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The small finitistic dimensions of commutative rings, II
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Abstract

The small finitistic dimension fPD(R) of a ring R is defined to be the

supremum of projective dimensions of R-modules with finite projective

resolutions. In this paper, we investigate the small finitistic dimensions

of four types of ring constructions: polynomial rings, formal power series

rings, trivial extensions and amalgamations. Besides, we show the small

finitistic dimensions of a ring is less than or equal to its Krull dimension.

We also give a total ring of quotients with infinite small finitistic dimen-

sion.
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1. introduction

Throughout this paper, R is a commutative ring with identity. Let R be a ring.

Denote by dim(R) the Krull dimension of R, Max(R) the maximal prime spectrum

of R, Spec(R) the prime spectrum of R, and Nil(R) the nil-radical of R. Let M be

an R-module, we use pdRM (resp., fdRM) to denote the projective dimension of M

over R. Write gld(R) (resp., w.gld(R)) for the global dimension (resp., weak global

dimenison) of R.

Since many classical rings, such as non-regular Noetherian local ring, have infi-

nite global dimensions or weak global dimensions, Bass [5] introduced two finitistic

dimensions of a ring R. The little (resp., big) finitistic dimension of R, denoted by

fpD(R) (resp., FPD(R)), is defined to be the supremum of the projective dimensions

of all finitely generated (resp., all) R-modules M with finite projective dimensions.

In case R is a local Noetherian ring, Auslander and Buchsbaum [4] showed that

the small finitistic dimension fPD(R) of R coincides with the depth of R. However,

there are little progress on the non-Noetherian rings since the syzygies of finitely

generated modules are not finitely generated over non-Noetherian rings in general.

To amend this gap, Glaz [13] revised the notion of little finitistic dimension of

a ring R: fPD(R), which is called small finitistic dimension of R by Wang et al.
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[23], is the supremum of projective dimensions of R-modules with finite projective

resolution (see Section 3 for more details). The studies of small finitistic dimensions

were motivated by two conjectures proposed by Glaz et al. [9] who asked that is

the small finitistic dimension of a Prüfer ring (resp., total ring of quotients) at most

1 (resp., 0)? In 2020, Wang et al. [22, 23] characterized rings R with fPD(R) = 0,

and then gave an example of total ring of quotients with small finitistic dimensions

larger than 1 giving a negative answer to Glaz’s questions. Recently, The author

of this paper and Wang [24] characterized small finitistic dimensions in terms of

finitely generated semi-regular ideals, tilting modules, cotilting modules of cofinite

type and vaguely associated prime ideals. Furthermore, they gave examples of total

rings of quotients R with fPD(R) = n for each n ∈ N.

The motivation of this paper is to give some formulas of the small finitistic di-

mensions of classical ring constructions. In fact, we show that the small finitistic

dimensions of polynomial rings or formal power series rings are equal to these of

original rings plus 1 under some assumptions (see Theorem 4.2, Theorem 4.4 and

Theorem 5.3). We also obtain accurate formulas of finitistic dimensions of trivial

extensions and amalgmations (see Theorem 6.2 and Theorem 7.2). Besides, we show

that the small finitistic dimensions of a ring is less than or equal to its Krull dimen-

sion (see Theorem 3.5). We also give a total ring of quotients with infinite small

finitistic dimension (see Example 6.4).

2. some types of grades

From the proof the characterizations of small finitistic dimensions given in [24,

Theorem 3.1], we find that it has a closely connection with the notions of Koszul

cohomology, Čech cohomology, local cohomology and their induced grades. We give

a brief review on these notions in this section.

Let x = x1, . . . , xn be a finite sequence of elements in ring R. Let α = (i1, . . . , ip), 1 ≤

i1 < · · · < ip ≤ n be an ascending sequence of integers with 0 ≤ p ≤ n. Kp(x) is de-

fined to be a free R-module on a basis eα = ei1∧· · ·∧eip. Define an R-homomorphism

dp : Kp(x) → Kp−1(x) : dp(eα) =

p∑

j=1

(−1)j+1xijei1 ∧ · · · ∧ êij ∧ · · · ∧ eip,

where ̂means deleting the item. It is easy to verify that dp−1 ◦ dp = 0. So there is

a finite complex, which is called Koszul complex:

K•(x) : 0 → Kn(x)
dn−→ Kn−1(x) → · · · → K1(x)

d1−→ K0(x) → 0

of finitely generated free modules. For any R-module M , define K•(x,M) (resp.,

K•(x,M) ) to be the complex HomR(K•(x),M) (resp., K•(x) ⊗R M). The p-th
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homologies, which is called Koszul cohomology (resp., Koszul homology), is denoted

by Hp(x,M) (resp., Hp(x,M)), respectively.

Suppose I is an ideal of R generated by x. Then define the Koszul grade of I on

M :

K.gradeR(I,M) = inf{p ∈ N | Hp(x,M) 6= 0}.

Note that the Koszul grade does depend on the choice of generating sets of I by [8,

Corollary 1.6.22 and Proposition 1.6.10(d)]. For an ideal J (note necessary finitely

generated) of R, the Koszul grade of J on M :

K.gradeR(J,M) = sup{K.gradeR(I,M) | I is a f. g. subideal of J}.

For an single element x ∈ R. Let C•(x) denote the complex 0 → R
dx−→ Rx → 0,

where dx the natural localization map. For a sequence x = x1, . . . , xn of elements in

ring R, C•(x) = C•(x1)⊗RC•(x2) · · ·⊗RC•(xn) the tensor of complexes. For any R-

module M , define C•(x,M) (resp., C•(x,M)) to be the complex HomR(C•(x),M)

(resp., C•(x) ⊗R M). The p-th Čech cohomology (resp., Čech homology), denoted

by Hp
x
(M) (resp., Hx

p (M)), is defined to be the p-th homology of C•(x,M) (resp.,

C•(x,M)).

Suppose I is an ideal of R generated by x. The Čech grade of I on M is defined

to be

Č.gradeR(I,M) = inf{p ∈ N | Hp
x
(M) 6= 0}.

For an ideal J (note necessary finitely generated) of R, the Koszul grade of J on

M :

Č.gradeR(J,M) = sup{Č.gradeR(I,M) | I is a f. g. subideal of J}.

Let I be an ideal of R and M be an R-module. Set

ΓI(M) =
⋃

n∈N

(0 :M In),

the set of elements of M annihilated by some power of I. Clearly, ΓI(M) =

lim
n

HomR(R/In,M). Note ΓI(−) is a functor of R-modules. The p-derived func-

tor of ΓI(−), denoted by Hp
I(−), is called the p-th local cohomology. Certainly,

Hp
I(M) := lim

n
ExtpR(R/In,M).

The local cohomology grade of I on M is defined by

H.gradeR(I,M) = inf{p ∈ N | Hp
I(M) 6= 0}.
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Following by [24], the small finitistic dimension of a ring closely related with the

Ext grade of finitely generated ideals on the ring. The Ext grade of an ideal I on

M , which is also denoted by E-dp in [13], is defined by

E.gradeR(I,M) = inf{p ∈ N | ExtpR(R/I,M) 6= 0}.

It follows by [24, Theorem 3.1] that a ring R has fPD(R) ≤ n if and only if

E.gradeR(I, R) ≤ n for any finitely generated ideal I 6= R.

Proposition 2.1. [2, Proposition 2.2, Proposition 2.3] Let I be an ideal of a ring

R and M an R-module. Then the following statements hold.

(1) Let y = y1, . . . , yt be a regular sequence of elements of I on M . Then

K.gradeR(I,M) = t+K.gradeR(I,M/yM).

(2) Let f : R → S be a flat ring homomorphism. Then

K.gradeR(I,M) ≤ K.gradeR(IS,M ⊗R S).

(3) Let I ⊆ J be a pair of ideals of R. Then

K.gradeR(I,M) ≤ K.gradeR(J,M).

(4) Let f : R → S be a ring homomorphism and N an S-module. Then

K.gradeR(I, N) = K.gradeS(IS,N).

(5) Let f : R → S be a faithfully flat ring homomorphism. Then

K.gradeR(I,M) = K.gradeR(IS,M ⊗R S).

(6) K.gradeR(I,M) = K.gradeR(p,M) for some prime ideal p containing I.

(7) K.gradeR(I,M) = Č.gradeR(I,M).

(8) E.gradeR(I,M) = H.gradeR(I,M).

(9) If I is finitely generated, then K.gradeR(I,M) = E.gradeR(I,M).

3. Basic on small finitistic dimensions

Let M be an R-module. Then M is said to have a finite projective resolution,

denoted by M ∈ FPR, if there exist an integer n and an exact sequence

0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0

with each Pi finitely generated projective. We denote P≤n to be the class of R-

modules with projective dimensions at most n in FPR. In 1989, Glaz [13] intro-

duced the notion of small finitistic dimension of a ring R.
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Definition 3.1. [13, Page 67] The small finitistic (projective) dimension of R, de-

noted by fPD(R), is defined to be the supremum of the projective dimensions of

R-modules in FPR.

Clearly, fPD(R) ≤ n if and only if FPR = P≤n, and

fPD(R) ≤ fpD(R) ≤ FPD(R) ≤ gld(R)

for any ring R. Note that fPD(R) and fpD(R) coincide when R is a Noetherian ring.

However, they may vary greatly in non-Noetherian ring settings.

Example 3.2. Let R =
∏
ℵn

k be a ring of direct product of ℵn (n < ∞) copies of a

field k. Assume that 2ℵn = ℵm with n+1 ≤ m < ∞, then fpD(R) = gld(R) = m+1.

However, fPD(R) = 0 for any n by [24, Corollary 3.6].

Example 3.3. For any n ∈ N+, there exists a non-field valuation domain R with

fpD(R) = gld(R) = n (see [20]). However, fPD(R) = 1 for any valuation domain R

by [24, Corollary 3.7].

The author in this paper and Wang [24] characterized small finitistic dimensions

in terms of finitely generated semi-regular ideals, tilting modules, cotilting modules

of cofinite type and vaguely associated prime ideals. Using these, We can give an

accurate formula for small finitistic dimensions in terms of Koszul grades.

Theorem 3.4. Let R be a ring. Then fPD(R) = sup{K.grade(m, R) | m ∈ Max(R)}.

Proof. It follows by [24, Theorem 3.1] that fPD(R) ≤ n if and only if any finitely

generated ideal I that satisfies ExtiR(R/I,R) = 0 for each i = 0, . . . , n is R,

that is E.gradeR(I, R) ≤ n for any finitely generated ideal I 6= R. Note that

K.gradeR(J,M) = sup{E.gradeR(I,M) | I is a f. g. subideal of J} by Proposition

2.1(9). Consequently, fPD(R) = sup{K.grade(m, R) | m ∈ Max(R)}. �

The following result shows that small finitistic dimension of a ring is less than or

equal to its Krull dimension.

Theorem 3.5. Let R be a ring. Then fPD(R) ≤ dim(R).

Proof. Suppose dim(R) = d. Let x be any finite sequence in R. It follows by [16,

Proposition 2.4] that Hp
x
(R) = 0 for any p > d. So Č.gradeR(〈x〉, R) ≤ d. It follows

by Proposition 2.1(7) that K.gradeR(〈x〉, R) ≤ d for any finite sequence x. Hence

K.grade(m, R) ≤ d for any maximal ideal m of R. Consequently, fPD(R) ≤ d by

Theorem 3.4. �

The following example shows that fPD(R) and dim(R) may vary greatly.
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Example 3.6. It is well-known that, for any n ∈ N+∪{∞}, there exists a non-field

valuation domain R with dim(R) = n. However, fPD(R) = 1 in this situation.

The following example shows that dim(R) may be less than fpD(R).

Example 3.7. Let D = k[x1/n | n ≥ 1] with k a field and m = 〈x1/n | n ≥ 1〉

be its maximal ideal. Set R = Dm. Then R is a valuation domain with dim(R) =

fPD(R) = 1. However, fpD(R) = gld(R) = 2 by the proof of [20, Corollary 2].

4. fPD of polynomial rings

For a ring R, we denote by R[x] the polynomial ring over R. It is well known that

gld(R[x]) = gld(R) + 1, w.gld(R[x]) = w.gld(R) + 1, and FPD(R[x]) = FPD(R) +

1 for any ring R (see [21, Theorem 3.8.23,Theorem 3.10.3]). For small finitistic

dimensions, we first have the following result for a general ring.

Proposition 4.1. Let R be a ring. Then fPD(R[x]) ≥ fPD(R) + 1.

Proof. Let m be a maximal ideal of R. Then m+ xR[x] is a maximal ideal of R[x].

Consequently,

fPD(R[x])

= sup{K.gradeR[x](M, R[x]) | M ∈ Max(R[x])}

≥ sup{K.gradeR[x](m+ xR[x], R[x]) | m ∈ Max(R)}

= sup{K.gradeR[x](m+ xR[x], R[x]/xR[x]) + 1 | m ∈ Max(R)}

= sup{K.gradeR[x]/xR[x]((m+ xR[x])(R[x]/xR[x]), R) + 1 | m ∈ Max(R)}

= sup{K.gradeR(m, R) | m ∈ Max(R)}+ 1

= fPD(R) + 1.

In conclusion, the result holds. �

Recall that a ring R is called a Hilbert ring, also called a Jacobson ring, if any

maximal ideal of R[X ] contracts to a maximal ideal of R, or equivalently, every

prime ideal of R is an intersection of maximal ideals. Note that the polynomial

extension and quotient of Hilbert rings are also Hilbert rings.

Theorem 4.2. Let R be a Hilbert ring. Then fPD(R[x]) = fPD(R) + 1.

Proof. We only need to show fPD(R[x]) ≤ fPD(R) + 1 by Proposition 4.1.

Let M be a maximal ideal of R[x]. Then there is a maximal ideal m of R such

that M ∩ R = m. So there is a monic polynomial f such that M = fR[x] + m[x]
6



and f := f + m[x] is irreducible in R/m[x]. by [21, Exercise 1.50]. So f is a

non-zero-divisor in R[x]. It follows by Proposition 2.1 that

K.gradeR[x](M, R[x])

= K.gradeR[x](fR[x] +m[x], R[x])

= K.gradeR[x](fR[x] +mR[x], R[x]/fR[x]) + 1

= K.gradeR[x]/fR[x](((fR[x] +mR[x])/fR[x]), R[x]/fR[x]) + 1

= K.gradeR[x]/fR[x](m(R[x]/fR[x]), R[x]/fR[x]) + 1

= K.gradeR(m, R[x]/fR[x]) + 1

= K.gradeR[x](m[x], R[x]/fR[x]) + 1.

We consider the following long exact sequence of R[x]-modules:

· · · → Hj(m, R[x])
×f
−→ Hj(m, R[x]) → Hj(m, R[x]/fR[x]) → Hj+1(m, R[x])

×f
−→ Hj+1(m, R[x]) → · · ·

Since f is monic and f is irreducible, multiplying f is a monomorphism. So we have

K.gradeR[x](m[x], R[x]/fR[x])

≤ K.gradeR[x](m[x], R[x])

= K.gradeR(m, R).

The last equation holds since R[x] is a faithfully flatR-module. Hence K.gradeR[x](M, R[x]) ≤

K.gradeR(m, R) + 1 Consequently, fPD(R[x]) ≤ fPD(R) + 1. �

Lemma 4.3. Let R be a coherent ring, p ( q be prime ideals of R such that

ht(q) = ht(p) + 1. Then K.gradeR(q, R) ≤ K.gradeR(p, R) + 1.

Proof. It follows by Proposition 2.1(10) that we may assume R is a local ring with q

a maximal ideal. Let x be any finite sequence in p. Let x ∈ q− p and set y = x, x.

Then q is the unique prime ideal that contains p and x. So K.gradeR(q, R) =

K.gradeR(p + xR,R) by Proposition 2.1(6). We consider the following long exact

sequence of R-modules:

· · · → Hj(x, R)
x
−→ Hj(x, R) → Hj+1(y, R) → Hj+1(x, R) → · · ·

By [2, Lemma 3.7], Hj(x, R) is finitely generated. Note x belongs to the Jacobson

radical of R. By Nakayama’s Lemma, we have

K.gradeR(q, R) ≤ K.gradeR(p, R) + 1.

�
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Recall that a ring R is called stably coherent if R[x] is a coherent ring. Examples

of stably coherent contains Noetherian rings, semi-hereditary rings and coherent

rings with global dimension at most 2 etc.

Theorem 4.4. Let R be a stably coherent ring. Then fPD(R[x]) = fPD(R) + 1.

Proof. We only need to show fPD(R[x]) ≤ fPD(R) + 1 by Proposition 4.1.

Let M be a maximal ideal of R[x]. Suppose M ∩ R = p. Then p[x] ( M. Then

ht(M) = ht(p[x]) + 1 by [21, Theorem 1.8.16]. So it follows by Proposition 2.1 and

Lemma 4.3 that

K.gradeR[x](M, R[x])

≤ K.gradeR[x](p[x], R[x]) + 1

= K.gradeR(p, R) + 1

≤ K.gradeR(m, R) + 1.

where m is a maximal ideal contains p and the firs equality follows by Proposition

2.1(6). Consequently, fPD(R[x]) ≤ fPD(R) + 1. �

Remark 4.5. We wonder whether Lemma 4.3 holds for any rings. In this case, we

always have fPD(R[x]) = fPD(R) + 1.

5. fPD of formal power series rings

For a ring R, we denote by R[[x]] the formal power series ring over R. It is

well-known that the maximal ideal of R[[x]] is corresponding with that of R one by

one:

Lemma 5.1. [7, Thoerem 2] Let R be a ring. Then Max(R[[x]]) = {m+ 〈x〉 | m ∈

Max(R)}.

The studies of homological dimension of formal power series rings have attracted

many algebraists. Auslander and Buchsbaum [3] showed if R is a Noetherian

ring, then gld(R[[x]]) = gld(R) + 1. Later, Jondrup and Small [17] obtained

w.gld(R[[x]]) = w.gld(R) + 1 in the case where R[[x]] is a coherent ring.

Proposition 5.2. Let R be a ring . Then fPD(R[[x]]) ≥ fPD(R) + 1.

Proof. It is similar with the proof of Proposition 4.1, and so we omit it. �

Theorem 5.3. Let R be a ring such that R[[x]] is a coherent ring. Then fPD(R[[x]]) =

fPD(R) + 1.
8



Proof. Since R[[x]] is a coherent ring, so is R. And thus R[[x]] ∼=
∞∏
i=1

R is a flat

R-module. Since R[[x]] contains a faithfully flat module R, R[[x]] is also a faithfully

flat R-module. Then for any maximal ideal m, we have

K.gradeR(m, R) = K.gradeR[[x]](mR[[x]], R[[x]])

by Proposition 2.1(5). Let I = 〈f1, . . . , fn〉 be a finitely generated ideal in mR[[x]].

Set y = f1, . . . , fn and x = f1, . . . , fn, x. We consider the following long exact

sequence of R[[x]]-modules:

· · · → Hj(x, R[[x]])
x
−→ Hj(x, R[[x]]) → Hj+1(y, R[[x]]) → Hj+1(x, R[[x]]) → · · ·

By [2, Lemma 3.7], Hj(x, R[[x]]) is finitely generated. Note x belongs to the Jacob-

son radical of R[[x]]. By Nakayama’s Lemma, we have

K.gradeR[[x]](I + 〈x〉, R[[x]]) = K.gradeR[[x]](I, R[[x]]) + 1.

Note that m+ 〈x〉 = mR[[x]] + 〈x〉. It follows that

K.gradeR[[x]](m+ 〈x〉, R[[x]])

= K.gradeR[[x]](mR[[x]] + 〈x〉, R[[x]])

= K.gradeR[[x]](mR[[x]], R[[x]]) + 1

= K.gradeR(m, R) + 1.

Therefore, fPD(R[[x]]) = fPD(R) + 1. �

Remark 5.4. Note that the condition “R[[x]] is a coherent ring” in Theorem 5.3 is

not necessary. Indeed, let R be a von Neumann regular ring with R[[x]] not coherent

(see [13, Page 280]). Note that R[[x]] is always a Bézout ring by [13, Theorem 8.1.4]

and [6, corollary 4.4]. So R[[x]] is a DW-ring by [21, Exercise 6.11(2)]. Hence

fPD(R[[x]]) = 1 = fPD(R) + 1 by [24, Corollary 3.7]. It is an interesting question

that what’s the relationship between fPD(R[[x]]) and fPD(R) for a general ring R.

6. fPD of trivial extensions

Let R be a ring and M be an R-module. Then the trivial extension of R by M ,

denoted by R(+)M , is equal to R
⊕

M as R-modules with coordinate-wise addition

and multiplication (r1, m1)(r2, m2) = (r1r2, r1m2 + r2m1). It is easy to verify that

R(+)M is a commutative ring with identity (1, 0). The maximal ideal of R(+)M is

corresponding with that of R one by one:

Lemma 6.1. [1, Theorem 3.2] Let R be a ring andM an R-module. ThenMax(R(+)M) =

{m(+)M | m ∈ Max(R)}.
9



Theorem 6.2. Let R be a ring and M an R-module. Then

fPD(R(+)M) = sup{min{K.gradeR(m, R),K.gradeR(m,M)} | m ∈ Max(R)} ≤ fPD(R).

Proof. Let m be a maximal ideal of R. Consider the natural embedding map f :

R → R(+)M . It follows by Proposition 2.1(4) that

K.gradeR(+)M (m(+)mM,R(+)M)

= K.gradeR(+)M (m(R(+)M), R(+)M)

= K.gradeR(m, R(+)M)

= min{K.gradeR(m, R),K.gradeR(m,M)}.

Note that m(+)M is the unique prime ideal that contains m(+)mM . So we have

K.gradeR(+)M (m(+)M,R(+)M) = K.gradeR(+)M (m(+)mM,R(+)M)

by Proposition 2.1(6). Consequently,

fPD(R(+)M)

= sup{min{K.gradeR(m, R),K.gradeR(m,M)} | m ∈ Max(R)}

≤ sup{K.gradeR(m, R)} | m ∈ Max(R)}

= fPD(R).

In conclusion, the result holds. �

Corollary 6.3. Let D be a non-field integral domain with Q its quotient field. Then

fPD(D(+)Q) = fPD(D), and fPD(D(+)Q/D) = fPD(D)− 1.

Proof. Since Q is injective and torsion-free, we have K.gradeD(m, Q) = ∞ for any

maximal ideal m ∈ Max(R) since D is not a field. Hence, fPD(D) = fPD(D(+)Q).

Note that for any n ≥ 0 and any nonzero ideal I ofD, we have ExtnD(D/I,Q/D) ∼=

Extn+1
D (D/I,D). So, fPD(D(+)Q/D) = fPD(D)− 1. �

Recall from [15] that a commutative ring R is said to be a Prüfer ring provided

that every finitely generated regular ideal is invertible. Obviously, every total ring

of quotients (i.e. any non-zero-divisor is invertible) is Prüfer. In [9, Problem 1],

Cahen et al. posed the following two open questions:

• Problem 1a: Let R be a Prüfer ring. Is fPD(R) ≤ 1?

• Problem 1b: Let R be a total ring of quotients. Is fPD(R) = 0?

Recently, Wang et al. [22, 23] obtained a total ring of quotients R with fPD(R) > 1

getting a negative answer to these two open questions. Latter, the author in this

paper and wang [24] shows that, for any n ∈ N, there exists a total ring of quotients
10



R satisfying fPD(R) = n. Now, we give an example to show that the small finitistic

dimension of a total ring of quotients can even be infinite.

Example 6.4. Let D be the Nagata’s bad Noetherian domain given in [19, Ap-

pendix, Example 1] with Q its quotient field. Then fPD(D) = ∞ by [24, Example

3.5]. Set R = D(+)Q/D. Then R is a total ring of quotients by [1, Theorem 3.5].

However, fPD(R) = ∞ by Corollary 6.3.

7. fPD of amalgamations

Let f : A → B be a ring homomorphism and J an ideal of B. Following from [11]

that the amalgamation of A with B along J with respect to f , denoted by A ⊲⊳f J ,

is defined as

A ⊲⊳f J = {(a, f(a) + j) | a ∈ A, j ∈ J},

which is a subring of of A × B. By [11, Proposition 4.2], A ⊲⊳f J is the pullback

f̂ ×B/J π, where π : B → B/J is the natural epimorphism and f̂ = π ◦ f :

A ⊲⊳f J

pB
��

pA
// A

f̂
��

B
π

// B/J.

Let p be a prime ideal of A and q be a prime ideal of B. Set

(1) p′f := p ⊲⊳f J = {(p, f(p) + j) | p ∈ p, f ∈ J};

(2) qf := {(a, f(a) + j) | a ∈ A, f(a) + j ∈ q}.

Lemma 7.1. [12, Proposition 2.6] Let f : A → B be a ring homomorphism and J

an ideal of B. Then

Spec(A ⊲⊳f J) = {p′f | p ∈ Spec(A)} ∪ {qf | q ∈ Spec(B)− V (J)},

Max(A ⊲⊳f J) = {p′f | p ∈ Max(A)} ∪ {qf | q ∈ Max(B)− V (J)}.

So if J ⊆ Nil(B) then Spec(A ⊲⊳f J) = {p′f | p ∈ Spec(A)}, and if J ⊆ Rad(B)

then Max(A ⊲⊳f J) = {p′f | p ∈ Max(A)}.

Theorem 7.2. Let f : A → B be a ring homomorphism and J an ideal of B

contained in Nil(B). Then

fPD(A ⊲⊳f J) = sup{min{K.gradeR(m, A),K.gradeA(m, J)} | m ∈ Max(A)} ≤ fPD(A).

Proof. Consider the natural map α : A → A ⊲⊳f J by α(a) = (a, f(a)) for any a ∈ A.

Let m be a maximal ideal of A. It follows by Proposition 2.1(4) that

K.gradeA⊲⊳fJ(m ⊲⊳f f(m)J), A ⊲⊳f J)
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= K.gradeA⊲⊳fJ(m(A ⊲⊳f J), A ⊲⊳f J)

= K.gradeA(m, A ⊲⊳f J)

= min{K.gradeA(m, A),K.gradeA(m, J)}.

The last equation follows by that A ⊲⊳f J ∼= A⊕ J as A-modules.

Since J is contained in Nil(B), m′f is the unique prime ideal that contains m ⊲⊳f

f(m)J by Lemma 7.1. So we have

K.gradeA⊲⊳fJ(m
′f , A ⊲⊳f J) = K.gradeA⊲⊳fJ(m ⊲⊳f f(m)J,A ⊲⊳f J)

by Proposition 2.1(6). Consequently,

fPD(A ⊲⊳f J)

= sup{min{K.gradeA(m, A),K.gradeA(m, J)}}

≤ sup{K.gradeA(m, A)} | m ∈ Max(A)}

= fPD(A).

In conclusion, the result holds. �

Remark 7.3. Note that the condition that “J an ideal of B in Nil(B)” in Theorem

7.2 cannot be omitted. Indeed, since A[[x]] ∼= A ⊲⊳i xA[[x]] where i : A →֒ A[[x]]

is the natural embedding map, fPD(A ⊲⊳i xA[[x]]) = fPD(A) + 1 when A[[x]] is

coherent (see Theorem 5.3).

Remark 7.4. The following example shows that fPD(A ⊲⊳f J) can be strictly less

than fPD(A). Indeed, let A be a ring and M and A-module. Set B = A(+)M ,

i : A → B the natural embedding map and J = 0(+)M . Then A ⊲⊳i J ∼= A(+)M .

It follows by Corollary 6.3 that fPD(A ⊲⊳i J) is strictly less than fPD(A) in the case

that A is a non-field integral domain and M = Q/A with Q its quotient field.
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