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Abstract. Decision-making processes often involve dealing with uncertainty, which
is traditionally addressed through probabilistic models. However, in practical sce-
narios, assessing probabilities reliably can be challenging, compounded by diverse
perceptions of probabilistic information among decision makers. To address this
variability and accommodate diverse preferences regarding uncertainty, we intro-
duce the Probabilistic Abstract Decision Framework (PADF). PADF offers a struc-
tured approach for reasoning across different decision criteria, encompassing the
optimistic, pessimistic, and Laplace perspectives, each tailored to distinct percep-
tions of uncertainty. We illustrate how PADF facilitates the computation of optimal
decisions aligned with these criteria by leveraging probabilistic rules. Furthermore,
we present strategies for optimizing the computational efficiency of these rules,
leveraging appropriate independence assumptions to navigate the extensive search
space inherent in PADF. Through these contributions, our framework provides a
robust and adaptable tool for effectively navigating the complexities of decision-
making under uncertainty.

Keywords. Probabilistic Argumentation, Decision Making, Probabilistic Rules

1. Introduction

Probabilistic decision-making involves making informed choices amidst uncertainty [1].
It is pivotal for decision support systems not only to generate optimal decisions but also to
consider various decision criteria that encapsulate different perspectives on uncertainty
[2]. In this context, quantifying uncertainty and assessing the probabilities of diverse out-
comes become essential tasks. This requires integrating multiple sources of information,
including both objective data and subjective beliefs, and applying formal probabilistic
models to represent and analyze uncertainty effectively. Additionally, accommodating
differences in how different users perceive probabilistic information is crucial for ensuring
the applicability and usability of decision support systems [3,4].

Probabilistic Rules (p-rules) [5] serve as the primary building blocks for probabilistic
structured argumentation. They enable the construction of arguments that accommodate
uncertainty and offer a conditional probability interpretation to rules commonly employed
in structured argumentation.

The primary aim of this paper is to explore methods for accommodating differ-
ent decision criteria within uncertain environments computed using p-rules. Initially,
we introduce a probabilistic extension of the Abstract Decision Framework (ADF) [6],
termed the Probabilistic Abstract Decision Framework (PADF), tailored specifically for
modeling decision problems under uncertainty. PADF integrates the probability space
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to evaluate the likelihood of a decision being strongly or weakly dominant across vari-
ous decision criteria, such as the optimistic, pessimistic, and Laplace criteria, reflecting
diverse perceptions of probabilistic information among decision makers. Furthermore,
we develop a procedure to map PADF onto p-rules, facilitating probabilistic inference
to derive probability distributions under different decision criteria. To enhance computa-
tional efficiency within the extensive search space of PADF, we leverage on the concept
of relative independence assumption. In summary, our contributions can be outlined as
follows:

• We extend the existing notions of strongly dominant, dominant, and weakly domi-
nant semantics within ADF to the probabilistic domain.

• Three distinct decision criteria are developed to capture diverse perceptions of
uncertainty information among decision makers in probabilistic reasoning.

• We establish a mapping between PADF and p-rules, enabling the execution of
probabilistic deductions to derive probability distributions under various decision
criteria. This linkage is significant as it bridges argumentation formalism with deci-
sion theory, offering a formal connection that facilitates argumentative explanation
within the decision-making process.

The rest of this paper is organised as the follows. Section 2 reviews concepts intro-
duced in the literature that are used in this work. Section 3 introduces PADF formally. In
Section 4, we propose how to map PADF to p-rules and how to optimise its computational
complexity. Section 5 discusses our work in comparison with related work. We conclude
in Section 6.

2. Background and Preliminaries

In this work, we need two notions, Abstract Decision Framework (ADF) and probabilistic
rule (p-rule).

Definition 2.1. [6] An Abstract Decision Framework (ADF) is a tuple ⟨𝐷,𝐺,𝛾⟩ such
that 𝐷 is set of decisions, 𝐺 is a set of goals and 𝛾 is a mapping function for which goals
met by a decision. For 𝑑 ∈ 𝐷, it is

• strongly dominant iff 𝛾(𝑑) = 𝐺;
• dominant iff there is no 𝑔′ ∈ 𝐺 \𝛾(𝑑) with 𝑔′ ∈ 𝛾(𝑑′) for some 𝑑′ ∈ 𝐷 \{𝑑};
• weakly dominant iff there is no 𝑑′ ∈ 𝐷 \{𝑑} with 𝛾(𝑑) ⊂ 𝛾(𝑑′).

It has been shown in [6] that if a decision is strongly dominant, then it is dominant;
if a decision is dominant, then it is weakly dominant.

Definition 2.2. [7] Given a language L, a probabilistic rule (p-rule) is 𝜎0← 𝜎1, ...,𝜎𝑘 :
[𝜃], for 𝑘 ≥ 0,𝜎𝑖 ∈ L,0 ≤ 𝜃 ≤ 1.

Definition 2.3. [8] Given a language L with 𝑛 sentences, the Complete Conjunction Set
(CC Set) Ω of L is the set of 2𝑛 conjunction of sentences such that each conjunction
containsc 𝑛 distinct sentences.

Definition 2.4. [7] Given a language L and p-rules R, Ω is the CC set of L. A function
𝜋 : Ω→ [0,1] is a consistent probability distribution with respect to R on L for Ω iff:



1. For all 𝜔𝑖 ∈ Ω, 0 ≤ 𝜋(𝜔𝑖) ≤ 1, it holds that:∑︁
𝜔𝑖∈Ω

𝜋(𝜔𝑖) = 1 (1)

2. For each p-rule 𝜎0←: [𝜃] ∈R, it holds that:

𝜃 =
∑︁

𝜔𝑖∈Ω,𝜔𝑖 |=𝜎0

𝜋(𝜔𝑖) (2)

3. For each p-rule 𝜎0← 𝜎1, ...,𝜎𝑘 : [𝜃] ∈R, (𝑘 > 0), it holds that:∑︁
𝜔𝑖∈Ω,𝜔𝑖 |=𝜎1∧,...,∧𝜎𝑘

𝜋(𝜔𝑖) × 𝜃 =
∑︁

𝜔𝑖∈Ω,𝜔𝑖 |=𝜎0∧,...,∧𝜎𝑘

𝜋(𝜔𝑖) (3)

Given a language L and a set of p-rule R, let Π be the set of consistent probability
distributions wrt R on L. There are three kinds of reasoning asserts for 𝜎 ∈ L:

• 𝜎-maixmal Solution, a upper bounds distribution 𝜋0 ∈ Π of Pr(𝜎) as follows.

𝜋0 = argmax
𝜋∈Π

∑︁
𝜔𝑖∈Ω,𝜔𝑖 |=𝜎

𝜋(𝜔𝑖) (4)

• 𝜎-minimal Solution, a lower bounds distribution 𝜋0 ∈ Π of 𝑃𝑟 (𝜎0) as follows.

𝜋0 = argmin
𝜋∈Π

∑︁
𝜔𝑖∈Ω,𝜔𝑖 |=𝜎

𝜋(𝜔𝑖) (5)

• Maximum Entropy Solution, a Maximum Entropy Distribution 𝜋0 ∈ Π is:

𝜋0 = argmax
𝜋∈Π

(−
∑︁
𝜔𝑖∈Ω

𝜋(𝜔𝑖) log(𝜋(𝜔𝑖))) (6)

As explained in [7], solving linear systems derived from p-rules to compute the joint distri-
bution 𝜋 may result in multiple solutions, as the linear system could be underdetermined.
Thus, three reasoning paradigms are proposed to represent three potential selections of
distributions. 𝜎-maximal and 𝜎-minimal solutions aim to maximize and minimize the
probability of a chosen 𝜎, respectively, while the maximum entropy solution aims to
minimize selection bias in choosing solutions.

3. Probabilistic Abstract Decision Framework

In this section, we introduce an extension of ADFs called the Probabilistic Abstract De-
cision Frameworks (PADF). PADF describes the probabilistic relationship between deci-
sions and goals in a decision problem while accommodating probabilistic information.

Definition 3.1. A Probabilistic Abstract Decision Frameworks (PADF) is a tuple
⟨𝑅,𝐻, 𝜌⟩ in which ⟨𝑅,𝐻⟩ are two graphs and 𝜌 ∈ [0,1], with

• 𝑅 = (𝑁,𝐸) is a graph such that 𝑁 = 𝐷 ∪ 𝐴∪𝐺 is a set of nodes such that 𝐷 ≠ ∅ is
a set of decisions; 𝐴 is a set of attributes; 𝐺 ≠ ∅ is a set of goals;



- 𝐸 = 𝐸𝑎∪𝐸𝑔 is a set of directed edges such that 𝐸𝑎 is a set of edges to represent the
attributes that might have for the decision and 𝐸𝑔 is a set of edges to represent the
goal might met by the decision, it is the case that: (1) if (𝑛𝑖 , 𝑛 𝑗 ) ∈ 𝐸𝑎, then 𝑛𝑖 ∈ 𝐷
and 𝑛 𝑗 ∈ 𝐴; or (2) if (𝑛𝑖 , 𝑛 𝑗 ) ∈ 𝐸𝑔, then 𝑛𝑖 ∈ 𝐷 and 𝑛 𝑗 ∈ 𝐺;

• 𝐻 = (𝐸,𝐶) is a graph whose nodes 𝐸 is the edges in 𝑅, and directed edges 𝐶 such
that (𝑒𝑖 , 𝑒 𝑗 ) ∈ 𝐶 if and only if 𝑒𝑖 ∈ 𝐸𝑎, 𝑒𝑖 ∈ 𝐸 and 𝑒𝑖 ≠ 𝑒 𝑗 .

• 𝜌 is a mapping from a set of nodes 𝑆 = {𝑒0, . . . , 𝑒𝑘} ⊆ 𝐸 in 𝐻 to [0,1] such that if
𝑘 ≥ 1, then (𝑒𝑖 , 𝑒0) ∈ 𝐶 for all 𝑖 ≥ 1.

In PADF, we use graph 𝑅 to describe the attributes that the decisions may have
and the goals that the decision may met, and then graph 𝐻 to describe the probabilistic
influence relationship between the edges in 𝐸 . 𝜌 maps the probability of one or more
edges in 𝐸 , where if the number of edges is greater than one, the conditional probability
relationship of the edges is confirmed by the edges in𝐶. The following example illustrates
the notion of PADF.

Figure 1. A PADF for Example 3.1. The solid line in the graph indicates the edge from 𝐸, the dashed line
indicates the edge from 𝐶 and the value indicates the 𝜌 mapping.

Example 3.1. Figure 1 shows an example of a PADF. An agent is considering financial
investment. The two candidate decisions are 𝑠𝑡𝑜𝑐𝑘 and 𝑏𝑜𝑛𝑑 representing two different
investments. Agents consider two goals ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑 and 𝑙𝑜𝑤𝑅𝑖𝑠𝑘 as important. In agents’
beliefs, there is 0.4 probability that the central bank will cut interest rates (𝑐𝑢𝑡𝐼𝑅), which
would increase the probability of ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑 met by 𝑠𝑡𝑜𝑐𝑘 to 0.7. In addition to this,
Employment Situation Report (𝐸𝑆𝑃) and Purchasing Manager’s Index (𝑃𝑀𝐼) are macro
economic indicators for 𝑠𝑡𝑜𝑐𝑘 and 𝑏𝑜𝑛𝑑. The 𝐸𝑆𝑃 indicates that there is a 0.5 probability
that 𝑠𝑡𝑜𝑐𝑘 has ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑, but only a 0.2 probability that it is 𝑙𝑜𝑤𝑅𝑖𝑠𝑘 , while 𝑃𝑀𝐼 show
that 𝑏𝑜𝑛𝑑 has a 0.95 probability of satisfying 𝑙𝑜𝑤𝑅𝑖𝑠𝑘 , even though it does not satisfy
the goal of ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑. However, the agent also assigns uncertainties to ESP and PMI as
well, with 𝑃(𝐸𝑆𝑃) = 0.5 and 𝑃(𝑃𝑀𝐼) = 0.8, respectively, representing their reporting
accuracy. Hence:

• 𝑁 = {𝑠𝑡𝑜𝑐𝑘, 𝑏𝑜𝑛𝑑}𝐷 ∪ {𝑐𝑢𝑡𝐼𝑅, 𝐸𝑆𝑃,𝑃𝑀𝐼}𝐴∪ {ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘}𝐺
• 𝐸 consists of:
𝑒0 = (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑), 𝑒1 = (𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘), 𝑒2 = (𝑠𝑡𝑜𝑐𝑘, 𝑐𝑢𝑡𝐼𝑅),
𝑒3 = (𝑏𝑜𝑛𝑑, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑), 𝑒4 = (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘), 𝑒5 = (𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃)
𝑒6 = (𝑏𝑜𝑛𝑑, 𝑃𝑀𝐼)

• 𝐶 consists of:



(𝑒2, 𝑒0), (𝑒5, 𝑒0), (𝑒5, 𝑒1), (𝑒6, 𝑒3), (𝑒6, 𝑒4)
• 𝜌 mapping consists of:
𝜌({𝑒2, 𝑒0}) = 0.7, 𝜌({𝑒5, 𝑒0}) = 0.5, 𝜌({𝑒5, 𝑒1}) = 0.2, 𝜌({𝑒6, 𝑒3}) = 0,
𝜌({𝑒6, 𝑒4}) = 0.95, 𝜌({𝑒2}) = 0.4, 𝜌({𝑒5}) = 0.7, 𝜌({𝑒6} = 0.8

Definition 3.2. Given a PADF ⟨𝑅,𝐻, 𝜌⟩ where 𝐷 = {𝑑1, ..., 𝑑𝑖} and 𝐺 = {𝑔1, ..., 𝑔𝑘}. T
target space about all possible outcome of the decisions, such that:

• T = {𝑡1, ..., 𝑡𝑛}, its elements are states and there exist 𝑛 = 2𝑖𝑘 states of T such that
each state is a conjunction containing 𝑖𝑘 distinct goals met by distinct decisions
(𝑑,𝑔) ∈ 𝐸𝑔 (or its neation ¬(𝑑,𝑔) denotes that decision 𝑑 does not meet goal 𝑔).

Example 3.2. (Example 3.1 continued) There exist 16 states of T = {𝑡0, ..., 𝑡15} for
Example 3.1, such as:
𝑡0 = ¬(𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ∧¬(𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘) ∧¬(𝑏𝑜𝑛𝑑,𝑌𝑖𝑒𝑙𝑑) ∧¬(𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘),
𝑡1 = ¬(𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ∧¬(𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘) ∧¬(𝑏𝑜𝑛𝑑,𝑌𝑖𝑒𝑙𝑑) ∧ (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘),
and 𝑡15 = (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ∧ (𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘) ∧ (𝑏𝑜𝑛𝑑,𝑌𝑖𝑒𝑙𝑑) ∧ (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘).

Definition 3.3. Given a PADF ⟨𝑅,𝐻, 𝜌⟩. A probability function F : T → [0,1] is a joint
probability distribution with PADF for the target set T such that

∑
𝑡𝑖∈T F (𝑡𝑖) = 1. Let Π

be the set of joint probability distributions wrt T .

In this section, we focus on the basic concepts of PADF, so we will ignore the
process of solving the joint probability distribution of T for now (we will present the its
computation in the next section). Intuitively, it is natural to apply several decision criteria
from Definition 2.1 of ADFs (strongly dominant, dominant, weakly dominant) to identify
“good” decisions in each 𝑡𝑖 ∈ T . The probability of decision dominant in PADF can be
inferred by summarizing the probability of states 𝑡𝑖 , as follows:

Definition 3.4. Given a PADF ⟨𝑅,𝐻, 𝜌⟩. For each 𝑡𝑖 ∈ T , let 𝑠𝐷𝑜𝑚-𝑡𝑖 , 𝑑𝑜𝑚-𝑡𝑖 ,𝑤𝐷𝑜𝑚-𝑡𝑖
denote the sets of strongly dominant, dominant and weakly dominant decisions in 𝑡𝑖 .
Then, the strongly dominant, dominant and weakly dominant probabilities of decision
𝑑 ∈ 𝐷 are obtained as follows, for 𝜒 = 𝑠𝐷𝑜𝑚, 𝑑𝑜𝑚,𝑤𝐷𝑜𝑚, respectively:

Pr 𝜒 (𝑑) =
∑︁

𝑡𝑖∈T ,𝑑∈𝜒-𝑡𝑖

F (𝑡𝑖) (7)

In Definition 3.4, Pr𝑠𝐷𝑜𝑚 (𝑑) is referred to as the strong dominant probability of 𝑑;
Pr𝑑𝑜𝑚 (𝑑) is referred to as the dominant probability of 𝑑; Pr𝑤𝐷𝑜𝑚 (𝑑) is referred to as the
weakly dominant probability of 𝑑.

Example 3.3. (Example 3.1 continued.) Given a PADF ⟨𝑅,𝐻, 𝜌⟩ for Example 3.1. Table
1a shows one of the sets of consistent probability distributions for T . For the decision
𝑠𝑡𝑜𝑐𝑘 in each states 𝑡𝑖 ∈ T :

• 𝑠𝐷𝑜𝑚 : 𝑡12, 𝑡13, 𝑡14, 𝑡15;
• 𝑑𝑜𝑚 : 𝑡4, 𝑡5, 𝑡8, 𝑡10, 𝑡12, 𝑡13, 𝑡14, 𝑡15;
• 𝑤𝐷𝑜𝑚 : 𝑡0, 𝑡4, 𝑡5, 𝑡6, 𝑡8, 𝑡9, 𝑡10, 𝑡12, 𝑡13, 𝑡14, 𝑡15;

Consequently, the strong dominant probability of 𝑠𝑡𝑜𝑐𝑘 is Pr𝑠𝐷𝑜𝑚 (𝑠𝑡𝑜𝑐𝑘) = 0.2904, the
dominant probability is Pr𝑑𝑜𝑚 (𝑠𝑡𝑜𝑐𝑘) = 0.4256064 and the weakly dominant probaility
is Pr𝑤𝐷𝑜𝑚(𝑠𝑡𝑜𝑐𝑘) = 0.7160064. Note that these probabilities do not add up to one as
𝑠𝐷𝑜𝑚, 𝑑𝑜𝑚, and 𝑤𝐷𝑜𝑚 are not mutually exclusive.



Table 1. This table shows the sixteen possible worlds in Example 3.3 and 4.2, there exist three sets of joint
probability distributions for target set T under different decision certeria1.

(a) Table for Optimistic Criterion

T F (𝑡)
𝑡0 0000 0.0060928
𝑡1 0001 0.1462272
𝑡2 0010 0.0015232
𝑡3 0011 0.0365568
𝑡4 0100 0.0047872
𝑡5 0101 0.1148928
𝑡6 0110 0.0011968
𝑡7 0111 0.0287232
𝑡8 1000 0.0118272
𝑡9 1001 0.2838528
𝑡10 1010 0.0029568
𝑡11 1011 0.0709632
𝑡12 1100 0.0092928
𝑡13 1101 0.2230272
𝑡14 1110 0.0023232
𝑡15 1111 0.0557568

(b) Table for Pessimistic Criterion

T F (𝑡)
𝑡0 0000 0.132096
𝑡1 0001 0.418304
𝑡2 0010 0.0
𝑡3 0011 0.0
𝑡4 0100 0.021504
𝑡5 0101 0.068096
𝑡6 0110 0.0
𝑡7 0111 0.0
𝑡8 1000 0.074304
𝑡9 1001 0.235296
𝑡10 1010 0.0
𝑡11 1011 0.0
𝑡12 1100 0.012096
𝑡13 1101 0.038304
𝑡14 1110 0.0
𝑡15 1111 0.0

(c) Table for Laplace Criterion

T F (𝑡)
𝑡0 0000 0.0393624
𝑡1 0001 0.2417976
𝑡2 0010 0.0043736
𝑡3 0011 0.0268664
𝑡4 0100 0.0160776
𝑡5 0101 0.0987624
𝑡6 0110 0.0017864
𝑡7 0111 0.0109736
𝑡8 1000 0.0500976
𝑡9 1001 0.3077424
𝑡10 1010 0.0055664
𝑡11 1011 0.0341936
𝑡12 1100 0.0204624
𝑡13 1101 0.1256976
𝑡14 1110 0.0022736
𝑡15 1111 0.0139664

Proposition 3.1. Given a PADF ⟨𝑅,𝐻, 𝜌⟩, for any 𝑑 ∈ 𝐷, 0 ≤ Pr𝑠𝐷𝑜𝑚 (𝑑) ≤ Pr𝑑𝑜𝑚 (𝑑) ≤
Pr𝑤𝐷𝑜𝑚(𝑑) ≤

∑
𝑡∈T F (𝑡) = 1

It has been shown in [6] that if a decision is strongly dominant, then it is dominant;
if a decision is dominant, then it is weakly dominant. This leads to a sequential rela-
tionship between the different dominant probabilities of a decision as Proposition 3.1.
This sequential relationship can be read to mean that Pr𝑤𝐷𝑜𝑚(𝑑) represents the most
conservative reasoning, while Pr𝑠𝐷𝑜𝑚 (𝑑) represents the most radical reasoning.

With this, we define three decision criteria for the PADF, describing different per-
ceptions of uncertainty information by decision makers in probabilistic reasoning:

Definition 3.5. (Optimistic Criterion) Given a PADF ⟨𝑅,𝐻, 𝜌⟩, 𝛿(𝐷) is the best decision
in PADF with the Optimistic Criterion defines as follows:

1. Maximize the overall probability of all goals Pr(𝑔1∨ ...∨𝑔𝑘):

F0 = argmax
F∈Π

Pr(𝑔1∨ ...∨𝑔𝑘) (8)

2. Select the decision with the highest probability of Pr𝑠𝐷𝑜𝑚 (𝑑𝑖):

𝛿(𝐷) = argmax
𝑑∈𝐷

∑︁
𝑡𝑖∈T ,𝑑∈𝑠𝐷𝑜𝑚-𝑡𝑖

F0 (𝑡𝑖) (9)

The Optimistic Criterion describes that decision makers always have optimistic
perspectives on probabilistic decision problems. Under Optimisyic Criterion, the decision

1

To simplify the presentation, Boolean values are used as shorthand for conjunctions. E.g., 1111 denotes that
(𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ∧ (𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘 ) ∧ (𝑏𝑜𝑛𝑑,𝑌𝑖𝑒𝑙𝑑) ∧ (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘 ) .



maker are radical in their reasoning and tries to maximise the unknow outcome as
Equation 8. Then, the decision with the highest strong dominant probability is selected
as the best decision by Equation 9.

Definition 3.6. (Pessimistic Criterion) Given a PADF ⟨𝑅,𝐻, 𝜌⟩, 𝛿(𝐷) is the best deci-
sion in PADF with the Pessimistic Criterion defines as follows:

1. Minimize the overall probability of all goals Pr(𝑔1∨ ...∨𝑔𝑘):

F0 = argmin
F∈Π

Pr(𝑔1∨ ...∨𝑔𝑘) (10)

2. Select the decision with the highest probability of Pr𝑤𝐷𝑜𝑚(𝑑𝑖):

𝛿(𝐷) = argmax
𝑑∈𝐷

∑︁
𝑡𝑖∈T ,𝑑∈𝑤𝐷𝑜𝑚-𝑡𝑖

F0 (𝑡𝑖) (11)

The opposite of the Optimistic Criterion is the Pessimistic Criterion. In this Criterion,
the decision maker’s reasoning is conservative and tries to minimise the unknow outcome
as Equation 10 then choose the best decision of the worst preconceived notions by
Equation 11.

Definition 3.7. (Laplace Criterion) Given a PADF ⟨𝑅,𝐻, 𝜌⟩, 𝛿(𝐷) is the best decision
in PADF with the Laplace Criterion defines as follows:

1. Choosing the joint probability distribution with maximum entropy:

F0 = argmax
F∈Π

(−
∑︁
𝑡𝑖∈T

F (𝑡𝑖) log(F (𝑡𝑖))) (12)

2. Select the decision with maximum expected utility:

𝛿(𝐷) = argmax
𝑑𝑖∈𝐷

∑︁
𝑡𝑘 ∈T

F0 (𝑡𝑘)𝑈 (𝑑𝑖 , 𝑡𝑘) (13)

where the utility function 𝑈 (𝑑𝑖 , 𝑡𝑘) is defined in terms of 𝑑𝑖 ∈ 𝐷 occupying several
dominant decisions in 𝑡𝑘 . Formally,

𝑈 (𝑑𝑖 , 𝑡𝑘) =


3, 𝑑𝑖 ∈ 𝑠𝐷𝑜𝑚-𝑡𝑘
2, 𝑑𝑖 ∈ 𝑑𝑜𝑚-𝑡𝑘 & 𝑑𝑖 ∉ 𝑠𝐷𝑜𝑚-𝑡𝑘
1, 𝑑𝑖 ∈ 𝑤𝐷𝑜𝑚-𝑡𝑘 & 𝑑𝑖 ∉ 𝑑𝑜𝑚-𝑡𝑘
0, 𝑑𝑖 ∉ 𝑤𝐷𝑜𝑚-𝑡𝑘

(14)

Laplace Criterion assumes that the absence of information means that all outcomes
have equal probability. When there are unknown probabilities, a unique set of consistent
probability distributions can be determined using the principle of maximum entropy, and
it characterises the known information well and distributes the probabilities fairly [9].
After confirming the maximum entropy distribution (Equation 12), Laplace Criterion
selects the decision of maximum utility as the best decision (Equation 13).



4. Probabilistic Deduction on PADF

In this section, we explore how to use probabilistic rules to solve for the best decision in
PADF. First, we map PADF to the language L and a set of p-rules R.

Definition 4.1. Given a PADF ⟨𝑅,𝐻, 𝜌⟩, its corresponding languageL and a set of p-rules
R are:
• L = {ℎ𝑎𝑣𝑒(𝑑, 𝑎) |𝑑 ∈ 𝐷,𝑎 ∈ 𝐴} ∪ {𝑚𝑒𝑡 (𝑑,𝑔) |𝑑 ∈ 𝐷,𝑔 ∈ 𝐺};
• R = {𝑛0← 𝑛1, ..., 𝑛𝑘 : [𝜃] |𝜃 = 𝜌(𝑛0, ..., 𝑛𝑘)}

Namely, the language L consists of two types of sentences ℎ𝑎𝑣𝑒(𝑑, 𝑎) and 𝑚𝑒𝑡 (𝑑,𝑔),
representing the attributes 𝑎 that decision 𝑑 have and the goal 𝑔 that decision 𝑑 may meet,
respectively. The set of p-rules R are mapped from 𝜌. We illustrate how to map PADF to
a language L and a set of p-rules R with the following example.

Example 4.1. (Example 3.1 continued) A language L and a set of p-rules R correspond-
ing to the PADF ⟨𝑅,𝐻, 𝜌⟩ in Example 3.1 is:
• L consists of:
ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝑐𝑢𝑡𝐼𝑅), ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃), ℎ𝑎𝑣𝑒(𝑏𝑜𝑛𝑑, 𝑃𝑀𝐼),
𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑), 𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘),
𝑚𝑒𝑡 (𝑏𝑜𝑛𝑑, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑), 𝑚𝑒𝑡 (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘);

• R consists of:
𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ← ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝑐𝑢𝑡𝐼𝑅) : [0.7], ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝑐𝑢𝑡𝐼𝑅) ←: [0.4],
𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ← ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃) : [0.5], ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃) ←: [0.7],
𝑚𝑒𝑡 (𝑏𝑜𝑛𝑑, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ← ℎ𝑎𝑣𝑒(𝑏𝑜𝑛𝑑, 𝑃𝑀𝐼) : [0], ℎ𝑎𝑣𝑒(𝑏𝑜𝑛𝑑, 𝑃𝑀𝐼) ←: [0.8],
𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘) ← ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃) : [0.2],
𝑚𝑒𝑡 (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘) ← ℎ𝑎𝑣𝑒(𝑏𝑜𝑛𝑑, 𝑃𝑀𝐼) : [0.95];

The study from [5] points out that the time to solve Rule-PSAT increases exponen-
tially as the size of L grows. This growth phenomenon is more severe for PADF, the size
of the corresponding L possible worlds are 2𝑖𝑘+ 𝑗 (where i is the number of decisions, k
is the number of goals and j is the number of attributes). A simple PADF like Example
4.1 will lead to 27 possible worlds in CC set. The study [10] proposes that although there
are various links between goals, they are often considered independently in decision. On
this basis, we introduce the Relative Independence Assumption (RIA) for PADF. First,
we define the notion of reachable node.

Definition 4.2. Given a PADF ⟨𝑅,𝐻, 𝜌⟩ with its corresponding language L and a set
of p-rules R. For any 𝑛𝑖 , 𝑛 𝑗 ∈ L, we say that 𝑛𝑖 is reachable from 𝑛 𝑗 if and only if the
following two conditions holds:

C1. there exists a p-rule 𝑛𝑖← 𝑛 𝑗 , ..., 𝑛𝑘 : [𝜃] or
C2. there exists 𝑛′ ∈ L such that 𝑛𝑖 is reachable from 𝑛′ and 𝑛′ is reachable from 𝑛 𝑗 .

Definition 4.2 is given recursively with C1 being the base case. With this, RIA on L
corresponding to PADF can be explained as follows.

Assumption 4.1. (Relative Independence Assumption) Given a PADF ⟨𝑅,𝐻, 𝜌⟩ with
its corresponding language L and a set of p-rules R. For all 𝑛𝑖 , 𝑛 𝑗 ∈ L are independent if
and only if 𝑛𝑖 is not reachable from 𝑛 𝑗 and 𝑛 𝑗 is not reachable from 𝑛𝑖 .



Proposition 4.1. For all 𝑚𝑒𝑡 (𝑑,𝑔) ∈ L are independent with each other.

The proof of Proposition 4.1 comes from Definition 3.1, where all (𝑑,𝑔) ∈ 𝐸𝑔 are not
allowed to point to other nodes in the graph 𝐻, and thus are mutually unreachable when
mapped to 𝑚𝑒𝑡 (𝑑,𝑔) ∈ 𝐿. With this, we can construct the reachable set of 𝑚𝑒𝑡 (𝑑,𝑔).

Definition 4.3. Given a PADF ⟨𝑅,𝐻, 𝜌⟩ with its corresponding language L and a set of
p-rules R. For each 𝑚𝑒𝑡 (𝑑,𝑔) ∈ L, have a reachable set L(𝑑,𝑔) such that 𝑛𝑖 ∈ L(𝑑,𝑔) if
and only if 𝑛𝑖 = 𝑚𝑒𝑡 (𝑑,𝑔) or the 𝑚𝑒𝑡 (𝑑,𝑔) is reachable from 𝑛𝑖 .

For L(𝑑,𝑔) , its p-rules denoted as R(𝑑,𝑔) and CC Set denoted as Ω(𝑑,𝑔) .

Proposition 4.2. Given a reachable set L(𝑑,𝑔) ⊆ L such that the Pr(𝑚𝑒𝑡 (𝑑,𝑔)) solved by
L(𝑑,𝑔) is consistent with that solved by L.

To compute Pr(𝑚𝑒𝑡 (𝑑,𝑔)), we need to consider the other sentences. Let L(𝑑,𝑔) =
{𝑚𝑒𝑡 (𝑑,𝑔), 𝑛1, ..., 𝑛𝑖} and L = {𝑚𝑒𝑡 (𝑑,𝑔), 𝑛1, ..., 𝑛𝑘} such that 𝑖 ≤ 𝑘 ,. The sentences of
𝑛𝑖+1, ..., 𝑛𝑘 ∈ L are independent with 𝑚𝑒𝑡 (𝑑,𝑔). According to probability theory, if 𝑎, 𝑏
are independent of each other, then Pr(𝑎 |𝑏) = Pr(𝑎). That is, Pr(𝑚𝑒𝑡 (𝑑,𝑔) |𝑛1, ..., 𝑛𝑖) =
Pr(𝑚𝑒𝑡 (𝑑,𝑔) |𝑛1, ..., 𝑛𝑘) can be shown that Proposition 4.2.

With Proposition 4.2, we can compute the probability of each 𝑚𝑒𝑡 (𝑑,𝑔) locally as
following process. Given a language L and p-rules R corresponding to PADF ⟨𝑅,𝐻, 𝜌⟩.
For any 𝑚𝑒𝑡 (𝑑,𝑔) (or its negation 𝑛𝑜𝑡𝑀𝑒𝑡 (𝑑,𝑔)) in L(𝑑,𝑔) , the Pr(𝑚𝑒𝑡 (𝑑,𝑔)) is:

Pr(𝑚𝑒𝑡 (𝑑,𝑔)) =
∑︁

𝜔𝑖∈Ω(𝑑,𝑔) ,𝜔𝑖 |=𝑚𝑒𝑡 (𝑑,𝑔)
𝜋(𝜔𝑖) (15)

Note that Pr(𝑚𝑒𝑡 (𝑑,𝑔)) is equals to 𝜌((𝑑,𝑔)) in PADF. Given a PADF ⟨𝑅,𝐻, 𝜌⟩ with
the target set T , the joint probability distribution of each states 𝑡 ∈ T can be calculated
by solving each reachable set L(𝑑,𝑔) locally and multiplying the probability of distinct
𝑚𝑒𝑡 (𝑑,𝑔) (or its negation 𝑛𝑜𝑡𝑀𝑒𝑡 (𝑑,𝑔)) based on RIA as following equation:

F (𝑡) = F (𝑛0∧ ...∧𝑛𝑘) =
∏
𝑛𝑖∈𝑡

Pr(𝑛𝑖) (16)

For each L(𝑑,𝑔) ⊆ L, it is easy to observe that 𝜎-maximal Solution, 𝜎-minimal Solution,
and Maximum Entropy Solution is corresponding to the three decision criteria in PADF,
respectively. We use an example to illustrate how to solve the best decision under different
decision criteria by our process.

Example 4.2. (Example 4.1 continued) For each reachable set L(𝑑,𝑔) ⊆ L, the corre-
sponding set of p-rules R(𝑑,𝑔) is:
• R(𝑠𝑡𝑜𝑐𝑘,ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) consists of:
𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ← ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝑐𝑢𝑡𝐼𝑅) : [0.7], ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝑐𝑢𝑡𝐼𝑅) ←: [0.4]
𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ← ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃) : [0.5], ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃) ←: [0.7];
and set up its equations as follows2 by Definition 2.4:
(𝜋(010) + 𝜋(011) + 𝜋(110) + 𝜋(111)) ×0.7 = 𝜋(111) + 𝜋(110),

2

Boolean values are used as shorthand to simplify presentation. E.g., 𝜋 (111) in R(𝑠𝑡𝑜𝑐𝑘,ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) denotes
that 𝜋 (𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ∧ℎ𝑎𝑣𝑒 (𝑠𝑡𝑜𝑐𝑘, 𝑐𝑢𝑡 𝐼𝑅) ∧ℎ𝑎𝑣𝑒 (𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃) ) .



(𝜋(001) + 𝜋(011) + 𝜋(101) + 𝜋(111)) ×0.5 = 𝜋(111) + 𝜋(101),
0.4 = 𝜋(010) + 𝜋(011) + 𝜋(110) + 𝜋(111),
0.7 = 𝜋(001) + 𝜋(011) + 𝜋(101) + 𝜋(111),
1 = 𝜋(000) + 𝜋(001) + 𝜋(010) + 𝜋(011) + 𝜋(100)𝜋(101) + 𝜋(110) + 𝜋(111).

• R(𝑠𝑡𝑜𝑐𝑘,𝑙𝑜𝑤𝑅𝑖𝑠𝑘 ) consists of:
𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘) ← ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃) : [0.2], ℎ𝑎𝑣𝑒(𝑠𝑡𝑜𝑐𝑘, 𝐸𝑆𝑃) ←: [0.7];
and set up its equations as follows:
(𝜋(01) +𝜋(11))×0.2 = 𝜋(11), 0.7 = 𝜋(01) +𝜋(11), 1 = 𝜋(00) +𝜋(01) +𝜋(10) +𝜋(11).

• R(𝑏𝑜𝑛𝑑,ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) consists of:
𝑚𝑒𝑡 (𝑏𝑜𝑛𝑑, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑) ← ℎ𝑎𝑣𝑒(𝑏𝑜𝑛𝑑, 𝑃𝑀𝐼) : [0] ℎ𝑎𝑣𝑒(𝑏𝑜𝑛𝑑, 𝑃𝑀𝐼) ←: [0.8];
and set up its equations as follows:
(𝜋(01) + 𝜋(11)) ×0 = 𝜋(11), 0.8 = 𝜋(01) + 𝜋(11), 1 = 𝜋(00) + 𝜋(01) + 𝜋(10) + 𝜋(11).

• R(𝑏𝑜𝑛𝑑,𝑙𝑜𝑤𝑅𝑖𝑠𝑘 ) consists of:
𝑚𝑒𝑡 (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘) ← ℎ𝑎𝑣𝑒(𝑏𝑜𝑛𝑑, 𝑃𝑀𝐼) : [0.95] ℎ𝑎𝑣𝑒(𝑏𝑜𝑛𝑑, 𝑃𝑀𝐼) ←: [0.8];
and set up its equations as follows:
(𝜋(01) + 𝜋(11)) ×0.95 = 𝜋(11), 0.8 = 𝜋(01) + 𝜋(11), 1 = 𝜋(00) + 𝜋(01) + 𝜋(10) + 𝜋(11).

In probabilistic deduction, we have chosen the 𝜎-maximal Solution to solve the best
decision under Optimistic Criterion in PADF from Definition 3.5, it have:
1. Maximising 𝑃𝑟 (𝑚𝑒𝑡 (𝑑,𝑔)) with 𝜎-maximal Solution in each L(𝑑,𝑔) ⊆ L as follows:

Pr(𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑)) = 0.66 Pr(𝑛𝑜𝑡𝑀𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑)) = 0.34
Pr(𝑚𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘)) = 0.44 Pr(𝑛𝑜𝑡𝑀𝑒𝑡 (𝑠𝑡𝑜𝑐𝑘, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘)) = 0.56
Pr(𝑚𝑒𝑡 (𝑏𝑜𝑛𝑑, ℎ𝑖𝑔ℎ𝑌𝑖𝑒𝑙𝑑)) = 0.2 Pr(𝑛𝑜𝑡𝑀𝑒𝑡 (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘)) = 0.8
Pr(𝑚𝑒𝑡 (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘)) = 0.96 Pr(𝑛𝑜𝑡𝑀𝑒𝑡 (𝑏𝑜𝑛𝑑, 𝑙𝑜𝑤𝑅𝑖𝑠𝑘)) = 0.04

2. The joint probability distributions for T under Optimistic Criterion calculated by
Equation 16 can be seen in Table 1a.

3. Compute and compare the strongly dominant probabilities of decisions 𝑠𝑡𝑜𝑐𝑘 and
𝑏𝑜𝑛𝑑 by Equation 9:

𝑃𝑟𝑠𝐷𝑜𝑚 (𝑠𝑡𝑜𝑐𝑘) = 0.2904 𝑃𝑟𝑠𝐷𝑜𝑚 (𝑏𝑜𝑛𝑑) = 0.12672
Therefore, the best decision 𝛿(𝐷) = 𝑠𝑡𝑜𝑐𝑘 under Optimistic Criterion.

By similar steps with 𝜎-minimal Solution and Maximum Entropy Solution respectively,
it can be solved that the best decision under Pessimistic Criterion and Laplace Criterion
are both 𝛿(𝐷) = 𝑏𝑜𝑛𝑑 (To save space, we’ll leave out the intermediate processes) and
their joint probability for T can be seen in Table 1b and 1c.

The Theorem 4.1 identifies a formal semantic link between the PADF and p-rule,
and this link provides guidance for solving the consistent probability distribution for the
target set T under different decision criteria on the PADF.

Theorem 4.1. Given a PADF ⟨𝑅,𝐻, 𝜌⟩with corresponding languageL and a set of p-rules
R. For each Pr(𝑚𝑒𝑡 (𝑑,𝑔)) in its corresponding L(𝑑,𝑔) ⊆ L, let 𝜋𝑚𝑎𝑥 be its 𝜎-maximal
Solution, 𝜋𝑚𝑖𝑛 be its 𝜎-minimal Solution and 𝜋𝑒 be its Maximimum Entropy Solution.
F0 is a joint probability distribution for T . For each 𝑡𝑖 ∈ T , the F0 (𝑡) under different
decision criteria can be calculated as follows, with 𝜙 = {𝑚𝑎𝑥,𝑚𝑖𝑛, 𝑒}, respectively:

F0 (𝑡𝑖) =
∏

𝑡𝑖 |=𝑛 𝑗 ,

𝑛 𝑗 ∈L(𝑑,𝑔)

∑︁
𝜔∈Ω(𝑑,𝑔) ,
𝜔 |=𝑛 𝑗

𝜋𝜙 (𝑛 𝑗 ) (17)



If 𝜙 = 𝑚𝑎𝑥, then F0 is a set of joint probability distribution for T under the Optimistic
Criterion; if 𝜙 = 𝑚𝑖𝑛, then F0 is a set of joint probability distribution for T under the
Pessimistic Criterion; if 𝜙 = 𝑒, then F0 is a set of joint probability distribution for T under
the Laplace Criterion.

Proof. (Sketch.) For 𝜙 = 𝑚𝑎𝑥 or 𝜙 = 𝑚𝑖𝑛, according to the Assumption 4.1 of indepen-
dence between the goals, the overall probability of all goals can be written as follows:

Pr(𝑔1∨ ...∨𝑔𝑘) = 1−Pr(¬𝑔1∧ ...∧¬𝑔𝑘) = 1−
∏
𝑔𝑖∈𝐺
(1−Pr(𝑔𝑖)) (18)

= 1−
∏
𝑔𝑖∈𝐺
(1−

∑︁
𝑑 𝑗 ∈𝐷

Pr(𝑚𝑒𝑡 (𝑑 𝑗 , 𝑔𝑖))) (19)

It is easy to see that 𝑃𝑟 (𝑔1 ∨ ...∨ 𝑔𝑘) reaches an upper (or lower) bound as maximising
(or minimising) each Pr(𝑚𝑒𝑡 (𝑑,𝑔)) as Equation 8 and 10 in the Optimistic Criterion
and Pessimistic Criterion. In addition to this, Proposition 4.2 shows that under RIA, the
probability of locally computing each met(d,g) is the consistent with global. Therefore,
F0 in Optimistic Criterion and Pessimistic Criterion can be solved by Theorem 4.1.

For 𝜙 = 𝑒, let 𝐻 (F0) be the maximum entropy as Equation 12. We have 𝐻 (F0 (𝑡)) =
𝐻 (𝑛0, ..., 𝑛𝑘) such that 𝑡 ∈ T . According to RIA that each 𝑛𝑖 ∈ 𝑡 are independent with each
other so that their mutual information is 0. That is, 𝐻 (𝑛0, ..., 𝑛𝑘) =

∑
𝑛𝑖∈𝑡 𝐻 (𝑛𝑖). When

𝜒 = 𝑒, it will maximise each 𝐻 (𝑛𝑖). Thus, such a distribution is the maximum entropy
distribution consistent with F0. □

5. Related Works

A variety of research studies have explored probabilistic argumentation-based decision
making, e.g. [11,12,13,14]. Keshavarzi-Zafarghandi et al. [15] propose numerical ab-
stract dialectical frameworks (nADFs) for decision-making, representing actions, states,
and outcomes with numerical acceptance conditions. However, our approach surpasses
nADFs in handling unknown values and provides optimal decision choices across dif-
ferent probability perceptions, rather than only choosing the decision with the highest
expected utility.

Toni et al. [16] present a decision-making method based on jury-based probabilistic
argumentation, integrating quantitative reasoning with qualitative argumentation to sup-
port forecasting by aggregating subjective probability estimates. Their approach defines
probability distributions directly on assumption-based argumentation, whereas our work
provides insights into solving for such distributions.

The work by Hadoux [4] is particularly relevant to our study. This article introduces
a framework for persuasion dialogues using decision trees and evaluates various decision
rules for optimal selection in uncertain scenarios regarding the persuadee’s beliefs. They
employ Bayesian networks to bypass the computation of joint probability distributions,
leading their decision rules to constrain only the connected nodes at each step. In con-
trast, we optimize our computational approach by adopting the relative independence as-
sumption, solving locally before merging to derive the joint probability distribution. This
ensures that the decision criterion can globally constrain the nodes. Thus, we believe the
relative independence assumption is a superior choice over the conditional independence
assumption in probabilistic reasoning.



6. Conclusion

In this study, we have studied the decision-making problem when faced with uncertainty,
a common scenario in many real-world situations. We introduce the Probabilistic Abstract
Decision Frameworks (PADF) as a novel approach. Through PADF, we’ve developed
three distinct decision criteria to help select the best course of action when uncertainty is
present. Our method involves linking PADF with Probabilistic Deduction (PD), revealing
a meaningful connection between the two. This connection allows us to simplify com-
putational approaches for resolving consistent probability distributions under different
decision criteria, making the process less complex. By taking an argumentative perspec-
tive, our work not only addresses uncertainty in decision-making but also provides a
structured framework for deductive reasoning. Looking ahead, we aim to explore specific
applications and refine our methods to improve efficiency.
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