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Abstract—The modular multilevel converter (MMC) is a topol-
ogy that consists of a high number of capacitors, and degradation
of capacitors can lead to converter malfunction, limiting the
overall system lifetime. Condition monitoring methods can be
applied to assess the health status of capacitors and realize
predictive maintenance to improve reliability. Current research
works for condition monitoring of capacitors in an MMC mainly
monitor either capacitance or equivalent series resistance (ESR),
while these two health indicators can shift at different speeds
and lead to different end-of-life times. Hence, monitoring only
one of these parameters may lead to unreliable health status
evaluation. This paper proposes a data-driven method to estimate
capacitance and ESR at the same time, in which particle
swarm optimization (PSO) is leveraged to update the obtained
estimations. Then, the results of the estimations are used to
predict the sub-module voltage, which is based on a capacitor
voltage equation. Furthermore, minimizing the mean square
error between the predicted and actual measured voltage makes
the estimations closer to the actual values. The effectiveness
and feasibility of the proposed method are validated through
simulations and experiments.

Index Terms—Condition monitoring, capacitor, data-driven,
modular multilevel converter.

I. INTRODUCTION

Modular multilevel converter (MMC) attracts wide research
attention in medium voltage and high voltage applications
such as HVDC and STATCOM due to its high modularity,
low harmonic component, high efficiency, etc [1]–[4]. Since
MMC consists of a large number of components, the reliability
of critical components in the MMC should be evaluated
carefully. Capacitors are one of the critical components in
the MMC, as they can stabilize the submodule voltage and
are key elements in voltage level generation. Similar to any
other component, capacitors are subjected to aging over time
as they suffer from electrical and mechanical stresses during
operation. The degradation can be monitored and maintenance
plan can be updated accordingly. The method of scheduling
the maintenance intervention based on the health status is
known as predictive maintenance, which can mitigate the loss
of unplanned downtime and additional maintenance costs [5].
The key to do predictive maintenance is getting a reliable

and accurate health status of the critical components, where
condition monitoring methods can help.

There are different approaches to monitoring the health
status of capacitors in the MMC, and the main research
direction is monitoring the capacitance. This is due to the
fact that the voltage and current harmonics in MMC are
mainly located in the low-frequency region (below a few
kHz) and the capacitance dominates the equivalent circuit
model in this region, so that the other components in the
equivalent circuit model, namely equivalent series resistance
(ESR) and equivalent series inductance (ESL), are neglected
in the capacitance calculation process [6]. The capacitance
can be calculated with voltage and current harmonics, and
these harmonics can come from either normal operation [7]–
[10] or injected harmonics [11]. The capacitance can also
be calculated with a capacitance-voltage relationship based
on a reference submodule, where the submodule voltage
ripple is inversely proportional to the capacitance when the
same switching signals are given to the submodule under
test and the reference submodule [12]–[14]. It is possible
that the capacitance-voltage relationship is built based on the
discharging voltage curve, however, with the expenses of the
exclusion of a submodule [15]. Using data-driven methods
is another way to monitor the capacitance, e.g., the Kalman
filter [16] and recursive least square [6], which needs a more
complicated structure than model-based methods.

Besides the capacitance, ESR in the equivalent circuit model
can also be used to monitor the health status since ESR can
deteriorate faster than the capacitance and reaches the end-of-
life criteria much earlier than the capacitance, as reported in
[17]–[20]. In these cases, if the condition monitoring method
only monitors capacitance, the converter might operate with
a degraded capacitor that has a high ESR, and the end-of-
life warning is not triggered until the capacitance reaches the
end-of-life criteria which makes the estimated health status
unreliable. Considering the importance of monitoring ESR
in reflecting the capacitor degradation, recently published
research has started to monitor the ESR for capacitors in an
MMC, e.g., by using the wavelet decomposition to analyze the
turn-on transient voltage step which requires extra components
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to measure the fast and small voltage step [21] and the
harmonic-based method [22].

There are certain limitations in the existing methods: 1) only
monitoring a single health indicator, e.g., [7]–[14]. Consid-
ering the capacitance and ESR can shift at different speeds,
the end-of-life time indicated by them can be different. For
instance, if ESR degrades faster than the capacitance, the
end-of-life time related to ESR will be shorter than the one
related to capacitance. Between these two end-of-life times,
the end-of-life warning is not triggered if only monitoring the
capacitance even though the actual ESR already exceeds the
end-of-life criteria. 2) the normal operation of the converter
is affected during the condition monitoring due to changes in
the control behaviors, e.g., [12]–[14].

To solve these problems, this paper applies a data-driven
condition monitoring method to monitor capacitance and ESR
together, so the health status can be derived no matter which
health indicator (capacitance or ESR) degrades faster. The
reason for using capacitance and ESR as health indicators is
that these two health indicators cover the main failure mecha-
nism, i.e., electrolyte evaporation of the aluminum electrolytic
capacitor which is suitable for MMC applications [23]. Adding
more health indicators makes the condition monitoring method
more complicated without covering more failure mechanisms.
For instance, the weight of the capacitor decreases as the elec-
trolyte evaporates. However, measuring the weight requires
disassembling the capacitor from the print circuit board, and
the weight is less sensitive than the capacitance and ESR [24],
[25].

Specifically, the proposed method uses particle swarm op-
timization (PSO) to update the position of particles, where
the positions are estimated capacitance and ESR. Then the
estimations are used to predict the submodule voltage in
a sampling window based on a capacitor voltage equation.
The mean square error between the predicted and measured
submodule voltage is used as the objective function. The
update process reduces the voltage prediction errors, and in
the meantime, the estimations of health indicators are closer
to the actual values.

Compared with the existing methods, the proposed method
has the advantages of:

• Monitoring both capacitance and ESR so the condition
monitoring result is more reliable compared with methods
based on one of the health indicators.

• The method runs offline so the normal operation of
the converter is not affected, and it requires no extra
components.

The system description is given in Section II; the proposed
method is introduced in Section III; and validations are pro-
vided in Sections IV-V.

II. SYSTEM DESCRIPTION

This section introduces the MMC topology and operation,
as well as the failure mechanism and health indicators of
capacitors.
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Fig. 1. A modular multilevel converter, (a) Converter topology, (b) half-
bridge submodule, and (c) model of the submodule capacitor with parasitic
parameters.

A. Modular Multilevel Converter (MMC)

Three-phase MMC with one phase in detail is depicted in
Fig. 1(a). As demonstrated, three phases are connected with a
medium voltage ac grid (va, vb, and vc) with a filter inductor
Lf and a filter resistor Rf . Each phase of MMC is composed
of two arms, known as the upper and lower arms. A series of
connections of submodules with an arm inductor Larm and
equivalent arm resistor Rarm forms an arm. The topology
of the half-bridge submodule is shown in Fig. 1(a), which
consists of a capacitor and two IGBTs with their antiparallel
diode, namely C, S1, S2, D1, and D2, respectively.

The MMC can be used as an inverter or an active front-
end rectifier, where the outer control loop is responsible for it.
In a typical MMC controller, the generated current references
are considered as inputs of the inner control loop. Then, the
reference of the arm voltages is produced and used in the
modulation step. Apart from the mentioned controllers, MMC
exploits some other controllers to improve the performance
of the submodules, such as circulating current control, energy
balancing control, etc. [26], [27].

B. Failure Mechanism of Capacitors

The capacitor being analyzed in this section is limited to
the aluminum electrolytic capacitor (AEC), which is suitable
for MMC applications because of its high energy density and
relatively low cost [23].

The capacitor can experience electrical stress (e.g., voltage
and current ripple) and thermal stress in the operation stage.
For AECs, these stresses can lead to electrolyte evaporation,
oxide film degradation, and anode foil degradations [19].

The degradation mechanisms can be monitored with electri-
cal or non-electrical health indicators. The electrical indicators,
e.g., capacitance and ESR, can be measured online and they
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Fig. 2. Health indicators of capacitors changing gradually with operation
time. When the capacitance reduces to 0.8 of the initial value C0 or the ESR
increases to two times the original ESR0, the capacitor reaches the end-of-
life time tC−EOL or tR−EOL, respectively. (a) ESR reaches the end-of-life
criteria earlier than the capacitance, and (b) Capacitance reaches the end-of-
life criteria earlier than the ESR.

have a clear relation with the end-of-life criteria. While the
non-electrical indicators, e.g., weight and pressure, are difficult
to measure online and require a conversion stage to estimate
the remaining useful lifetime. Therefore, using electrical indi-
cators to estimate the health status is main research direction
in capacitor condition monitoring.

For the AEC, the capacitor reach the end-of-life time if one
of these criteria is satisfied [23]:

• Capacitance reduces to 80% of the initial value;
• Equivalent series resistance increases to 200% of the

initial value.
The equivalent circuit of the capacitor is given in Fig. 1(c),

consisting of a main capacitance C, an equivalent series
resistance ESR, and an equivalent series inductance ESL. The
capacitance and ESR affect the impedance when the frequency
is below a few MHz so the ESL is negligible. The degradation
process and the shifting of these two parameters are shown in
Fig. 2(a)-(b), where C reduces gradually from the initial value
C0 to 80% of C0 at time tC−EOL, and the ESR increases from
the initial value ESR0 to 200% ESR0 at tR−EOL.

The figure shows also that these two indicators can vary
at different speeds so they reach the end-of-life criteria at
different times, i.e., tC−EOL ̸= tR−EOL.

Fig. 2(a) shows the ESR degrades faster than C so
tR−EOL < tC−EOL and Fig. 2(b) shows the opposite trend so
that tR−EOL > tC−EOL. The worst case is that the condition
monitoring method only monitors the health indicators that
degrade slower, e.g., only monitor C in Fig. 2(a) so the end-
of-life condition can not be detected at time tR−EOL. From
tR−EOL to tC−EOL, ESR exceeds the end-of-life criteria,
which can generate higher losses and lead to capacitor failure,
but the end-of-life time warning can only be triggered at
tC−EOL.

III. CONDITION MONITORING METHOD

To overcome the limitations in the previous capacitor con-
dition monitoring methods, this paper proposes a method to
estimate the two health indicators (being capacitance and ESR)
together, while not affecting the converter operation.

The system diagram of the proposed method is illustrated in
Fig. 3(a). The proposed method starts with taking input signals

and initializing capacitance and ESR which are randomly dis-
tributed in the solution space. Then the capacitance and ESR
are updated with particle swarm optimization, and the updated
estimations are used to predict the submodule voltage within a
sampling window based on the capacitor voltage equation. The
mean square error between the predicted and measured voltage
is calculated and compared with an error limit to determine if
the update should continue. The condition monitoring method
is repeated multiple times (Rm) and the median values of these
estimations are taken as the final estimations to avoid using
an outlier as the final estimations. The key modules in the
flowchart are introduced in the following sections.

A. Input Signal

Three signals related to one submodule being monitored
are measured, including the submodule voltage vSM (tk), the
switching state of the submodule vsw(tk), and the arm current
iarm(tk).

An example waveform is shown in Fig. 3(b). These
three signals are time series in a sampling window, tk =
t1, t2, ..., tN . The sampling window is selected as half of the
fundamental cycle within which there are some switching
transients because it is important for ESR estimation [21],
while the window is shorter than a fundamental cycle to
mitigate the error in the voltage prediction process. The
sampling frequency is 100 kHz, which is much higher than the
switching frequency of an MMC (usually lower than several
kHz [28]) to ensure the prediction accuracy.

B. Update C and ESR with Particle Swarm Optimization

Particle swarm optimization (PSO) is a classical metaheuris-
tic search method. It searches the solution space with a group
of particles and the positions of the particles are updated
gradually with shared information to find the optimal solution.

In the proposed method, each particle has a 2-dimensional
position: estimated capacitance and ESR. These two values
are assigned randomly within the solution space during the
initialization stage, marked as green circles in Fig. 3(c). Each
particle also has a randomly given initial velocity. The position
of each particle leads to an individual voltage error. In each
iteration, particles update their velocities and positions [29]:

vj = ωjvj−1 + c1r1j(xp−xj−1) + c2r2j(xg − xj−1)

xj =xj−1 + vj
(1)

where vj and vj−1 are velocities, xj and xj−1 are positions of
the jth and (j−1)th iteration, respectively; xp and xg are indi-
vidual and global optimal positions; ωj , c1, and c2 are inertia
weight, cognitive weight and social weight, respectively; r1j
and r2j are two random numbers between 0 and 1, varying
in each iteration. The inertia weight ωj decreases gradually
so that as the iteration increases, the velocity reduces and
the searching step becomes more refined [29]. The reducing
velocity can be seen on the trajectory, which moves in a wider
range at the beginning and becomes more stable at the end.
Three simplified trajectories are plotted in Fig. 3(c) as green
dashed lines.
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Fig. 3. A system diagram of the proposed condition monitoring method: (a) a flowchart of the condition monitoring method; (b) a sampling window of three
input signals: the submodule voltage vSM (tk), the switching state vsw(tk), and the arm current iarm(tk), where time tk = t1, t2, ..., tN consists of N
points; (c) the particle swarm optimization (PSO) method updates the positions of each particle to have a low voltage error; (d) the voltage prediction module
predicts the submodule voltage v̂SM (tk) in the sampling window, where the prediction with 1 p.u. estimations is closer to the measured voltage; (e) the
mean square error between predicted and measured voltage error is calculated, and it is minimized when both C and ESR are 1 p.u.

Eq. 1 shows that the positions are updated according to the
global and individual optimal solution, so the voltage errors
of all particles reduce gradually and the positions of particles
move to the optimal solution gradually. In other words, the
update process uses particles to approach the actual values.

C. Voltage Prediction and Error Calculation

The voltage prediction block takes the measured signals
(i.e., iarm(tk) and vsw(tk)) as well as the estimated parameters
(i.e., Ĉ and R̂C) to predict a series of submodule voltage
v̂SM (tk), where tk = t1, t2, ..., tN covering the entire sam-
pling window. At the first time step t1, v̂SM (t1) = vSM (t1).
The prediction starts from the second time step t2 to the last
time step tN in the sampling window, and the prediction is
based on a capacitor voltage equation:

v̂SM (tk) =v̂SM (tk−1) +
ic(tk)Ts

Ĉ
+ R̂C [ic(tk)− ic(tk−1)]

(2)

where Ts is the sampling time; ic(tk) is the capacitor current
and it is the product of the arm current and the switching state:

ic(tk) = iarm(tk)vsw(tk) (3)

where the switching state vsw(tk) is one when the upper
switch of the submodule is turned on and the capacitor is in
the charging/discharging state; while vsw(tk) is zero when the

lower switch in the submodule is turned on and the capacitor
is bypassed.

The prediction is evaluated with the mean square error
between the predicted submodule voltage v̂SM (tk) and the
measured voltage vSM (tk).

Verr =
1

V 2
mN

tN∑
tk=t1

(vSM (tk)− v̂SM (t)k)
2 (4)

where Vm is the maximum measured submodule voltage
within the sampling window and N is the number of time
steps in the sampling window.

The submodule voltage error is compared with an error
limit to determine if the capacitance and ESR estimations
should be updated. A large error indicates that the estimations
deviate significantly from the actual value while a small error
reveals that the estimations are close to the actual values.
Fig.3(d) shows the voltage prediction waveforms. When the
estimated capacitance and ESR are different from 1 p.u.,
the prediction waveforms in dashed lines significantly deviate
from the measured voltage (a solid blue line). The voltage
error against the normalized capacitance and ESR when their
counterparts are 1 p.u. are given in Fig. 3(e), which shows that
the voltage error is minimized when both estimations achieve
1 p.u.

IV. SIMULATION STUDY

This section validates the design, which is the selection
of swarm size and error limit for the data-driven condition



TABLE I
SIMULATION AND EXPERIMENTAL SETUP PARAMETERS.

Parameter Var. Simulation Experimental
Input power Pin 3MW N/A
DC voltage VDC 40kV 200V
AC voltage VAC 16.5kV N/A

AC frequency fg 50Hz 50Hz
SM switching frequency fsw 3kHz 1kHz

Full bridge switching frequency fcg N/A 10kHz
Filter inductance Lf 40mH 5.4mH
Arm inductance Larm 10mH N/A
Filter resistance Rf 100mΩ 1Ω
Arm resistance Rarm 100mΩ N/A

Number of SM per arm - 20 1
SM capacitance C 2.2mF 2.26mF

SM capacitance ESR ESR 40mΩ 44.12mΩ
Sampling window - 10ms 10ms

Sampling frequency fsa 100kHz 100kHz
Voltage loop bandwidth fv N/A 20Hz
Current loop bandwidth fi 800Hz 800Hz

Repeat times Rm 15 15
Swarm size - 10 10
Error limit - 10−6 10−6

Maximum iteration - 100 100
Cognitive weight c1 1.49 1.49

Social weight c2 1.49 1.49
Boundary of C estimation - [1.1, 6.6]mF [1.1, 6.6]mF

Boundary of ESR estimation - [20, 120]mΩ [20, 120]mΩ

monitoring method, and the result which includes voltage
predictions and health indicator estimations.

A. Simulation Setup

The condition monitoring method is validated with a three-
phase MMC simulation model built in PLECS. The circuit
model and parameters are listed in Table I and the MMC
converter is operating in the rectifier mode at full load, i.e.,
Pin = 3MW. The key waveforms are illustrated in Fig.
4. The current is regulated by a current controller where it
can be seen that the grid current (ia, ib, and ic) is in phase
with the phase voltage (va, vb, and vc). The upper and lower
arm currents (iarmu and iarml) are balanced by a circulating
current controller. The submodule voltage is controlled with
a sorting method to balance the submodule voltages of 20
submodules in one arm (vSMu1−20 and vSMl1−20).

After running the simulation model, the signals of the
submodule voltages, arm current, and switching signals are
recorded for condition monitoring purposes.

B. Parameter Design of Data-driven Condition Monitoring

To tailor the optimization method for condition monitoring,
the effect of two parameters is studied: the number of swarms
(also named the swarm size), and the error limit.

The swarm size is usually between 20 and 30 [29] therefore
30 is the maximum swarm size to be studied. The test condi-
tions are listed in Table I, and the capacitor has capacitance
and ESR at their initial values, 1 p.u. The condition monitoring
method repeats for a hundred times to visualize the distribution
of estimations, as shown in Fig. 5.

The scatter plot and the boxplot illustrate the distribution
of estimations. With an increasing swarm size, the estima-
tions (blue dots) concentrate gradually. The box plots also
illustrate the concentration of estimations; the height of the
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box (named the interquartile range or IQR) covers most of
the estimations and reduces gradually with increased swarm
sizes. For instance, if the swarm size is 5, the interquartile
ranges of capacitance and ESR estimations are 0.21% and
14.47% of 1 p.u., respectively; while if the swarm size is 10,
these values are 0.11% and 2.95%, respectively. Considering
the acceptable error ranges for C and ESR are ±1% and
±10%, respectively [22], the IQR of ESR when the swarm



size is 5 is 14.47% which is higher than the acceptable error
range ±10%. Therefore, it is better to have a larger swarm
size, and the swarm size is selected as ten, which gives stable
estimations in the acceptable error range.

The second parameter that needs to be considered is the
error limit. The error limit is usually in the range of 10−3 and
10−7, and its effect on estimations and iterations are shown in
Fig. 6. When the error limit reaches 10−6, both capacitance
and ESR estimations concentrate around the median value,
with interquartile ranges of 0.19% and 3.86%, respectively.
Therefore, the error limit is selected as 10−6.

C. Voltage Prediction

The voltage prediction function is validated in the full load
condition with two capacitors: a healthy capacitor (C = ESR =
1 p.u.) and a fully degraded capacitor (C = 0.8 p.u. and ESR =
2.0 p.u.).

The sensed voltage is compared with the predicted voltage
in Fig. 7(a). The voltage prediction in dashed lines can follow
the voltage measurement in solid lines with an instantaneous
voltage error below 2V, which is 0.1% of the 2 kV average
submodule voltage, as seen in Fig. 7(b). In the zoomed-in
waveform on the right side, voltage steps caused by current
steps during the switching transient can be seen. The magni-
tude of the voltage step is proportional to the ESR (Eq. (2))
so the degraded capacitor has a higher voltage step because
of the higher ESR.

Considering the voltage error is below 2V or 0.1% of the
2 kV, the estimation error is acceptable and should only affect
the capacitance and ESR estimations in a limited range.

D. C and ESR Estimation

This section validates the function of capacitance and ESR
estimation with different health statuses. The test condition is
that C and ESR vary linearly between the healthy condition
and the end-of-life criteria:

• C: 1, 0.99, ..., 0.8 p.u.
• ESR: 1, 1.05, ..., 2 p.u.

The solution space is half and three times the nominal value
(i.e., Ĉ ∈ [0.5,3] p.u. and R̂C ∈ [0.5,3] p.u.) to cover both
the end-of-life criteria and a ±20% tolerance.

The condition monitoring method repeats 15 times for 20
submodules in the upper arm of phase A, and all normalized
estimations are illustrated with boxplots in Figs. 7(c) and (d).
The acceptable estimation ranges, 1 ± 1% and 1 ± 10% for
capacitances and ESRs, respectively, are colored with a white
background, while the other ranges are marked with a light red
background. The median values of estimations are red lines,
and a green line at 1 p.u. is added as a reference. The median
values for the 20 monitored capacitors are in the acceptable
range. In total, the average estimation errors of capacitance
and ESR are 0.18% and 5.47%.

The boxplot can also show the distribution of all estima-
tions; the blue box represents the ±25% range around the
median value. For the capacitance and the ESR estimations,
most of the blue boxes are in the ranges of ±1% and ±10%,
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Fig. 7. Simulation results: (a) waveforms of the sensed submodule voltage
vSM (solid lines) and predicted submodule voltage v̂SM with different
capacitances and ESRs (dashed lines); (b) the instantaneous error between
vSM and v̂SM ; (c) and (d) are boxplots of the estimated capacitances and
ESRs.

which shows that the condition monitoring method can have
acceptable estimations during most of the iterations.

V. EXPERIMENTAL RESULT

A. Test Setup

Experiments are carried out with a mission profile emulator
(MPE). The MPE is a simplified reliability test setup; it
emulates a mission profile for the submodule under test similar
to the full MMC operation. It can reduce the required testing
time and cost for building and testing an entire MMC converter
because an MMC usually has a large number of components
and complicated control schemes.

The mission profile emulator MPE parameters are listed in
the experimental column of Table I and the control diagram
is illustrated in Fig. 8(a). The MPE includes a DC voltage
supply, a full-bridge current generator, a filter inductor Lf , a
filter resistor Rf , and a submodule for testing (also named
the device under test or DUT). There are two control loops
in the control diagram, a current control loop and a voltage
control loop. The current controller gets the reference current
from the simulation and regulates the filter current iarm by
controlling the full-bridge current generator; while the voltage
controller maintains the DC component in the submodule
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TABLE II
EXPERIMENTAL TEST CONDITIONS AND ESTIMATION ERRORS OF

CAPACITANCE AND ESR.

Test scenario 1 2 3 4 5 6
V ∗
SMDC (V) 50 V 30 V
I∗AC (A) 9 6 3 9 6 3
Cerr (%) -0.65 -0.63 1.84 -0.43 1.02 2.39

ESRerr (%) 2.28 -4.46 -4.45 5.01 8.15 5.85

voltage vSM by adding an offset v∗SMDC to the voltage
reference. Therefore, the filter current iarm includes a DC
component and an AC component.

The MPE test setup is illustrated in Fig. 8(b). The submod-
ule voltage vSM and the filter current if are sensed with a
voltage divider and a current sensor LEM CKSR 15NP, respec-
tively. These signals are sent to the controller implemented on
an FPGA and an ARM processor on a ZedBoard for control
purposes. They are also sent to the oscilloscope and saved for
condition monitoring validation. The DUT is connected to a
group of three aluminum electrolytic capacitors. The overall
capacitance is 2.26mF and the ESR is 44.12mΩ which are
measured with an impedance analyzer Keysight E4990A.

B. Experimental Result and Discussion

The experiments are designed to validate that the proposed
method can provide accurate estimations under different load
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Fig. 9. Experimental waveforms: (a) test scenario 1 and (b) test scenario 3.

0 0.02 0.04
50

55

60

65

0 0.02 0.04
0

0.1

0.2

0.3

0.4

0.02 0.025 0.03
50

52

54

56

58

0.02 0.022 0.024
0

0.1

0.2

0.3

0.4

0.50.5

t (s)

(a)
v S

M
, 
v̂ S

M
 (

V
)

t (s)

(b)

v S
M

er
r 
(V

)

vSM-S1

v̂SM-S1

vSM-S3

v̂SM-S3

vSMerr-S3vSMerr-S1

(d)

(c)

Experiment scenarios

0.95

1.00

1.05

0.50

1.00

1.50

1 2 3 4 5 6

1 2 3 4 5 6

N
o
rm

d
. 
C

 (
p

.u
.)

N
o
rm

d
. 
E

S
R

 (
p

.u
.)

∈1±0.01 (p.u.) ∉ 1±0.01 (p.u.)

∈1±0.10 (p.u.) ∉ 1±0.10 (p.u.)

Fig. 10. Comparison between the measured submodule voltage and the
predicted submodule voltage. (a) The measured and estimated submodule
voltage waveforms for scenario 1 and scenario 3 in 0.05 s; (b) The voltage
error between the measurement and estimation; (c) and (d) are boxplots of
capacitance and ESR estimations in six scenarios. respectively.

conditions. The testing scenarios are listed in Table II, showing
the DC component of the submodule voltage varies from 50V
to 30V, and the magnitude of the AC reference current varies
between 9A, 6A, and 3A. The operating waveforms for the
first and the third test scenarios, including the submodule
voltage vSM , the filter current if , and the switching signal
of the upper switch vsw1 are shown in Fig. 9.

To verify the function of the voltage prediction block, the



predicted submodule voltage v̂SM is compared with the volt-
age measurement vSM , as shown in Fig. 10. The voltage error
vSMerr is the instantaneous difference between the prediction
v̂SM and the measurement vSM . As seen in Fig. 10(c), vSMerr

increases as the prediction time increases, but the error is lower
than 0.5V within a 0.05 s period.

The normalized capacitance C and ESR estimations are
given in Figs. 9(c) and (d), wherein the green dashed line
is the reference value; the red line is the median estimation;
the blue box represents the ±25% estimations; the whisker
above and under the box means outliers of estimations; the
red areas are the range above ±1% and ±10% for the C and
ESR, respectively. Except for test scenario 3 and test scenario
6, the median values of estimated capacitance and ESR are
around ±1% and ±10%, respectively. The higher error of C
for test scenarios 3 and 6 can come from the small voltage
ripple as shown in Fig. 9 (b). These estimation errors are listed
in Table II. Compared with simulation results in Figs. 7(c) and
(d), the experimental results in Fig. 9 have a wider blue box,
meaning that the results have higher oscillations.

VI. CONCLUSION

Based on the fact that health indicators can change at dif-
ferent speeds and lead to different end-of-life times, this paper
proposes a condition monitoring method that can monitor both
capacitance and ESR, which makes the condition monitoring
results more reliable compared with other methods that moni-
tor only one of them. The method combines the particle swarm
optimization and the capacitor voltage prediction functions.
The design of key parameters (swarm size and error limit) is
studied to guarantee that the estimation errors of capacitance
and ESR are in the expected ranges. The effectiveness of
the method is validated in the simulations and experimental
stages. Except for light-load cases, the estimation errors of the
capacitance and ESRs are around 1% and 10%, respectively.
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