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Abstract 

The Stokes-Einstein-Debye (SED) relation is proposed to be breakdown in supercooled liquids by many 

studies. However, the conclusions are usually drawn by testing some variants of the SED relation rather 

than its original form. In this work, the rationality of the SED relation and its variants is examined by 

performing molecular dynamics simulations with the Lewis-Wahnstrom model of ortho-terphenyl (OTP). 

The results indicate the original SED relation is valid for OTP but the three variants are all breakdown. 

The inconsistency between SED relation and its variants is attributed to the adopted assumptions and 

approximations, heterogeneous dynamics and the interactions among molecules. Therefore, care should 

be taken when employing its variants to judge the validity of the SED relation in supercooled liquids. 

Keywords: Stokes-Einstein-Debye relation, Stokes-Einstein relation, supercooled liquids, Stokes’ 

formula 

 

1. Introduction  

The Stokes-Einstein-Debye (SED) relation [1] BrD k T ς=  correlates the rotational diffusion 

constant rD , rotational friction coefficient ς , Boltzmann constant kB and temperature T. The ς  can 

be described by the Stokes’ formula 38 aς πη=  for a rigid sphere with radius a  moving in a fluid with 

viscosity η . So the SED relation can be expressed by 3
B 8rD k T aπη= .  
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Debye [1, 2] proposed the ς  is correlated with rotational relaxation time rτ , where rτ  is 

determined by the decay of the n-th degree Legendre polynomials. Then the SED can be expressed as 

the variant ( )1 1r rnD n nτ= +   . If one assume the effective hydrodynamic radius a  for soft particle to 

be also a constant like a rigid particle, one gets another variant of the SED as ~rD T η  [3], where “~” 

means proportional. Furthermore one can get the variant ~r tD T τ  based on the approximate relation 

Gη τ∞=  [4], where G∞ is the instantaneous shear modulus presumed to be a constant, and tτ  is the 

structural relaxation time determined by the decay of the self-intermediate scattering function. Therefore, 

the SED has at least four forms, the original form 3
B 8rD k T aπη=  and the three variants

( )1 1r rnD n nτ= +   , ~rD T η  and ~r tD T τ . Moreover, if ( )1 1r rnD n nτ= +    is satisfied, 

( ) ( )1 1rn rnm m n nτ τ+ = +  should be established for different n, m. On the other hand, if the 

Stokes-Einstein (SE) relation B 6tD k T aπη=  and the assumption of constant a  are satisfied, one can 

show the SED variant can be expressed as the ratio t rnDτ , t rD D  and rnTτ η , etc are constant, where 

tD  is the translational diffusion constant.,  

By testing above SED variant, many studies proposed the SED relation is invalid in supercooled 

liquids due to the heterogeneous dynamics under supercooled state. A deviation from  1 3 3r rτ τ =  is 

observed in both analytical models and experiments [5-7]. De Michele and Leporini [8] found the ratio 

( ) 11 2 1rn rn n τ τ+ ≠  for 2,3, 4n =  in a supercooled liquid of rigid dumbbell model interacting via a 

Lennard-Jones potential. The ( ) 11 2rn rn n τ τ+  is found to be firstly decreased and then increased with 

cooling; similar changes are also observed in ( )1 r rnn n D τ+ . The dumbbell model interacting via a 

repulsive ramp like potential [9] shows that the 1r tDτ  is not a constant but temperature and density 

dependent. Similar phenomena are also observed in the simulations of the supercooled SCP/E water 

[10-12].  
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The ratio r tD Tτ  is almost a constant in supercooled SPC/E water [4] with temperature range 

280-350K but increases with cooling below 280K. However, a fractional form ( )~r tD T ξτ  with 

0.75ξ =  is observed for the whole simulated temperature range. The ratio t rD D  is not a constant but 

decreases with decreasing temperature. For TIP4P water model, Kawasaki and Kim [3] found t rD D  

is also decreased with cooling but r rnD τ  with 1, 2,3,6n = show the reverse trend; 6r Tτ η  is almost 

established but a fractional form ( )1 ~ T ξτ η  is observed with 0.8ξ = . The scaled ratio t rD D is 

almost equal to 1.0 in OTP [13] within 260-346K but deviates from 1.0 with cooling. Moreover, a 

controversial result is observed in OTP that the simulated t rD D  shows an opposite trend with the data 

deduced from 2rτ . The breakdown of variant by combining of the SED and SE relation is usually 

attributed to the decoupling of the transitional and rotational motion. 

Although there exist so many studies suggest the breakdown of SED relation in supercooled liquids, 

no study directly tests the original SED relation 3
B 8rD k T aπη= . This is questionable because the 

equivalence of the variants to the original SED form is on the basis of various assumptions, while there 

are some evidences showing that those assumptions may not be valid all the time. For instance, the a  

for organic molecules varies with volume fraction in their diluted solutions [14], and the behavior of 

ions in aqueous solutions is observed to deviate from the SE relation by taking a  as a constant but the 

original SE relation actually holds if a is allowed to change [15-19]. Moreover, there exist simulations 

[20, 21] indicate the Einstein relation BtD k T α=  is valid for several supercooled liquids within 

certain temperature range, and the a  should be varied with temperatures on the basis of the validity of 

the Stokes’ formula 6 aα πη= . And the relation tGη τ∞=  is approximately established only when the 

memory effect is exponential [2]; however, the structural relaxation follows non-exponential decay in 

supercooled liquids for the dynamic heterogeneity [22-24]. For the variants given by combination of the 

SED and SE relation variants, there exist many studies show the breakdown of SE relation variants [4, 

25-29]. So the validity of the SED relation is still elusive and one should consider it from the original 
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form. In this work, we explore the SED relation from its original form and variants to verify its validity 

by performing molecular dynamics (MD) simulations with the Lewis-Wahnstrom model of 

ortho-terphenyl (OTP) [28, 30].  

 

2. Simulation details and analysis methods 

The present work is based on our previous work [21], the adopted OTP model [28, 30] and 

simulation details are the same. The frictional coefficient α  and viscosity η  are directly taken from 

ref. [21], which are also plotted in Fig. 1(a) and Fig. 1(b) for convenience. The three sites of OTP 

molecule are named A, B and A, respectively. Their charges are 0, 0A Bq q= = . To explore the possible 

influences of torque introduced by interaction among molecules on the SED variants, other two systems 

are simulated with charges 0.02, 0.04A Bq q= = −  and 0.04, 0.08A Bq q= = −  in unit e, respectively. To 

improve statistics, seven independent trajectories have been simulated to determine the structural 

relaxation time tτ , rotational diffusion constant rD , rotational correlation time rnτ  and rotational 

non-Gaussian parameter ( )2 tα . 

The tτ is described by the self-intermediate scattering function [31]  

 ( ) ( ) ( )0
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1, j j
N ik t
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where N is the number of molecules, wavevector 114.5k nm−= corresponding to the first maximum of 

the static structure factor, ( )jr t


 is the position of center of mass for the j-th molecule, 〈〉  denotes 

time average, and tτ  is determined by ( ) 1,s tF k eτ −= .  

The rotational diffusion constant rD  is calculated via its asymptotic relation with the rotational 

mean square displacement (RMSD) [3, 4] 
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 is the unit vector of the 

angular bisector of i-th OTP molecule. A time interval 0.01t∆ = ps is adopted to calculate the RMSD. 

   The rotational correlation time rnτ is calculated via the rotational correlation function [1, 3] 

( ) ( ) ( )
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1 0
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i in n
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 (3)  

where ( )nP x  is the n-th order Legendre polynomial, and rnτ  is determined by ( ) 1
n rnC eτ −= . 

The rotational dynamics are heterogeneous and are characterized by the rotational non-Gaussian 

parameter [32]  
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3. Results and discussion  

To examine the SED relation and its variants, the viscosity η , frictional coefficient α , rotational 

relaxation time rnτ  for n = 1, 2, 6, structural relaxation time tτ  and rotational diffusion constant rD  

at different temperature T are calculated and plotted in Fig. 1.  
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Figure 1. The η , α , rnτ  for n = 1, 2, 6, tτ  and rD  as a function of T: (a) η  vs T; (b) α  vs T; 

(c) rnτ , tτ  vs T; (d) rD  vs T. 

The variant ~rD T η  behaves as a fractional form ( ) 1~rD T ξη  with 1 0.61ξ =  as shown in 

Fig. 2(a), which deviates 0.39 from the exact 1 1.0ξ =  and implies the breakdown of ~rD T η . The 

exponent 1 0.61ξ =  is smaller than the 0.9χ ≈  in ( )~tD T χη  in ref. [21], which implies 

( ) 12~ ~t rD D a T χ ξη −  should decrease with decreasing temperature. The decreasing of t rD D with 

cooling is observed in the simulation of the TIP4P water [3] and OTP [13]. Similar breakdown is 

observed in ~r tD T τ  but the fractional form ( ) 2~r tD T ξτ  with an exponent 2 0.49ξ =  as plotted 

in Fig. 2(b). The 1 0.61ξ =  and 2 0.49ξ =  show the relation Gη τ∞=  is not exact, the similar are 

observed in testing SE relation [17, 20, 28].  

The ( )1 1r rnD n nτ= +    is tested by 1~r rnD τ −  for n = 1, 2, 6. The three are all in fractional forms 

as 3~rn rnD ξτ − , and the three exponents 3 0.9ξ ≈ as plotted in Fig. 2(c). The breakdown is small and 

1~r rnD τ −  is approximately valid. The result is different from the TIP4P water [3], one observes that 
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3
1~r rD ξτ −  is invalid with 3 0.8ξ ≈  and 3

6~r rD ξτ −  is almost established with 3 1.0ξ ≈ . Comparing 

( )~tD T χη  and 3~r rnD ξτ −  for n = 2, the two exponents are almost equal. However, the increases of 

η  are much faster than the increases of 2rτ  with cooling as shown in Fig. 1, and one can explain the 

observed opposite trend for vst rD D T  in the data deduced from 2rτ  and the simulated [13]. We 

assume the Stokes’ formula 6 aα πη=  is established, and deduce the a  by ~a α η , then the original 

form 3
B 8rD k T aπη=  is tested by ( ) 43 2~rD T

ξ
α η . The directly fitted exponent 4ξ  is 1.06, which is 

so close to the exact result marked by the red dashed with 4 1.0ξ = as plotted in Fig. 2(d). It indicates 

3
B 8rD k T aπη=  is valid. And we can see the breakdown of ~rD T η  is attributed to the adopted 

assumption of constant a  is not valid. 

 

Figure 2. Verification of the SED relation and its variants: (a) ~rD T η ; (b) ~r tD T τ ; (c) 1~r rnD τ − , 

black, red and green symbol are for n = 1, 2, 6, respectively; (d) 3 2~rD Tα η . The calculated data are 

represented by symbols and the solid lines are the fitting. The red dashed line in (d) is fitted with

4 1.0ξ = . 
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The above results indicate the ~rD T η  and ~r tD T τ  are definitely invalid, and whether 

1~r rnD τ −  is really breakdown. If ( )i tϕ ∆


 follows Gaussian distribution, the 1
1~r rD τ −  is an exact 

result due to ( )
2 2

1 cos iP e e ϕϕϕ −
= = . The rotational dynamics is also observed to be heterogeneous 

as the translational dynamics [8, 32-34]. The non-Gaussian parameter ( )2 tα  plotted in Fig. 3(a) is 

similar as the observed in SPC/E water [32], which deviates from zero and the maximum increases with 

cooling. The system has more heterogeneous dynamics at a lower temperature. So the 1
1~r rD τ −  should 

be invalid.  

On the other hand, if molecule rotates without external torque, the probability distribution of the 

chosen unit vector e


 is ( ) ( ) ( ) ( )1

,
0rn n D t m m

n n
n m

e t e Y e t Y eρ − + −     =     ∑
  

[2], and ( )1 1r rnD n nτ= +    is 

an exact result, where m
nY  is the spherical harmonic function. Because of the dynamic heterogeneity, 

the system is heterogeneous both in dynamics and structure, and the more mobile particles are likely to 

from a string structure [24, 32]. So the net torque applied on a molecule may not be zero due to the 

interaction among molecules even without external torque. The most obvious torque is the molecular 

dipole couples to an electric field [1]. 

To explore the possible influence introduced by the interaction among molecules, we simulate two 

other systems consisted of polar molecules to observe the differences with a larger interaction. In order 

not to have a significant effect on the system, the three sites of OTP in the two systems are taken small 

electric charges with 0.02, 0.04A Bq q= = −  and 0.04, 0.08A Bq q= = − , respectively. Fig. 3(b) shows the 

( )2 tα  for  0.02, 0.04A Bq q= = −  and 0.04, 0.08A Bq q= = −  have no much differences with the q = 0 

system. However, the fractional form 3~rn rnD ξτ −  for n = 1, 2, 6 has a smaller exponent 3ξ  for a larger 

q as identified by the Fig. 3(c) and Fig. 3(d). For instance, the 3ξ  for n = 1 is decreased from 0.913 for 

q = 0 to 0.82 for 0.02, 0.04A Bq q= = − , and then is decreased to 0.78 for 0.04, 0.08A Bq q= = − . The 

results indicate the interaction among molecules may play a more important role in the breakdown of 
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1~r rnD τ −  than the heterogeneous dynamics. 

 

Figure 3. (a) non-Gaussian parameter ( )2 tα for q = 0; (b) a comparison of non-Gaussian parameter 

( )2 tα for original and charged OTP, the solid line is for q = 0, the dotted is for 0.02, 0.04A Bq q= = −  

and the dashed is for 0.04, 0.08A Bq q= = − . Testing the SED relation ( )1 1r rnD n nτ= +    by 

3
r rnD ξτ −
  for charged systems: (c) 0.02, 0.04A Bq q= = − ; (d) 0.04, 0.08A Bq q= = − . The black, red and 

green symbol are for n = 1, 2, 6, respectively. The solid line is the fitting. 

To further verify the validity of 1~r rnD τ − , the relation ( ) 11 2rn n rn n τ γ τ+ =  are adopted. If 

1~r rnD τ −  is valid, 1.0nγ =  and otherwise 1.0nγ ≠ . Fig. 4 shows the 2γ  is increased from 1.194 for q 

= 0 to 1.288 for 0.02, 0.04A Bq q= = − , and then is increased to 1.295 for 0.04, 0.08A Bq q= = − . The 6γ  

is increased from 0.495 for q = 0 to 0.584 for 0.02, 0.04A Bq q= = − , and then is decreased to 0.561 for 

0.04, 0.08A Bq q= = − ; the decrease may be attributed to the data error. Both 2γ  and 6γ  deviate 

significantly from 1.0nγ =  and imply the breakdown of 1~r rnD τ − . Moreover, the systems with 0q ≠   

have a larger 2γ  and 6γ  than q = 0, and the larger q system has a larger 2γ , which also signifies the 
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importance of interaction for the breakdown of 1~r rnD τ − . The result is consistent with the data plotted in 

Fig. 3. Combining the results given by Fig. 2, Fig. 3 and Fig. 4, we conclude the variant 1~r rnD τ −  is 

indeed breakdown. 

 

Figure 4. Verification of the validity of the SED relation ( )1 1r rnD n nτ= +    by 

( ) 11 2rn n rn n τ γ τ+ =  for different q. 

4. Conclusions 

In summary, we have examined the rationality of the SED relation and its variants in OTP liquids by 

performing MD simulations. Our results indicate ~rD T η， ~r tD T τ  and 1~r rnD τ −  with n = 1，2，

6 are all breakdown and in fractional forms. The breakdown of the variant ~rD T η  is due to the 

assumption of constant a is not satisfied. The breakdown of the variant ~r tD T τ  is because it is based 

on ~rD T η  and further adopt an approximation relation Gη τ∞= . The breakdown of 1
1~r rD τ −  is 

attributed to the rotational heterogeneous dynamics and displacements of angle deviations from 

Gaussian distribution. The deviations from 1~r rnD τ −  with n = 1，2，6 get larger with a lager q. 

However, there exists no much difference in non-Gaussian parameter for the q = 0 and 0q ≠  system. 

So the interaction among molecules may play a more important role for the breakdown of 1~r rnD τ −  

than the deviation from Gaussian. Although the three variants are all breakdown, the original SED 

relation 3
B 8rD k T aπη= is valid after taking the changes of a  into account. The result is consistent 
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with our previous work for the SE relation in OTP [21]. Moreover, no decoupling of translation and 

rotational motion is observed for OTP within 260-400K. Our simulations indicate that the a  is such an 

important parameter that is closely connected with conclusion drawn on the validity of SED relation, so 

one should be carefully evaluated the assumption of constant a  when testing the SED relation and care 

should be taken when using variants to test the SED relation.  
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