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Abstract

Pollution from coal-fired power plants has been linked to substantial health and mortality

burdens in the US. In recent decades, federal regulatory policies have spurred efforts to curb

emissions through various actions, such as the installation of emissions control technologies on

power plants. However, assessing the health impacts of these measures, particularly over longer

periods of time, is complicated by several factors. First, the units that potentially receive the

intervention (power plants) are disjoint from those on which outcomes are measured (communities),

and second, pollution emitted from power plants disperses and affects geographically far-reaching

areas. This creates a methodological challenge known as bipartite network interference (BNI). To

our knowledge, no methods have been developed for conducting quasi-experimental studies with

panel data in the BNI setting. In this study, motivated by the need for robust estimates of the

total health impacts of power plant emissions control technologies in recent decades, we introduce

a novel causal inference framework for difference-in-differences analysis under BNI with staggered

treatment adoption. We explain the unique methodological challenges that arise in this setting

and propose a solution via a data reconfiguration and mapping strategy. The proposed approach

is advantageous because analysis is conducted at the intervention unit level, avoiding the need to

arbitrarily define treatment status at the outcome unit level, but it permits interpretation of

results at the more policy-relevant outcome unit level. Using this interference-aware approach,

we investigate the impacts of installation of flue gas desulfurization scrubbers on coal-fired

power plants on coronary heart disease hospitalizations among older Americans over the period

2003-2014, finding an overall beneficial effect in mitigating such disease outcomes.

Keywords: causal inference; quasi-experimental design; bipartite network interference; environmental

policies; health effects

1

ar
X

iv
:2

40
4.

13
44

2v
1 

 [
st

at
.M

E
] 

 2
0 

A
pr

 2
02

4



1 Introduction

Coal-fired power plants are significant emitters of pollutants, including sulfur dioxide (SO2) and

nitrous oxides (NOx), which are also key contributors to the formation of fine particulate matter

smaller than 2.5µg in size (PM2.5). Exposure to power plant-related PM2.5 has been linked to an

increased risk of cardiovascular and respiratory diseases, as well as stroke, and has been estimated to

be responsible for 460,000 deaths between 1999 and 2020 among U.S. Medicare beneficiaries (Samet

et al., 2000; Tsai et al., 2003; Koken et al., 2003; Dominici et al., 2006; Wu et al., 2020; Henneman

et al., 2023). PM2.5 exposure has also been shown to be a risk factor for cancer, neurodegenerative

diseases, and pregnancy complications, among other adverse health outcomes (Dadvand et al., 2013;

Hamra et al., 2014; Feng et al., 2016; Shou et al., 2019; Xie et al., 2021; Cristaldi et al., 2022).

As a direct result of this growing body of research demonstrating the detrimental health effects

of both short-term and long-term air pollution exposure, regulatory authorities such as the U.S.

Environmental Protection Agency (EPA) have enacted policies aimed at curbing the amount of

ambient air pollution to protect public health and welfare. The 1990 Amendments to the Clean Air

Act and subsequent changes to the National Ambient Air Quality Standards (NAAQS) set limits on

ambient levels of six pollutants, including SO2, NOx, and PM2.5. Localities that do not meet these

standards, or “nonattainment areas”, may be assessed penalties under the NAAQS rules. These

policy enactments have led to increasing measures being taken to reduce power plant emissions in

order to remain in compliance with regulations, such as switching to alternative fuel types or the

employment of emissions control technologies (Raff and Walter, 2019).

This paper is motivated by our aim of robustly quantifying the health impacts emissions-reducing

interventions on power plants in order to inform policy evaluation and future policy development.

In general, the challenge with assessing the impact of power plant emissions on human health has

been the complex mechanisms and pathways through which emitted pollutants are transported.

Primary PM2.5 that is directly emitted from power plants can disperse through wind and linger

airborne for long periods of time, while secondary PM2.5 is additionally formed in atmospheric

chemical conversions of other emitted gases (Wilson and Suh, 1997). Consequentially, emissions
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from a power plant have an effect on pollution concentrations not only in its immediate surrounding

area, but potentially also in communities hundreds or thousands of miles away. The result is a

complex web of associations that can be depicted as a dense network of connections between power

plant emission sources and human populations. Specifically, this is what is known as a bipartite

network—a network that consists of two disjoint sets of units (or “nodes”), where connections (or

“edges”) are allowed strictly between the sets, but not within a set. Such networks are common in

the social sciences—for example, one representation of a co-stardom network consists of two groups:

actors and movies. Edges in this network exist if an actor stars in a movie but not otherwise.

In our motivating application, we have two distinct sets of units: power plants on which interventions

(or “treatments”) are potentially imposed and communities in which health outcomes are measured.

We will refer to these two sets of units more generally as “intervention units” and “outcome units”,

respectively. The units are connected in a bipartite network, i.e., each power plant is connected to

many (potentially distant) communities based on the pollution transport from the power plant to the

community, but there are no power plant-to-power plant or community-to-community connections.

This data structure dramatically complicates policy evaluation. Note that in the context of power

generation, the fundamental level of electric generating unit (EGU) data is the “unit”; however, in

this paper we refer to the “unit” from the statistical perspective— that is, an individual observation

from the data.

In this bipartite network, an intervention at one power plant may affect many downwind communities

and each community may be affected by the intervention status of multiple power plants. To evaluate

the effects of such an intervention in a causal inference framework, one inevitably confronts the

fundamental challenge known as “treatment interference” or “spillover effects”, i.e., the setting in

which an intervention on one unit may impact the outcomes of other units (seminar reference to

this phenomenon can be found in Cox, 1958). The presence of interference violates the often held

causal assumption known as the Stable Unit Treatment Value Assumption (SUTVA), which requires

that the outcomes are only affected by the unit’s own treatment (Rubin, 1986). Causal analyses in

which outcomes depend on the treatments of other units require attention to interference to fully

account for their effects, and otherwise could lead to misleading inference and results (Sobel, 2006;
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Karwa and Airoldi, 2018; Forastiere et al., 2020; Bargagli-Stoffi et al., 2020).

Causal inference in a setting that combines the concepts discussed above—that is, the presence

of treatment interference defined by a bipartite network—was first discussed in Zigler and Pa-

padogeorgou (2021). In the remainder of this paper, we refer to this general setting as that of

bipartite network interference (BNI), as in Chen et al. (2023). Although several previous papers have

developed methods for conducting causal inference in cross-sectional observational study designs

with BNI, to our knowledge, none have considered how to address BNI in quasi-experimental study

design settings accounting for different intervention times (also known as “staggered treatment

adoption”). In this paper, motivated by a study of the health impacts of power plant emissions

reduction interventions implemented over the course of a decade in the U.S., we propose an approach

for performing causal difference-in-differences (DiD) analysis with panel data under BNI.

1.1 Motivating Application

Flue gas desulfurization (FGD) equipment, also known as “scrubbers”, have been instrumental tools

in lowering the emissions of power plants in the U.S. since the 1970s, with reported SO2 removal

efficiencies of up to 99% (Sorrels et al., 2021). Reductions in SO2 emissions have subsequently been

found to result in substantial benefits to cardiac and respiratory health outcomes (Henneman et al.,

2019b). Several recent studies have examined the causal effect of scrubber installations on various

human health outcomes at particular points in time from a BNI perspective, but to date no work

has examined these effects comprehensively over time (see, e.g., Zigler et al., 2023; Chen et al., 2023).

Since each power plant and locality independently determine the appropriate measures for emissions

control, the timing of scrubber installations has varied over the past few decades. Another factor to

consider is the significant cost of retrofitting this technology onto existing power plants. Although

exact costs vary depending on the location, space limitations, or operating conditions of a power

plant, initial capital costs have been estimated to often exceed hundreds of millions of dollars, with

additional tens of millions of dollars in annual maintenance and labor costs (U.S. Environmental

Protection Agency, 2003; Sorrels et al., 2021).
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It is, therefore, of considerable importance for regulatory and policymakers to understand the

overall impacts of the installation of emissions control technology to inform future development of

cost-effective policies to protect health. To more rigorously and comprehensively characterize the

effect of FGD scrubber installation on power plants in the years since NAAQS implementation, we

use a quasi-experimental DiD design to estimate the effect of FGD scrubber installation on coronary

heart disease (CHD) hospitalizations in older Americans in the contiguous U.S. between 2003 and

2014. The use of quasi-experimental designs when treatment randomization is not possible (that

is, in most health policy applications) provides stronger protections against potential unmeasured

confounding by accounting for certain types of confounding by design (Rockers et al., 2015; Wing

et al., 2018). Studies using these more robust approaches often receive higher weight in informing

policymaking considerations and, thus, are of substantial interest when evaluating past large-scale

policy decisions.

The health outcome data used in this study are annual CHD hospitalization rates among Medicare

Fee-for-Service beneficiaries residing in 39,474 U.S. ZIP codes over the period 2003-2014. These were

obtained from the Medicare Provider Analysis and Review files from the U.S. Center for Medicare

and Medicaid Services. Information on power plant facility operation and scrubber installation

for 383 coal-fired power plants continuously operating during the study period was obtained from

the U.S. EPA Air Markets Program Database. We characterize the BNI structure using a reduced

complexity pollution transport model called the Hybrid Single-Particle Lagrangian Integrated

Trajectory (HYSPLIT) Average Dispersion model (Henneman et al., 2019a), or HyADS for short.

HyADS delineates the level of exposure of each ZIP code to emissions from each individual coal-fired

power plant, which is represented by a source-receptor matrix. For this work, we use a modified

version of the HyADS matrix in which the edge weights of the interference network are not affected

by emissions control strategies at power plants (the importance of this feature for our methodological

framework is described in more detail below) that is used as the bipartite interference network in

this study. The entries in this modified HyADS matrix can be interpreted as the levels of power

plant emissions exposure on each ZIP code that is influenced by the atmospheric and meterological

conditions which drive the transport of pollution from emissions sources.
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The remainder of the paper is organized as follows. Section 2 describes the existing difference-in-

differences methodology and extensions of this work to more complex scenarios. Section 3 proposes a

new framework to adapt the data and existing methodology to estimate causal effects using the DiD

methodology in bipartite interference settings. Section 4 presents an application of this proposed

framework to a case study based on the motivation application described above. Section 5 concludes

the paper.

2 Difference-in-Differences: Existing Approaches and Considera-

tions

In this section, we provide a brief overview of DiD designs and existing methodology, and then

discuss some challenges and considerations when exploring extensions of these methods to the BNI

setting. Several recent review papers (Freedman et al., 2023; Roth et al., 2023) detail the various

methodologies and recent advances in DiD, and we refer the reader to these works for a more

comprehensive review of the existing literature.

2.1 Canonical DiD

We begin with the so-called “canonical” DiD setting, with two time periods, t ∈ {1, 2}, and two

treatment groups. All units, j = 1, ..., N , are untreated at time t = 1 and a subset of them becomes

treated between times 1 and 2. Define Dj as an indicator of whether a unit is ever treated, that

is, Dj = 1 for those units that are treated at time t = 2, and Dj = 0 for those never treated. The

outcomes are observed for all units at both time points and are denoted by Yjt. Under the potential

outcomes framework (Rubin, 1974), the average treatment effect on the treated (ATT) is defined as

τ = E[Yj2(1)− Yj2(0) | Dj = 1],

where Yjt(1) is the potential outcome for unit j at time t when the unit is treated at time t = 2,

while Yjt(0) is the potential outcome for unit j at time t when the unit is not treated at time
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t = 2. In reality, this design means that untreated potential outcomes are observed for all units

at time t = 1, while at time t = 2, Yj2(1) is observed for treated units and Yj2(0) is observed for

untreated units. Thus, the fundamental problem for the identification of the ATT is that Yi2(0) is

not observable for treated units. DiD methods resolve this by utilizing a parallel trends assumption,

which assumes that in the complete absence of treatment, the expected outcomes of treated and

untreated groups would have changed in parallel over time. Under parallel trends, combined with

the no anticipation assumption, the identification of E[Yj2(0) | Dj = 1] can easily be shown. In

practice, estimation is often performed using a two-way fixed effects (TWFE) regression:

Yjt = µj + λt +Dj · I(t = 2)β + εjt

in which µj is a unit fixed effect, and λt is a time fixed effect. Ordinary least squares can be used

for estimation of this model, and the resulting β̂ is a consistent estimate of τ .

However, for many real-world applications, the limitation in the canonical setting of just two time

periods and two treatment groups is too restrictive to obtain any meaningful insights. Consider

our motivating application as an example: It would be unreasonable to assume that there are only

two time periods and that all treated power plants were treated in the same period. Scrubber

installations have been occurring for decades, with different power plants having installations done

in different years. Furthermore, the effects of scrubber installation are likely to vary depending

on factors such as the time of installation and/or how long the scrubbers have been present. It

is therefore of interest to consider methodology designed for multi-period settings with staggered

treatment adoption.

2.2 Generalizations of Canonical DiD

The TWFE specification in Section 2.1 can be extended to the multi-period, staggered treatment

adoption setting in a straightforward manner. Now let t ∈ {1, . . . , T} index the time period and

Djt denote an indicator for whether the unit j is treated at time t, with Fj being the time period in

which the unit is first treated. In this scenario, let Yjt(f) be the potential outcome for unit j at

time t when the unit was first treated at time f and let Yjt(∞) be the potential outcome for a unit
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that was never treated during the study period. In the most general setting, we can define the ATT

at time t for a “cohort” of units first treated at time f as

τ(f, t) = E[Yjt(f)− Yjt(∞) | Djt = 1, Fj = f ].

This general estimand was first proposed by Callaway and Sant’Anna (2021) and Sun and Abraham

(2021), and it permits maximal flexibility by allowing for heterogeneity across cohorts and time.

Several variants of it, obtained by collapsing across cohorts and/or time, have also been considered

and estimated using extensions of TWFE.

If we are willing to assume that τ(f, t) = τ for all (f, t), i.e., that the ATT is constant across time

and cohorts, the following “static” TWFE model can be used for estimation:

Yjt = µj + λt +Djtβ + εjt.

When treatment effects are indeed homogeneous across cohorts and time, this specification produces

a β̂ that is a consistent estimator for τ . However, this scenario is overly simplistic and unrealistic

in most cases, and the recent literature has shown that the TWFE approach does not result in

interpretable effects of interest when heterogeneity does in fact exist (see, e.g., Goodman-Bacon,

2021; Sun and Abraham, 2021; de Chaisemartin and D'Haultfoeuille, 2022; Borusyak et al., 2023).

Therefore, we may consider alternative methods for more flexible estimation of treatment effects.

One such extension allows for heterogeneity across time relative to treatment initiation, and this

“dynamic” TWFE specification can be written as follows:

Yjt = µj + λt +
M∑

k=−L

Dk
jtβ

k + εjt,

where k ∈ {−L, . . . ,−1} indicate lead times prior to treatment initiation, k = 0 indicates the period

in which treatment begins, k ∈ {1, . . . ,M} indicate lag times post-treatment, and Dk
jt is an indicator

of relative time since treatment. The resulting βk is an estimate of the average treatment effect after

exposure to k periods of treatment. This is a variant of τ(f, t) collapsed across (f, t) representing a

common time since treatment initiation. As with static TWFE, however, similar issues with this

particular dynamic TWFE specification have been shown when effects after k periods of treatment
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differ depending on when treatment was initiated (Sun and Abraham, 2021).

To overcome this limitation, Callaway and Sant’Anna (2021) (using inverse proability weighting and

doubly robust approaches) and Sun and Abraham (2021) (using a TWFE approach) proposed to

estimate the general τ(f, t), allowing for heterogeneity across both cohorts and time. The various

τ(f, t)s can then be aggregated to estimate some average effect parameter of interest, such as the

collapsed estimands described above, if desired. Gormley and Matsa (2011), Deshpande and Li

(2019), and Cengiz et al. (2019) implement a stacked regression approach, which Gardner (2022)

shows estimates a weighted average of τ(f, t) terms. As another alternative, Borusyak et al. (2023)

and Gardner (2022), among others, propose instead “imputation”-type estimators, in which a

TWFE regression model is fit for control units (either never or not-yet-treated observations). This

regression can then be used to impute the counterfactual “untreated” outcomes for treated units

and aggregated, or, in the case of Gardner (2022), regressed on treatment indicator values to obtain

ATT estimates.

Several works in the literature have also proposed methodology for DiD analyses accounting for

interference and allowing for characterization of spillover effects (Verbitsky-Savitz and Raudenbush,

2012; Delgado and Florax, 2015; Clarke, 2017; Berg and Streitz, 2019), while Butts (2021b) further

extends the literature to staggered adoption settings. We focus here on the latter, particularly for

event study specifications. Butts (2021b) defines potential outcomes as Yjt(Djt, gj(
−→
Dt)), where Djt

is a treatment indicator for whether unit j is treated, and gj(
−→
Dt) is some summary function of the

vector of all units’ treatment assignments
−→
Dt ∈ {0, 1}n, using the “exposure mapping” idea of Aronow

and Samii (2017). This formulation formalizes the concept that, in the presence of interference, the

relevant “treatment” for each unit consists of both the unit’s own individual treatment assignment

and a function mapping of other units’ treatment assignments that encapsulates the spillover

experienced by the given unit. The result, depending on the exact mapping strategy, allows for the

identification of control units in a DiD analysis, i.e., units for which both Djt = 0 and gj(
−→
Dt) = 0.

This allows for estimation of ATT-like quantities using imputation estimators, following Gardner

(2022) and Borusyak et al. (2023). Our proposed estimands and estimation approaches for DiD

under BNI follow from this strain of work, and are further detailed in Section 3.
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2.3 Bipartite Network Interference Considerations

The nature of bipartite exposure-response networks adds yet another layer of complexity for DiD-type

analyses of this nature. The most apparent challenge when looking at such a problem is how to

reconcile two distinct sets of intervention and outcome units. In this scenario, when applying the

existing DiD methodology, two possible perspectives may be considered. The first focuses on the

outcome unit, which is perhaps the most intuitive of the two if one’s goal is to estimate changes in

the outcome. The second focuses on the intervention unit, which we discuss in detail in Section 3.

The outcome unit perspective is the approach taken in existing cross-sectional bipartite interference

studies and carries the advantage of being able to work with measured outcomes directly (e.g.,

health outcomes on the ZIP code-level). However, this introduces a new consideration: what does it

mean for a unit to be “treated”? In the context of our motivating problem, estimates of health

effects would be measured at the ZIP code-level, but each ZIP code would have multiple associated

treatments (i.e., an individual treatment value for each power plant to which it is connected).

In previous cross-sectional work in the BNI context, Zigler et al. (2023) and Chen et al. (2023)

map the associated treatment vector for each outcome unit to a direct and indirect component

(referred to as “key-associated” and “upwind” in an air pollution exposure context). Doudchenko

et al. (2020) and Harshaw et al. (2023) propose instead mapping the intervention unit treatment

vector to a continuous-valued exposure for each outcome unit. The application of these approaches,

however, is not straightforward to extend to a panel data setting. DiD-type methods usually rely

on “control” units serving as comparison groups for units that were treated. Under these mapping

approaches in the bipartite setting, it becomes apparent that the idea of “treated” and “untreated”

becomes difficult to define. For example, the τ(f, t) estimand proposed by Callaway and Sant’Anna

(2021) captures the average effect of treatment at a given time point for cohorts of treatment units

(that is, groups of units that were first treated in the same period). It is not readily apparent,

however, how this concept would be applied to the bipartite setting. Furthermore, this introduces

a potential disconnect with relevant future interventions—treatment effects are measured on the

outcome units, but from a policy perspective, treatments can only be imposed on intervention units.

For instance, environmental policymakers may be interested in effects on cardiovascular-related

10



disease hospitalizations but only have the ability to intervene on emitting power plants.

The alternative is to take the perspective of the intervention unit instead. This perspective has

two main advantages. First, when working with panel data in a DiD-type analysis, this has the

distinct advantage of retaining the notion of each unit having its “own” treatment. This also allows

us to more easily leverage the vast swath of existing DiD methodology which has been designed to

estimate the effects of a unit’s direct treatment. However, this approach necessitates a projection of

the information observed on the outcome units onto the intervention units, for which we detail one

potential method in Section 3. Second, as highlighted above, this approach has a clear advantage

for policy-making in that it allows one to take the perspective of the same units on which the

policy-makers can effectively deploy their interventions. As a bonus, we show that the proposed

estimands at the intervention unit level can also be interpreted as public health-relevant estimands

at the outcome unit level.

3 A Difference-in-Differences Framework under BNI

In this section, we propose a novel and general framework for reconfiguring BNI-structured data to

enable application of existing methods for interference-aware DiD-type quasi-experimental analysis,

at the intervention unit level. For interpretability and to demonstrate the applicability of this

framework, we detail the approach in the context of our motivating application and, henceforth, refer

to the intervention units as power plants, to outcome units as ZIP codes, and the edge weights of the

interference network as “HyADS values”. As preliminaries, we first define the notation and detail a

mapping procedure for intervention-level outcomes. Then, we outline a number of assumptions, as

well as strategies for estimation and identification of comparison control units.

This proposed framework is displayed graphically in Figure 1.
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Figure 1: Overview of proposed framework.

3.1 Notation and Outcomes

Let j ∈ {1, . . . , J} index the set of power plants, i ∈ {1, . . . , N} index the set of ZIP codes, and

t ∈ {1, . . . , T} denote the time period. Let A ∈ {0, 1}J×T be the matrix of all treatment statuses of

the power plant over time, with the element ajt being treatment status of the power plant j at time

t.

For a treatment-agnostic HyADS interference matrix Ht ∈ RJ×N at time t, let hijt be the element
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of Ht that denotes the HyADS value representing the influence that power plant j has on ZIP code

i. For each ZIP code, denote Mit = {j : hijt ̸= 0} to be the set of power plants that have a non-zero

HyADS value for that ZIP code, and wijt =
hijt∑

k∈Mit
hikt

to be the normalized weight of power plant

j on ZIP code i—that is, the proportion of the influence that power plant j has on ZIP code i out of

the overall power plant-related pollution that i receives at time t. Likewise, let Njt = {i : hijt ̸= 0}

be the set of ZIP codes for which the power plant j has a nonzero HyADS value.

Define Yit to be the observed outcome at ZIP code i and time t. We propose reconfiguring

the outcomes to the intervention unit level via a HyADS-weighted average. Namely, let Yjt =∑
i∈Njt

wijtYit be the intervention unit-level outcome for power plant j at time t. This quantity is

the sum of the outcomes at each of the ZIP codes that is influenced by power plant j, weighted by

power plant j’s relative contribution to the (power plant-related) air pollution in the ZIP code. Such

a measure is relevant as it characterizes each power plant’s total impact on pollution-related health

outcomes. Our analytic framework will be constructed around these power plant-level outcomes. We

show in the next section that defining the intervention unit level outcomes in this way leads to an

intuitive estimand and identifying assumptions on the intervention unit level, permitting estimation

using adaptations of existing methods, but also gives results that have a natural interpretation on

the outcome unit level, which may have more direct public health-relevance.

Invoking the potential outcomes framework, let Yjt(Ajt, gj(A,Ht)) be the potential outcome for

power plant j given its own treatment Aj and spillover value gj(A,Ht), some function of all other

power plant treatments and the interference network. We discuss a few options and considerations

for the mapping gj(A,Ht) in Sections 3.3.1 and Appendix B. Before that, we discuss the target

estimand and the causal identifying assumptions required in this setting.

3.2 Estimands and Identifying Assumptions

Because air pollution is known to have both short-term and long-term effects on health, it is

reasonable to hypothesize that the health impacts of an air pollution intervention, such as scrubber

installation, might change over time after installation. This type of effect heterogeneity as a function
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of time since treatment initiation is likely to occur in many applications, and characterizing it may

be of substantive interest. Thus, we utilize estimands that are specific to each time point relative to

treatment initiation, similar to the approach described above in the dynamic TWFE setting.

Let Kjt denote the number of time periods since the initiation of treatment for unit j at time t (e.g.,

−1 for the year before treatment, 0 for the year of treatment, and so on), with Kjt = −∞ if the

unit is never treated, and Ak
jt = AjI(Kjt = k). Thus, Ak

jt = 1 if the treated unit j is k periods from

the initiation of treatment at time t and Ak
jt = 0 otherwise. Then we define the total treatment

effect on the treated (TTT) at period k relative to treatment initiation as

τktotal = E
[
Yjt

(
1, gj(A,Ht)

)
− Yjt

(
0, 0

)
| Ak

jt = 1
]

Above, gj(A,Ht) in the causal estimand represents a function of the observed value of A.

In the power plant context, the TTT is the average effect of simultaneously initiating treatment and

going from a spillover level of 0 to gj(A,Ht), the unit’s observed spillover value. In other words, this

is the total effect that units experience from their own treatment and the additional spillover effect

experienced by treated units. From a policy perspective, regulation of air pollution can be thought

of as being composed of two different parts. The first is the regulator— that is, the authority that

sets ambient air quality standards (such as the EPA setting the NAAQS and dictating scrubber

use). The second is the local government or power plant operator, who actually enact policies and

make decisions on a local level in order to meet the standards set by the higher authority. Here, the

TTT is a quantity that would be most relevant to the decision-making of the former— its value

speaks to the overall effect of high-level past policies that led to widespread uptake of scrubber

installations in comparison to a business-as-usual world where no such policies were implemented.

Note that τktotal allows for heterogeneity in treatment effects across time, but not treatment initiation

cohorts, as discussed in Section 2. Our proposed approach will theoretically allow for estimation of

effects that are both treatment initiation cohort and time-specific, i.e., τ(f, t), however we focus

on this particular estimand in this work for two reasons. First, in the context of our motivating

application, there is less reason to believe that the health impacts of scrubber installations would

vary depending on the specific time of installation, particularly given the study time period of
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2003-2014. Second, stratifying on both cohort and time simultaneously would result in relatively

small sample sizes within each strata.

The following four assumptions are needed for the identifiability of the TTTs. The first three closely

follow those of Butts (2021b), while the fourth is a unique condition needed in the bipartite setting.

Assumption 1 (No anticipation). Treatment has no causal effect before it is imposed (e.g., there is

no “anticipatory effect” of the treatment before the treatment period starts for a unit).

Assumption 2 (Treatment is absorbing). Once a unit is treated, it remains treated. Also, all

units are untreated at time t = 1 (all units begin untreated at the beginning of the study period and

treatment does not turn on and off).

Assumption 3 (Parallel trends (Strict)). For all units and time periods, the “unexposed” potential

outcome is given by

Yjt(0, 0) = µj + λt + εjt

This is a strict form of the parallel trends assumption which imposes a common parallel trend on all

units at every time point.

Assumption 4 (Interference structure is known and treatment-agnostic). The interference network,

defined by the matrix Ht, is known and is not affected by unit treatment.

This assumption is a unique necessity for the exposure-weighted outcome mapping strategy outlined

in the previous section, as it ensures that interference weights are not affected by the initiation of

treatment over time. For example, consider if the HyADS network introduced in Section 3.1 was

affected by scrubber installation, such that the strength of connections between a given power plant

and communities decreased by design when a scrubber was installed (indeed this was the case for

the standard HyADS used in prior work, which was a direct function of emissions quantities which

decrease following scrubber installation). Then, for a power plant that was treated at time t, all

network edges connected to that plant on or after time t will decrease as compared to prior to time

t. As a result, the power plant-level outcome defined above would also decrease by design, such
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that outcomes at treated power plants will decline post-intervention even in the absence of any true

effects on the health outcome.

An additional property of the TTT introduced above is that it can be reframed as an interpretable

quantity in terms of the outcome unit-level treatment effects. To do so, we first define the outcome

unit level potential outcome Yit(
−→
0 ) to be the outcome that would have been observed in outcome

unit i at time t if no intervention units had been treated (
−→
0 represents a J-length vector of zeros

corresponding to the treatment status of each intervention unit).

We make the following additional assumption, defining the untreated and unexposed intervention-

level potential outcome Yjt(0, 0) in terms of a weighted average of outcome unit potential outcomes

under no treatment.

Assumption 5 (Unexposed potential outcomes). The intervention unit level potential outcome

under control is a network-weighted average of the outcome unit potential outcomes under control,

i.e.,

Yjt(0, 0) =
N∑
i=1

wijtYit(
−→
0 ).

This assumption aligns closely with the definition of the intervention unit-level outcomes. Now,

note that:

τktotal = E
[
Yjt

(
1, gj(A,Ht)

)
− Yjt

(
0, 0

)
| Ak

jt = 1
]

= E
[
Yjt

(
1, gj(A,Ht)

)
| Ak

jt = 1
]
− E

[
Yjt

(
0, 0

)
| Ak

jt = 1
]

Under causal consistency and Assumption 5, the following proposition outlines the reframing of the

TTT as a function of the outcome unit-level outcomes:

Proposition 1. Consider the TTT τktotal. Define Zk = {j : Ak
jt = 1} to be the set of power plants

for which Ak
jt = 1. Then, the sample TTT can be written as

τ̂ktotal =
1

|Zk|

N∑
i

ℓit
(
Yit − Yit(

−→
0 )

)
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where ℓit =
∑

j∈Zk wijt.

The derivation of this quantity is shown in the appendix.

This reveals that the TTT (when scaled by a factor of |Zk
t |/

∑
i ℓit) can be interpreted as a weighted

average of outcome unit level treatment effects Yit − Yit(
−→
0 ), with outcome units weighted based on

the relative degree to which they are connected with the units that are k periods from treatment.

Effectively, the outcome units that are heavily influenced by the power plants k periods from

treatment are up-weighted in this estimand and those that are not are down-weighted. This

representation allows for the TTT to be defined on the more intuitive intervention unit level, but

additionally be interpreted on the outcome unit level, adding to its relevance from a policymaking

perspective.

3.3 Estimation

In this section, we outline a DiD strategy following the approaches of Butts (2021b) and Gardner

(2022) for the estimation of staggered treatment effects while accounting for spillover effects and

discuss some considerations when adapting their approach to the BNI setting. Identification of the

TTT is shown in the appendix.

Estimation is proposed as a two-stage DiD estimator:

1. Estimate Yjt = µj + λt + εjt for control units (units that either never experienced treatment

or were not-yet-treated, and were also unexposed to spillover), and obtain estimates for fixed

effects µ̂j and common trend λ̂t.

2. Use the model to “predict” outcomes under control for all units and time points, i.e., Ŷjt(0, 0) =

µ̂j + λ̂t, ∀(j, t). Use these predictions to compute Ỹjt = Yjt − Ŷjt(0, 0), i.e., the difference in

the observed outcome and the predicted outcome under control.

3. Regress Ỹjt for all units and time points on dummy variables Ak
jt. The corresponding regression

coefficients are the τ̂ktotal.
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In the above procedure, the Ỹjt values estimate individual effects τjt. Therefore, regressing the

individual effect estimates on treatment/exposure dummy variables Ak
jt provides average effect

estimates for groups of treated units at particular lead/lag periods k. Gardner (2022) shows that

µj and λt in the above procedure are identified from the subpopulation of untreated groups and

periods as long as untreated and treated observations exist for each group and period. Unbiasedness,

consistency, and asymptotics (since Yjt is obtained from estimates from the first stage of the above

procedure) are shown and discussed in Gardner (2022). Estimation in steps 1 and 3 above can be

done using ordinary least squares.

The key to adopting this approach (and in most other DiD approaches as well) is that comparison

groups (that is, the groups of never-treated or not-yet-treated) need to be defined. In the standard

non-bipartite, no-interference case, this is a relatively simple matter, since treatments are well-

defined and limited to the treatment status of each unit individually. In the non-bipartite case with

interference, control units would be defined as units that were untreated and “unexposed” (i.e.,

no spillover exposure). This spillover exposure value is defined by the choice of gj(A,Ht), which

maps the vector of all treatments (except for a unit’s own treatment) to some value. In order to

minimize information loss, for example, one might consider a unit’s spillover exposure value defined

by a form of weighted sum of other units’ treatments. This definition would retain the full amount

of treatment data, as opposed to simpler methods. With a relatively dense interference network, as

is the case in many real-world applications, using this mapping, it would likely be quite difficult to

find units that naturally have zero spillover exposure. In the BNI setting, this idea becomes more

complex, though similar logic applies. At the intervention level, untreated units are easy to identify.

However, even defining spillover at the intervention unit level is complex and units with true zero

spillover values may not exist in many definitions and cases.

In our motivating application, the exposure-response matrix of power plant emissions to health

outcomes is very dense. This means that there is unlikely to be a (sufficiently large) set of clearly

unexposed intervention units. However, despite the density of the network, in this instance the

actual network edge weights (e.g., effect of the power plant A’s emissions on ZIP code X ) are highly

right skewed, meaning there are a large number of edges with low weights and a relatively small

18



number of edges with large weights. As a result, one option to ensure the existence of enough

“unexposed” units is to induce sparsity in the network under the assumption that some edge weights

may be sufficiently small such that they could be thresholded to zero. In practice, this could be

achieved in a couple of different ways. First, one could directly induce sparsity in the network

itself—i.e., directly set some values in H equal to zero, and then compute spillover values (which

we refer to as “network sparsification”). Otherwise, another option is to first compute the desired

measure of spillover for each unit, and then induce sparsity by setting some values equal to zero (or

“spillover value sparsification”). The spillover value sparsification approach is detailed below, while

the network sparsification approach is discussed in the appendix.

3.3.1 Spillover Value Sparsification

A method to guarantee sparsification is to take advantage of the known interference network

and employ a mapping approach to define what a spillover effect is in this context. This idea

differs from network sparsification in that rather than sparsifying the interference matrix and then

defining spillover, the spillover effect is first defined, with thresholding to induce sparsification done

afterwards.

To define gj(A,Ht) in the context of a dense bipartite network, we propose the following approach.

The high level idea is that, to get the spillover for an intervention unit j′, we (1) for each outcome

unit compute a measure representing the ‘degree of treatment’ that unit experiences from power

plants besides j′, denoted by mij′t and (2) map these outcome unit level values back to intervention

unit j′ using a network connection-weighted average to get gj′(A,Ht). Thus, gj′(A,Ht) roughly

measures the degree to which the outcome units most affected by intervention unit j′ are influenced

by other treated units. Formally, gj′(A,Ht) is computed using the following procedure:

1. For each outcome unit i and time point t:

(a) Let hijtAjt be a weighted treatment value for outcome unit i from intervention unit j

(i.e., interference matrix weight multiplied by treatment).
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(b) Define the continuous treatment value mij′t by all intervention units except for j′ as

mij′t =
∑
j ̸=j′

hijtAjt.

2. Compute a spillover treatment value for j′, defined as a weighted sum of the mij′t values

weighted by hij′t:

gj′(A,Ht) =
n∑

i=1

hij′tmij′t

Computing the spillover treatment value gj(A,Ht) for each intervention unit j, we can then apply

a threshold, setting all computed spillover values beneath this threshold to zero. As a result,

intervention units that are untreated themselves, in addition to having a spillover value under the

threshold, are considered controls. In the context of our motivating application, an example of

spillover values computed using this approach in a single particular year is shown in Figures 2 and 3.

Figure 2: Histogram of computed spillover values gj(A,Ht) at power plant locations, using the
spillover value sparsification approach based on scrubber installation status on power plants in 2005.
The vertical black line denotes the 25th percentile value and the shaded area to the left shows the
units whose spillover values would be thresholded using this approach.
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Figure 3: Map of computed spillover values gj(A,Ht) at power plant locations, using the spillover
value sparsification approach based on scrubber installation status on power plants in 2005.

4 Case Study: Effects of Power Plant Scrubber Installations on

Coronary Heart Disease Hospitalizations From 2003-2014

In this section, we discuss the application of our proposed approach to the case study introduced

in Section 1.1. We studied the effect of SO2 FGD scrubber installations during a 12-year period

from 2003 to 2014 on the rates of coronary heart disease hospitalization among older Americans in

the contiguous U.S. Power plant facilities that had SO2 scrubbers installed in 2003 or prior (per

Assumption 3.2) and those that were not in continuous operation during the entire study period were

excluded from the analysis. Furthermore, power plants located on the West Coast and Mountain

West states in addition to Alaska and Hawaii were excluded due to a relative lack of coal-fired power

plant activity in these regions. Treatment spillover values were computed using the spillover value

sparsification approach outlined in Section 3.3.1 in each year for each of the remaining 197 power

plants. A threshold at the 25th percentile was applied to the spillover values at each year. The

resulting treatment and spillover indicators are visualized in Figures C.1 and C.2. At the ZIP code

level, the outcomes are defined as annualized rates of CHD hospitalizations per 10,000 person-years

in Medicare fee-for-services beneficiaries. Power plant-level outcomes are computed as described in
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Section 3.1.

To account for potential time-varying confounding, meteorological variables (relative humidity,

temperature, and precipitation totals) were obtained from the University of Idaho Gridded Surface

Meteorological Dataset (GRIDMET) and spatially averaged to ZIP codes (Abatzoglou, 2011). Data

on counties that were found to be in nonattainment with the 1997 and 2006 NAAQS were obtained

from the EPA Green Book of Nonattainment Areas for Criteria Pollutants (U.S. Environmental

Protection Agency, 2024). This data was translated to the ZIP code-level for analysis. Although the

announcement of the 2012 NAAQS occurred prior to the end of the study period, nonattainment

areas were not designated until 2015 (after the study period), and therefore were not relevant

for this analysis. NAAQS nonattainment designation was identified as surrogate measure of

whether localities potentially instituted alternative SO2 reduction in response to impending NAAQS

standards implementation. Therefore, this variable was included as a potential confounder. ZIP-level

confounders were translated to the power plant level via the same approach applied to the outcomes

as in Section 3.1.

The estimation of the TTT was done according to the procedure outlined in Section 3.3, using

the did2s R package (Butts, 2021a). For each year, power plants that were both untreated and

had spillover values under the 25th percentile threshold computed above were used to estimate the

unexposed outcome Yjt(0, 0). After residualizing to obtain the treatment effect estimates of τjt for

all observations, these were regressed on dummy indicator variables for relative year since scrubber

installation Ak
jt.

The full results are presented in Figure 4. Negative values for relative years since scrubber

installation indicate pre-treatment periods, with time 0 being the year in which scrubbers were

installed. No significant pre-treatment values differed significantly from zero, indicating no deviation

from the parallel trends assumption (Gardner, 2022). In the post-treatment lag periods, we observe

statistically significant negative values for the TTT, indicating decreases in CHD hospitalization

rates. The effects appear to reach their peak magnitude approximately 3 years post-scrubber

installation and remain fairly constant in later periods. This apparent lag in effects may have a

number of explanations. First, longer-term health effects of emissions reductions may take time
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to materialize in affected populations. Second, in our analysis we define a power plant facility as

“treated” during the year in which scrubbers were first installed. However, larger facilities may have

longer ramp-up times during which scrubbers are installed at multiple EGUs, leading to a delay in

discernible effects. Overall, these results suggest that the installation of SO2 FGD scrubbers during

this time period had a protective effect against emissions-related CHD hospitalizations. To interpret

these estimates on the outcome unit level, we apply the rescaling procedure outlined in Section 3.2

on the estimated TTT. For example, at 3 years post-scrubber installation, the estimated weighted

average effect of scrubber installations is -22.5 (95% confidence interval:[-40.1, -4.9]), meaning an

average decrease of 22.5 CHD hospitalizations per 10,000 person-years on the ZIP code level.

Figure 4: Estimated average total treatment effect on scrubber-installed plants on coronary heart
disease hospitalization rates, 2003-2014.

5 Conclusion

In this paper, we have considered causal analyses for multi-group, multi-period panel data in the

context where units on which treatments are imposed are disjoint from units on which outcomes

are measured. In this setting, these intervention units are connected to the outcome units in a
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dense bipartite network, creating several obstacles when the goal of a study is to estimate treatment

effects over time. We discuss the existing difference-in-differences methodology and the particular

challenges that arise when attempting to extend such methodology to studies in the BNI setting.

These considerations are made in the context of a case study of SO2 emissions reduction technology

installation on coal-fired power plants and their effects on coronary heart disease hospitalizations

among older Americans.

To contribute to the growing literature on difference-in-differences, particularly in the presence of

treatment interference, we introduce a general framework for quasi-experimental analyses under

complex bipartite network interference structures. We propose a data reconfiguration approach

in which we take advantage of the information provided by a known interference network to map

the outcome-level data to the intervention level. We also provide a rescaling approach to interpret

these results on the more policy-relevant outcome level. Through this approach, we leverage the

existing DiD methodology to estimate treatment effects and find that SO2 scrubber installations in

the 2000s and early 2010s had an overall beneficial effect in reducing CHD hospitalization rates in

the Medicare population.

Our work has several limitations. The complexity of the BNI setting necessitated the mapping

of values between the two different unit types, complicating the methodology and interpretations.

However, the feasibility of DiD-type analyses in this setting is a nontrivial methodological challenge,

and relies on such approaches. The sparsification procedures discussed in this paper also represent

simplifications of the full interference network; in practice, one may consider data-driven approaches

to more accurately preserve the underlying interference structure. The identifying assumptions of

no anticipation and parallel trends made in this paper are rather stringent. However, extensions to

allow for limited anticipation and weaker parallel trends assumptions are subjects of ongoing work.

Similar relaxations of such assumptions are discussed in several recent works (see Callaway and

Sant’Anna, 2021; Butts, 2021b; Rambachan and Roth, 2023).

This work is, to our knowledge, the first to examine an extension of quasi-experimental event study

methodology to consider bipartite network interference. Likewise, it is an important contribution

to the fast-expanding literature on the causal analysis of policy effects in the bipartite setting
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by examining effects over time, rather than at a single time point. The methodology from this

perspective is increasingly relevant where simpler estimation strategies fail in these complex scenarios.

From an environmental policy standpoint, such analyses can provide a more comprehensive view

of how regulations such as the NAAQS have affected human health in the past and inform the

enactment of future policies.
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Appendix

A Proofs

A.1 Identification of the TTT.

Under Assumptions 1-4, the identification of the TTT can be argued as follows, as in Appendix A

of Butts (2021b):

E
[
Yjt

(
1, gj(A,Ht)

)
− µj − λt | Ak

jt = 1
]
= E

[
Yjt

(
1, gj(A,Ht)

)
− Yjt(0, 0) + εjt | Ak

jt = 1
]

= E
[
Yjt

(
1, gj(A,Ht)

)
− Yjt(0, 0) | Ak

jt = 1
]

= τktotal

A.2 Proof of Proposition 1.

Defining Zk = {j : Ak
jt = 1} to be the set of power plants for which Ak

jt = 1, and ℓit =
∑

j∈Zk wijt,

τ̂ktotal =
1

|Zk|
∑
j∈Zk

Yjt −
1

|Zk|
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j∈Zk

Yjt(0, 0)

=
1

|Zk|
∑
j∈Zk

N∑
i

wijtYit −
1

|Zk|
∑
j∈Zk

N∑
i

wijtYit(
−→
0 )

=
1

|Zk|

N∑
i

Yit
∑
j∈Zk

wijt −
1

|Zk|

N∑
i

Yit(
−→
0 )

∑
j∈Zk

wijt

=
1

|Zk|

N∑
i

ℓitYit −
1

|Zk|

N∑
i

ℓitYit(
−→
0 )

=
1

|Zk|

N∑
i

ℓit
(
Yit − Yit(

−→
0 )

)
The first equality follows from causal consistency and the second follows from the definition of the

intervention unit-level outcomes and Assumption 5.
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B Network Sparsification

The network sparsification approach entails, as the name suggests, directly inducing sparsity on the

interference network defined by the matrix Ht. In this context, we first discuss the motivation and

implications of sparsification on the network. On a bipartite network, an untreated and unexposed

control unit is an intervention unit that does not receive any effects of treatment on the network. In

practice, this would be, for example, untreated power plants for which all connected ZIP codes are

only connected to other untreated power plants. This ensures that the computed outcome measure

associated with each untreated plant is truly unexposed to treatment. Under this definition, only

first-level mutual connections matter– that is, an untreated power plant is considered sufficiently

“unexposed” if its direct ZIP code connections are not themselves connected to any treated power

plants, but any connections past this (e.g., to other ZIP codes that are then connected to treated

plants) are not relevant.

Network sparsification can be conducted in a relatively simple way, such as imposing an absolute

threshold on network edges, or in a data-driven manner, such as the statistically validated network

approach of Tumminello et al. (2011) which is applied to bipartite networks in Bongiorno et al.

(2017). Post-sparsification, one would still need to apply a mapping approach to obtain a spillover

treatment value gj(A,Ht) for each unit. The downside of the network sparsification approach is

that it may not result in sufficient sparsification of the spillover values to allow for DiD analysis,

depending on the structure of the network and the spillover mapping approach. This is particularly

true for very dense networks and may require further imposing restrictive assumptions or clustering

to achieve enough unexposed units. Within our motivating application, the transportation of air

pollution through meteorological and atmospheric processes means that there are very few HyADS

values that are naturally zero-valued. As an example, Figure B.1 shows the HyADS values observed

in 2005. For a plant to be completely unexposed to spillover, all ZIP codes that are connected to the

plant would have to only be connected to untreated plants. In practice, this is extremely unlikely to

occur for enough units to provide sufficient controls for DiD analysis.
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Figure B.1: Histogram of HyADS values over entire network in 2005 (before any sparsification),
with the same plot on the log10 scale on the right.

C Additional Figures

Figure C.1: Scrubber installation status on power plants, 2003-2014.

3



Figure C.2: Spillover exposure status on power plants, thresholding at the 25th percentile, 2003-2014.
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