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Abstract—This paper presents a novel optimization framework
for beamforming design in integrated sensing and communication
systems where a base station seeks to minimize the Bayesian
Cramér-Rao bound of a sensing problem while satisfying quality
of service constraints for the communication users. Prior ap-
proaches formulate the design problem as a semidefinite program
for which acquiring a beamforming solution is computationally
expensive. In this work, we show that the computational burden
can be considerably alleviated. To achieve this, we transform
the design problem to a tractable form that not only provides a
new understanding of Cramér-Rao bound optimization, but also
allows for an uplink-downlink duality relation to be developed.
Such a duality result gives rise to an efficient algorithm that
enables the beamforming design problem to be solved at a much
lower complexity as compared to the-state-of-the-art methods.

I. INTRODUCTION

Next-generation wireless systems and their emerging appli-
cations are expected to offer high-throughput communication
services as well as accurate sensing functionalities [1], [2].
Integrated sensing and communication (ISAC) is a promising
strategy which is anticipated to play a central role in meeting
those demands. In contrast to traditional systems in which
the sensing and communication operations are performed
separately, ISAC systems offer better utilization of resources
and network infrastructure. However, these benefits also come
with the challenge of addressing more complicated signal
processing tasks and hardware design.

This paper is motivated by the recent interest in beamform-
ing design for the simultaneous operation of sensing and com-
munications. Such problem is often posed as that of optimizing
beamformers for a sensing-related metric, e.g., the Cramér-
Rao bound (CRB) of an estimation problem, while guaran-
teeing certain quality-of-service, e.g., signal-to-interference-
and-noise (SINR) constraints for the communication problem
[3]–[6]. This optimization is challenging not only due to its
nonconvexity but also because the objective function typically
has rather complicated forms [4]–[6]. The best known strategy
for tackling this problem relies on transforming the problem to
the covariance domain, where the problem is convexified after
dropping rank-one constraints using the semidefinite relaxation
(SDR) technique. Despite the convexity of the transformed
problem, solving the SDR problem is typically inefficient due
to the need for lifting the solution space. Moreover, it often
requires a randomization step whenever the SDR solution does
not satisfy the rank-one constraint.

This paper provides a novel framework for solving this
challenging problem. The main idea is to transform the
complicated ISAC problem into a simple form that involves
minimizing the beamforming power subject to downlink SINR
constraints. The main benefit of doing so is that the latter
problem allows for an efficient solution based on uplink-
downlink (UL-DL) duality [7]–[11].

The task of transforming the ISAC problem into the desired
form can be accomplished in two stages. First, we show that
the optimization of a CRB objective can be viewed as that
of maximizing the power in certain point of interest. This
observation is related to a result in [6] for a specific angle
estimation problem that we extend herein for an arbitrary
vector parameter using a more general technique. The second
step is to leverage Lagrangian theory in order to transform
the resulting problem to that of minimizing the power subject
to SINR constraints. Given the new formulation, we draw
upon the existing theory in [7] to establish an UL-DL duality
relation for the ISAC problem. Such duality result reveals
that the same efficient algorithms developed for the classical
communication problem [7], [10], [11] are applicable here,
with a few modifications. In contrast to the SDR approach,
the proposed solution methodology is computationally efficient
and does not lift the solution space. Finally, we present nu-
merical results demonstrating the effectiveness of the proposed
solution.

II. SYSTEM MODEL

A. ISAC Model and Performance Metrics

We consider the multi-user ISAC system illustrated in Fig. 1
over a coherence interval spanning T symbols. In this setup,
a base station (BS) equipped with co-located NT transmit
antenna array and NR receive antenna array seeks to learn an
unknown vector of real parameters η ∈ RL. Simultaneously,
it aims to convey information to K single-antenna commu-
nication users in the downlink. During the t-th symbol, the
baseband transmitted signal x[t] ∈ CNT follows a beamform-
ing model given by

x[t] = Vs[t] =
∑
k

vksk[t], (1)

where V ≜ [v1, . . . ,vK ] ∈ CNT×K is a matrix of beamform-
ing vectors satisfying a total power constraint Tr

(
VVH

)
≤ P

and s[t] = [s1[t], . . . , sK [t]]
T ∈ CK is a zero-mean vector
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Fig. 1. The ISAC system considered in this work. The BS seeks to serve K
communication users and learn some unknown vector parameter η.

of communication symbols satisfying E
{
s[t]sH[t]

}
= IK .

Observe that the beamforming model (1) adopted herein is
identical to that of conventional communication systems. Such
model is particularly useful in scenarios where the length
of the parameter to be estimated is short compared to the
number of users (i.e., L ≪ K), in which case K degrees-
of-freedom (DoFs) are enough to estimate the parameter [5],
[12]. In contrast, if L is large, the beamforming model (1)
should be augmented with an additional component dedicated
to sensing [3], [4], [13]. The extended model can exhibit better
performance in this case due to the increased DoF, but at the
cost of a more complicated design and increased RF-chain
requirements. For simplicity, we restrict our attention to the
model (1).

In the t-th symbol, the BS transmits the waveform x[t] and
subsequently observes the measurement vector y[t] ∈ CNR . In
addition, each user observes a scalar baseband signal, denoted
by ỹk[t] for the k-th user. Such received signals are given by

y[t] = G(η)x[t] + n[t], (2)

and
ỹk[t] = hH

kx[t] + ñk[t], ∀k ∈ {1, . . . ,K} , (3)

where hk ∈ CNT is the k-th user channel and n[t] ∼
CN (0, σ2INR) and ñk[t] ∼ CN

(
0, σ2

)
are noise terms whose

variances are normalized to be the same without loss of
generality. The matrix G(η) ∈ CNR×NT models the “round-
trip" channel between the transmit and receive antenna arrays.
Observe that η is the set of underlying parameters of the
sensing channel. This model encompasses a wide variety of
practical scenarios (e.g., angle-of-arrival estimation of a radar
target). Finally, we assume that the communication channel
H ≜ [h1, . . . ,hK ] ∈ CNT×K is perfectly known at the BS.

We aim to design the beamforming matrix V so that certain
performance goals are met for communication and sensing.
For sensing, we assume a prior distribution on η and adopt
the Bayesian CRB (BCRB) as a measure of performance.
Unlike the classical CRB used in previous works [4], [5],
[14]–[16] which depends on the actual value of the unknown
parameter η, the BCRB provides a bound on the mean-
squared error (MSE) averaged over the prior. For an estimator
η̂ we have E{(η − η̂) (η − η̂)

T} ≽ J−1
V , where ≽ denotes

inequality with respect to the positive semidefinite (PSD) cone
and JV ∈ RL×L is the Bayesian Fisher information matrix
(BFIM). For the additive Gaussian noise channel model (2),
the elements of BFIM can be expressed as follows [17], [18]:

[JV]ij =
2T

σ2
ℜ
(
Tr
(
E
{
ĠH

i Ġj

}
VVH

))
+ [C]ij (4)

where Ġi ≜ ∂G(η)

∂ηi
and C ∈ RL×L is a matrix whose elements

are given by [C]ij ≜ −E{∂2 log f(η)
∂ηi∂ηj

}. Observe that C does
not depend on V. Our aim is to minimize the trace of the
inverse of the BFIM

µ(V) ≜ Tr
(
J−1
V

)
. (5)

The above metric constitutes a lower bound on the sum of
average MSEs across the individual elements of η. The main
advantage of the metric (5) is that it abstracts the receiver
design since the bound holds for any estimator.

For communications, most existing works on ISAC assume
a performance metric of satisfying certain rate constraints for
the users [3]–[5]. This paper also follows the same formula-
tion. Since the rate is a monotone function of the signal-to-
interference-and-noise-ratio (SINR), the rate requirements can
be described as constraints on the SINR, i.e.,

SINRDL
k (V) ≜

∣∣hH
kvk

∣∣2∑
i ̸=k

∣∣hH
kvi

∣∣2 + σ2
≥ γk, ∀k,

where γk denotes the SINR threshold for the k-th user.

B. Problem Formulation and Solution Strategy

Based on the previous considerations, the beamforming
design problem can be mathematically stated as follows:

minimize
V

Tr
(
J−1
V

)
(6a)

subject to

∣∣hH
kvk

∣∣2∑
i ̸=k

∣∣hH
kvi

∣∣2 + σ2
≥ γk, ∀k, (6b)

Tr
(
VVH) ≤ P. (6c)

We make the assumption that the constraints of the above
problem are feasible. Problem (6) is challenging to solve for
a number of reasons. First, the objective is a complicated
function to compute let alone optimize. Second, neither the
objective nor the feasible set is convex in V.

One possible strategy for solving (6) is SDR. For example,
the work [5] considers a special case of (6) in which the
sensing task is that of estimating the angle-of-arrival for an
unknown target. For this simpler case, the authors of [5] show
that an SDR strategy can effectively relax the problem and
transform it into a convex form. Despite the convexity, the
SDR approach suffers from a number of drawbacks. First, the
SDR solution is not guaranteed to satisfy the rank constraint.
If the SDR solution is not rank one, we must employ an
additional, and often suboptimal, algorithm to recover a rank-
one solution. Secondly, it lifts the optimization space from
NTK complex dimensions to N2

TK complex dimensions.
Consequently, the interior-point method requires O(N6

TK
3)



per iteration to compute a search direction [19]. This order of
complexity is infeasible in many practical scenarios.

A key contribution of this paper is to develop an efficient
optimization method that does not require lifting the problem
dimensionality. We accomplish this by establishing a connec-
tion between (6) and the following classical problem

minimize
V

∑
k

∥vk∥2 (7a)

subject to

∣∣hH
kvk

∣∣2∑
i ̸=k

∣∣hH
kvi

∣∣2 + σ2
c

≥ γk, ∀k. (7b)

Problem (7) arises in the context of downlink MIMO beam-
forming where the goal is to ensure reliable communication
for the users (by constraining the SINRs) while minimizing the
transmit power at the BS. In [10], a duality notion is observed
that allows the downlink problem (7) to be transformed to
a virtual uplink problem, a result now commonly referred to
as UL-DL duality [7]–[10]. The key advantage of such trans-
formation is that the uplink problem is more computationally
efficient to solve than its downlink counterpart.

III. PROBLEM REFORMULATION AS DOWNLINK POWER
MAXIMIZATION PROBLEM

We begin by showing that the ISAC problem (6) can be
expressed as a simpler problem that involves maximizing a
quadratic term subject to the constraints (6b) and (6c). In
particular, we aim to rewrite problem (6) as a sequence of
maximization problems in the following form

maximize
V

Tr
(
QVVH) (8a)

subject to

∣∣hH
kvk

∣∣2∑
i̸=k

∣∣hH
kvi

∣∣2 + σ2
c

≥ γk, ∀k. (8b)

Tr
(
VVH) ≤ P. (8c)

where Q ∈ CNT×NT is a PSD matrix. Problem (8) has the
property that it has zero duality gap. This follows from the
observation that a rank-one solution must exist for problems
of this particular type; see [20]. We now proceed to transform
problem (6) into this desired form.

Theorem 1: If problem (6) is feasible, it is equivalent to

maximize
β∈RL×L

min
V∈V

L∑
ℓ=1

(
2βT

ℓeℓ − βT
ℓJVβℓ

)
(9)

where β ≜ [β1, . . . ,βL] ∈ RL×L, eℓ is the ℓ-th column of I,
and V denotes the constraints (8b)-(8c). Further, problem (9)
can be re-written as

maximize
β∈RL×L

min
V∈V

[(
L∑

ℓ=1

2βT
ℓeℓ − βT

ℓCβℓ

)
− Tr

(
QβVVH

)]
(10)

where Qβ ≜ 2T
σ2

∑L
ℓ=1 E{G̃H

βℓ
G̃βℓ}, and G̃βℓ ≜

∑
i[βℓ]iĠi.

In particular, there exists β∗ such that by setting Q = Qβ∗ in
(8), we can obtain the optimal beamformers in problem (6).

Proof: The first part of Theorem 1 is related to a similar
result in [6] but for a specific angle estimation problem
and using an extra sensing beamformer, so its formulation
is different. Further, the proof technique in [6] relies on a
quadratic transform for fractional programming [21], while we
provide an alternative proof based on Schur complement. For
notational simplicity, we suppress the dependence on V in J.
We start with the convex relaxation, i.e., SDR of problem (6)

minimize
R1,...,RK

Tr
(
J−1

)
(11a)

subject to
1

γk
hH
kRkhk −

∑
i ̸=k

hH
kRihk ≥ σ2 (11b)∑

k

Tr (Rk) ≤ P, Rk ≽ 0 ∀k, (11c)

where Rk ≜ vkv
H
k . Note that by J is an affine function of

Rk by (4), so the above is a convex optimization problem.
We use the following trick to express the objective (11a)

using Schur complement [22] [18], [23] as follows:

Tr
(
J−1

)
= min

d1,...,dL

∑
ℓ

dℓ (12a)

s.t.

[
J eℓ
eT
ℓ dℓ

]
≽ 0, ∀ℓ. (12b)

Combining (11) with (12), we obtain

minimize
R1,...,RK ,d1,...,dL

∑
ℓ

dℓ (13a)

subject to (11b), (11c), (12b) (13b)

Problem (13) is convex with strong duality. We formulate
its dual problem with respect to (12b). Let B̃1, . . . , B̃L ∈
R(L+1)×(L+1) denote the dual variables associated with (12b)

B̃ℓ ≜

[
Bℓ −βℓ

−βT
ℓ bℓ

]
≽ 0, (14)

with Bℓ ∈ RL×L, βℓ ∈ RL, and bℓ ∈ R. The dual problem is

maximize
B̃1,...,B̃L

min
(R1,...,RK

d1,...,dL

)∈R

∑
ℓ

dℓ(1− bℓ) + 2eT
ℓβℓ − Tr(BℓJ).

where R denotes the constraints (11b)-(11c). By minimizing
the above over dℓ, we conclude b∗ℓ = 1 for all ℓ. Then, the
dual problem becomes

maximize
Bℓ≽βℓβ

T
ℓ,∀ℓ

min
(R1,...,RK)∈R

∑
ℓ

2eT
ℓβℓ − Tr(BℓJ), (15)

where the condition Bℓ ≽ βℓβ
T
ℓ follows because B̃ℓ ≽ 0

and bℓ = 1, so the Schur complement must satisfy Bℓ −
βℓβ

T
ℓ ≽ 0. Now, since strong duality holds, the primal optimal

R∗
1, . . . ,R

∗
K and dual optimal B∗

1, . . . ,B
∗
L,β

∗
1, . . . ,β

∗
L is a

saddle-point solution of the max-min problem. By interchang-
ing min and max, we can optimize over Bℓ. In particular, for
any fixed R1, . . . ,RK , we have

Bℓ ≽ βℓβ
T
ℓ ⇒ Tr(BℓJ) ≥ Tr(βℓβ

T
ℓJ). (16)



which holds because J is positive definite. Thus, the optimal
Bℓ must be Bℓ = βℓβ

T
ℓ at the saddle-point. In other words,

the saddle-point in (15) can be alternatively written as

maximize
β∈RL×L

min
(R1,...,RK)∈R

∑
ℓ

(
2eT

ℓβℓ − Tr(βℓβ
T
ℓJ)
)
.

(17)

We now show that there exists a rank-one solution in which
rank(R∗

1) = · · · = rank(R∗
K) = 1. To see this, note that

based on (4), we can rewrite∑
ℓ

Tr(βℓβ
T
ℓJ) =

∑
ℓ

βT
ℓJβℓ =

∑
ℓ

βT
ℓCβℓ+

∑
k

Tr(QβRk),

(18)
where Qβ is as defined in the theorem statement. In other
words, for any fixed β, the inner minimization in (17) has the
form of the SDR of a problem (8). But the SDR of (8) is
tight by results of [20]. This means that there exists a set of
rank-one solution R∗

1, . . .R
∗
K , i.e., R∗

k = v∗
kv

∗
k

H, for the inner
minimization problem in (17), for any β and in particular for
β = β∗. This implies that (11), the SDR of (6), is equivalent
to (6) itself, and V∗ ≜ [v∗

1, . . . ,v
∗
K ] is the solution of the

original ISAC problem (6). This shows that problem (6) is
equivalent to problems (9) and (10).

Theorem 1 allows us to express the ISAC problem (6) in
a more tractable form. In addition, it offers the following
interesting interpretation. Consider the max-min problem (10).
By construction, the matrix Qβ is PSD, so the trace term
in (10) can be interpreted as a sum of beamforming powers
measured with respect to the matrix Qβ. Thus, for a fixed
β, the inner problem in (10) can be viewed as maximizing
the beamforming power at certain point of interest. Changing
β corresponds to changing the point of interest. Theorem 1
essentially states that there exists a judicious choice β∗ for
which the problem of minimizing the CRB is equivalent to
that of maximizing the power along a certain direction.

IV. UPLINK-DOWNLINK DUALITY FOR ISAC

We now show that the ISAC problem admits an alternative
formulation in terms of an uplink problem. The reason that
an UL-DL duality relation exists for ISAC beamforming is
that problems (7) and (8) are closely related. On one hand,
problem (8) (or the ISAC version when Q = Qβ∗ ) seeks
to maximize the transmit power in certain directions under a
total power constraint. On the other hand, problem (7) aims
to minimize the transmit power. Consider the inner problem
in (10) for a given β. We introduce the Lagrangian function

Lλ,β (V) =
∑
k

vH
k (λI−Qβ)vk−λP+

L∑
ℓ=1

2βT
ℓeℓ−βT

ℓCβℓ

which gives rise to the following dual problem

maximize
β,λ≥0

min
V

Lλ,β (V) (19a)

s.t. SINRDL
k (V) ≥ γk, ∀k. (19b)

Because strong duality holds for the inner problem in (10),
an optimal beamforming solution of problem (10) (or prob-
lem (6)) must also be a minimizer of Lλ∗,β∗ (·).

Now, consider the inner problem in (19) for fixed (λ,β):

minimize
V

∑
k

vH
k (λI−Qβ)vk (20a)

subject to SINRDL
k (V) ≥ γk, ∀k. (20b)

For suitable choice of λ and β, this problem can be viewed as
a downlink communication problem, similar to the classical
problem (7). For example, if λI−Qβ ≽ 0, then (20a) repre-
sents a sum of beamforming powers measured with respect to
λI−Qβ. A natural question is the following. For what values
of (λ,β) does problem (20) admit a similar interpretation as
problem (7)? This motivates the following definition.

Definition 1: The pair λ,β is said to be admissible if∑
k v

H
k (λI−Qβ)vk ≥ 0 for all V satisfying (20b).

Admissibility of λ,β implies that the matrix λI − Qβ

behaves as a “weak" PSD matrix. It may not be PSD globally
but behaves like one over the feasible region of SINRs. This
also implies that the objective function (20a) is a convex
function when restricted to vk’s that satisfy the set of SINRs,
but can be nonconvex outside such set.

Now, let A be the set of all admissible pairs. The next result
establishes an UL-DL relation for problem (20) if (λ,β) ∈ A.

Theorem 2: Problem (20) is bounded below if and only if
(λ,β) ∈ A. In addition, whenever (λ,β) ∈ A, the matrix

V∗
λ,β ≜ U∗

λ,βp
∗
λ,β, (21)

is an optimal solution of the problem. Here, p∗
λ,β ≜

σ2(DU∗
λ,β

−FU∗
λ,β

)−11 ∈ RK is a vector of downlink powers
and U∗

λ,β ∈ CNT×K is a matrix of normalized beamforming
directions obtained by solving the uplink problem

minimize
U, z

σ21Tz (22a)

subject to
zk
∣∣hH

ku
∣∣2∑

i ̸=k zi
∣∣hH

i u
∣∣2 + uH (λI−Qβ)u

≥ γk, (22b)

ρmax
(
D−1

U FU

)
< 1, (22c)

∥uk∥2 = 1, ∀k. (22d)

In problem (22), U ≜ [u1, . . . ,uK ] represents a matrix of
combining vectors and z ≜ [z1, . . . , zK ]

T ∈ RK is a vector of
uplink powers. Finally, ρmax(·) denotes the spectral radius of
a matrix, DU ≜ diag

(
|hH

1u1|2
γ1

, . . . ,
|hH

KuK |2
γK

)
∈ RK×K is a

diagonal matrix and FU ∈ RK×K is a matrix defined by

[FU]ij ≜

{
0, for i = j (23a)
|hH

i uj |2, for i ̸= j (23b)

Proof: The idea of the proof is rooted in the classic result
of [24]. We omit the details due to space limitations.

Theorem 2 states that whenever the pair (λ,β) is admissi-
ble, the downlink solution of problem (20) can be recovered by
solving the uplink problem (22). More specifically, the optimal



combiners for the uplink problem (22) are also optimal as
beamforming directions for the downlink problem (20).

Note that problem (22) differs from the standard uplink
formulation, e.g., [11], in that it has the additional con-
straint (22c). This constraint arises because the matrix λI−Qβ

does not need to be PSD in a global sense, and we only need
(λ,β) ∈ A. If such matrix is already PSD then a simple
proof [24] reveals that ρmax

(
D−1

U FU

)
< 1 is equivalent to

z ≥ 0. In which case, problem (22) reduces to the conventional
uplink problem.

Observe that (λ∗,β∗) must be admissible since prob-
lem (20) is unbounded below whenever (λ,β) ̸∈ A, but the
BCRB can never be negative.

V. PROPOSED ALGORITHM

The previous uplink interpretation is useful in devising
efficient algorithms for solving the ISAC problem (6). Let us
first focus on solving the uplink problem (22). If problem (22)
is given by the classical formulation (i.e., with constraint (22c)
replaced by z ≥ 0), the iterative procedure of [10] would
recover an optimal uplink solution. Such iterations alternate
between maximum SINR combining for fixed z

uk[n] ∈ argmin
u̸=0

∑
i ̸=k zi[n]

∣∣hH
i u
∣∣2 + uH (λI−Qβ)u

1
γk

∣∣hH
ku
∣∣2 ,

(24)
and a power control update for fixed U

zk[n+1] =

∑
i ̸=k zi[n]

∣∣hH
i uk[n]

∣∣2 + uH
k [n] (λI−Qβ)uk[n]

1
γk

∣∣hH
kuk[n]

∣∣2 .

(25)
It turns out that the same procedure, when initialized

properly, can also recover the optimal solution of problem (22).
Theorem 3: Let z∗λ,β and U∗

λ,β denote an optimal uplink
solution of problem (22). If (λ,β) ∈ A, then starting from
z[0] ≥ z∗λ,β, we have z[n] → z∗λ,β and U[n] → U∗

λ,β.
Proof: Omitted due to space limitations.

Note that the iterations converge to an uplink solution if
(λ,β) ∈ A. If the pair is inadmissible, the decreasing sequence
{z[n]} would fail to converge, which can be detected by
checking if the sequence falls below zero.

After solving the uplink problem (22) for fixed (λ,β), a
downlink solution can be obtained using (21). The problem of
finding the optimal pair (λ∗,β∗) can be solved iteratively as an
outer maximization of problem (19), where each iteration in-
volves solving an inner subproblem of the form (20) (see [7]),
along with a projection subgradient method onto A in the outer
problem. Unfortunately, a projection operator on A cannot
be readily obtained. Instead, we propose a simple scheme
that works quite well. The idea is to update the parameters
using the subgradient method (without projection onto A)
to obtain a tentative (λ̃, β̃). If the tentative parameters are
inadmissible, we reduce the step size by a factor and repeat
the process until an admissible pair is found. When this simple
scheme converges to the optimal pair, it would find the optimal
beamformers V∗

λ∗,β∗ of the ISAC problem (6).

-60 -40 -20 0 20 40 60

Angle (deg)

-30

-20

-10

0

10

20

30

A
rr

a
y
 R

e
s
p
o
n
s
e
 (

d
B

)

Proposed (  = 2.5)

SDR (  = 2.5)

Proposed (  = 10)

SDR (  = 10)

Power Min

Fig. 2. Beam pattern of the proposed solution vs SDR for optimizing the
angle CRB. Here, we set NT = NR = 20 and K = 2.

VI. SIMULATIONS

In this section, we examine the performance of the proposed
beamforming solution for the angle of arrival problem in [5]
against that of the SDR scheme. In this case, we set NT =
NR = 20 antennas and K = 2 users with SINR thresholds
of 10 and 12 dB. We model the communication channels as
line-of-sight with angles −30◦ and 50◦. We place the target
at 0◦ with unit path gain and choose a Gaussian prior with
mean equal to the true values.

In Fig. 2, we plot the array response of the beamformers
produced by both algorithms. We consider two distinct cases
for the standard deviation of the prior distribution of the angle
σ = 2.5◦ and 10◦. In both cases, it is seen that the array re-
sponse of the beamformer obtained by the proposed algorithm
is identical to its SDR counterpart. However, the proposed
method requires much a lower computational complexity. This
highlights the benefits of the propose solution. We additionally
observe that both algorithms form beams in the direction of
communication users and the sensing target, but with a wider
sensing beam when the variance of the prior is larger. Finally,
we also plot the beam pattern for the beamformer that solves
the classical communication problem (7) without considering
sensing. We see that such beamformer can focus the beam
towards the communication users but is clearly oblivious to
the sensing target.

VII. CONCLUSION

This paper develops a novel optimization framework for
beamforming design in ISAC systems. Such framework is a
consequence of the observation that a general optimization
of a BCRB objective can be viewed as a maximization of
beamforming power along with a set of auxiliary variables.
We leverage this observation to develop an UL-DL duality
for beamforming optimization in ISAC systems. This duality
result allows the problem to be solved in the beamforming
space at much lower computational complexity as compared
to the existing SDR methods.
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