
FisheyeDetNet: 360◦ Surround view Fisheye Camera based Object
Detection System for Autonomous Driving

Ganesh Sistu1† and Senthil Yogamani2†
1University of Limerick, Ireland

2Valeo Vision Systems, Ireland †co-first authors

Abstract—Object detection is a mature problem in autonomous
driving with pedestrian detection being one of the first deployed
algorithms. It has been comprehensively studied in the literature.
However, object detection is relatively less explored for fisheye
cameras used for surround-view near field sensing. The standard
bounding box representation fails in fisheye cameras due to
heavy radial distortion, particularly in the periphery. To mitigate
this, we explore extending the standard object detection output
representation of bounding box. We design rotated bounding
boxes, ellipse, generic polygon as polar arc/angle representations
and define an instance segmentation mIOU metric to analyze
these representations. The proposed model FisheyeDetNet with
polygon outperforms others and achieves a mAP score of 49.5%
on Valeo fisheye surround-view dataset for automated driving
applications. This dataset has 60K images captured from 4
surround-view cameras across Europe, North America and Asia.
To the best of our knowledge, this is the first detailed study
on object detection on fisheye cameras for autonomous driving
scenarios.

I. INTRODUCTION

When an autonomous vehicle moves from source to desti-
nation, a navigator like google maps or HD Maps generate
a high-level route. This route is made up of a series of
connected nodes at finite distances. The vehicle moves from
one node to another in a repetitive way until it reaches the
destination. Maneuver occurs in a five-stage process, Sensing,
Perception and Localization, Scene Representation, Planning,
and Controlling (illustrated in Figure 2).

In the sensing stage, the vehicle collects information about
the surroundings via sensors like Camera, LiDAR, RADAR,
and Ultrasonics. Perception involves the extraction of useful
information from the raw data like lane positions, presence of
pedestrians, and other vehicles [1], [2], semantic segmentation
[3], [4], moving objects detection [5], [6], depth estimation
[7], [8], feature correspondence [9], [10] and recognition of
drivable regions [11], [12]. In recent times deep learning
algorithms have shown tremendous success in almost all the
perception related tasks. Localization is the vehicle’s ability
to precisely know its position in the real world at decimeter
accuracy [13], [14]. In simple words, perception answers what
is around the vehicle, and localization answers where is the
vehicle precisely. Path planning algorithms [15] make use of
this related information to define a path to navigate from one
node to another. While defining the path, the algorithms use
different driving policies like safety, rules of driving, road
conditions, and pleasant ride experience for the passengers
in the car [16]. These digital instructions from the algorithms

front

left

right

rear

Fig. 1: Surround-view camera network images showing near
field sensing and wide field of view

are converted into the vehicle’s physical movement via the
controlling unit [17].

In the autonomous driving pipeline, perception is a com-
putationally expensive and sophisticated block, and efforts to
build unified models for all perception related tasks is an active
area of research [18] [19]. Though there is a considerable
debate on what sensors are needed for this task, equivocally,
cameras are considered as an essential sensor for any per-
ception pipeline. Visual perception is the task of perceiving
the information around the vehicle via cameras. A modern
automated vehicle consists of anywhere between 4 to 20
cameras of different field of view (FoV) performing different
tasks. Visual perception can be described as a combination of
Recognition, Reconstruction, and Re-localization. Recognition
is knowing what is around the vehicle and involves tasks
like Detection, Segmentation, and lens soiling [20], [21].
Reconstruction consists of depth estimation, motion estimation
to know where the objects are in the 3D world. Re-localization
knows where the ego vehicle is in the world. It involves
pose estimation and SLAM [13]. Other than this perception
also involves lesser-known tasks like trailer angle estimation,
measuring sun glare on the lens.

A. Low-Power Hardware for Automated Driving

Recently demand for low-power SoC based automated ve-
hicles has increased significantly as features like pedestrian
detection, emergency braking and lane keep assist started
to attract more consumers. Typical low-power SOCs include
Renesas V3H, TI TDA4x, and Nvidia Xavier. The choice of
SoC is based on the criteria of performance (Tera Operations
Per Second (TOPS), utilization, bandwidth), cost, power con-

ar
X

iv
:2

40
4.

13
44

3v
2

 [
cs

.C
V

]
 2

7
A

pr
 2

02
4

Sense

Cameras
LiDAR
RADAR

Ultrasonics

Perceive & Localize

Lane Detection
Object Detection

Semantic Segmentation
SLAM

HD Maps

Scene Representation

Sensor Fusion
Behavior Prediction

Object Map

Plan

Driving Policy
Path Planning

Control

Steering
Acceleration

Braking

End to End

Fig. 2: Autonomous Driving Pipeline

sumption, heat dissipation, high to low-end scalability and
programmability. The SOC choice provides the computational
bounds in the design of algorithms. The progress in Convo-
lutional Neural Networks (CNNs) has also led the hardware
manufacturers to include their custom hardware computing
units to provide a high throughput of over 10 TOPS targeting
Level-3 automation. But Level-2 automation systems still
rely on computing units less than 2 TOPS. In [22], authors
developed a multitask learning algorithm for hardware with 1
TOPS of computing power, consuming less than 10 watts of
power.

B. Object Detection

Object detection is the first and foremost problem in visual
perception, which involves the recognition and localization
of the objects in the image. It has use-cases like emergency
braking and collision avoidance etc. Hence object detection
models’ performance directly influence the success and failure
of autonomous driving systems. A simple and efficient repre-
sentation of objects in images is bounding box representation.
State-of-the-art methods for object detection based on deep
learning can be broadly classified into two types,

• Two stage detectors
• Single-Stage detectors.
1) Two Stage Object Detection: In two-stage approaches,

object detection is split into two tasks, (i) Extraction of
Region of Interest (ROI)s and encoding them as features (ii)
Regressing for bounding boxes in these ROIs using encoded
features. A common practice is to have a high Recall in the
first stage to ensure all possible objects like patterns go through
the second stage. RCNN[23] was the first to use this approach.
In RCNN first stage, a selective search algorithm is used to
propose ROIs, followed by a CNN feature extraction. In the
second stage, an SVM is trained to classify the objects based
on the CNN features. Unlike RCNN, which extracts CNN
features separately on each ROI, Fast-RCNN [24] process the

whole image. So the CNN feature extraction is performed
only once per image. It has introduced a 25x speed in the
inference stage compared to RCNN. Also, Fast-RCNN has
replaced SVM with a linear classifier and introduced a linear
regressor for bounding box fine-tuning. This moved the Fast-
RCNN a step closer to the end differentiable training strategy.
Both Fast-RCNN [24] and SPP-net [25] improved RCNN [23]
by extracting RoIs from the feature maps. SPP-net introduced
a spatial pyramid pooling (SPP) layer to handle images of
arbitrary sizes and aspect ratios. It applies SPP layer over the
feature maps generated from convolution layers and outputs
fixed-length vectors required for fully connected layers. It
eliminates fixed-size input constraints and can be used in
any CNN-based classification model. However, Fast-RCNN
and SPPnet are not end-to-end trainable as they depend on
the region proposal approach. Faster-RCNN [26] solved this
limitation by introducing Region Proposal Network (RPN),
which made end-to-end training possible. RPN generates RoIs
by regressing a set of reference boxes, known as anchor
boxes. This introduced two streams for object detection, i.e., a
common encoder and two decoders. The efficiency of Faster-
RCNN is further improved by RFCN [27], which replaces fully
connected layers with fully convolutional layers.

2) Single Stage Object Detection: These approaches elim-
inate the RoI extraction stage and carry out classification and
regression of bounding boxes directly on CNN feature maps
and hence a single state encoder-decoder style network per-
forms localization and classification tasks. Overfeat [28] pro-
posed a unified framework to perform two tasks: classification
and localization using a multi-scale, sliding window approach.
YOLO [29] divides the input image into grids and predicts
bounding boxes directly by regression and classification at
each grid. This soon became a defacto style for single state
real-time object detection on low power hardware like mobile
phones and Level-3 autonomous driving engines. YOLO9000
(YOLOv2) [30] improved the performance by introducing

A
BA B

Fig. 3: Center: Front camera image. Right(B): Bounding boxes representing objects correctly. Left(A): Bounding boxes and
oriented boxes fail to represent objects accurately, more details in Section I

batch normalization and replacing fully connected layers of
YOLOv1 with anchor boxes for bounding box prediction.
Anchor boxes are computed over the dataset, representing the
average variation of height and width of the objects in the
dataset. Instead of directly regressing for object width and
height, YOLOv2 predicts off-sets from a predetermined set of
anchors with particular height-width ratios. YOLOv3 [31], a
faster and accurate object detector than previous versions, uses
Darknet-53 as its feature extraction backbone. YOLOv3 can
detect small objects with a multi-scale prediction approach, a
significant drawback in earlier versions.
Single Shot Multibox Detection(SSD) [32] places dense an-
chor boxes over the input image and extract feature maps from
multiple scales. It then classifies and regresses the bounding
boxes relative to anchor boxes. DSSD [33] replaced the VGG
network of SSD with Residual-101. It is then augmented with
a deconvolution module to integrate feature maps from the
early stage with the deconvolution layers. It outperforms the
SSD in detecting small objects. MDSSD [34] further extends
DSSD with fusion blocks to handle feature maps at different
scales.
RetinaNet [35] introduced focal loss to address foreground
and background class imbalance during training. It matches
or surpasses the accuracy of state-of-the-art two-stage detec-
tors while running at faster speeds. The architecture shares
‘anchors’ from RPN and builds a single Fully Convolutional
Network (FCN) with Feature Pyramid Network (FPN) on top
of the ResNet backbone.

C. Instance Segmentation

Instance segmentation involves predicting both object
bounding box and pixel-level object mask.

1) Two stage Instance Segmentation: Intuitively instance
segmentation can be modeled as a bounding box detection
followed by a binary segmentation within the box. This
paradigm is referred to as ’Detection then Segmentation’.
Models following this approach often achieve a state of the
art performance but are quite slow to adapt to real-time
applications. MaskRCNN [36] adapted this approach by using
FasterRCNN for bounding box detection and an additional
decoder for object mask segmentation. Here segmentation is
performed as a binary classification to differentiate object

pixels from the background or other object pixels. Multi-
task Network Cascade (MNC) [37] uses a similar approach
to MaskRCNN. It uses RPN for box proposals, followed by
class agnostic instances generation on the proposed regions
and finally categorical classification of these mask instances.
Figure 4 shows the similarity between MNC and MaskRCNN
algorithms. During the inference time on a 12 GB, 7 TFLOPs
NVIDIA M40 GPU, MaskRCNN reported a 6 FPS run time.
Today even the Level-5 autonomous vehicles use only 1.3 to
2 TFLOPs computing engines for running the complete deep
learning stack, making a state of the art two-stage approach
far from reality for L3 automated vehicles. This led to a recent
trend of simplistic single-stage object detection style instance
segmentation techniques like PolarMask [38] YOLOACT [39]
and PolyYOLO [40].

2) Single stage Instance Segmentation: YOLOACT [39]
uses a single encoder dual parallel decoder style architec-
ture for instance-level image segmentation. Encoder is same
as RetinaNet backbone, i.e Feature Pyramid Network with
Resnet101 [41]. The first decoder generates a set of k prototype
masks at image resolution. These masks do not depend on any
single object class. However, these masks represent instance
masks of an object when multiplied with the correct set of
coefficients. The second decoder is a standard bounding box
decoder with extra computation to predict mask coefficients
for each object instance. Instance masks for objects are gen-
erated as a linear combination of prototype masks and mask
coefficients. Though YOLOACT performance is lower than
MaskRCNN, it is 5x faster in run time.

3) Polygon Instance Segmentation: PolarMask [38] and
PolyYOLO [40] regress for contour boundaries in polar space.
It is hence removing computational overheads of an extra
decoder and segmentation of pixels at images level.

Other approaches to instance segmentation range from
clustering of instance embedding [42], [43] to prediction of
instance centers using offset regression [44]. These methods
appear intuitively designed but are lagging in terms of ac-
curacy and computational efficiency. The major drawback of
these methods is the usage of compute-intensive clustering
methods like OPTICS [45], DBSCAN [46].

Fig. 4: Comparison between MaskRCNN and Multi-task Network Cascade. Both models are two stage approaches and use
FasterRCNN components (blocks not colored)

Fig. 5: Undistorting the fisheye image: (a) Rectilinear correc-
tion; (b) Piecewise linear correction; (c) Cylindrical correction.
Left: raw image; Right: undistorted image.

II. OBJECT DETECTION ON FISHEYE CAMERAS

Fisheye cameras make use of non-linear mapping to gen-
erate a large field of view. With just four surround-view
fisheye cameras, we can achieve a dense 360◦ near field
perception, making them suitable for automated parking, low-
speed maneuvering, and emergency braking. A commercial
fisheye camera usually has a 190◦ horizontal field of view
as shown in Figure 1. It is usually available from 2MP to
20MP resolution. However, this advantage comes at the cost of
non-linear distortions in the image. Objects at different angles
from the project center look quite different, making the object

detection a challenge.
A common practice is to rectify distortions in the image by

a 4th order polynomial model or Unified camera model [47],
[48]. The fact is, there is no ideal projection or correction.
These corrections are application-driven, and every correction
technique has its disadvantages (Figure 5). Rectilinear correc-
tion suffers from loss of Field of View (FoV) and sampling
issues, Piece-wise linear with artifacts at transition areas and
massive bleeding in the image, and Cylindrical as a quasi-
linear correction, offers a practical trade-off. Another overhead
is extra computational resources needed for correction as the
visual perception pipeline usually have different algorithms
demanding different view projections. Though Look Up Tables
(LUTs) make this correction process accelerated, LUTs rely
on online calibration that needs to be generated every time
there is a change in the online calibration.

Despite these disadvantages, image correction is encouraged
due to the limitations of the non or early deep learning object
recognition and segmentation algorithms. With a push in deep
neural networks, this trend is slowly changing. Modern CNN
based object detection algorithms like YOLO and FasterRCNN
can detect objects on raw fisheye images and main issue with
object detection on raw fisheye images is representation of
objects as bounding boxes.

A. Bounding boxes on Fisheye

Objects go though serious deformations due to radial dis-
tortion in fisheye images and box representation fails in
many practical scenarios [49]. Here are two scenarios where
the correct representation of objects is as important as the
detection.

1) Pedestrian Localization Issue: In Figure 3.B, vehicles
are near the center region of the image, and hence the lower
part of the bounding boxes represent the object intersection
with the road quite well. However, in Figure 3.A, standard

bounding boxes in yellow color are not good enough to
represent the object road intersection.

The common idea is to orient the boxes as shown in red
color in Figure 3.A. In the case of the person on the left
side, this orientation concept works. As the box with optimal
orientation is also a box with optimal IoU with the ground
truth. However, in the case of the person in a black suit,
the optimally oriented box is not the optimal IoU. So simple
orientation works in some cases, but it does not solve the
problem. 3D boxes work, but both annotating and inferring a
3D box is a noisy process for small objects.

2) Missing Parking Spot: A correctly detected but improp-
erly represented objects can result in failure cases like missing
a parking spot or in non-optimal path planning. Figure 6 shows
an automated car maneuvering to a parking slot between the
two cars. Two cars got detected by bounding box, oriented box,
ellipse and polygon object detection algorithms. However, only
in instance segmentation case objects are located correctly
outside the free parking spot. In rest of the cases, objects seems
to be present inside the parking spot and in those cases the
free parking spot in maneuver mapping shows as occupied
(bottom row images). This shows that the detection of objects
is as important as correct representation in fisheye based visual
navigation systems.

A full-fledged solution to this problem is instance segmen-
tation, but most state-of-the-art algorithms like MaskRCNN
demand higher computing powers and are unrealistic to work
on low-power hardware that is generally used in Level2
and Level 3 autonomous vehicles. Hence there is a need
for memory and computation efficient models. It encouraged
us to develop FisheyeDetNet, a single network to perform
object detection and instance segmentation to deploy on low
power hardware accelerators. It is an efficient, small footprint
network that uses ResNet18 as a backbone and YOLO style
head for polygon based instance segmentation.

III. PROPOSED METHOD

Objects detection can be represented as bounding boxes,
rotated bounding boxes, ellipses, and polygons. Irrespective
of the algorithm used, each representation has a limitation on
maximum performance it can achieved on the given dataset.
We term this as empiricall upper bound’ or simply upper
bound. The same is shown in Table I, where mean IoU score
between the annotations from each representation and ground
truth instance annotations is presented for our fihseye dataset.
In case of polygon representation, instance annotations are
generated by sampling 12, 24, 36, 60 and 120 points per 360◦

in polar coordinates. We modified the YOLOv3 [31] network
to accommodate all these four different representations.

• Bounding Box
• Oriented Bounding Box
• Ellipse
• Polygon

To make the network feasible to port onto a low power auto-
motive hardware, we used ResNet18 [41] as an encoder. Com-
pared to standard Darknet53 encoder [31], this has nearly 60%
fewer parameters. Proposed network architecture is shown

in Figure 9. Different representations are implemented in
representation block.

A. Bounding Box

Our Bounding box model is the same as YOLOv3 except
Darknet53 encoder is replaced with ResNet18 encoder. Similar
to YOLOv3, object detection is performed at multiple scales.
For each grid in each scale, object width(ŵ), height(ĥ), object
center coordinates(x̂, ŷ) and object class is predicted. Finally,
a non-maximum suppression is used to filter out the redundant
detections. Instead of using L2 loss for categorical and object-
ness classification, we used standard categorical cross-entropy
and binary entropy losses, respectively.

Representing the modified YOLO loss as a combination of
sub-losses,

Lxy = λcoord

S2∑
i=0

B∑
j=0

lobjij [(xi − x̂
i
)2 + (yi − ŷ

i
)2] (1)

Lwh = λcoord

S2∑
i=0

B∑
j=0

lobjij [(
√
wi −

√
ŵ

i
)2

+ (
√

hi −
√

ĥi)
2] (2)

Lobj = −
S2∑
i=0

B∑
j=0

Cilog(Ĉi) (3)

Lclass = −
S2∑
i=0

lobjij

∑
c=classes

ci,j log(p(ˆci,j)) (4)

Ltotal = Lxy + Lwh + Lobj + Lclass (5)

where height and width are predicted as offsets from pre-
computed anchor boxes.

ŵ = aw ∗ efw (6)

ĥ = ah ∗ efh (7)
x̂ = gx + fx (8)

ĥ = gy ∗ fy (9)

where aw, ah anchor box width and height. fw, fh, fx, fy are
the outputs from last layer of the network at grid location gx,
gy .

B. Oriented Bounding Box

In this model along with the regular box information (ŵ, ĥ,
x̂, ŷ), orientation of the box θ̂ is also regressed. Orientation
ground truth range (-180 to +180◦) is normalized between -1
to +1. The loss function is same as the regular box loss but
with an additional term for orientation loss.

Lorn =

S2∑
i=0

B∑
j=0

lobjij [θi − θ̂
i
]2 (10)

Ltotal = Lxy + Lwh + Lobj + Lclass + Lorn (11)

where Ltotal, is the total loss minimized for oriented box
regression.

(a) (b)

(c) (d)

Map: (a) (c) (d)Map: (b)

Fig. 6: Parking spot failure case. Bottom left: 2D map of navigation showing free parking spot. Bottom right: Same 2d map
showing no free parking spot. Object detection as bounding box(a), ellipse(b), oriented box (c) and instance segmentation (d)

Representation Bounding Box Rotated Box 12 points 24 points 36 points 60 points 120 points
IoU 0.552 0.643 0.853 0.897 0.918 0.942 0.984

TABLE I: Upper bound on performance of various representations

C. Ellipse Detection

Ellipse regression is the same as oriented box regression.
The only difference is in the output representation. Hence the
loss function is also the same as oriented boxes loss.

D. Polygon Detection

Our proposed approach for polygon-based instance segmen-
tation is quite similar to PolarMask [38] and PolyYOLO [40]
approaches. Instead of using sparse polygon points and single
scale predictions like PolyYOLO. We use dense polygon anno-
tations and multi-scale predictions. Instead of heavy backbone
architecture like PolarMask, we employed lightweight ResNet-
18 as our encoder. These changes enabled us to develop a
small footprint instance segmentation model with just 13M
parameters. As there is no heavy encoder backbone or feature
map upscaling to image level and segmentation at the pixel
level, our model is quite suitable for real-time applications
like object detection on Level-3 automotive ECUs. Keeping
the network architecture similar in all the four experiments
results in a fair comparison between different representations.

𝞡
r

𝛂=1

𝛂=0

ȓ

Fig. 7: Dense pixel level annotation sampling (purple) vs
sparse polygon points annotation sampling (red) in polar space.

The polygon regression loss is given by,

Lpoly =

S2∑
i=0

B∑
j=0

R∑
k=0

lobjij [ri,k − r̂
i,k
]2 (12)

Ltotal = Lxy + Lwh + Lobj + Lclass + Lpoly (13)

Representation vs Representation Representation vs Instance AnnotationExperiment Vehicle Pedestrian mAP Vehicle Pedestrian mAP
Bounding Box 0.6627 0.3157 0.4892 0.5132 0.3150 0.4141
Oriented Box 0.6548 0.3010 0.4779 0.5234 0.3185 0.4210

Ellipse 0.6601 0.2900 0.4751 0.5290 0.2889 0.4090
Polygon (24 points) 0.6624 0.3140 0.4882 0.6761 0.3155 0.4958

TABLE II: Comparison of various representations. In case of polygon experiment, Representation vs Representation metric is
between a bounding box annotation and bounding box predicted along with polygons

Fig. 8: Qualitative results: Each row shows output of all four models on the same image. Each column shows images captured
by FV, MRV, MLV and RV cameras on the vehicle

The total loss is given by Ltotal, where R corresponds to the
number of sampling points, each point is sampled with a step
size of 360/R angle in polar coordinates, as shown in Figure
7. We used dense pixel-level annotations, and hence there is
only one parameter needed to represent each polygon point
in the polar coordinate system. It is similar to PolarMask.
PolyYOLO, on the other hand, uses sparse polygon points (in
red), and thus requires 3 parameters r, θ and α. Hence the
total required parameters for R sampling points are 3*R in
case of sparse polygon points-based annotations. The effect
of different sampling rates w.r.t actual pixel-level annotation
masks is presented in Table I.

IV. EXPERIMENTS

All the four models are systematically tested on large scale
automotive fisheye surround-view dataset. Dataset deatils, met-
rics and evaluation criteria and training details are presented
in the following subsections.

A. Dataset

We presented results on Valeo proprietary dataset for auto-
mated driving applications. This dataset comprises of 50,000
images captured from four surround-view cameras [50], [51].
Instance segmentation for vehicles and pedestrians. A subset
of this dataset with more annotation classes and annotation for
different tasks is presented in [19], [52]. Figure 10 shows the

diversity of geographical, climatic conditions of the dataset.
The density maps show that majority of the vehicles and
pedestrians are within 20 meters of the vehicle. It is an
important metric as fisheye surround-view cameras are usually
mounted for near filed visual perception applications. Dataset
is divided into train, validation, and test splits at 70, 15, 15
proportions. A random sampling technique is used for this
purpose.

B. Training Details

All four models are trained on nearly 35K images at
an input resolution of 544X288 (widthXheight). A pre-
trained ResNet18 model without classification layers is used
as Encoder and horizontal image flip as data augmentation
technique. All models are developed on PyTorch v1.4 [53].
Training, evaluation and inference are performed on a NVIDIA
GTX 1080Ti GPU. All models are trained for 80 epochs
with early stopping criteria based on validation loss. Ranger
optimizer [54] and one cycle learning rate scheduler [55]
is used for optimization. Ranger uses gradient stabilization,
combines RAdam [56] and LookAhead [57] in one optimizer.
Hence helps in stabilized training.

C. Results

All models are compared using a mean average precision
metric (mAP) with an IoU threshold of 50%. Results are
presented in Table II. Each algorithm is evaluated based on
two criteria - Performance on same representation and on
instance segmentation. For example, a bounding box detection
model predictions are compared with bounding box ground
truth (Representation vs Representation) and instance mask
ground truth (Representation vs Instance Annotation). While
the comparison with the same representation shows the per-
formance of the algorithm, comparison with instance masks
shows its closeness to its upper bound. Results in Table II are
in alignment with the empirical upper bounds shown in Table
I. This shows that many practical failure cases like missing
parking spots can be solved with a change in representation
as opposite to increasing network capacity.
Qualitative results on test set for all four representations on
all four cameras are shown in Figure 8, In Row-1: Though all
four models detected the vehicles, polygon segmentation is the
only representation to solve the missing parking spot problem.
In Row-2: Oriented boxes and ellipse are able to locate the
pedestrian precisely, while standard box and polygon failed.
Row-4: Missing parking spot problem is handled well by both
ellipse and polygon segmentation representation models.

V. CONCLUSION

In this work, we studied the problem of bounding box
object detection on fisheye images. First, we demonstrated
that due to strong radial distortions the bounding box is not
a good representation of object detection on fisheye images
due to strong radial distortion. Then, we explored several
improved representations starting from a rotated bounding
box, ellipse, and then finally a generic polygon. We proposed

a novel algorithm by extending YOLO to regress a generic
representation across the representations, as mentioned above.
We call our algorithm FisheyeDetNet, and the implementa-
tion demonstrates significant improvements over the baseline
representations. We also showed that many of the practical
problems can be solved by learning the right representations
instead of increasing the model complexity with same models.

REFERENCES

[1] G. Sistu, I. Leang, and S. Yogamani, “Real-time joint object detec-
tion and semantic segmentation network for automated driving,” arXiv
preprint arXiv:1901.03912, 2019.

[2] S. Mohapatra, S. Yogamani, H. Gotzig, S. Milz, and P. Mader, “Bevdet-
net: bird’s eye view lidar point cloud based real-time 3d object detection
for autonomous driving,” in 2021 IEEE International Intelligent Trans-
portation Systems Conference (ITSC). IEEE, 2021, pp. 2809–2815.

[3] S. Chennupati, V. Narayanan, G. Sistu, S. Yogamani, and S. A.
Rawashdeh, “Learning panoptic segmentation from instance contours,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 9586–9593.

[4] S. Chennupati, G. Sistu., S. Yogamani., and S. Rawashdeh., “Auxnet:
Auxiliary tasks enhanced semantic segmentation for automated driving,”
in Proceedings of the International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications (VIS-
APP), 2019, pp. 645–652.

[5] M. Siam, H. Mahgoub, M. Zahran, S. Yogamani, M. Jagersand,
and A. El-Sallab, “Modnet: Moving object detection network with
motion and appearance for autonomous driving,” arXiv preprint
arXiv:1709.04821, 2017.

[6] E. Mohamed, M. Ewaisha, M. Siam, H. Rashed, S. Yogamani,
W. Hamdy, M. El-Dakdouky, and A. El-Sallab, “Monocular instance mo-
tion segmentation for autonomous driving: Kitti instancemotseg dataset
and multi-task baseline,” in 2021 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2021, pp. 114–121.

[7] V. R. Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold,
S. Yogamani, and T. Pech, “Near-field depth estimation using monocular
fisheye camera: A semi-supervised learning approach using sparse
LiDAR data,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2018.

[8] V. R. Kumar, M. Klingner, S. Yogamani, M. Bach, S. Milz, T. Fin-
gscheidt, and P. Mäder, “Svdistnet: Self-supervised near-field distance
estimation on surround view fisheye cameras,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 8, pp. 10 252–10 261,
2021.

[9] A. Konrad, C. Eising, G. Sistu et al., “FisheyeSuperPoint: Keypoint De-
tection and Description Network for Fisheye Images,” Proceedings of the
International Conference on Computer Vision Theory and Applications,
vol. abs/2103.00191, 2021.

[10] S. Shen, L. Kerofsky, and S. Yogamani, “Optical flow for autonomous
driving: Applications, challenges and improvements,” in Electronic
Imaging. Society for Imaging Science and Technology, 2023.

[11] C. Hughes, S. Chandra, G. Sistu, J. Horgan, B. Deegan, S. Chennupati,
and S. Yogamani, “Drivespace: towards context-aware drivable area
detection,” Electronic Imaging, vol. 31, pp. 1–9, 2019.

[12] F. Stapleton, E. Galván, G. Sistu, and S. Yogamani, “Neuroevolution-
ary multi-objective approaches to trajectory prediction in autonomous
vehicles,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, 2022, pp. 675–678.

[13] N. Tripathi and S. Yogamani, “Trained trajectory based automated
parking system using visual slam,” 2020.

[14] S. Milz, G. Arbeiter, C. Witt, B. Abdallah, and S. Yogamani, “Visual
slam for automated driving: Exploring the applications of deep learning,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018, pp. 247–257.

[15] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[16] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”

The international journal of robotics research, vol. 20, no. 5, pp. 378–
400, 2001.

[17] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, 2018.

[18] G. Sistu, I. Leang, S. Chennupati, S. Yogamani, C. Hughes, S. Milz,
and S. Rawashdeh, “Neurall: Towards a unified visual perception model
for automated driving,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC). IEEE, 2019, pp. 796–803.

[19] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, S. Chennupati, M. Uricar,
S. Milz, M. Simon, K. Amende, C. Witt, and et al., “Woodscape: A
multi-task, multi-camera fisheye dataset for autonomous driving,” 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Oct
2019. [Online]. Available: http://dx.doi.org/10.1109/ICCV.2019.00940

[20] M. Uricár, J. Ulicny, G. Sistu, H. Rashed, P. Krizek, D. Hurych,
A. Vobecky, and S. Yogamani, “Desoiling dataset: Restoring soiled
areas on automotive fisheye cameras,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, 2019, pp. 0–0.

[21] M. Uricár, G. Sistu, H. Rashed, A. Vobeckỳ, P. Krı́zek, F. Burger, and
S. K. Yogamani, “Let’s get dirty: Gan based data augmentation for
soiling and adverse weather classification in autonomous driving,” arXiv
preprint arXiv:1912.02249, 2019.

[22] T. Boulay, S. El-Hachimi, M. K. Surisetti, P. Maddu, and S. Kandan,
“Yuvmultinet: Real-time yuv multi-task cnn for autonomous driving,”
arXiv preprint arXiv:1904.05673, 2019.

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
2014 IEEE Conference on Computer Vision and Pattern Recognition,
Jun 2014. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2014.81

[24] R. Girshick, “Fast r-cnn,” 2015 IEEE International Conference
on Computer Vision (ICCV), Dec 2015. [Online]. Available: http:
//dx.doi.org/10.1109/ICCV.2015.169

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904–
1916, 2015.

[26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[27] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-
based fully convolutional networks,” 2016.

[28] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun 2016. [Online].
Available: http://dx.doi.org/10.1109/CVPR.2016.91

[30] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jul 2017. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2017.690

[31] ——, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[33] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd:
Deconvolutional single shot detector,” arXiv preprint arXiv:1701.06659,
2017.

[34] L. Cui, R. Ma, P. Lv, X. Jiang, Z. Gao, B. Zhou, and M. Xu, “Mdssd:
Multi-scale deconvolutional single shot detector for small objects,” arXiv
preprint arXiv:1805.07009, 2018.

[35] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal
loss for dense object detection,” 2017 IEEE International Conference
on Computer Vision (ICCV), Oct 2017. [Online]. Available: http:
//dx.doi.org/10.1109/ICCV.2017.324

[36] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” 2017
IEEE International Conference on Computer Vision (ICCV), Oct 2017.
[Online]. Available: http://dx.doi.org/10.1109/ICCV.2017.322

[37] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via
multi-task network cascades,” 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun 2016. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2016.343

[38] E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, and
P. Luo, “Polarmask: Single shot instance segmentation with polar rep-
resentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 12 193–12 202.

[39] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance
segmentation,” in Proceedings of the IEEE international conference on
computer vision, 2019, pp. 9157–9166.

[40] P. Hurtik, V. Molek, J. Hula, M. Vajgl, P. Vlasanek, and T. Nejezchleba,
“Poly-yolo: higher speed, more precise detection and instance segmen-
tation for yolov3,” 2020.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[42] X. Liang, L. Lin, Y. Wei, X. Shen, J. Yang, and S. Yan, “Proposal-free
network for instance-level object segmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, p.
2978–2991, Dec 2018. [Online]. Available: http://dx.doi.org/10.1109/
TPAMI.2017.2775623

[43] D. Neven, B. D. Brabandere, M. Proesmans, and L. Van Gool,
“Instance segmentation by jointly optimizing spatial embeddings and
clustering bandwidth,” 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Jun 2019. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2019.00904

[44] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam,
and L.-C. Chen, “Panoptic-deeplab: A simple, strong, and fast baseline
for bottom-up panoptic segmentation,” 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun 2020. [Online].
Available: http://dx.doi.org/10.1109/cvpr42600.2020.01249

[45] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” in Proceedings
of the 1999 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’99. New York, NY, USA: Association
for Computing Machinery, 1999, p. 49–60. [Online]. Available:
https://doi.org/10.1145/304182.304187

[46] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[47] V. R. Kumar, C. Eising, C. Witt, and S. K. Yogamani, “Surround-view
fisheye camera perception for automated driving: Overview, survey &
challenges,” IEEE Transactions on Intelligent Transportation Systems,
vol. 24, no. 4, pp. 3638–3659, 2023.

[48] C. Eising, J. Horgan, and S. Yogamani, “Near-field perception for low-
speed vehicle automation using surround-view fisheye cameras,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp.
13 976–13 993, 2021.

[49] H. Rashed, E. Mohamed, G. Sistu, V. R. Kumar, C. Eising, A. El-Sallab,
and S. Yogamani, “Fisheyeyolo: Object detection on fisheye cameras
for autonomous driving,” in Proceedings of the Machine Learning for
Autonomous Driving NeurIPS 2020 Virtual Workshop, Virtual, vol. 11,
2020.

[50] M. Uricár, D. Hurych, P. Krizek et al., “Challenges in designing
datasets and validation for autonomous driving,” in Proceedings of the
International Conference on Computer Vision Theory and Applications,
2019.

[51] L. Yahiaoui, J. Horgan, B. Deegan, S. Yogamani, C. Hughes, and
P. Denny, “Overview and empirical analysis of isp parameter tuning for
visual perception in autonomous driving,” Journal of Imaging, vol. 5,
no. 10, p. 78, 2019.

[52] S. Ramachandran, G. Sistu, J. McDonald, and S. Yogamani, “Woodscape
fisheye semantic segmentation for autonomous driving–cvpr 2021 om-
nicv workshop challenge,” Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, 2021.

[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026–8037.

[54] H. Yong, J. Huang, X. Hua, and L. Zhang, “Gradient centralization: A
new optimization technique for deep neural networks,” 2020.

[55] L. N. Smith, “A disciplined approach to neural network hyper-
parameters: Part 1–learning rate, batch size, momentum, and weight
decay,” arXiv preprint arXiv:1803.09820, 2018.

[56] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On
the variance of the adaptive learning rate and beyond,” arXiv preprint
arXiv:1908.03265, 2019.

[57] M. R. Zhang, J. Lucas, G. Hinton, and J. Ba, “Lookahead optimizer: k
steps forward, 1 step back,” 2019.

http://dx.doi.org/10.1109/ICCV.2019.00940
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2017.690
http://dx.doi.org/10.1109/ICCV.2017.324
http://dx.doi.org/10.1109/ICCV.2017.324
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/CVPR.2016.343
http://dx.doi.org/10.1109/TPAMI.2017.2775623
http://dx.doi.org/10.1109/TPAMI.2017.2775623
http://dx.doi.org/10.1109/CVPR.2019.00904
http://dx.doi.org/10.1109/cvpr42600.2020.01249
https://doi.org/10.1145/304182.304187

CONV
BLOCK

CONV
BLOCK

ADD

RESIDUAL BLOCKCONV BLOCK

CONV BN + ReLu

ADD

CONV BLOCK RESIDUAL BLOCK

DECONVOLUTION ADD LAYER

YOLO LAYER: GRID LEVEL
REGRESSION

ResNet18 Encoder

Representation
Block

Xc, Yc, W, H r1, r2,....r24

Xc, Yc, W, H r1, r2,....r24

Xc, Yc, W, H r1, r2,....r24

Xc, Yc, W, H r1, r2,....r24

Non Maximum Supression

Xe, Ye, We, He θ

Xe, Ye, We, He θ

Xe, Ye, We, He θ

Xc, Yc, W, H

Xc, Yc, W, H

Xc, Yc, W, H

Xc, Yc, W, H

Xc, Yc, W, H θ

θ

θ

θ

θ

Xc, Yc, W, H

Xc, Yc, W, H

Xc, Yc, W, H

Xc, Yc, W, H

REPRESENTATION BLOCK

Fig. 9: Proposed object detection network architecture and comparison between different representations. Total four models
tested and benchmarked on Valeo fisheye dataset

Fig. 10: Dataset Statistics: Pink Dot in density maps is an ego vehicle center. FV: Front View, RV: Rear View, MLV: Mirror
Left View, and MRV: Mirror Right View w.r.t the ego vehicle. The pie charts show the diversity in geographical and climatic
conditions.

	Introduction
	Low-Power Hardware for Automated Driving
	Object Detection
	Two Stage Object Detection
	Single Stage Object Detection

	Instance Segmentation
	Two stage Instance Segmentation
	Single stage Instance Segmentation
	Polygon Instance Segmentation

	Object Detection on Fisheye Cameras
	Bounding boxes on Fisheye
	Pedestrian Localization Issue
	Missing Parking Spot

	Proposed Method
	Bounding Box
	Oriented Bounding Box
	Ellipse Detection
	Polygon Detection

	Experiments
	Dataset
	Training Details
	Results

	Conclusion
	References

