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QUASI-FROBENIUS NOVIKOV ALGEBRAS AND PRE-NOVIKOV BIALGEBRAS

YUE LI AND YANYONG HONG

ABsTrRACT. Pre-Novikov algebras and quasi-Frobenius Novikov algebras naturally appear in the
theory of Novikov bialgebras. In this paper, we show that there is a natural pre-Novikov algebra
structure associated to a quasi-Frobenius Novikov algebra. Then we introduce the definition of
double constructions of quasi-Frobenius Novikov algebras associated to two pre-Novikov alge-
bras and show that it is characterized by a pre-Novikov bialgebra. We also introduce the notion
of pre-Novikov Yang-Baxter equation, whose symmetric solutions can produce pre-Novikov
bialgebras. Moreover, the operator forms of pre-Novikov Yang-Baxter equation are also investi-
gated.

1. INTRODUCTION

Novikov algebras appeared in the study of Hamiltonian operators in the formal variational
calculus [7, 8] and Poisson brackets of hydrodynamic type [5]. It was also shown in [19] that
Novikov algebras correspond to a class of Lie conformal algebras, which describe the singular
part of operator product expansion of chiral fields in conformal field theory [13]]. Note that
Novikov algebras are also an important subclass of pre-Lie algebras (also called left-symmetric
algebras), which are closely related to many fields in mathematics and physics such as affine
manifolds and affine structures on Lie groups [15], convex homogeneous cones [18], deforma-
tion of associative algebras [J]] and vertex algebras [}, 4].

The definitions of pre-Novikov algebras and quasi-Frobenius Novikov algebras naturally ap-
peared in the study of Novikov bialgebras [11]. It was shown in [111}] that there is a Novikov
algebra associated to a pre-Novikov algebra and pre-Novikov algebras can produce skewsym-
metric solutions of Novikov Yang-Baxter equation and hence Novikov bialgebras. Moreover, by
[20], pre-Novikov algebras correspond to a class of left-symmetric conformal algebras [12] and
there are close relationships between pre-Novikov algebras and Zinbiel algebras with a deriva-
tion (see [11, 14]). Quasi-Frobenius Novikov algebras are a class of Novikov algebras with a
special bilinear form, which are closely related with the skewsymmetric solutions of Novikov
Yang-Baxter equation (see [11]). Moreover, it was shown in [11]] that quasi-Frobenius Novikov
algebras also correspond to a class of quasi-Frobenius infinite-dimensional Lie algebras.

As we know, in the case of associative algebras, there is a natural construction of Frobe-
nius algebras called a double construction of Frobenius algebras (see [2]). It was shown in []]
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that a double construction of Frobenius algebras is characterized by an antisymmetric infini-
tesimal bialgebra. Motivated by this, it is natural to consider double constructions of quasi-
Frobenius Novikov algebras and the relationships with the bialgebra theory of pre-Novikov al-
gebras. Note that pre-Novikov algebras are a class of L-dendriform algebras [3] and the theory
of L-dendriform bialgebras was developed in [3, 16]. Therefore, it is also natural to investigate
the bialgebra theory of pre-Novikov algebras.

In this paper, we introduce the definitions of pre-Novikov bialgebras and double construc-
tions of quasi-Frobenius Novikov algebras associated to two pre-Novikov algebras and show
that these two definitions are equivalent. We also investigate a special class of pre-Novikov
bialgebras, which resembles the coboundary Lie bialgebras [@]. The notion of pre-Novikov
Yang-Baxter equation is also introduced, whose symmetric solutions give pre-Novikov bialge-
bras. We introduce the O-operator on a pre-Novikov algebra as an operator form of pre-Novikov
Yang-Baxter equation. It gives a symmetric solution of pre-Novikov Yang-Baxter equation in
a semi-direct product pre-Novikov algebra. It should be pointed out that although pre-Novikov
algebras are L-dendriform algebras, their bialgebra theories are totally different, for example,
skewsymmetric solutions of LD-equation give L-dendriform bialgebras, whereas symmetric
solutions of pre-Novikov Yang-Baxter equation give pre-Novikov bialgebras.

This paper is organized as follows. In Section 2, we recall some basic facts about Novikov
algebras, pre-Novikov algebras and quasi-Frobenius Novikov algebras. Moreover, we show
that there is a pre-Novikov algebra associated to a quasi-Frobenius Novikov algebra. In Section
3, the definition of double constructions of quasi-Frobenius Novikov algebras associated to
two pre-Novikov algebras is introduced and we show that it is equivalent to a special matched
pair of Novikov algebras. Moreover, we introduce the definition of pre-Novikov bialgebras
and prove that it can also characterize the double construction of quasi-Frobenius Novikov
algebras associated to two pre-Novikov algebras. In Section 4, we introduce the definition of
pre-Novikov Yang-Baxter equation and show that symmetric solutions of pre-Novikov Yang-
Baxter equation can produce pre-Novikov bialgebras. Moreover, we investigate the operator
forms of pre-Novikov Yang-Baxter equation. The definition of O-operators on pre-Novikov
algebras is introduced and we show that it produces a symmetric solution of pre-Novikov Yang-
Baxter equation in a semi-direct product pre-Novikov algebra.

Notations. Throughout this paper, we fix a base field k of characteristic 0. All vector spaces
and algebras are over k. Unless otherwise stated, they are assumed to be finite-dimensional even
though many results still hold in the infinite-dimensional cases. The identity map is denoted by
id. Let A be a vector space with a binary operation o. Define linear maps L., R, : A — Endg(A)
by

L.(a)b:=aob, R,(a)b:=boa, a,bcA.

Let

T:AQRA >AQRA, a®b—b®a, a,beA,

be the flip operator.
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2. PRELIMINARIES

In this section, we recall some known facts about Novikov algebras and pre-Novikov algebras
and show that there is a natural pre-Novikov algebra structure associated to a quasi-Frobenius
Novikov algebra.

Recall that a Novikov algebra is a vector space A with a binary operationo : A® A — A
satisfying
(D) (@aob)oc—ao(boc)=(boa)oc—bo(aoc),

2) (aob)oc=(aoc)ob, a,b,ceA.
Denote it by (A, o).

Definition 2.1. [17] A representation of a Novikov algebra (A, o) is a triple (V, [, r), where V
is a vector space and [, 7 : A — Endy (V) are linear maps satisfying

3) llaob—boa)y=IUa)b)y - Ib)l(a),

4) l(a)r(b)y — r(b)l(a)v = r(a o b)y — r(b)r(a)v,

(®)) l(a o b)v = r(b)l(a)v,

(6) r(a)r(b)y = r(b)r(a)v, a,beA, vevV.

Remark 2.2. Obviously, (A, L., R,) is a representation of (A, o), which is called the adjoint
representation of (A, o).

Let (A, o) be a vector space with a binary operation o and V be a vector space. For a linear
map p : A — Endg(V), define a linear map p* : A — Endk(V") by

(7 P @f,vy=—f.pl@y), acAveV feV,

where (-, -) is the usual pairing between V and V*.

Proposition 2.3. [11, Proposition 3.3] Let (V,1,r) be a representation of a Novikov algebra
(A, o). Then (V*,I" + r*,—r") is also a representation of (A, o).

Remark 2.4. The adjoint representation (A, L., R,) of a Novikov algebra (A, o) gives the repre-
sentation (A", L? + R, —R?).

Definition 2.5. [11] Let A be a vector space. A pre-Novikov algebra is a triple (A, <, >), where
<,>: A®A — A are binary operations satisfying

8) a>(br>c)=(@ob)ypc+br>(arc)—(boa)r>c,
9 a>(b<xc)=(a>b)y<dc+b<(aoc)—(b<a)c,
(10) (aob)y>c=(ar>c)<b,

(11) (a<b)y<c=(a<c)<b, a,b,ceA,

whereaob=a<b+arb.

Proposition 2.6. [11, Proposition 3.33] Let (A, <,>) be a pre-Novikov algebra. The binary
operation

(12) aob:=a<xb+arxb, abeA,
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defines a Novikov algebra, which is called the associated Novikov algebra of (A, <,>). Further-
more, (A, L., R.) is a representation of (A, o). Conversely, let A be a vector space equipped with
binary operations < and >. If (A, o) defined by Eq. (12) is a Novikov algebra and (A, L., R.) is
a representation of (A, o), then (A, <,>) is a pre-Novikov algebra.

Definition 2.7. [11] Let (V,, r) be a representation of a Novikov algebra (A, o). A linear map
T : V — Ais called an O-operator on (A, o) associated to (V, [, r) if T satisfies

(13) Tw)oTW)=TUTw)v)+TH(TW)u), u,velV.

Proposition 2.8. [11,, Proposition 3.34] Let (V,1,r) be a representation of a Novikov algebra
(A, o). If T is an O-operator on (A, o) associated to (V, 1, r), then there is a pre-Novikov algebra
structure on 'V defined by

(14) usv:=0Tw)y, u<v:=rTOW)u, u,vev.

Definition 2.9. [11] Let (A, o) be a Novikov algebra. If there is a skewsymmetric nondegenerate
bilinear form w(-, -) on A satisfying

(15) w(@ob,c)—w(laoc+coa,b)+w(cob,a)=0, a,b,ceA,
then (A, o, w(:,)) is called a quasi-Frobenius Novikov algebra.

Next, we show that there is a natural pre-Novikov algebra structure on A, when (A, o, w(-, -))
is a quasi-Frobenius Novikov algebra.

Theorem 2.10. Let (A, o, w(-,-)) be a quasi-Frobenius Novikov algebra. Then there is a com-
patible pre-Novikov algebra structure on A given by

(16) w(@ar>b,c)=wlaoc+coa,b),
17 w(a<b,c)=wla,cob), a,b,ceA,

such that (A, o) is the associated Novikov algebra of (A, <,>). This pre-Novikov algebra is
called the associated pre-Novikov algebra of (A, o, w(-,-)).

Proof. Obviously, the nondegenerate bilinear form w(-,-) on A can induce an invertible linear
map 7 : A* — A given by

(18) w(T(f),a)={f,a), [feA",acA.
Therefore, for all a, b, c € A, we have
w(a>b,c)=w(@oc+coa,b)=—-wb,aoc+coa)
= —~(T7'(b),aoc+coay=—T""(b),(Ls + R.)(a)c)
= ((Ly + R)Y@T ™' (b), ¢) = (T((L; + R)@T (b)), ),
and
w(a < b,c) = wla,cob) =(T""(a),cob)
= (T~ (@), R-(b)c) = ~(R.(D)T ' (a), ¢)
= w(T((=R)(D)T (@), ).
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By the nondegenerate property of w(:, -), we obtain
(19) a>b=T(L:+R)a)T (b)), a<b=T({(-R)D)T '(a), a,beA.
Seta =T(f), b =T(g). Define

g =L+ R)T(f))g,
[ < g =CR)TQ)S, fgeA™
Then we have
avrb=T(HH>TE =T >. ),
a<b=T(f)<xTg)=T(f <.g), a,beA.
If we prove that (A*, «€.,>,) is a pre-Novikov algebra, then (A, <, ) is a pre-Novikov algebra
and T is an isomorphism of pre-Novikov algebras. Therefore, we only need to show that (A*, <.,

>,) is a pre-Novikov algebra.
For all f, g, h € A*, we have

(h, T(f) o T(g) = T((Lg + RYT(f)g = RAT(@)S)
= w(T(h), T(f) o T(g)) — w(T(h), T((Ly + R)T(f)g — RAT()f))
= w(T(h),T(f) o T(g) + w(T((L; + ROYT(f)g = R(T(8)f), T(h))
(T (), T(f) 0 T(8)) +{(Ls + ROYT(f)g = RAT (). T(h))
w(T(h),T(f)oT(g) = (g T(f)oT(h)+T(h)oT(f))+(f,T(h)oT(g))
w(T(h), T(f)oT(g) —w(T(g), T(f)oT(h)+T(h)oT(f))+w(T(f),T(h)oT(g))
=0.

Therefore, we obtain

T(f)oT(g) - T((Ls + R)T(f)g - RAT(®)f) = 0.
Hence T : A* — A defined by Eq. (18) is an invertible O-operator on (4, o) associated to
(A*, L + R:, —R?). By Proposition 28, (A*, <., >,) is a pre-Novikov algebra.
Moreover,
T((L: + RY@T ™ (b)) + T(=R)(D)T ™ (a))
T(f)oT(g)

= qob.

a<<b+arb

Therefore, (A, o) is the associated Novikov algebra of (A, <, >).
The proof is completed. O

3. DOUBLE CONSTRUCTIONS OF QUASI—FROBENIUS NOVIKOV ALGEBRAS AND PRE-NOVIKOV BIALGEBRAS

In this section, we introduce the definitions of double constructions of quasi-Frobenius Novikov
algebras and pre-Novikov bialgebras, and show that the double construction of quasi-Frobenius
Novikov algebras is equivalent to a pre-Novikov bialgebra, which is also characterized by some
matched pair of Novikov algebras.

First, we recall matched pairs of Novikov algebras.
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Proposition 3.1. [17] Let (A, o) and (B, ®) be Novikov algebras. If (B, L5, rx) is a representation
of (A, 0), (A, lp, rp) is a representation of (B, ®) and the following conditions are satisfied.:
(20) Ip(x)(a o b) = —lp(la(@)x — ra(a@)x)b + (Ip(x)a — rg(x)a) o b + rg(ra(b)x)a + a o (Ig(x)b),
(21) rp(x)(aob—boa)=rglab)x)a - rg(la(@)x)b + a o (rg(x)b) — b o (rg(x)a),
(22) Ia(a)(x o y) = —ls(Ig(x)a — rg(x)a)y + (la(a)x — ra(a)x) ® y + ra(rp(y)a)x + x o (l4(a)y),
(23) ra(a)(x oy —y o x) = ra(lg(y)a)x — ra(lp(x)a)y + x @ (ry(a)y) — y ® (ra(a)x),
(24) (Ip(x)a) o b + Ip(ra(a)x)b = (Ig(x)b) o a + Ip(ra(b)x)a,
(25) (re(x)a) o b + Ip(la(a)x)b = rp(x)(a o b),
(26) [a(re()a)y + (la(a)x) o y = la(rp(y)a)x + (Ia(a)y) o x,
Q7)) L))y + (ra(a)x) @y = ra(a)(x ®y), a,beA,x,y€B,
then there is a Novikov algebra structure on the direct sum A® B of the underlying vector spaces
of A and B given by
(28)

(a+x)-(b+y):=(@ob+Ilg(x)b+rp(y)a)+ (xey+Ils(a)y + ra(b)x), a,bec A, x,y€ B.
(A, B, 4, ra, I, rp) satisfying the above conditions is called a matched pair of Novikov alge-

bras. Conversely, any Novikov algebra that can be decomposed into a linear direct sum of two
Novikov subalgebras is obtained from a matched pair of Novikov algebras.

Next, we introduce the definition of double constructions of quasi-Frobenius Novikov alge-
bras associated to pre-Novikov algebras.

Definition 3.2. Let (A, <,>), (A", <., >,) be pre-Novikov algebras and (A, o), (A*, o.) be their
associated Novikov algebras respectively. If a quasi-Frobenius Novikov algebra (B, -, w(:, -))
satisfies the following conditions:

(a) Bis the direct sum of A and A* as vector spaces,

(b) (A,<«,>) and (A", <., >,) are pre-Novikov subalgebras of (B, <, ), which is the associ-
ated pre-Novikov algebra of (B, -, w(-, -)),

(c) the bilinear form w(:,-)on B = A ® A" is given by

(29) wa+ f,b+g)=(f,by—{(g,a), abeA, f,geA",

then (B, -, w(-, -)) is called a double construction of quasi-Frobenius Novikov algebras asso-
ciated to (A, <,>) and (A%, <, >.).

We give a characterization of double constructions of quasi-Frobenius Novikov algebras as-
sociated to pre-Novikov algebras by matched pairs of Novikov algebras.

Proposition 3.3. Let (A, <,>) be a pre-Novikov algebra and (A, o) be the associated Novikov
algebra of (A, <,>). Suppose that there exists a pre-Novikov algebra structure (A", <,,>,) on
the dual vector space A* and (A*,0,) is the associated Novikov algebra of (A*, <.,>.). Then
there is a double construction of quasi-Frobenius Novikov algebras associated to (A, <,>) and
(A", <,,>,) if and only if (A,A", L} + R,,—R.,L, + R ,—R.) is a matched pair of Novikov
algebras.
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Proof. Suppose that (A, A", L +R%, —R%, L} +R% ,—R,)is a matched pair of Novikov algebras.
Then by Proposition 3.1, there is a Novikov algebra structure (A®A*, -) on the vector space AGA*
given by Eq. (28). By Eq. (29), for all a,b,c € A, and f, g,h € A*, we have

w(la+f)-b+g),c+h)
=w((aob+ (L, + R, )b+ (=R )(@a) + (f o. g + (Lg + RL)(a)g + (=R)(D)f), ¢ + h)
=(fo.g+ (L + R))(@g + (—R)b)f,c) —(hyao b+ (L, + R, )b+ (—R; )(ga)
=(f,c<aby—(g,arc+c<ay—<(h,aob)—-<(h<, g, a)

+Hfre,h+h<, f,by+{(fo,g,c).

Similarly, we obtain

w(la+ f)-(c+h),b+g) (f,b<c)y—<{g,aocy—<{(h,arb+b<a)

—(€ G ha)+(fo.hb)+{f>.g+8g < f o),
—(f,ce>b+b<c)—{g,coa)+<h,b<a)
+h>,g+g < hay+(ho, f,b)—(g < f,0),
—(f,cob)y—(g,c>a+a<c)+<h,a<b)

+(ho,g,ay+<h>, f+ f <. hb)y—{(f <, g,c).

w(l(c+h)-(a+ f),b+g)

w(l(c+h)-(b+g),a+f)

Hence we get

wl@a+f)-b+g,c+h)—wla+f)-(c+th)y+(c+h)-(a+f),b+g
+w((c+h)-(b+g),a+f)

=(f,cab-b<ac+(c>b+b<c)—cob)
+(g,—(a>c+c<a)+aoc+coa—-(c>a+a<c))
+(h,—aob+(a>b+b<a)—b<a+a<b)
+a,-h<,g+g<.h—(h>,g+g<.h)+ho,g)
+b,(f>uh+h<, f)—fo.h=ho,f+(h>. f+ f <. h)
He, fog=(fP.g+g < fl+g < f-f<8)

=0.

Therefore, (A®A*, -, w(-, -)) is a quasi-Frobenius Novikov algebra. Then by Theorem 2. 10, there
is a compatible pre-Novikov algebra structure on A @ A*. Denote it by (A ® A*, <, ). It suffices
to check that (A, <,>) and (A", <., >,) are pre-Novikov subalgebras of (A ® A*, <,>). For all
a,b,c € A, h € A*, we have

w@®>b,c+h)—wla>b,c+h) w(a-(c+h),b)+w(l(c+h) -a,b)—wlar>b,c+h)
—(h,a>b+b<ay+<h,b<a)+{h,avrb)

= 0,
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and
w@db,c+h)—wl@a<b,c+h) = wla(c+h)-b)—wla<b,c+h)
= —(h,a < by+(h,a < b)
= 0.

By the nondegenerate property of w(:,-), we obtaina > b =a > banda < b = a < b for all
a,b € A. Hence (A, <, >) is a pre-Novikov subalgebra of (A® A*, <, >). Similarly, we can prove
that (A", <., >,) is a pre-Novikov subalgebra of (A®A*, <, >). Hence (A®A™, -, w(:, -)) is a double
construction of quasi-Frobenius Novikov algebras associated to (A, <, >) and (A", <., >,).

Conversely, suppose that (A®A", -, w(:, -)) is a double construction of quasi-Frobenius Novikov
algebras associated to (A, <,>) and (A*, <,,>,). By Proposition 3.1, the Novikov algebra
(A ® A%, ) is obtained from a matched pair of Novikov algebras (A, A", l4, ra, L4+, ra+), Where
- is given by Eq. (28). By Theorem 210, we have

(@) f, by = (a-f,b)y=wb,a-f)=wb,a-f+f-a)—wb,f-a)
= w(f,a>b)+ w(f,b<a)
= ((Ls + R)(@)f, b),
and
(ra@f,by = (f-a,b)=w(b,f-a)
= wb<a,f)=(Ria),f)
= —(R.(a)f,D), a,beA,feA".
Therefore, we obtain Iy = L] + R?, and r, = —RZ. Similarly, we can prove [,- = L; + R, and
ras = =R .
The proof is completed. O

Next, we introduce the definition of pre-Novikov coalgebras.
Definition 3.4. A pre-Novikov coalgebra is a vector space A with linear maps @,3: A — AQA
satisfying
30) (@®id)a(a) + (r®id)(id® @)B(a) — (1d @ (a + B))a(a) — (t ®id)(B @ id)a(a) = 0,
Bl (deppPa) + (r@id)(«@ + ) ®id)B(a) - (@ + B) ®1d)B(a) — (r ®1d)(id ® B)B(a) = 0,
(32) ((de®n)(Beid)a(a) - ((a +p)®id)B(a) = 0,
33) (de1)(e®id)a(a) - (@®id)a(a) =0, a € A.
Denote it by (A, a, B).

Let V and W be vector spaces. Suppose that ¢ : V — W is a linear map. Then there is an
induced dual linear map ¢* : W* — V* defined by

(34) @ (v =(f o)), veV.feW.

It is easy to see that (A, a,f) is a pre-Novikov coalgebra if and only if (A", a*,B") is a pre-
Novikov algebra.
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Proposition 3.5. Let (A, <,>) be a pre-Novikov algebra and (A, o) be the associated Novikov
algebra of (A, <,>). Suppose that there is a pre-Novikov algebra (A, <.,>.) which is in-
duced from a pre-Novikov coalgebra (A, a, ), whose associated Novikov algebra is denoted
by (A*,0,). Then (A,A*, Ly + R.,—R., L, + R ,—R.) is a matched pair of Novikov algebras if
and only if the following equations are satisfied:
(35) (ta+pB)aob)=((Ls +2R,)(a)®id +id ® L.(a))(ta + B)(b)

+ (d ® R.(b))2ta + B)(a) — (R4(b) @ id)Tta(a),
(36) Ta(@aob—-boa)= (L. +R)(a)®id +1id ® L,(a))ra(b)

- ((Ls + R)(h) ®1d +1d ® L.(b))Ta(a),
(37)

(@+pB)a>b+b<a)=>10d® (R, + L,)(b)2ta + B)a) — (L4(b) ® id)a(a)

+((Ls +2R.)(a) ®1d +1d ® (Ls + RJ)(a))(a + B)(D),

(38)
(a+p-1a—-10)(b<a)=0d®Li(b))(ta + p)(a) — (L4(b) ® 1d)(a + T8)(a)
+ (1d ® Ro(a))(a@ + B)(D) — (R«(a) ® 1d)(ta + 7B)(D),
(39) (1d ® R.(b) — R.(b) ® id)(ta + B)(a) = (id ® R.(a) — Ro(a) ® id)(ta + B)(b),
(40) Ta(a o b) = 1d ® R.(b))ta(a) + (L, + Ry)(a) ®id)(ta + B)(b),
41
(id ® (R- + Lo)(D))ra(a) = (R. + Lo)(b) @ id)a(a) + (1d ® (L. + Ro)(@))(ta + 78)(D)
— ((Ls + Ro)(a) ® 1d)(a + B)(D),
(42) (@+pB)b<a)=>10dQ (R, + L)) (ta + B)(a) + (Ri(a) ®id)(a + B)(b), a,b € A.
Proof. By Proposition 3.7, it suffices to show that Eqs. (35)-(42) are equivalent to Eqs. (20)-
(27) respectively when B = A*, [y = L] + R, ry = —=R%, [, = L] + R and ry. = —R7 .
Leta € Aand f, g € A*. By Eq. (27), we have
—R(a)(f 0. &) =(L; + RO)((Ly, + R,)(fa)g — (Ry(a)f) 0. g
=(L; + RO((Ly, + R)(NHa)g — (Ls, + Lo JR(a)f)g.
Let both sides of the above equation act on an arbitrary element b € A. Then we have
—(R(a)(f 0. 8), b) = (L + RO((L;, + R, )(N)a)g, b) — {(Ls, + Lo )R (@) f)g, b),
which is equivalent to the following equation
(43) (fOg@+Pb<a) = (f8g(d®R. +L)bB)Ta +p) @)
Hf ® g (Ry(a) ®id)(@ + F)(D)).

Then it is easy to see that Eq. (42) holds if and only if Eq. (27) holds. The others can be proved
similarly. O

Definition 3.6. Let (A, <, >) be a pre-Novikov algebra and (A, @, 8) be a pre-Novikov coalgebra.
If they also satisfy Eqs. (33)-(42), then we call (A, <, >, @, 8) a pre-Novikov bialgebra.

By Propositions 33 and 3.5, we obtain the following conclusion.
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Theorem 3.7. Let (A, <,>) be a pre-Novikov algebra and (A, o) be the associated Novikov alge-
bra of (A, <,>). Suppose that there is a pre-Novikov algebra (A*, <., >.) which is induced from
a pre-Novikov coalgebra (A, a,B), whose associated Novikov algebra is denoted by (A*,o.).
Then the following conditions are equivalent.

(a) There is a double construction of quasi-Frobenius Novikov algebras associated to (A, <,
>) and (A%, <,,1>,);
(b) (A,A*, L] +R.,—R.,L; +R. ,—R.) is a matched pair of Novikov algebras;
(c) (A, «q,>,,p) is a pre-Novikov bialgebra.
Finally, we present an example of pre-Novikov bialgebras and quasi-Frobenius Novikov al-
gebras.
Example 3.8. Let (A = ke; @ ke, <, >) be a two-dimensional vector space with binary opera-
tions <, > given by
ei>e;=0, i,je{l, 2},
e1<der=e, e <dey=e, e e =e, e e =0.

One can directly check that (A, <,>) is a pre-Novikov algebra. Define linear maps @,8: A —
A®Aby

ale)) =e,®ey, ale) =0,
Ble)) = —e;®ex, Ller) =0.

Then it is easy to check that (A, <, >, @, B) is a pre-Novikov bialgebra.
Let {e], 3} be the dual basis of A*. Then by Theorem 3.7, there is a double construction of
quasi-Frobenius Novikov algebras (A ® A", -, w(:, -)) which is defined by non-zero products
ej-ep=ey, e -ey=e, e-e=e, e -e =—e,
el -ep=¢€), ej-ey=e—€, €1 =6, €, =—€|, €€ =¢e),
and the nondegenerate bilinear form w(-, -) given by
w(ey, e1) = w(ey, €) = —wley, e)) = ~w(e, €3) = 1,

w(ey, &) = w(ey, €]) = wley, e2) = wles, e1) = wlej, e)) = wle;,e;) =0, i, je{l,2}.
4. PrRE-NoOVIKOV YANG-BAXTER EQUATION

In this section, we introduce the definition of pre-Novikov Yang-Baxter equation whose sym-
metric solutions can be used to construct pre-Novikov bialgebras. Moreover, the operator forms
of pre-Novikov Yang-Baxter equation are investigated.

Let (A, <,>) be a pre-Novikov algebra and (A, o) be the associated Novikov algebra. For
convenience, we define two binary operations © and x on A by

aOb:=a>b+b<a, axb:=aob+boa, abeA.

Lemma4.1. Let (A, <,>) be a pre-Novikov algebra and r € A®A. Suppose thata,3: A — ARA
are linear maps defined by

44) aa) : = (L(a)®id +id ® (L, + R,)(a))Tr,
(45) Ba):=—-(L.(a)®id +1d ® (L, + R,)(a))r, a € A.
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Then a, B satisfy Eqs. (33)-(42) if and only if the following conditions are satisfied:

46) ((Ls +2R.)(@) ®id +id ® (L. + R)(@)(Lo(b) ®id +id ® (L, + R.)(D))
— (L+(b) ®id)(Lo(a) ® id +id ® (Ls + R2)())
~(Lavb+b<a)®id+id® (L, + R)@> b +b < a))xr —r) = 0,
(47) ((id ® Ro(@))(Lo(b) ®id +id ® (Ls + R)(D)) + (Ro(@) ® id)((Le + R.)(b) ® id
+id ® L. (b)) — (Lo(b) ® id)(id ® R4(a) — R.(a) ® id)
—({d® 2L, + R.)(b < a) + 2L, + R)(b < a) ®id))(trr — r) = 0,

(48) (R + L)) ®1d)(Lo(a) ®1d +1d ® (L» + Ro)(@)) — (Id ® (Ls. + Ra)(@))(id ® L. (D)
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+ (Lo + R)(b) ®id) — (L» + Ro)(@) ® id)(L.(b) ® id +id ® (L. + R.)(D)))(rr —r) = 0,

(49) ((Ro(a)®id)(Lo(b) ®id +id ® (L. + R,)(D))
—(Lo(b<a)®id+id® (L. + RL)(b < a))(tr—r) =0, a,beA.

Proof. Tt is easy to check that «, B satisfy Egs. (33), (38), (3%) and (40}) automatically.

By Eq. (42), we have

(1d ® (R + Ly)(b))(ta + B)(a) + (Ru(a) ® id)(a + B)(D) — (@ + B)(b < a)
=({d® Ry + L)(D))(R.(a)®id —id ® R.(a))r
+(R.(a) ®1d)(L.(b) ®1d +id ® (L. + R,)(b))tr
—(R.i(a)®@id)(L.(b) ®id +id ® (L, + R,)(b))r
—(Lb<a)®id+1d® (L, + R)(b < a))tr
+(Lo(b<a)®id+i1d® (L, + R,)(b < a))r
= (Rs(a) ®1d)(L.(b) ® id +id ® (L. + R.)(b))
L. (b<a)®id—-1d® (L. + R)(b < a))tr
+(1d ® (=(Rs + Lo)(D)Rs(a) + (L. + R.)(b < a))
+(—=R.(a)L.(b) + L.(b < a))®id — R.(a) ® (L. + R.)(b))r.
By Definition 2.5, for all a, b, c € A, we have
—(coa)Ob+cx(b<a)=(b<a)dec,
and
—-brc)y<da+b<a)yrc=—-(bra)r>c.
Hence we obtain
—(Rs + L)(D)R.(a) + (L, + R.)(b < a) = (L. + Ro)(D < a),

and

~R(a)L.(b) + Lo(b < a) = —L.(b < a).
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Therefore, one gets

(1d ® (R + Ly)(b))(ta + B)(a) + (Ri(a) ® id)(a + B)(D) — (@ + B)(b < a)

= (R+(a) ® id)(Lo(b) ® id +id ® (L. + R2)(b)) — Lo(b < a) ®id
—id® (L. + Ry)(b < @))tr + (id® (L. + R)(b < a)
~R.(@)® (L + R)(D) — L. (b > a) ® id)r

= (Ra(a) ® id)(Lo(b) ® id + id ® (L, + R.)(D))
—~(Lo(b < a)®id +id ® (Ls + R)(b < @)))(7r — 1)
+(Ro(a)Lo(b) ®id + Ro(a) ® (Ls + R)(b) — Lo(b < a) ®id
~id® (L. + R)(b < a) +id ® (L. + R)(b < a)
~R(@)® (L + R)(D) — L. (b > a) ® id)r

= (R(a) ® id)(L.(b) ® id + id ® (L, + R.)(b))
—(Lo(b < a)®id +id ® (Ls + R)(b < a))(zr — 1)
+(Ro(@)Lo(h) ®id — Lo(b < @) ® id — Lo.(b > a) ® id)r-

By Definition 2.3, for all a, b, c € A, we have

(boa)dc—(b<a)oc—(bra)>c
=br>c)y<a+b<ac)y<a-b<a)ydc—-b<aa)ypc—-(bra)>c
=((brc)y<a-(b<a)ypc—-bravc)+(bgc)y<a—-(b<a)<c)
=0.

Hence we obtain
R.(a)L,(b)®id - L,(b<a)®id—-L.(b>a)®id = 0.
Therefore Eq. (42) is equivalent to Eq. (49).

One similarly verifies that Eq. (37) is equivalent to Eq. (48), Eq. (B%) is equivalent to Eq.
(47), and Eq. (41) is equivalent to Eq. (48). Then the proof is completed. O

Let V be a vector space with a binary operation *. Letr = }x;® y; € V® V and ro=
Yx®y, eVeV. Set

’ ’ ’ ’ ’ ’ ’ ’ ’
rip %75 ::Zx,-*xj®y,~®yj, T2 % Fyg ::le-@)y,-*xj@yj, ri3kry ::in*xj@)yj@yi,

ij ij ij

’ ’ ’ ’ ’ ’ ’ ’ ’

ryz kry = § xi*yj®xj®yi’ I3 % Fpy o= § xi®xj®yi*yj, Iy *ry3 = § yi*xj®xi®yj,
i,j i,j i,j

’ ’ ’ ’ ’ ’ ’ ’
Iy * 13 1= E y,-®x,~>x<xj®yj, rp1 * 1y = E y,-*yj®x,-®xj, To| * I3 1= E y,-®x,-*yj®xj,
ij ij ij
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!’ ’ !’ ’ !’ ’ ’ !’ ’
31 * Iy o= Zyi*yj®xj®xi’ 31 % I'yg3 = Z)’i®xj®xi*yj', 31 % I'3p = Z)’i®)’j®xi*xj,

iJ i.j i
’ ’ ’ ’ ’ ’ ’ ’ ’
ra3 * T = § X;@X;j*y;®Yi, I3 * 1) 1= E Vi ® Xk X; @i, I3 % T3 1= E X; @ X ®Yi*Y)s
i.J i.j i
’ ’ ’ ’ ’
Fa3 * T3 .= § Y ®Xi®yi* X;, I3k = E Y ®Yi* X; ®x;.
Lj ij

Lemma 4.2. Let (A, <,>) be a pre-Novikov algebraandr = 3, x;® y; € A®A. Let o, : A —

A ®A be linear maps defined by Egs. (22) and (43) respectivel;. Then (A, a, B) is a pre-Novikov
coalgebra if and only if the following conditions are satisfied for all a € A:

(50) (Lo(a) ® d® 1d)R11 + (ld ®L.(a)® 1d)R12 + (ld ®1id® Lo(a)R;3
- Z ((id ® Ly (a © x;) ®id)(y; ® (17 — 1))
J

= > ([d@id® Lo(a ® x)(: ® (rr = 1)) = 0,

(51) (Lo(@) ®id ®id - id ® Ly (@) ® id)Ry + (id ® id ® L, (a)Ra»
+ > ((@L. + Ro)(@w x) ®id @id)(rr - 1) @)
J

+(id® 2L, + Ry)(a > x) ®1d)(rr —r)®y,)) = 0,
(52) —(1d® Ly(a) ® id)R,; + (1d ® id ® L, (a))R3;
+ 3 (Lol x) ®id®id)((rr — 1) ® y)) + (d ® Lo(a > x)) ®id) (77 — 1) ®,)) = 0,
J

(53) —(1d® Ly(a) ®id)R;; + (1Id ®1d ® Lo(a))R4 = 0,
where

Riy=ryors —ryorn —r33 Orp+ryg >y + 13 % 3,

Ry = —ry1or3 —rs3Or3p + 1y <13,

Riz =r310r +r3Ory +ra3 > 13 —r3p a3+ 13 > rpp + 131 k1,

Ry = rp1 B> riz+ria > raz + 13 k3,

Ry =rizorn+r3Ory—rz>rip—r3xrip—7r3ory
—r3OFrp+ 13 >+ 13 %y + 1307113 — 1130173,

R3y1 = —rizorpa+ri3or +r3Ory —riz > rip —r3 x o,

R4y = =r310rp =13 Oy + 131 < 3.
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Proof. Let a € A. By Egs. (44) and (43), we have

A(a) = (@®id)a(a) + (T®i1d)(id ® @)B(a) — (1Id @ (a + B))a(a) — (T ® id)(B ® id)a(a)

:Z((aoyi)oyj®xj®x,-+yj®(aoy,-)®xj®x,-+yioyj®xj®a®x,-
i,j
+y;®y,0x;8a0x;—y;0oy;®ab x;8x;—y;®ab x;0y; O X;
—(a*xy)oy;®x;i®xX;—y;®x;®a*xy)OX;—aoy®x;0y;® X
—aoy®yi®x0x;+ao0y;@x>Xx;®y;+aoy;®x;Qx; xy;
—)i®@Ox)oy;®x;—yi®y;®@OXx)0X;+y;i®(aOx;) > x;®Y,
+yi®x;®@Ox) *xyj+y;®@oy)>x;®x;+(@oy) xy;®x;®x;
+Y;®y>X;®a0OX;+yi *xy;®X;®a0 x).

Then we obtain A(a) = Pi(a) + P,(a) + P3(a), where

Pia)= Y ((@oy)oy;®x;®x—(axy)oy®x®ux
ij
—aoyi®x,~oyj®xj—aoy,~®yj®x,~®xj
+aoy,-®x,->xj®yj+aoyi®xj®xi*yj+(aoyl-)*yj®xj®xi),
Pz(a):Z(yj®(aoy,-)®xj®x,-—y,-oyj®al>xi®xj—yj®al>xi®yi®xj
ij
-)i®@OXx)oy;®Xx;+yi®@0OX)>x;Qy;+y;®(aocy) > x;®x;),
P3(a):Z(yl-oyj®xj®a®x,-+yj®y,~®xj®a®x,-
ij
—yi®x®@*xy)Ox;—y;®y;® (a0 x)Ox;
+Yi®x;®@OX) *y;+y;®y; > X;®a0X;+y;i *xy;®X;®a0x;).

For P,(a), since

Z((aoyi)oyj®xj®xi—(a*y,-)oyj®xi®xj+(aoy,-)*yj®xj®x,-)
ij

:Zao(yjoyi)®xj®xi,
ij

we have

Pi(a) :Z((Lo®id®id)(yjoyi®xj®x,-—y,-®x,-oyj®xj—y,-®yj®x,-®xj
ij
+yl-®xl-l>xj®yj+y,-®xj®xi*)’j))
= (L, ®1d®1d)(rp) 0 131 — 121 0 3 — 131 @ F3p + Iy B> 123 + 131 % 123).
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For P,(a), since

Z(yj®(a0yi)®xj®x,-—yi®(a®xl~)oyj®xj+y,-®(a®x,-)l>xj®yj
ij
+y;®(aoy) > x; ®X;)

= Z)’j@’a > (x; <y) ®x; — Z(id@LD(anj)@)id)(yj@ (tr —r)),
Lj J

we have

Pya)= > ((id® L.(a) ®id)(-y; 0 y; ® X ® x; = y; @ X; ® ;O X; + y; © X; < J; ® X,))
]

= > ® Lu(a © x)) @ id)(y; ® (tr = 1))
J
=(1d® Ly(a) ®1d)(=r21 0 131 — 123 O 131 + 121 < 73)

- > (d® L.(a © x)) ®id)(y; ® (t7 - 1)).
J

For Ps(a), since
D (~y®x®@xy)0x-y®y®@0x)0x+y0x8@ox) y)
W

= Zy,-@xj@a@(yj > X; — X; <1yj)—Z(id@id@L@(aG)xi))(y,-®(Tr—r)),
i -

we have

Pi(a) = Z((id@id@L@(a))(y,-oyj®xj®x,-+yj®yi®xj®x,-
ij
+y,-®xj®yj>x,-—yi®xj®x,-<1yj+yj®y,-l>xj®x,-

+Yi kY @8 x)) = Y ((d@id® Lo(a® x))((i ® (tr = 1)),

= (1d®1d ® Lo(a))(r31 0 121 + 132 O 1y + 13 D 131 — 131 < I3 + I3 B 1y + 131 % 121)

- Z(id ®i1d ® Ly(a © x))(y; ® (tr — r)).

Therefore, Eq. (30)) is equivalent to Eq. (50).
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Similarly, one can prove that Eq. (31) is equivalent to Eq. (51}), Eq. (32) is equivalent to Eq.

(52), and Eq. (33) is equivalent to Eq. (53). Then the proof is completed.

Next, we introduce the definition of pre-Novikov Yang-Baxter equation.

O

Definition 4.3. Let (A, <,>) be a pre-Novikov algebra and r € A ® A. The following equation

(54) rpor3+r30Oriz—rip<r =0

is called the pre-Novikov Yang-Baxter equation in (A, <, >).
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Theorem 4.4. Let (A, <,>) be a pre-Novikov algebra and r € A ® A be a symmetric solution of
pre-Novikov Yang-Baxter equation in (A, <,>). Let a,8: A — A ® A be linear maps defined by
Egs. (44) and (45) respectively. Then (A, <, >, @, B) is a pre-Novikov bialgebra.

Proof. Clearly, we have R;; = —R;; = 0 since r is symmetric. Suppose that o is an element
in the permutation group S; acting on {1,2,3}. Then there is a linear map induced by o from
ARA®Ato A®A®A. We still denote this linear map by o
Set o = (23) € §5. Then we have
0=0(R)
=0(=ry 013 — 13013 + 12 <ry)
= ~To@n) © To@31) ~ To@3) OTo1) + o) < Te@32)
=-131071 =IO tr3 <3
= Ry;.
For R, set o = (12) € §;. Since r is symmetric, we have
Ry =rip>riz+rn>rs+r3 ki
=(rpor+r30Oriz—rip <Ary)+(rpors +ri3Ors —rip <r;3)
=(ror+r30ry —ry <Arn)+(rporp+rzOryn —rip <r;))
= -Rpp —o(Ry2) = 0.

Similarly, one can verify that R3, Ry, and R3; are equal to zero.
Then this theorem follows directly by Lemmas %, I and 4.2, i

Next, we investigate the operator forms of pre-Novikov Yang-Baxter equation. First, we
introduce the definition of representations of pre-Novikov algebras.

Definition 4.5. Let (A, <, >) be a pre-Novikov algebra and V be a vector space. Let ., r., [, 7 :
A — Endg(V) be linear maps. (V, ., r., 4, r4) is called a representation of (A, <, ) if satisfies

(55) I (@)l (D) — I.(b)l.(a)v = l[.(ao b —boa)y,

(56) (@)l (b — L(b)l.(a)v =l(a> b —b < a)y+ Ll (b)l(a)v,

(57) re(a > b)y = ro(b)(re + ro)(@yv + L(a)ro(b)y — ro (D)< + I )(a)v,
(58) re(a < b)y = ro(b)re(@)v + Lo(a)(rs + r)(D)y — ra(D)l(a)v,

(59) I (@)ra(D)v = ro(b)l(a)v = rq(a o b)y — ro(b)ro(a)v,

(60) ro(a)(re + ro)(b)y = ro(b)rs(a)v,

(61) l«(a> b)y = r.(b)(Us + [)(a)v,

(62) l.(a o b)y = rq(D)l.(a)v,

(63) ra(@ra(b)y = ro(b)ra(a)v,

(64) lo(a < by = ryb)li(a)v, a,beA,ve,

whereaob=ar>b+a<b.

Note that (A, L., R, L., R.) is a representation of (A, <, >).
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Proposition 4.6. Let (A, <, >) be a pre-Novikov algebra. Let V be a vector space and L., 1y, 14,74 :
A — Endy(V) be linear maps. Define two binary operation < and > on the direct sum A ®V of
the underlying vector spaces of A and V by

(a+u)<(b+v):=a<b+l(a)y+r bu,
(a+uwyr>b+v)y=avb+L.(a)v+r.(bu, a,beA uvelV.

Then (V, 1., r., 1, ry) is a representation of (A, <,>) if and only if (A ® V, <, >) is a pre-Novikov
algebra, which is called the semi-direct product of A and V and denoted by A »;_,_ ;.. V.

Proof. 1t is straightforward. O

Proposition 4.7. Let (A, <,>) be a pre-Novikov algebra. If (V, 1., r., 1., ry) is a representation
of (A,<,>), then (V*,IL + I, + 1. +ri,rl,—(r + 1), —(r. + r})) is also a representation of
(A, <, >).

Proof. Foralla,b € A, f € V' and v € V, we have
L+ L+ +r )@ + I+ + 1)) f = (L + I+ s +r )OI + I+ 1+ r) (@) f
L+ +r.+r)aob—-boa)f,v)
=(f, (e + Lo+ 1o +r )N + Lo + 1 +10)(@)V)
(o +li+r+r)@(e+ 1+ +r )W)+ (e + 1+ 1. +1r)(aob—boa)w).
By Egs. (53) and (62), we obtain
(@)l (b)y = [ (D). (a)y = [.(a 0 b = b o a)y = ra(D)l.(a)v = ra(a)l.(D)v.
Then we get
(65) (ls + r )@ (b)y = (I + ro)(D)l(a)v.
By Egs. (58), (61)) and (64), one obtains
L (@)ls(D)y — L(b)L(a)v
=la>b-b<ay+I1.,(b)l (a)
= 1.(0)(ls + L)(@)y — ra(@)l(b)v + L(b)l(a)v.
Then we have
(66) (re + L)) + L) @)y = (b + r)(@)l(b)v.
By Egs. (63) and (58), one gets
(Is + 1o + 1o + L)(O)Ls + L)@y = (I + 1o+ 10 + L) (@)l + [)(D)v.
By Egs. (57), (6{]) and (61), we have
re(a > b)y = ro(b)(re + ro)(@)y + L(@)r-(b)v — ro (D) + lo)(@)v
= (L + ro)(@r.(b)y — l(a > b)v.
Then we obtain

(67) (re +1)(a> by = (I, + ro)(a)r.(b)v.
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By Egs. (58), (6{]) and (64), one obtains

ro(a < D)y = ro(b)ro(a)v + lo(a)(ry + ro)(b)v — ro(b)l(a)v
= ro(a)(re + ro)(b)v + L(a)(rs + r)(b)y — l(a < b)v.

Then we get

(68) (rs + 1)@ < b)y = (rs + L)(@)(rs + ro)(b)v.
By Eqgs. (59), (62) and (63), we have

(69) (I + 1)@ o b)y = (I, + ra)(@)r(b)v,

Then by Egs. (67), (68) and (69), one gets
(ro +lo+ 1l +r)aoby =(r. +1l.+ 1, +r)(a)(rs + ro)(b)v.
Therefore one obtains
L +li+r+r D) + 1+ +ro)(a)y
—(+lg+rs+r)@s + 1+ 1 +ry)(b)v
+(o+l+r.+r)aob—boa)y
=l +r + o+ 1)) + 1)@y = (L + 1o + Lo + ro)(@)( + Lo)(b)y
+(o+r+la+r)b)(re +r)ayw—(, +r. + .+ r)boa)y
+(o+rn+ilo+r)aoby—(L, +r. + 14+ r)a)r. +ry)b)v
=0.
Hence Eq. (53) holds.
Similarly, one can check that Eqs. (56)-(64) hold. Then the proof is completed. O

We introduce the definition of O-operators on a pre-Novikov algebra associated to a repre-
sentation as follows.

Definition 4.8. Let (A, <,>) be a pre-Novikov algebra and (V, [., r., [, ro) be a representation
of (A,<,>>). Alinear map T : V — A is called an O-operator on (A, <,>) associated to
W, Lo, rs, la, ro) if T satisfies

(70) Tw) > T)=TU(TwW)w) +T(r(TO)u),
(71) Tw) <«TW) =TU(Tw)v)+Tr(TW)u), u,velv.
For a finite-dimensional vector space A, the natural isomorphism
A®A = Homg(A", A)
identifies an r € A ® A with a linear map 7, : A* — A, which is defined by
(72) (f®gnr=(fT() [fgecA"

Proposition 4.9. Let (A, <,>) be a pre-Novikov algebra, r € A ® A be symmetric and (A, o) be
the associated Novikov algebra of (A, <,>>). Then r is a solution of pre-Novikov Yang-Baxter
equation in (A, <,>) if and only if T, is an O-operator on (A, o) associated to (A*, L, +R%,, —R%).
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Proof. Let {e;, e;,- -, e,} be abasis of A and {e], €3, - - -, e;,} be the dual basis of A*. Assume that

n n non
e >e;= bejek, e de; = 2 cf.‘jek and r = Z Za,-jei®ej, where bfj, Ci-cj, a,-jEkandaij:aj,-.
k=1 k=1 i=1 j=1

By Eq. (72), we have T,(e}) = } aye,. Hence we obtain
k=1

LUTAee; = = ), ) aible.  LTANE = = ) ) auche

=1 I=1 t=1 I=1

RL(T(e)))e} = - Z Z ai,b{te;‘, R(T.(e)))e} = - Z Z al-,c{te}k.

=1 I=1 =1 I=1
Then the coeflicient of ¢; in
T(€]) o TH(€) = T(LL + R)TA€)e; — RAT,(€D)e))
is
Z Z (aza(bl + &) + aita,k(b{l + c{t) — ajaych,).
=1 =1

Hence T, is an O-operator on (A, o) associated to (A", L, + R%, —R?) if and only if

(73) Z Z (anau(bly + cl) + aizazk(bf, + C{t) — ajapcy) =0

=1 I=1
holds for all i, j € {1, -, n}. The left-hand side of Eq. (73) is just the coefficient of ¢, ® ¢; ® ¢
in 7y, 0 ¥13 + 3 © 113 — i < rp3. Therefore this conclusion holds. O

Proposition 4.10. Let (A, <,>) be a pre-Novikov algebra, r € A® A be symmetric and (A, o) be
the associated Novikov algebra of (A, <,>). Then T, is an O-operator on (A, <4, >) associated to
(A", L. + L+ R, + R., R, —(R. + L), —(R. + RY)) if and only if the following equations hold:

(74) ra>ri3+rs xrz+rp>rg =0,
(75) r2 <ri3—ri3zOra—rpor;=0.
Proof. It follows by a similar proof as that in Proposition 4.9. O

Theorem 4.11. Let (A, <,>) be a pre-Novikov algebra, r € A ® A be symmetric and (A, o) be
the associated Novikov algebra of (A, <,>). Then the following conditions are equivalent:

(a) r is a solution of pre-Novikov Yang-Baxter equation in (A, <,>);
(b) T, is an O-operator on (A, o) associated to (A", L, + R%, —R%);
(¢c) T, is an O-operator on (A, <,>) associated to (A*,L; + L., + R. + R,R,,—(R, +
L), =(R; + RY)).
Proof. By a similar proof as that in Theorem 2.4, Eq. (75) holds if and only if Eq. (5%) holds.
Since r is symmetric, Eq. (74) holds if and only if R,; holds, where R, is given in Lemma 2.2,

Then by Theorem 4.4, Eq. (7%) holds if (5%) holds. Therefore, by Propositions 4.9 and 210,
we obtain the conclusion. O
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Theorem 4.12. Let (A, <,>) be a pre-Novikov algebra and (A, o) be the associated Novikov
algebra of (A, <,>). Let (V,l.,r.,lo,rs) be a representation of (A,<,>). Let T : 'V — A
be a linear map, which is identified with rr € A ® V" C (A %p 4 s s~ 4=y V) @
(A <y grar —eaty e+ V) through Homg(V,A) = A® V*. Then r = rp + 7(ry) is a
symmetric solution of pre-Novikov Yang-Baxter equation in A »<p i o 2 1) —(iaryy V' if
and only if T is an O-operator on (A, <,>) associated to (V, L, r., 14, ro).

Proof. Let {vi,va,- - -, v,} be a basis of V and {v}, v}, - -, v;} be the dual basis of V*. Then we
have
=Y TeyeveT(V)eV' c(AaV)e@ae V),

i=1

r=rr+10r) = ) (TE) @V, +v; @ T(1).
i=1

Therefore, we have
rnory= ) (T(v) o T(v) ®vi @ v+ (L + r)TE)V; ® v ® T(v))

i,j=1

—ri(Tp; @ T(v) ® V7).

By Eq. (7), we have

LTy = - Z Vil (T, (T, = — Z vi(re(T(vi))vivy,
k=1 k=1

LTy, == ) villaTO)vvy,  roi(Tyv; == ) vilra(TW))vivy.
k=1 k=1

Hence we obtain

DN+ T @V 8T == Y 3 v @V @ T((Us + ra)(T())v)),

=1 j=1 i=1 j=1

i i r(Te)wv; @T(v) ® vj. = - i i v ® T(ro(T(vj))vi) ® vj..

=l j=1 i=1 j=1

Then one gets

S
N

rip 0 rp3 = (TW) o T @v; ®V; =v;®Vv; ® T((Lls + r)(T(v))v;)

+v; @ T(ra(T(v)))vi) ® V).

1
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Similarly, we obtain

s = ) (G RTW) @ ri(T W) + () @V @ (I + I+ ri + KT W)V
i=1 j=1

+V; @V, @T(v) > T(v))

= > D=V @TT W) @V = T((Us + L+ 7o + r)(TW)V) ® V] @V

=1 j=1
+ v; Vv @ T(v;) > T(v))),

ri3 <y = Z Z (TV) ®V;® (=1L = r )TV +v; ® T(v;) ® (—r. — L)(T(v)V;

i=1 j=1
+v; @V ®T(v) < T(v))

= Y DU + r )T )W) @V @i + Vi @ T((r + L)T()v) @V}

=1 j=1
+V) ® vj- @ T(v;) <« T(v))),

—rn <y == ) Y (TO) @ (=1t = )T W)V @ V) + v @ T(v) < T(v) ® V)
i=1 j=1
+V; ®(-rL — lZ)(T(v,-))vj RT(v))

= > D (T = r )TV &V @V =V @ T(v) < T(v) ® )

=1 j=1
+v; ®@V; @ T((—r = LT (v))v))).

Therefore, r = ry + 7(ry) is a symmetric solution of pre-Novikov Yang-Baxter equation in
. .
A <p it ert e~ ~er Vo 1f and only if

(76) T(i)oT(v)j) =T((Us + 1T O)V)) + T((rs + r )T (v))Vi),
(77 T(vi) Ty =TTy +Tr(TW))v),
(78) T > T)+TW) ATW) =T +r )T @)W + T((re + LXT(v))v),

hold for all i, j € {1,---,n}. It is easy to see that Egs. (76)-(78) hold for all i, j € {1,--- ,n}
if and only if 7T is an O-operator on (A, <, >) associated to (V, L., rs, [, r4). Then the proof is
completed. O

Finally, we present an example to construct pre-Novikov bialgebras by O-operators.

Example 4.13. Let (A = ke; ®ke,, <, >) be the pre-Novikov algebra given in Example 3.8. Let
T : A — A be a linear map given by

T(el) = €, T(€2) =0.

Then it is easy to check that T is an O-operator on (A, <, >) associated to (A, L., R., Lo, R.).



22 YUE LI AND YANYONG HONG

Denote the semi-direct product of (A, <, >) and its representation (A*, L + L? + R, + R, R,
—(R: +L%), —(R; +R%)) by (B, <,>). In fact, B is the vector space ke ©ke, ®ke| ®ke; endowed
with two binary operations >, < defined by non-zero products:

e e =e, e de=ee =es,
el > el =e > e =—2e, e > ey = —2e,
epdel=e,de;=¢e e =e,<e=¢], e e =e,<¢ =¢,.
L 2 2
By Theorem 4.12, r = ,;1 E‘I(T(e,-) e +e;®T(e;) = e;®e] + ] ®e; is a symmetric solution
of pre-Novikov Yang-Baxter equation in the pre-Novikov algebra (B, <,>). Let (B, o) be the

associated Novikov algebra of (B, <, >). Then by Theorem 474, (B, <, >, @, 8) is a pre-Novikov
bialgebra where @, 5 : B — B ® B are linear maps given by

ala) : = (L(a)®id +id ® (L, + R)(a))tr
=aoce,Qej+e,®@>ej+e] da)tace;®e,+e;Q(ar> e, +e; <a),
pa): =—(Ly(a)®id +1d ® (L, + R,)(a))r

=-—are,®e—e,®(aoej+ejoca)—are Qe —e;®(ace; +e,0a), acB.
Explicitly, a(e;) = 2e] ® €], 5(e;) = —e; ® e}, and the others are zero.
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