each time the knowledge transfer occurs. An
increase in the number of source tasks easily results in a linear
scaling in the consumption of transfer costs. Moreover, sTrEO
involves an incremental learning scheme to calculate task
similarities online. After the early optimization stage, it obtains
more competitive averaged objective values compared to CGA,
EKT, and AMTEA given limited optimization time, hence
verifying its online learning agility and transfer efficiency in
solving knapsack problems with a “Big Volume” of source
tasks.

(3) Transfer Coefficients: Particularly, the transfer coef-
ficients of sTrEO in leveraging knowledge from different
source tasks (KP uc rk, KP sc rk, KP wc rk, KP sc ak) are
depicted in Fig. 9 and Fig. 10. These results verify that sTrEO

possesses a remarkable ability to extract valuable knowledge
from the most correlated task (KP sc ak), hence speeding up
the convergence of the target task of interest.

(4) Quality vs Efficiency: Fig. 11 depicts the Quality vs
Efficiency of the four algorithms in the multi-to-one and many-
to-one scenarios of the knapsack problem, which represents the
trade-off between the averaged objective values and time cost
in terms of wall clock time after the optimization process (i.e.,
5000 function evaluations). A point closer to the bottom right
corner indicates better performance of the method. The results
effectively validate the “no free lunch theorem”. For instance,
in configurations A and B of the multi-to-one scenario, the
AMTEA algorithm achieves higher fitness than the other three
algorithms but incurs a higher time overhead.

B. Big Volume and Big Variety

This section presents details of both multi-to-one and many-
to-one transfer scenarios for robotic arm problems, which
are characterized by “Big Volume” and “Big Variety”. After
generating the heat map to analyze the correlations between
tasks (Fig. 3 in Section IV-B), we designate instances with
0 < L <

√
2 and αmax = 1 (the lighter area in Fig. 3) as

strongly related to the target task T√2,1. While the instances
with 0 < L <

√
2 and 0.18 < αmax < 0.26 (the darker area

in Fig. 3) are considered to be weakly related to the target task.
Furthermore, to test the performance of transfer optimization
in handling source tasks with “Big Variety” characteristics,
we re-configure the dimensionality of the source tasks (i.e., the
number of joints) as ds = ψ∗dT , and the robotic arm length as
Ls = LT /ψ, where ψ is a scaling factor randomly generated
from {2, 3, ..., 9}. dT and LT represent the dimensionality and
the robotic arm length of the target task, respectively. In this
setting, the relevance between source and target tasks can still
be retained.

Multi-to-one Problem: In this scenario, we consider two
configurations with 10 joints and 20 joints, respectively. For
each configuration, we select three weakly related instances
and one strongly related instance as source tasks, together with
the target task to form the multi-to-one problem.

Many-to-one Problem: In this scenario, both configurations
with 10 joints and 20 joints are taken into account. we have set
up 1000 source tasks, with 20 of them being strongly related
to the target task, constituting a proportion of 0.02.

Experimental Settings: In the planar robotic arm problem,
we assess and compare the performance of multiple algo-
rithms: (i) Canonical Genetic Algorithm [60] (CGA), (ii) Evo-
lutionary Knowledge Transfer [18] (EKT), (iii) MultiSource
Selective Transfer Optimization [46] (MSSTO, a model-free
transfer method with a linear mapping), (iv) Direction Vector-
based Transfer Evolutionary Optimization [45] (DVTrEO, a di-
rection vector-based transfer algorithm modified from MFEA-
DV), (v) Affine Transformation-enhanced Transfer Evolution-
ary Optimization [48] (ATTrEO, a mapping-based transfer-
ability enhancement algorithm modified from AT-MFEA), (vi)
Adaptive Model-based Transfer Evolutionary Algorithm [44]
(AMTEA), and (vii) scalable Transfer Evolutionary Optimiza-
tion [24] (sTrEO). Note that certain algorithms in TrEO,
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TABLE III: Averaged objective values and performance scores of CGA, EKT, AMTEA, and sTrEO for three configurations of multi-to-one
scenario in the 0/1 Knapsack Problem. The best results are shown in boldface.

Configuration
Averaged Objective Value Performance Score

CGA EKT AMTEA sTrEO CGA EKT AMTEA sTrEO

A 7998.3247 7985.1407 8156.0013 8131.5400 -0.8353 -0.9939 1.0617 0.7674

B 7704.2353 7698.5887 7767.6047 7750.6513 -0.7186 -0.8745 1.0306 0.5626

C 11910.6927 11885.8580 11895.2360 11759.3393 0.6655 0.3205 0.4508 -1.4368

TABLE IV: Averaged objective values and performance scores of CGA, EKT, AMTEA, and sTrEO for four configurations of many-to-one
scenarios in the 0/1 Knapsack Problem. The best results are shown in boldface.

Ratio
Averaged Objective Value Performance Score

CGA EKT AMTEA sTrEO CGA EKT AMTEA sTrEO

0.22 7994.7720 8000.9487 8322.0060 8419.5040 -0.9833 -0.9513 0.7144 1.2202

0.16 7987.0113 7998.7113 8316.3527 8421.2513 -0.9950 -0.9349 0.6957 1.2342

0.10 8005.4233 8000.4120 8304.0240 8401.4547 -0.9472 -0.9747 0.6933 1.2286

0.04 8005.8573 8008.0007 8269.9033 8370.6260 -0.9527 -0.9398 0.6421 1.2504
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Fig. 5: Convergence trends for (a) configuration A, (b) configuration B, and (c) configuration C of multi-to-one scenario in the 0/1 Knapsack
Problem with 5000 function evaluations.
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Fig. 6: Convergence trends with related source tasks account for (a) 0.22, (b) 0.16, (c) 0.10, and (d) 0.04 ratios of many-to-one scenario in
the 0/1 Knapsack Problem with 5000 function evaluations.
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Fig. 7: Convergence efficiency in terms of wall clock time in seconds for (a) configuration A, (b) configuration B, and (c) configuration C
of multi-to-one scenario in the 0/1 Knapsack Problem.



11

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Wall Clock Time

5500

6000

6500

7000

7500

8000
Av

er
ag

ed
 O

bj
ec

tiv
e 

Va
lu

e

Canonical GA
EKT
AMTEA
sTrEO

(a)
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Wall Clock Time

5500

6000

6500

7000

7500

8000

Av
er

ag
ed

 O
bj

ec
tiv

e 
Va

lu
e

Canonical GA
EKT
AMTEA
sTrEO

(b)
0 2 4 6 8 10 12 14 16

Wall Clock Time

5500

6000

6500

7000

7500

8000

Av
er

ag
ed

 O
bj

ec
tiv

e 
Va

lu
e

Canonical GA
EKT
AMTEA
sTrEO

(c)
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Wall Clock Time

5500

6000

6500

7000

7500

8000

8500

Av
er

ag
ed

 O
bj

ec
tiv

e 
Va

lu
e

Canonical GA
EKT
AMTEA
sTrEO

(d)

Fig. 8: Convergence efficiency in terms of wall clock time in seconds with related source tasks account for (a) 0.22, (b) 0.16, (c) 0.10, and
(d) 0.04 ratios of many-to-one scenario in the 0/1 Knapsack Problem.
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Fig. 9: sTrEO’s learned ws’s for (a) configuration A, (b) configuration B, and (c) configuration C of multi-to-one scenario in the 0/1 Knapsack
Problem.
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Fig. 10: sTrEO’s learned ws’s with related source tasks account for (a) 0.22, (b) 0.16, (c) 0.10, and (d) 0.04 ratios of many-to-one scenario
in the 0/1 Knapsack Problem.
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Fig. 11: The Quality vs Efficiency on two objectives (averaged
objective value and wall clock time) of (a) multi-to-one and (b) many-
to-one scenarios in the 0/1 Knapsack Problem.

are not specifically designed to handle heterogeneity in the
search space. For such algorithms, a simple mapping method
is applied. If the dimensionality of the source task is greater
than that of the target task, we clip the optimized solutions
in the source task. Otherwise, we fill the optimized solutions
with random values.

All source tasks are optimized by a continuous CGA [60]
at first. Then, the solutions of the first and last population

are archived to offer knowledge. Baseline results of the above
algorithms are provided. Moreover, the following settings are
adopted in the experiments:

1) Representation: Real-value coded in the range [0, 1].
2) Repetition: 30.
3) Population size: 50.
4) Maximum function evaluations: 5000.
5) Evolutionary operators:

a) Simulated binary crossover [64], [65] with proba-
bility pc=1 and distribution index ηc = 10.

b) Polynomial-based mutation [66] with probability
pm = 1/d (d is the dimensionality of the target op-
timization problem) and distribution index ηm=10.

6) For model-based transfer algorithm(s):
a) Probabilistic model: Multivariate Gaussian distri-

bution [61].
b) Transfer interval: 2.

Performance Metric: Similar to knapsack problems, we take
the averaged objective value, performance score, and wall
clock time into account in the planar arm problem. Readers
can refer to V-A for more details.

Comparison of Results and Analysis:
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Fig. 12: Convergence trends for (a) 10 joints and (b) 20 joints of
multi-to-one scenario in the Planar Robotic Arm Problem.

0 1000 2000 3000 4000 5000
Number of Function Evaluations

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Av
er

ag
ed

 O
bj

ec
tiv

e 
Va

lu
e

Canonical GA
EKT
MSSTO
DVTrEO
ATTrEO
AMTEA
sTrEO

(a)
0 1000 2000 3000 4000 5000

Number of Function Evaluations

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Av
er

ag
ed

 O
bj

ec
tiv

e 
Va

lu
e

Canonical GA
EKT
MSSTO
DVTrEO
ATTrEO
AMTEA
sTrEO

(b)

Fig. 13: Convergence trends for (a) 10 joints and (b) 20 joints of
many-to-one scenario in the Planar Robotic Arm Problem.

(1) Data Efficiency: Tables V, VI, VII and VIII summa-
rize the averaged objective values and performance scores
of CGA, EKT, MSSTO, DVTrEO, ATTrEO, AMTEA, and
sTrEO after 5000 function evaluations. The best results are
shown in boldface. Their corresponding convergence trends
for the averaged objective values are depicted in Fig. 12
and Fig. 13, respectively. Due to the “Big Variety” nature of
the planar robotic arm problem (reflected in the dimensional
mismatch between the source tasks and the target task), TrEO
algorithms, which extract knowledge from the source tasks
and directly utilize it without any mapping, perform poorly in
this problem. It can be seen that the MSSTO algorithm, which
essentially builds a mapping/adaptation mechanism based on
a single-layer denoising autoencoder [67], outperforms all the
other transfer optimization algorithms in terms of convergence
speed and averaged objective values after the optimization
process, thus confirming its superiority in solving the planar
arm problem with a large volume and a large variety of source
task instances.

(2) Time Efficiency: The time efficiency in the planar arm
problem is measured in the same way as in the knapsack
problem. As can be seen in Figs. 14 and 15, AMTEA,
ATTrEO, and MSSTO are significantly more time-consuming
because they all adopted a polling-based source-target simi-
larity measurement for each time of the knowledge transfer,
especially in many-to-one scenarios with a large number of
source tasks. Furthermore, compared to AMTEA and ATTrEO,
MSSTO has a more expensive time complexity as it uses all
generated solutions to learn the auto-encoder based source-
target mapping.

(3) Quality vs Efficiency: Fig. 16 shows the Quality vs
Efficiency of CGA, EKT, MSSTO, DVTrEO, AMTEA, and
sTrEO in multi-to-one and many-to-one scenarios of the planar
arm problem after 5000 function evaluations. A point closer
to the lower right corner is preferred. Note that ATTrEO
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Fig. 14: Convergence efficiency in terms of wall clock time in seconds
in multi-to-one scenarios of the Planar Robotic Arm Problem with
(a) 10 joints and (b) 20 joints, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
1.50

1.25

1.00

0.75

0.50

0.25

0.00

19.0 19.2 19.4

Wall Clock Time

Av
er

ag
ed

 O
bj

ec
tiv

e 
Va

lu
e Canonical GA

EKT
MSSTO
DVTrEO
ATTrEO
AMTEA
sTrEO

(a)

0.0 0.5 1.0 1.5 2.0 2.5
1.50

1.25

1.00

0.75

0.50

0.25

0.00

58.5 59.0

Wall Clock Time

Av
er

ag
ed

 O
bj

ec
tiv

e 
Va

lu
e Canonical GA

EKT
MSSTO
DVTrEO
ATTrEO
AMTEA
sTrEO

(b)

Fig. 15: Convergence efficiency in terms of wall clock time in seconds
in many-to-one scenarios of the Planar Robotic Arm Problem with
(a) 10 joints and (b) 20 joints, respectively.

requires significantly more wall clock time to complete the
optimization process than other algorithms and is therefore
excluded from the figures. We can see that MSSTO performs
best in terms of average objective value, but takes a much
longer time to complete 5000 function evaluations. Thus, the
“no free lunch theorem” is well proven here.

C. Big Volume and Big Velocity

Minimalistic Attacks exhibit the “Big Volume” and “Big
Velocity” characteristics and their detailed experimental con-
figuration and analysis are provided as follows. Specifically,
we consider the ACKTR [68] as our essential reinforcement
learning policy and employ three games: BeamRider, Qbert,
and Seaquest as the baseline environments. For each environ-
ment, the target task is first defined. Then, we pick frames with
strong and weak correlations to the target task as source tasks
to construct our minimalistic attack problems. More details are
discussed as follows.
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Fig. 16: The Quality vs Efficiency on two objectives (averaged
objective value and wall clock time) in (a) multi-to-one and (b)
many-to-one scenarios of the Planar Robotic Arm Problem after the
optimization process.
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TABLE V: Averaged objective values of CGA, EKT, MSSTO, DVTrEO, ATTrEO, AMTEA, and sTrEO in multi-to-one scenarios of the
Planar Robotic Arm problem with 10 and 20 joints, respectively. The best are shown in boldface.

Joint Number CGA EKT MSSTO DVTrEO ATTrEO AMTEA sTrEO

10 -0.0592 -0.0541 -0.0384 -0.1181 -0.1267 -0.0678 -0.0972

20 -0.2409 -0.2284 -0.0872 -0.4008 -0.4394 -0.2532 -0.2171

TABLE VI: Performance scores of CGA, EKT, MSSTO, DVTrEO, ATTrEO, AMTEA, and sTrEO in multi-to-one scenarios of Planar Robotic
Arm problem with 10 and 20 joints, respectively. The best are shown in boldface.

Joint Number CGA EKT MSSTO DVTrEO ATTrEO AMTEA sTrEO

10 0.4398 0.5574 0.9218 -0.9228 -0.7978 0.2408 -0.4392

20 0.1478 0.2453 1.3397 -1.0915 -1.0268 0.0525 0.3329

TABLE VII: Averaged objective values of CGA, EKT, MSSTO, DVTrEO, ATTrEO, AMTEA, and sTrEO in many-to-one scenarios of the
Planar Robotic Arm Problem with 10 and 20 joints, respectively. The best are shown in boldface.

Joint Number CGA EKT MSSTO DVTrEO ATTrEO AMTEA sTrEO

10 -0.0570 -0.0481 -0.0138 -0.0766 -0.0347 -0.0542 -0.0294

20 -0.2463 -0.2254 -0.0256 -0.4036 -0.1488 -0.2662 -0.1835

TABLE VIII: Performance scores of CGA, EKT, MSSTO, DVTrEO, ATTrEO, AMTEA, and sTrEO in many-to-one scenarios of the Planar
Robotic Arm Problem with 10 and 20 joints, respectively. The best are shown in boldface.

Joint Number CGA EKT MSSTO DVTrEO ATTrEO AMTEA sTrEO

10 -0.3917 -0.1178 0.9373 -0.9958 0.4186 -0.307 0.4566

20 -0.2670 -0.1050 1.4425 -1.4853 0.6163 -0.4210 0.2196

This study focuses solely on the many-to-one transfer sce-
nario since the agent in Atari games can interact with the
environment and generate hundreds, or even thousands, of
frames in a relatively short amount of time. Specifically, we
set the number of source tasks to 1000. For each game, we
consider three configurations where the related source tasks
account for 0.24, 0.14, and 0.04 of all source tasks. This setting
hence creates a “Big Volume” scenario where the knowledge
from 1000 source tasks can be transferred to a single target
task (i.e., 1000-to-1), with varying ratios of related tasks.
Meanwhile, in minimalistic attacks, the transfer optimization
algorithm has to launch a successful attack within a tight time
window (i.e., before the keyframe vanishes), hence posing a
significant challenge in handling the “Big Velocity” of source
task instances.

Experimental Settings: In minimalistic attacks, we con-
sider a setup with 4 attacked pixels. Each pixel is en-
coded using three consecutive gene positions, correspond-
ing to its x-coordinate, y-coordinate, and the perturbation
added to those coordinates. This formulation results in a
problem dimensionality of 12. Likewise, we employ (i)
Canonical Genetic Algorithm [60] (CGA), (ii) Evolutionary
Knowledge Transfer [18] (EKT), (iii) MultiSource Selective
Transfer Optimization [46] (MSSTO), (iv) Direction Vector-
based Transfer Evolutionary Optimization [45] (DVTrEO), (v)
Affine Transformation-enhanced Transfer Evolutionary Opti-

mization [48] (ATTrEO), (vi) Adaptive Model-based Transfer
Evolutionary Algorithm [44] (AMTEA), and (vii) scalable
Transfer Evolutionary Optimization [24] (sTrEO) on this prob-
lem.

All source tasks are optimized by CGA at first and the
solutions of the first and last population are archived. The
experimental parameters and configurations are as follows:

1) Representation: Real-valued coded in the range [0, 1].
2) Repetition: 30.
3) Population size: 10.
4) Maximum function evaluations: 1000.
5) Evolutionary operators:

a) Single-point crossover [65] with probability pc =
1.

b) Gaussian mutation with probability pm = 0.1,
mean µ = 0, and standard deviation σ = 0.5.

6) For model-based transfer algorithm(s):
a) Probabilistic model: Multivariate Gaussian distri-

bution [61].
b) Transfer interval: 2.

Performance Metric: For minimalistic attacks, we employ
the generation number at which the loss value first exceeds
0 (labeled as Gengt0) to evaluate the performance of CGA,
EKT, MSSTO, DVTrEO, ATTrEO, AMTEA, and sTrEO. This
criterion is employed because a positive loss value indicates
a successful attack. Therefore, a smaller Gengt0 indicates
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that the algorithm can launch a successful attack more quickly.

Comparison Results and Analysis:
(1) Data Efficiency: Table IX shows the Gengt0 values

of CGA, EKT, MSSTO, DVTrEO, ATTrEO, AMTEA, and
sTrEO on attacking three games in minimalistic attacks. The
outcomes highlighted in boldface are the most favorable. The
results show that the performance of various TrEO algorithms
is distinct from each other. Among all methods, sTrEO and
AMTEA achieve better Gengt0 values than the other algo-
rithms, indicating their superiority in generating successful
attacks with fewer evaluations. Fig. 17 shows the convergence
trends of the averaged objective values obtained by seven
algorithms in three games. Remarkably, sTrEO and AMTEA
consistently perform well in all scenarios due to their effec-
tiveness and efficiency in extracting useful knowledge from
source tasks, enabling rapid growth and quick convergence. In
particular, as the ratio of correlated source tasks decreases (i.e.
from 0.24 to 0.04), the Gengt0 values reported by algorithms
generally increase. This highlights the increasing difficulty
of knowledge transfer as the ratio of related source tasks
decreases.

(2) Quality vs Efficiency: Fig. 18 illustrates the Quality
vs Efficiency of the minimalistic attacks. One objective of
the Quality vs Efficiency is 100 − Gengt0 (to ensure the
points closer to the bottom right corner are better), and the
other is time cost in terms of wall clock time on completing
1000 function evaluations. For clarity, this figure displays only
a subset of algorithms that are close to the frontier. It is
clear that, across all cases, sTrEO and AMTEA significantly
outperform in the first objective, while trailing behind some
algorithms such as CGA and EKT in the second objective.
The “no free lunch theorem” applies here, implying that no
single algorithm will obtain better performance values than all
the others in all problems.

VI. CONCLUSIONS

Recent studies have showcased the effectiveness of transfer
evolutionary optimization (TrEO) in addressing complex prob-
lems. However, the “no free lunch theorem” (NFLT) in the
TrEO literature underscores that no single algorithm can reign
supreme across diverse problem types. Remarkably, existing
TrEO studies often focus on empirical analyses of optimization
performance using synthetic benchmark functions, which often
fall short due to inadequate design, predominantly featuring
synthetic problems that lack real-world relevance. Therefore,
this paper adopts a benchmarking approach to cultivate a
deep understanding of the performance of TrEO algorithms,
especially when confronted with diverse and complex transfer
scenarios in practical problems.

Specifically, we conducted a comprehensive analysis of
three key characteristics with the advent of Big Source Task-
Instances in practical optimization problems, namely Big
Volume, Big Variety, and Big Velocity. We classified three
representative problems including knapsack problems, planar
robot arm problems, and minimalistic attacks. The knapsack
problem represents a traditional discrete optimization problem

characterized by Big Volume. The planar arm problem is
a continuous problem exhibiting both Big Volume and Big
Variety characteristics. Lastly, minimalistic attacks encompass
mixed problems that contain both Big Volume and Big Velocity
characteristics.

Our work fills the gap by providing a practical benchmark-
ing problem suite for researchers in the TrEO community. This
initiative facilitates the assessment of algorithm performance
on practical problems, promoting further interest and research
in this promising field. It is important to note that our current
benchmark suite includes only three types of practical test
problems. Future research endeavors will focus on expanding
the scope by incorporating additional benchmark problems
with more diverse characteristics.
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TABLE IX: The Gengt0 of CGA, EKT, MSSTO, DVTrEO, ATTrEO, AMTEA, and sTrEO for three different game environments with
three different ratios (in descending order of the proportion of related source tasks) in Minimalistic Attacks. The best results are shown in
boldface.

Game Environment Ratio CGA EKT MSSTO DVTrEO ATTrEO AMTEA sTrEO

BeamRider
0.24 61 33 15 74 33 9 8
0.14 49 40 25 84 38 11 8
0.04 69 44 18 45 35 15 13

Qbert
0.24 42 30 53 60 37 7 6
0.14 45 32 49 48 45 11 9
0.04 40 37 57 50 35 15 17

Seaquest
0.24 85 57 - - 53 5 5
0.14 86 43 - - 47 5 5
0.04 - 51 - - 45 5 5
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(a) BeamRide environment with ratio of 0.24
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(b) BeamRide environment with ratio of 0.14
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(c) BeamRide environment with ratio of 0.04
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(d) Qbert environment with ratio of 0.24
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(e) Qbert environment with ratio of 0.14
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(f) Qbert environment with ratio of 0.04
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(g) Seaquest environment with ratio of 0.24
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(h) Seaquest environment with ratio of 0.14

0 200 400 600 800 1000
Number of Function Evaluations

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Av
er

ag
ed

 O
bj

ec
tiv

e 
Va

lu
e

Canonical GA
EKT
MSSTO
DVTrEO
ATTrEO
AMTEA
sTrEO

(i) Seaquest environment with ratio of 0.04

Fig. 17: Convergence trends for three different game environments with three different ratios (in descending order of the proportion of related
source tasks) in Minimalistic Attacks.

[17] A. Gupta, L. Zhou, Y.-S. Ong, Z. Chen, and Y. Hou, “Half a dozen
real-world applications of evolutionary multitasking, and more,” IEEE
Computational Intelligence Magazine, vol. 17, no. 2, pp. 49–66, 2022.

[18] E. O. Scott and K. A. De Jong, “First complexity results for evolu-
tionary knowledge transfer,” in Proceedings of the 17th ACM/SIGEVO
Conference on Foundations of Genetic Algorithms, 2023, pp. 140–151.

[19] B. Da, Y.-S. Ong, L. Feng, A. K. Qin, A. Gupta, Z. Zhu, C.-K. Ting,
K. Tang, and X. Yao, “Evolutionary multitasking for single-objective
continuous optimization: Benchmark problems, performance metric, and
baseline results,” arXiv preprint arXiv:1706.03470, 2017.

[20] Y. Yuan, Y.-S. Ong, L. Feng, A. K. Qin, A. Gupta, B. Da, Q. Zhang,
K. C. Tan, Y. Jin, and H. Ishibuchi, “Evolutionary multitasking for mul-
tiobjective continuous optimization: Benchmark problems, performance
metrics and baseline results,” arXiv preprint arXiv:1706.02766, 2017.

[21] A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, and A. Zamuda,
“Dish-xx solving cec2020 single objective bound constrained numerical

optimization benchmark,” in 2020 IEEE Congress on Evolutionary
Computation (CEC), 2020, pp. 1–8.

[22] J. Liu, A. Gupta, C. Ooi, and Y.-S. Ong, “Extremo: Transfer evolutionary
multiobjective optimization with proof of faster convergence,” IEEE
Transactions on Evolutionary Computation, pp. 1–1, 2024.

[23] M. Shakeri, A. Gupta, Y.-S. Ong, X. Chi, and A. Z. NengSheng, “Coping
with big data in transfer optimization,” in 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 2019, pp. 3925–3932.

[24] M. Shakeri, E. Miahi, A. Gupta, and Y. Ong, “Scalable transfer evolu-
tionary optimization: Coping with big task instances,” IEEE transactions
on cybernetics, vol. PP, 2022.

[25] R. Lim, A. Gupta, Y.-S. Ong, L. Feng, and A. N. Zhang, “Non-linear
domain adaptation in transfer evolutionary optimization,” Cognitive
Computation, vol. 13, pp. 290–307, 2021.

[26] A. Gupta and Y.-S. Ong, Memetic computation: the mainspring of
knowledge transfer in a data-driven optimization era. Springer, 2018,



16

0 20 40 60 80 100
Average Remaining Generations upon Successful Attack

0

2

4

6

8

10

12

14

W
al

l C
lo

ck
 T

im
e

BeamRider 0.04
BeamRider 0.14
BeamRider 0.24
Qbert 0.04
Qbert 0.14
Qbert 0.24
Seaquest 0.04
Seaquest 0.14
Seaquest 0.24

CGA,1975
EKT,2023
MSSTO,2020
DVTrEO,2019
ATTrEO,2022
AMTEA,2018
sTrEO,2022

Fig. 18: The Quality vs Efficiency on two objectives (averaged objec-
tive value and wall clock time) for each different game environment
in Minimalistic Attacks. sTrEO and EKT are on the front and they
dominate the rest of the algorithms

vol. 21.
[27] Y. Ollivier, L. Arnold, A. Auger, and N. Hansen, “Information-geometric

optimization algorithms: A unifying picture via invariance principles,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 564–628,
2017.

[28] K. C. Tan, L. Feng, and M. Jiang, “Evolutionary transfer optimization-a
new frontier in evolutionary computation research,” IEEE Computational
Intelligence Magazine, vol. 16, no. 1, pp. 22–33, 2021.

[29] J. C. Wong, A. Gupta, and Y.-S. Ong, “Can transfer neuroevolution
tractably solve your differential equations?” IEEE Computational Intel-
ligence Magazine, vol. 16, no. 2, pp. 14–30, 2021.

[30] A. T. W. Min, Y.-S. Ong, A. Gupta, and C.-K. Goh, “Multiproblem
surrogates: Transfer evolutionary multiobjective optimization of com-
putationally expensive problems,” IEEE Transactions on Evolutionary
Computation, vol. 23, no. 1, pp. 15–28, 2017.

[31] X. Xue, C. Yang, Y. Hu, K. Zhang, Y.-M. Cheung, L. Song, and
K. C. Tan, “Evolutionary sequential transfer optimization for objective-
heterogeneous problems,” IEEE Transactions on Evolutionary Compu-
tation, vol. 26, no. 6, pp. 1424–1438, 2021.

[32] S. Yang and X. Yao, “Population-based incremental learning with
associative memory for dynamic environments,” IEEE Transactions on
Evolutionary Computation, vol. 12, no. 5, pp. 542–561, 2008.

[33] M. Mavrovouniotis and S. Yang, “Direct memory schemes for
population-based incremental learning in cyclically changing environ-
ments,” in Applications of Evolutionary Computation: 19th European
Conference, EvoApplications 2016, Porto, Portugal, March 30–April 1,
2016, Proceedings, Part II 19, vol. 9598. Springer, 2016, pp. 233–247.

[34] L. Feng, Y.-S. Ong, M.-H. Lim, and I. W. Tsang, “Memetic search
with interdomain learning: A realization between cvrp and carp,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 644–658,
2014.

[35] L. Feng, Y.-S. Ong, A.-H. Tan, and I. W. Tsang, “Memes as building
blocks: a case study on evolutionary optimization+ transfer learning for
routing problems,” Memetic Computing, vol. 7, pp. 159–180, 2015.

[36] T. T. H. Dinh, T. H. Chu, and Q. U. Nguyen, “Transfer learning
in genetic programming,” in 2015 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2015, pp. 1145–1151.

[37] E. Haslam, B. Xue, and M. Zhang, “Further investigation on genetic
programming with transfer learning for symbolic regression,” in 2016
IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016, pp.
3598–3605.

[38] M. Iqbal, W. N. Browne, and M. Zhang, “Extracting and using building
blocks of knowledge in learning classifier systems,” in Proceedings of
the 14th annual conference on Genetic and evolutionary computation.
Association for Computing Machinery, 2012, pp. 863–870.

[39] M. Iqbal, W. N. Browne, and M. Zhang, “Reusing building blocks of
extracted knowledge to solve complex, large-scale boolean problems,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp.
465–480, 2013.

[40] A. Moshaiov and A. Tal, “Family bootstrapping: A genetic transfer
learning approach for onsetting the evolution for a set of related robotic
tasks,” in 2014 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2014, pp. 2801–2808.

[41] M. Iqbal, B. Xue, H. Al-Sahaf, and M. Zhang, “Cross-domain reuse of
extracted knowledge in genetic programming for image classification,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 4, pp.
569–587, 2017.

[42] X. Qu, Y.-S. Ong, and A. Gupta, “Frame-correlation transfers trigger
economical attacks on deep reinforcement learning policies,” IEEE
Transactions on Cybernetics, vol. 52, no. 8, pp. 7577–7590, 2022.
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