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We developed a reconstruction method for the density matrix and Wigner function of electron
beams through analysis of the Airy pattern intensity profile. The density matrix in a transmission
electron microscope object plane was calculated using the coherence function and the electron wave
amplitude and phase distributions. The Wigner function was then reconstructed using the matrix
elements. Based on the Wigner function at the origin of the phase space, we derived a formula to
calculate the axial brightness, and then measured the axial brightness of a Schottky field emission
gun, which reflects the emitter performance more accurately and precisely than the conventional
mean brightness measurements.

Electron beams are important probes to measure ma-
terial structures and electronic states on the nanome-
ter scale, particularly in transmission electron micro-
scopes (TEMs). Recently, quantum measurements of
electron beams themselves and control of electron states
have been realized in TEMs, e.g., controlling electron
states via the interaction between free electrons and the
optical near field[1], measurement of antibunching of
electrons[2], and realization of quantum logic gates for
free electrons[3]. The possibility of decoherence mea-
surements of electrons entangled with bulk plasmon and
surface plasmon is also proposed[4].

Electrons generated from an electron emitter are in
a mixed state[5] that can be expressed using a density
operator. The density operator contains all knowable
information about the quantum system, including the
wave nature e.g., the phase and coherence of the elec-
tron waves, which cannot be described via the particle
model. For quantum measurements such as decoherence
measurements, state measurements based on the density
operators before and after the interaction are important.

One alternative way to describe the information con-
tained in the density operator is to use the Wigner func-
tion, which describes the state in phase space spanned
by the position and momentum bases. When considered
in a 2D plane, the Wigner function is given by[6]

W (r, q) =
1

(2π)2

∫∫ ∞

−∞
d2µ e−iqµ⟨r + µ

2 |ρ̂|r − µ
2 ⟩, (1)

where r and µ are 2D real space vectors, and q is a 2D
reciprocal space vector. ρ̂ is the density operator. It is
known that Wigner functions can have negative values as
a manifestation of quantum nature, as measured for pho-
tons and laser cooled ions in Fock states[7, 8], and mat-
ter wave interference[9]. Because of this negative value
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characteristic, the Wigner function is a quasiprobability
distribution.
The phase space representation of a beam in an opti-

cal system can also be derived in a classical manner using
ray diagrams, but the Wigner function gives a complete
description of the wave field, including the coherence,
intensity distribution, and phase distribution in phase
space. The Wigner function thus allows evaluation of
the power going in each direction at each position in the
optical system. Therefore, when compared with the den-
sity operator, the Wigner function is advantageous when
evaluating the axial brightness in a TEM, which repre-
sents the electric current propagating along the optical
axis.
In quantum optics, the Wigner function has been

reconstructed in various ways e.g., phase space
tomography[10, 11], optical homodyne tomography[12],
and heterodyne measurement[13]. It is, however, diffi-
cult to apply these methods to actual electron waves be-
cause of the lack of flexibility of the TEM optical system.
To reconstruct the Wigner functions of electron waves,
methods based on in-line or off-axis holography in TEMs
have been investigated theoretically[14]. However, the
limitations on the variable range of the illumination lens
system and Fresnel scattering by the biprism cause se-
rious problems when attempting to obtain the correct
reconstructions in each method[14].
Here, we propose a method to measure the density

matrix based on the Airy pattern from an aperture. Us-
ing the matrix elements measured for the electron beams
in a TEM, the Wigner function of the electron waves is
reconstructed for the first time. In addition, using the re-
constructed Wigner function, the axial brightness, which
is an important performance indicator for emitters, is
measured with greater accuracy and precision than in
conventional measurements.
Generally, the diagonal density matrix elements are ob-

tained via intensity measurements, whereas phase mea-
surements are performed to determine the off-diagonal
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FIG. 1. Simplified drawing of the optical system to form the
Airy pattern in a TEM. CL, condenser lens system; IL, imag-
ing lens system; FT, Fourier transform relation; γ(r1, r2),
coherence function; a(r), aperture function; ρ̂, density oper-
ator.

elements. In our previous research, a method to deter-
mine the phase distribution in real space via Airy pattern
intensity analysis was developed[15]. A simplified draw-
ing of the optical diagram in a TEM to record the Airy
pattern is shown in Fig. 1, where the illumination system
composed of multiple condenser lenses is denoted by CL,
and the imaging system composed of multiple interme-
diate lenses, a projection lens, and lenses in the energy
filter is denoted by IL. As described in [15], the energy
filter was used not to eliminate electrons with energy fluc-
tuations but to enlarge the Airy patterns sufficiently to
enable precise measurements.

In a TEM, electrons generated by an emitter pass
through the CL and then illuminate the object plane.
The object plane beam intensity is Iobj(r) = ξ(r)2, where
ξ(r) is the amplitude of the wave field Ψ(r). As Fig. 1
shows, when a circular aperture in the object plane is
illuminated using a nearly parallel beam, an Airy pat-
tern appears in the diffraction plane formed by the IL.
Because all electron sources have a finite size, then based
on the particle model, electrons emitted from different
points on the source surface reach the object plane from
slightly different directions. Using the wave model, this
situation can be expressed as an incoherent superposi-
tion of the electrons in different states. The statistical
mixture of these different states, i.e., the mixed state is
expressed using the density operator ρ̂ =

∑
n pn|ψn⟩⟨ψn|,

where pn is the probability of the state |ψn⟩. To be pre-
cise, energy fluctuations between the electrons are also
represented by different states, but they do not affect
the Airy pattern formed by small-angle scatterings[15].
Therefore, the influence of these energy fluctuations is
omitted from the formulation for Airy pattern analy-
sis. In quantum mechanics, a two-point correlation is ex-
pressed using ⟨r1|ρ̂|r2⟩ with the normalization Tr[ρ̂] = 1
for r inside the aperture. In optics, the two-point cor-
relation of a wave field is expressed using the mutual
coherence function Γ(r1, r2) = ⟨Ψ(r1)Ψ

∗(r2)⟩, where ⟨⟩

is the ensemble average[10]. Γ(r, r) is normalized via the
integration within the aperture Sa as

∫∫
Sa

d2rΓ(r, r) =∫∫
Sa
d2r ξ(r)2 = Ne, where Ne is the number of electrons

forming the Airy pattern.
When the CL is adjusted ideally to realize the Fourier

transform relationship between the emitter plane and the
object plane, the parallel illumination Ψ(r) with a uni-
form amplitude ξ0 and a uniform phase in the object
plane is realized. By considering the difference of the
normalization conditions in the mutual coherence func-
tion and in the density matrix, the off-diagonal elements
of the density matrix are written as

⟨r1|ρ̂|r2⟩ = Γ(r1, r2)/Ne = γ(r1, r2)ξ
2
0/Ne, (2)

where γ(r1, r2) := Γ(r1, r2)/
√
Γ(r1, r1)Γ(r2, r2) is

called the coherence function, the absolute value of which
represents the degree of coherence[16].
In most practical cases, the illumination beam is not

parallel, but is more or less converging/diverging on
the object plane, which is expressed as a defocusing
effect of the CL. The defocus aberration changes the
beam diameter on the object plane, thus causing an in-
crease/reduction of the average amplitude value from ξ0.
More generally, the amplitude in an actual illumination
beam is described as ξ(r), because other aberrations (and
other practical reasons, e.g., slight beam misalignment
from the optical axis) may induce an amplitude distribu-
tion. The actual illumination beam has also the phase
distribution induced by the CL aberration, as can be in-
ferred from the fact that a curved wave front is formed
in a converging or diverging beam. These phase modu-
lations are generally expressed by applying the unitary
operator ÛCL to the electron states. Therefore, the state
after the phase shift is expressed using |ψ′⟩ = ÛCL|ψ⟩.
ÛCL has the eigenvalue e−ikXCL(r) for the position basis;
ÛCL|r⟩ = e−ikXCL(r)|r⟩, where XCL(r) and k = 2π/λ
are the axial geometric aberration of the CL and the
wavenumber given by the wavelength λ, respectively.
The density operator after the influence of the lens aber-

ration is expressed by ρ̂′ =
∑

n pnÛCL|ψn⟩⟨ψn|Û†
CL. Con-

sidering Û†
CL|r⟩ = eikXCL(r)|r⟩ and replacing ξ0 in Eq. (2)

with ξ(r), the off-diagonal elements of the density matrix
are calculated using:

⟨r1|ρ̂′|r2⟩ =
∑
n

pn⟨r1|ÛCL|ψn⟩⟨ψn|Û†
CL|r2⟩

= e−ik(XCL(r1)−XCL(r2))γ(r1, r2)ξ(r1)ξ(r2)/Ne.
(3)

Similar to the way in which the electron waves are
modified by the CL aberration before reaching the ob-
ject plane, a practical Airy pattern is influenced again by
the axial geometric aberration of the IL, XIL(r)[15, 17].
Therefore, the electrons that form the Airy pattern are
modulated by the sum of these aberrations: X(r) =
XCL(r) +XIL(r). When the object plane is illuminated
via wave packets coming from different source positions,



3

the Airy pattern is blurred with an angular distribution.
The van Cittert–Zernike theorem indicates that the an-
gular distribution has a Fourier transform relationship
with γ(r1, r2)[16]. Therefore, the practical Airy pattern
intensity is described as[15]:

Idiff(q) =
∣∣∣F [

a(r)ξ(r)e−ikX(r)
]∣∣∣2 ⊗F [γ(r1, r2)], (4)

where F and ⊗ represent the Fourier transform and con-
volution operations, respectively. Combined with a TEM
image of the aperture a(r), ξ(r), X(r), and γ(r1, r2)
can all be determined simultaneously through fitting

calculations to the measured Airy pattern based on
Eq. (4)[15, 17]. Using the determined ξ(r) and γ(r1, r2),
and by replacing XCL(r) in Eq. (3) wiht the determined
X(r), the off-diagonal elements are then calculated. Note
that because of the difference between XCL(r) and X(r),
the result is not for the actual wave in the object plane,
but is for a virtual wave that includes the additional
phase shift of kXIL(r). The diagonal elements also can be
calculated using Eq. (3) as ⟨r|ρ̂′|r⟩ = ξ(r)2/Ne. By sub-
stituting Eq. (3) as described using X(r) into Eq. (1),
the Wigner function reconstructed within the aperture
Wa(r, q) is described using

Wa(r, q) =
1

(2π)2Ne

∫∫ ∞

−∞
d2µ e−iqµ e−ik(X(r+µ

2 )−X(r−µ
2 )) γ(r +

µ

2
, r − µ

2
)a(r +

µ

2
)ξ(r +

µ

2
)a(r − µ

2
)ξ(r − µ

2
).

(5)

The analysis in this paper was conducted using exper-
imental data that were previously reported in [15]. Brief
descriptions of the measurement conditions are given as
follows. A 200-kV TEM equipped with a Schottky field
emission gun (FEG) (JEM-ARM200F, JEOL) was used.
A selector aperture (SA) installed in the TEM with an ef-
fective diameter of 127 nm at the object plane (Fig. 2(a))
was used to form the Airy patterns. The object plane
was illuminated with various beam diameters to vary the
spatial coherence inside the aperture from partially co-
herent to almost fully coherent. The detailed procedures
for the measurements and the fitting analysis of the Airy
patterns are described in [15].
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FIG. 2. Reconstruction of the Wigner function. (a) TEM im-
age of the selector aperture. (b) Airy pattern obtained using
a beam with coherence length lc = 422 nm. (c) Reconstructed
Wigner function Wa(rx, qx) calculated from the density ma-
trix along the red line shown in (a). The color bar means the
values of Wa(rx, qx) with the main peak value normalized to
1. (d) Comparison of the profiles of Wa(0, qx) along the bro-
ken line in (c) for beams with lc = 422 nm and 117 nm. The
data of (a) and (b) were measured in [15].

Figure 2(b) shows an example of the measured Airy
patterns[15]. Using the parameters determined from
Fig. 2(b), the 2D phase space Wa(rx, qx) shown in

Fig. 2(c) was reconstructed from the density matrix
⟨rx1|ρ̂′|rx2⟩ calculated along the 1D line in Fig. 2(a),
where rx is the 1D position basis. The overall shape of
Wa(rx, qx) shows good agreement with the Wigner func-
tion given as the analytical solution for a 1D aperture
function[18]. By analogy, from the phase space repre-
sentation based on ray diagrams and the phase space
tomography[10, 11], a slightly tilted crest of high values
(shown in red in Fig. 2(c)) around the origin is induced
by the curved wavefront in a converging/diverging beam,
i.e., by the defocus aberration of the CL. To be precise,
the tilted crest is induced by the sum of the defocus aber-
rations of the CL and the IL. In more general, the overall
deformation e.g., slight asymmetric feature in Fig. 2(c)
is induced by the other total aberrations of the CL and
the IL. Projections of the values of Wa(rx, qx) onto the
rx and qx axes correspond to the intensity profile along
the line in Fig. 2(a) and the measured Airy pattern in
Fig. 2(b), respectively. The oscillations in both the Airy
pattern andWa(rx, qx) are caused by the diffraction phe-
nomenon of the electron waves passing through the aper-
ture. Specifically, the wave (quantum) nature appears
in the negative values of Wa(rx, qx). Figure 2(d) com-
pares the profiles of Wa(0, qx) (along the broken line in
Fig. 2(c)) reconstructed for beams of different diameters
(as explained later, with coherence lengths of lc = 422 nm
and 117 nm). The difference in the fringe amplitude
compared with the normalized main peak is mainly at-
tributed to the difference in beam coherence.

The brightness is known to be an important indica-
tor of the emitter performance. Specifically, the axial
brightness B0 is of primary importance in optical sys-
tems using lenses because the value of B0 is conserved
along the optical axis[19]. B0 is defined by the electric
current passing through an infinitely small area within
an infinitely small solid angle along the optical axis, i.e.,
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FIG. 3. Electric current at the origin of the phase space
Wa(0,0)k

2I as a function of lc/da. lc and da are the co-
herence length and the aperture diameter, respectively. The
profiles in Fig. 2(d) correspond to the leftmost and rightmost
data. The value at lc/da ≪ 1 corresponds to the axial bright-
ness.

it is defined by the current density at the origin of the
phase space [5]. Because small apertures of finite sizes are
used in practical measurements[19], the current is mea-
sured in an area called emittance that is not infinitely
small. Division of the current value by the emittance
gives B0 correctly if the current density within the emit-
tance is uniform, but the value smaller than B0 in reality
because it has a nonuniform distribution with a peak at
the origin of the phase space. This is called the mean
brightness B̄[19]. Moreover, because the size of the emit-
tance depends on the lens setting and the aperture size
used to perform the measurement[19], measured B̄ val-
ues tend to fluctuate depending on the TEM used and
the researchers who conducted the measurements.

Because the Wigner function gives the quasiprobabil-
ity, B0 as defined using the current density at the origin
of the phase space is given by W (0,0)k2J [5], where k2

is multiplied for the unit conversion from nm−2 to sr−1.
J is the total electric current in the phase space and, in
this work, is equal to the electric current to form the Airy
pattern. However, because of the limited integral range
in Eq. (5), Wa(0,0) is different from W (0,0). Therefore,
an appropriate conversion from the measured Wa(0,0)
to W (0,0) is required to estimate B0. From Eq. (5),

Wa(0,0) =
1

(2π)2Ne

∫∫
d2µ e−ik(X(µ

2 )−X(−µ
2 ))

γ(
µ

2
,−µ

2
)a(

µ

2
)ξ(

µ

2
)a(−µ

2
)ξ(−µ

2
)

≃ ξ20
(2π)2Ne

∫∫
d2µ a(

µ

2
)γ(

µ

2
,−µ

2
). (6)

A few approximations are used in Eq. (6), as detailed be-
low. It is well known in the electron microscopy field that
the main factors of the geometric aberrations in the elec-
tromagnetic lenses in a TEM are the defocus aberration,
third-order spherical aberration, and first-order astigma-
tism. The phase shifts induced by the defocus and spher-
ical aberrations are axially symmetric, and that induced
by the first-order astigmatism is two-fold rotationally

symmetric with respect to the optical axis[20]. There-

fore, the approximation e−ik(X(µ
2 )−X(µ

2 )) ≃ 1 holds. Un-
der nearly parallel illumination, the beam intensity inside
the aperture can be regarded as being nearly uniform.
In fact, based on the fitting results[15], the intensity dis-
tribution ξ(r)2 inside the aperture is estimated to have
deviations of only a few percent. Therefore, consider-
ing the circular aperture shape, a(µ2 )ξ(

µ
2 )a(−

µ
2 )ξ(−

µ
2 ) ≃

a(µ2 )ξ
′2
0 is a reasonable approximation, where ξ′0 is the

average amplitude of the nearly uniform beam inside
the aperture. According to the van Cittert-Zernike
theorem[16], γ(µ2 ,−

µ
2 ) is given by the Fourier transform

of the electron source intensity distribution S(q), which is
generally approximated to be a 2D Gaussian function[15].
As a result, γ(µ2 ,−

µ
2 ) can also be approximated to be a

2D Gaussian function, the standard deviation of which is
defined as the coherence length lc. Therefore,Wa(0,0) in

Eq. (6) is given approximately by integration of e−|µ|2/2l2c

within the range determined by the aperture diameter da.
Using the relationship Ne = ξ′20 Sa,

Wa(0,0)k
2J ≃ k2Jξ′20

π2Ne
2π

∫∫ da
2

0

d
(µ
2

) µ
2
e
− 2(µ/2)2

l2c

= B0

(
1− e−d2

a/2l
2
c

)
(7)

B0 =
k2Jξ′20 l

2
c

2πNe
= 2π

J

Sa

l2c
λ2

= 2πj0
l2c
λ2
, (8)

where µ and j0 are the norm of µ and the axial current
density, respectively. The prefactor in Eq. (7) is denoted
by B0, because Wa(0,0)k

2J becomes W (0,0)k2J if no
aperture or an infinitely large aperture is used. In other
words, Wa(0,0)k

2J converges to B0 when the ratio lc/da
approaches zero, as depicted in Fig. 3. B0 as given by
Eq. (8) is a function of j0 and lc, which both vary with the
CL setting. It was predicted theoretically[21] and con-
firmed later via our experiments[15, 17] that lc is a linear
function of the beam diameter in the object plane. Con-
sidering j0 is inversely proportional to the square of the
beam diameter, the value of j0l

2
c and therefore B0 given

by Eq. (8) is constant, regardless of the lens conditions,
as expected for the axial brightness characteristics. From
the measured values of lc and j0[15], B0 is estimated to
be (2.5±0.3)×1012 Am−2 sr−1, the precision of which is
comes from the measurement errors of the j0 and lc val-
ues. For reference, B̄ values reported previously for the
Schottky FEG[22, 23] are in the (2−10)×1012 Am−2 sr−1

range, which is in digit agreement with the present B0

value. Figure 3 shows the curve for Eq. (7) using the
determined B0 value and the plot of the Wa(0,0)k

2J
values. The good agreement between them verifies the
correctness of Eqs. (7) and (8).

The significance of Eq. (8) is that B0 is expressed using
lc and j0, which are intrinsic beam characteristics rather
than the emittance, which is affected by the measure-
ment conditions. Interestingly, a similar expression for
B̄p was proposed previously as B̄p = 4πj0l

2
c/λ

2[21]. This
formula is only valid when an illumination aperture with
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a radius of 1/lc is used for the j0 measurements, unlike
Eq. (8), which is free from that aperture size because of
much smaller SA than beam diameters. Therefore, if we
substitute the same experimental values from Fig. 3 into
the formula, B̄p with twice the value of B0 is given [17],
which is contrary to the general trend noted previously,
where B̄ < B0. Even if B̄ is measured correctly, in ad-
dition to the systematic errors caused by the trend, the
value fluctuates depending on the TEM and the aperture
used, as mentioned earlier. The derived Eq. (8) is an im-
portant result that enables electron emitter performance
evaluation with high precision and accuracy without be-
ing affected by differences in the optical systems.

We have developed a reconstruction method for the
density matrix and the Wigner function of electron
beams based on Airy pattern intensity analysis. To be
precise, the reconstructed Wigner function is not that of
the actual wave in the object plane but is that for the
wave with the additional phase shift induced by the IL
aberration. As shown by the tilted intensity crest caused
by the defocus, the wavefront modulations caused by the
geometric aberrations appear as overall distortion in the
Wigner function. Because only a slight asymmetry ap-
pears, the effect of the aberrations is considered to be
quite small in Fig. 2(c). Even if the Wigner function
contains distortions that cannot be ignored, it is not a
problem for application to quantum measurements such
as decoherence measurement, in which only the change
in the electron states before and after the interaction is
important.

Decoherence measurements of inelastically scattered
electrons should form one promising application of the
developed method. In a previous study, the coher-
ence of electrons inelastically scattered by bulk plasmons

was measured using an electron biprism and an energy
filter[24]. As discussed in [17], coherence measurements
performed using a biprism present difficulties for poorly
coherent electrons such as inelastically scattered elec-
trons because the beam is partly shielded by the biprism
itself, settled on the optical axis, but are possible using
a specially-fabricated small aperture[17] and the energy
filter to select the energy-loss electrons. The decoherence
properties of electrons inelastically scattered by surface
plasmon and bulk plasmon will be investigated in future
studies.

As another important application of the Wigner
function, we derived a formula to calculate the axial
brightness and then measured the axial brightness of the
Schottky FEG precisely and accurately without being
affected by differences in the optical system. The ability
to estimate axial brightness will be beneficial not only for
precise comparison of the performances of various types
of electron emitters including photocathodes[2, 25].
Monitoring the degradation process of the emitter
performance under various conditions involving vacuum
pressure, dark current, and so on should be greatly help-
ful to obtain the guideline for effective developments of
high-performance emitters. The efficiency in developing
advanced emitters should be maximized if the present
method will be successfully applied not only in TEMs
but also in simple vacuum chambers without lenses.
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