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STATIONARY MEASURE OF THE OPEN KPZ EQUATION

THROUGH THE ENAUD-DERRIDA REPRESENTATION

ZOE HIMWICH

Abstract. Recent works of Barraquand and Le Doussal [BLD22] and Bryc, Kuznetsov, Wang, and Wesolowski
[BKWW23] gave a description of the open KPZ stationary measure as the sum of a Brownian motion and
a Brownian motion reweighted by a Radon-Nikodym derivative. Subsequent work of Barraquand and Le
Doussal [BLD23] used the Enaud-Derrida [ED04] representation of the DEHP algebra to formulate the
open ASEP stationary measure in terms of the sum of a random walk and a random walk reweighted by
a Radon-Nikodym derivative. They show that this Radon-Nikodym derivative converges pointwise to the

Radon-Nikodym derivative that characterizes the open KPZ stationary measure. This article proves that
the corresponding sequence of measures converges weakly to the open KPZ stationary measure. This pro-
vides an alternative proof of the probabilistic formulation of the open KPZ stationary measure, which avoids
dealing explicitly with finite dimensional distributions. We also provide the first construction of the measure
on intervals of a general length L and for the full range of parameters in the fan region (u + v > 0).

1. Introduction

The KPZ equation is a non-linear stochastic partial differential equation (SPDE) originally introduced
by Kardar, Parisi, and Zhang [KPZ86] to describe the behavior of random interfaces under relaxation and
lateral growth. The open KPZ equation is the term for the same SPDE with spatial coordinate restricted
to an interval of finite length, and with fixed boundary conditions. For t ≥ 0, x ∈ [0, L], the equation takes
the form

∂tHu,v(t, x) = ∂xxHu,v(t, x) + (∂xHu,v(t, x))
2
+
√
2ξ(t, x). (1.1)

The boundary conditions are ∂xHu,v(t, x)|x=0 = u, and ∂xHu,v(t, x)|x=L = −v. We sometimes refer to these
as Neumann boundary conditions u, v ∈ R. The equation above needs some additional explanation in order
to be well-posed. In particular, we need to make sense of the nonlinear term (∂xHu,v(t, x))

2. A work of
Mueller [Mue91] demonstrates that any mild solution of the multiplicative stochastic heat equation

∂tZ(t, x) = ∂2xZ(t, x) +
√
2Z(t, x)ξ(t, x),

which is almost surely positive at time zero (Z(0, x) > 0) will then remain positive for all x and t > 0.
Consequently, the “Hopf-Cole” transformation H(t, x) = log (Z(t, x)) gives a well-defined solution to the
KPZ equation (the standard equation without open boundaries). Solutions to the open KPZ equation are
defined via the same Hopf-Cole transform which we use in the standard KPZ setting, with the added condition
that the solution to the multiplicative stochastic heat equation on [0, L], now parameterized in terms of
boundary conditions u, v ∈ R, must also satisfy ∂xZu,v(t, x)|x=0 =

(
u− 1

2

)
Zu,v(t, 0), and ∂xZu,v(t, x)|x=L =

−
(
v − 1

2

)
Zu,v(t, L). A well-defined notion of what it means to be a solution of the open KPZ equation

appears in Corwin and Shen [CS18].

Definition 1.1. For a Hopf-Cole solution to the open KPZ equation with Neumann boundary parameters
u, v ∈ R, Hu,v(t, x), we say that the law of the process {Hu,v(x)−Hu,v(0)}x∈[0,L] on C[0, L] is stationary for
the open KPZ increment process if, when the open KPZ equation is started with the initial data Hu,v(x) at
time t = 0, then for all t ≥ 0, the law of the increment {Hu,v(t, x) −Hu,v(t, 0)}x∈[0,L] is equal to the law of
the initial data. We refer to the law of such a process as a stationary measure of the open KPZ increment
process with initial data Hu,v(x)−Hu,v(0).
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Corwin and Knizel [CK24] provided the first proof of the existence of a stationary measure for the open
KPZ equation for all u, v ∈ R, and gave a characterization of the measure in the setting where u + v ≥ 0
in terms of a multipoint Laplace transform. Later works by Barraquand and Le Doussal [BLD22] and Bryc,
Kuznetsov, Wang, and Wesolowski [BKWW23], gave a probabilistic description of this measure in terms of
a stochastic process. They showed that the stationary measure of the open KPZ increment process could
be described (for L = 1 and u + v > 0 and u, v > −1) in terms of a Radon-Nikodym transform on the
joint measure of a pair of Brownian motions. The following definition gives a precise characterization of the
appropriate measure, in the slightly more general setting (for any L, and u + v > 0) needed to state our
main theorem.

We will use the notation PL := L×WL for the product of the Lebesgue measure on R, which we denote
by L, and the measure of a two-dimensional Brownian motion (with covariance matrix equal to the identity)
parameterized by time t ∈ [0, L], which we denote by WL. We will use the notation C0[0, L] to denote
continuous functions on [0, L], started at 0.

Definition 1.2. We introduce a function H(x, g, h) : R× C0[0, L]× C0[0, L] → R and a partition function
Zu,v.

H(x, g, h) := exp

(
−2(u+ v)x− 2vg(L)− e−2x

∫ L

0

e−2g(t)dt

)
, Zu,v := EPL [H(x, g, h)] .

By EPL [·] in the definition above, we mean integrating with respect to the measure PL (this is a slight abuse
of notation, since PL is an infinite measure). For all u+ v > 0, and any A in the product Borel σ-algebra on
R× C0[0, L]× C0[0, L], we define the measure

QL;u,v(A) := EPL [Z−1
u,vH(x, g, h)1A].

Remark 1.3. To recover the expression in [BLD23, Equation (40)], define U(t) := g(t)+x. It is advantageous
for the calculations in our paper to separate the starting value x from the function g(t).

We can now state our main result.

Theorem 1.4. The stationary measure of the open KPZ increment process on the interval [0, L] with Neu-
mann boundary conditions u, v ∈ R which satisfy u + v > 0 is given by {H(x) − Gu,v(x)}x∈[0,L] where
(X,Gu,v(x), H(x)) are sampled from the distribution defined by QL;u,v (Definition 1.2). The process H(x)

is a Brownian motion with diffusion coefficient 1/
√
2.

That there is a unique such measure is due to the work of Knizel and Matetski [KM22] and Parekh
[Par22]. That this is a stationary measure for the open KPZ increment process when L = 1 and u+ v > 0,
u, v > −1 is known through work of Barraquand and Le Doussal [BLD22] and Bryc, Kuznetsov, Wang, and
Wesolowski [BKWW23], who predicted that the same would hold in the general case that u + v > 0. The
contributions of this paper are to prove this theorem for general L and all u + v > 0, as well as provide a
rigorous proof of a new path to obtaining this stationary measure, through the Enaud-Derrida representation
of the DEHP algebra [ED04] (see Section 2.2.1 for background on the open ASEP, the DEHP algebra, and
the Enaud-Derrida representation).

Barraquand and Le Doussal [BLD23] demonstrate that, through the Enaud-Derrida representation, the
stationary measure of the open ASEP increment process (Definition 2.1) can be described as the sum of
reweighted random walk processes, and that the functional which reweights the processes, under appropriate
scaling, converges pointwise to H(x, g, h) (Theorem 2.8). Our result builds on their calculation to show weak
convergence of measures. This approach has the advantage of circumventing the several steps involved in
Corwin and Knizel’s construction of the open KPZ stationary measure. As noted above, it also provides
a probabilistic construction of the open KPZ stationary measure in a wider range of parameters than in
previous works. This article also provides an alternative proof that the partition function in Definition 1.2
is finite, a fact which previously appeared in work of Bryc, Kuznetsov, Wang, and Wesolowski [BKWW23]
for L = 1. We provide an alternative argument (for general L), following a paper of Yor [Yor92].

1.1. Future Directions. One direction which the author hopes to explore is the application of the Enaud-
Derrida representation and path decomposition of the open ASEP stationary measure to asymptotics of open
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multi-species ASEPs. The techniques in this paper open a possible route to understand the asymptotics of
these systems.

We also note that when the ASEP stationary measure is framed in terms of Askey-Wilson polynomials,
the formula has a restriction (see [BW17, Theorem 1] for the origin of this constraint) t0 ≤ t1 ≤ · · · ≤ tn,
which makes it hard to study large deviations of the height function in the limit. The Enaud-Derrida formula
avoids this restriction, and may provide a more tractable path to study the large deviations.

1.2. Outline. In Section 2, we introduce the open ASEP, the matrix product ansatz, and the Enaud-
Derrida representation. We discuss the work of Derrida, Enaud, and Lebowitz [DEL04] and Barraquand
and Le Doussal [BLD23] which uses the Enaud-Derrida representation to describe the stationary measure of
the open ASEP increment process as the sum of reweighted random walks. We establish the rescaling that
is needed to obtain the stationary measure of the open KPZ increment process from their formula. In the

process, we define a sequence of measures Q
(N)
L;u,v (Definition 2.9) which are related to the rescaled stationary

measure of open ASEP in the same way as QL;u,v is related to the stationary measure of open KPZ. We

state the main technical result (Theorem 2.10), that Q
(N)
L;u,v converge weakly to QL;u,v. Finally, we prove

Theorem 1.4 from Theorem 2.10.
Most of the paper is devoted to the proof of Theorem 2.10, which relies on a crucial bound established

in Lemma 3.1. In Section 3, in addition to proving Lemma 3.1, we demonstrate that Q
(N)
L;u,v and QL;u,v are

probability measures, which involves showing that the associated partition functions are finite. The main
challenge of the paper is the proof of Lemma 3.1, other arguments are essentially standard applications of
KMT embedding arguments and dominated convergence.

In Section 4, we establish a bound on the distance between E
W

(N)
L

[H(N)(x, g, h)] and EWL [H(x, g, h)] as a

function of x. In Section 5 we use the bound from Section 4 to prove Theorem 2.10. Appendix A contains
the proof of several lemmas which are used in Section 3, and Appendix B contains the proof of pointwise
convergence of the Radon-Nikodym derivatives defined by Barraquand and Le Doussal to H(x, g, h).

1.3. Acknowledgements. The author thanks Ivan Corwin for suggesting this question, for helpful dis-
cussions, and for comments on the draft. The author particularly thanks Zongrui Yang for many helpful
discussions and comments. The author also thanks Shalin Parekh for additional helpful discussions. The
author was supported by the Fernholz Foundation’s Summer Minerva Fellows Program, as well as Ivan
Corwin’s grant, NSF DMS-1811143.

2. Background and Main Technical Result

In this section, we build up the definitions and notation which we need to state the main technical
result which goes into the proof of Theorem 1.4 (Theorem 2.10). We will finish the section by giving the
proof of Theorem 1.4 from Theorem 2.10, and further sections of the paper will be devoted to the proof of
Theorem 2.10. We begin by defining notation which will be used throughout the paper.

2.1. Notation. We will typically use the notation ti := iLN−1, as well as [n]q =
1−qn

1−q . When discussing the

Enaud-Derrida representation and the matrix product ansatz, we will use bra-ket notation, with 〈·| indicating
a row vector and |·〉 indicating a column vector. The subscript N will indicate that a process has N steps
or that a function takes as input something with N steps, as appropriate, whereas the superscript (N) will

denote that a process of the former kind has been rescaled by N− 1
2 spatial scaling and N−1 temporal scaling,

or, when applied to a function, that the input the function takes has been rescaled in the same way. We
will use C0[0, L] to denote continuous functions on the domain [0, L] which start at 0, and C[0, L] to denote
continuous functions on the domain [0, L] which can start at any real value.

We use L to denote the Lebesgue measure on R and WL to denote the two-dimensional Wiener measure
on two-dimensional continuous functions on the domain [0, L], starting at (0, 0). We use the notation

PL := L × WL, and L(N) :=
∑

i∈N− 1
2 Z
N− 1

2 δi, both of which denote infinite measures. Throughout the

paper, we use the notation EP [·] to denote integrating with respect to a measure P . The measure P will not
always be a probability measure (for example, PL), so this is a slight abuse of notation.
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2.2. The open ASEP. The underlying lattice of the open ASEP has finite size N . We use α, γ to denote
the rate of particle movement into and out of the leftmost lattice point from, respectively to, the left reservoir.
Similarly, we use β, δ to denote the rate of particle movement out of, respectively into, the rightmost lattice
point of the lattice to, respectively from, the right reservoir. Within the lattice, particles move right at rate
1 and left at rate q ∈ (0, 1). We will often re-parameterize the open ASEP in terms of (A,B,C,D, q).

A := κ+(q, β, δ), B := κ−(q, β, δ), C := κ+(q, α, γ), D := κ−(q, α, γ),

κ±(q, x, y) =
1

2x

(
1− q − x+ y ±

√
(1− q − x+ y)2 + 4xy

)
.

The state space of the open ASEP is τ = (τ1(t), ..., τN (t)) ∈ {0, 1}N where τi(t) = 1 when there is a particle
in position i at time t and τi(t) = 0 when position i on the lattice is empty at time t. The open ASEP
process τ(t) is a Markov process defined by the state space τ(t) ∈ {0, 1}N and an infinitesimal generator
L(·) which acts on functions of the open ASEP state space f : {0, 1}N → R. The time evolution of ASEP
induces a Markov process, the height function process, hN ;α,β,γ,δ(t, r) = hN ;α,β,γ,δ(t, 0) +

∑r
i=1(2τi(t)− 1),

for r ∈ [[1, N ]] where hN ;α,β,γ,δ(t, 0) is the net number of particles which have entered through the left
boundary at time t.

Definition 2.1. We say that the law of the process {hN ;α,β,γ,δ(r)}r∈[[1,N ]] with hN ;α,β,γ,δ(0) = 0 is stationary
for the open ASEP increment process if, when the open ASEP is started with the initial data hN ;α,β,γδ(x) at
time t = 0, then for all t ≥ 0, the law of the increment {hN ;α,β,γ,δ(t, r) − hN ;α,β,γ,δ(t, 0)}r∈[[1,N ]] is equal to
the law of the initial data. We refer to the law of such a process as a stationary measure of the open ASEP
increment process with initial data hN ;α,β,γ,δ(r).

As the size of the lattice grows, the value of the limiting stationary current depends on two parameters,
ρℓ and ρr, which can be interpreted physically as effective densities at the left and right boundaries. See
the survey by Corwin [Cor22] for more information about the boundary densities. For the purposes of this
article, it is only important that they can be expressed in terms of the open ASEP boundary parameters
(A,B,C,D) as

ρℓ =
1

1 + C
, ρr =

A

1 + A
. (2.1)

Previous work of Corwin and Knizel [CK24] constructed the stationary distribution of the open KPZ equation
as the limit of the stationary distribution of the open ASEP under a weak asymmetry scaling. In this article,
we will use the same set of scaling assumptions as Corwin and Knizel.

Assumptions 2.2. The following assumptions define our scaling limit

(1) Weak asymmetry scaling q = e−2/
√
N

(2) Boundary parameter scaling

A = qv B = −q C = qu D = −q

(3) Height function scaling

h
(N)
L;u,v(x) − h

(N)
L;u,v(0) = N− 1

2

(
hN ;α,β,γ,δ(⌊NL−1x⌋)− hN ;α,β,γ,δ(0)

)
(2.2)

We note that conditions (1) and (2) imply triple point scaling

ρℓ =
1

2
+
u

2
N− 1

2 + o(N−1) ρr =
1

2
− v

2
N− 1

2 + o(N−1)

The Enaud-Derrida [ED04] representation of the stationary measure of open ASEP, defined in the next
section, provides a way of characterizing the stationary measure of open ASEP as the sum of two random
walk processes. We will use this representation to prove Theorem 1.4.
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2.2.1. Matrix Product Ansatz Techniques and the Enaud-Derrida Representation. A work of Derrida, Evans,
Hakim and Pasquier [DEHP93] introduced a method, the Matrix Product Ansatz, for obtaining the stationary
solutions to open ASEP. The idea behind this technique is to put forth the ansatz that there exists an algebra
(the “DEHP” algebra, after the authors of the original paper) with representation in terms of matrices D

and E and vectors 〈W |, |V 〉 (possibly infinite dimensional) such that the probability of a given state τ on
the open interval is given by

P(τ) =
〈W |∏N

i=1 Dτi +E(1− τi)|V 〉
〈W |(D+E)N |V 〉 .

Imposing the condition that this distribution is stationary results in the relations

DE− qED = D+E,

(βD− δE)|V 〉 = |V 〉,
〈W |(αE− γD) = 〈W |.

Mathematicians and physicists have discovered several representations of the DEHP algebra. The original
representation [DEHP93] was used to solve the open TASEP. Later, foundational papers by Sasamoto [Sas99]
and Uchiyama, Sasamoto, and Wadati [USW04] gave representations of the DEHP algebra in terms of Askey-
Wilson polynomials. Enaud and Derrida [ED04] studied a different representation of the DEHP algebra,
now called the Enaud-Derrida representation (there is a closely related representation which was discovered
independently by Corteel and Nunge [CN20]). The Enaud-Derrida representation is given by

D =




[1]q [1]q 0 0 0 ...
0 [2]q [2]q 0 0 ...
0 0 [3]q [3]q 0 ...
... ... .. ... ... ...


 , E =




[1]q 0 0 0 ...
[2]q [2]q 0 0 ...
0 [3]q [3]q 0 ...
... ... ... ... ...


 ,

〈W | =
∑

n≥1

(
1− ρℓ
ρℓ

)n

〈n|, |V 〉 =
∑

n≥1

(
ρr

1− ρr

)n

[n]q|n〉,

where [·]q is defined in Section 2.1, and |n〉 and 〈n| denote the basis vectors. Derrida, Enaud, and Lebowitz
[DEL04] noticed that it is possible to write the increment of the stationary state of the open ASEP as the
sum of two random walks,

{hN ;α,β,γ,δ(t, r)− hN ;α,β,γ,δ(t, 0)}r∈[[1,N ]] =





r∑

j=1

(2τi − 1)





r∈[[1,N ]]

= {nr − n0 +mr}r∈[[1,N ]] .

Barraquand and Le Doussal used the Enaud-Derrida representation to define a measure on (nr,mr)
N
r=1 by

a reweighting of a two-dimensional random walk started at (n0, 0) for any n0 ∈ Z>0.

Definition 2.3 (Equation (25) [BLD23]). We denote the space of two-dimensional N -step simple random
walks started at (0, 0) by WN,0 and define a measure on Z>0 ×WN,0

PN(r, ~n, ~m) :=
1r>04

N

Z̃N (q)

(
1− ρℓ
ρℓ

)r (
ρr

1− ρr

)nN+r N∏

i=0

[ni + r]qP
SSRW(~n, ~m), (2.3)

where Z̃N(q) is the partition function which normalizes this measure on r ∈ Z>0 and two-dimensional random
walks of N steps started at (0, 0) given by (~n, ~m). The notation ρr and ρℓ is defined in (2.1), and PSSRW(·, ·)
is the law of a two-dimensional simple symmetric random walk started at (0, 0).

Remark 2.4. The terms [ni + r]q guarantee that ni + r > 0 for all i ∈ [[0, N ]].

Theorem 2.5 (Section 3 [BLD23]). The stationary measure of the open ASEP increment process on the finite
lattice of size N is given by {ni +mi}i∈[[1,N ]], where (r, ~n, ~m) are sampled from the measure in Definition 2.3.

The paper by Barraquand and Le Doussal [BLD23] which first proposed that this representation of the
stationary measure of the open ASEP increment process could be used to obtain the stationary measure of the
open KPZ increment process made several additional contributions. They found the rescaling of (2.3) that
was appropriate for obtaining the stationary measure [BLD23, Equation (33)] and, after formulating both
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the ASEP stationary measure and the KPZ stationary measure in terms of Radon-Nikodym reweightings
of standard measures PL and P, they demonstrated that the Radon-Nikodym derivatives corresponding to
the appropriately rescaled open ASEP stationary measure converge pointwise to the function H(x, g, h)
defined in Definition 1.2 (Theorem 2.8). We will now describe their rescaling, as preparation for the proof
of Theorem 1.4. We extend the two-dimensional random walk to a two-dimensional continuous function by
rescaling in time and space and linearly interpolating between that lattice points it occupies. To be precise,

for i ∈ [[1, N − 1]], we extend the function by allowing it to take the value N− 1
2 (ni,mi) on the time interval

[ti, ti+1). The rest of the introduction will be devoted to setting up and defining the appropriately rescaled
sequence of measures. We use continuous two-dimensional functions (f, h) ∈ C[0, L]×C0[0, L] to denote the

paths of these processes. Due to the fact that n0 can take any value in Z>0, we see that f(0) ∈ N− 1
2Z>0.

For ease of notation, we define

x := f(0), g(t) := f(t)− f(0).

We will denote the space of paths (g, h) by W (N)[0, L], with the notation motivated by the fact that, sans
Radon-Nikodym derivative factor, the process would converge to a standard two-dimensional Brownian

motion. All permissible values of x will lie in N− 1
2Z>0. We will use W

(N)
L to denote the sequence of

measures which assign the weight of the two-dimensional simple symmetric random walk to the rescaled

path (g, h) ∈ W (N)[0, L], meaning that if ~g = (g(t0), ...., g(tN )), and similarly for ~h, that W
(N)
L [(g, h)] =

PSSRW(
√
N~g,

√
N~h). As before, PSSRW(·, ·) is the law of the two-dimensional simple symmetric random

walk. We denote the product measure at each N ∈ N by P
(N)
L := L(N) × W

(N)
L , and note that this is an

infinite measure, due to the first factor. The measure L(N) is defined in Section 2.1. Using this notation,
we can write the sequence of measures which are obtained by a weak asymmetry rescaling of (2.3) via a
Radon-Nikodym transformation.

Definition 2.6. We define a sequence of functions R(N) : R × C0[0, L] × C0[0, L] → R, which give a
reweighting of the density of P(N) by

R(N)(x, g, h) := 1R

(
1− ρℓ
ρℓ

)√
Nx(

ρr
1− ρr

)√
N(g(L)+x) N∏

i=0

[
√
N(g(ti) + x)]q,

The conditions in Assumptions 2.2 imply that
(

(1−ρℓ)ρr

ρℓ(1−ρr)

)
= e−2(u+v)/

√
N , and ρr

1−ρr
= e−2v/

√
N , so the

expression above becomes

R(N)(x, g, h) = 1R exp (−2(u+ v)x − 2vg(L))
N∏

i=0

[
√
N(g(ti) + x)]q .

The set R is defined R := {x ∈ N− 1
2Z>0; (g, h) ∈ W (N)[0, L]}, and ρℓ and ρr are as in Assumptions 2.2.

For the definition of the notation [·]q, see Section 2.1. We also rewrite the formula for the partition function

rescaled from (2.3) in terms of R(N)(x, g, h),

Z̃
(N)
L;u,v := E

P
(N)
L

[
R(N)(x, g, h)

]
= N− 1

2

∑

x∈N− 1
2 Z>0

∑

(g,h)∈W (N)[0,L]

R(N)(x, g, h)W(N)(g, h).

In the current notation, which matches Barraquand and Le Doussal’s [BLD23] notation for the open
ASEP stationary measure, it is not true that R(N)(x, g, h) → H(x, g, h) pointwise. It is first necessary to
renormalize the function R(N)(x, g, h). This corresponds to “recentering” the Radon-Nikodym derivative to
the appropriate height in x in order to obtain the correct pointwise limit. To that end, we define H(N)(x, g, h)

and Z
(N)
L;u,v such that

(Z
(N)
L;u,v)

−1H(N)(x, g, h) = (Z̃
(N)
L;u,v)

−1R(N)(x+ log (
√
N), g, h). (2.4)
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Definition 2.7. We define a new sequence of functions H(N) : R× C0[0, L]× C0[0, L] → R.

H(N)(x, g, h) := R(N)(x+ log (
√
N), g, h)

(
(1− ρℓ)ρr
ρℓ(1− ρr)

)−
√
N log (

√
N)

(1 − q)N+1,

= 1H exp (−2(u+ v)x − 2vg(L))

N∏

i=0

(
1− e−2(g(ti)+x)

N

)
,

where the set H is defined H := {x ∈ Z̃(N); (g, h) ∈WN [0, L]}, and
Z̃(N) := {x|

√
N(x+ log (

√
N)) ∈ Z>0}. (2.5)

The indicator function guarantees that this function will always be positive. We also define a new partition

function Z
(N)
L;u,v such that H(N)(x, g, h) and Z

(N)
L;u,v satisfy (2.4),

Z
(N)
L;u,v := E

P
(N)
L

[
H(N)(x, g, h)

]
= N− 1

2

∑

x∈Z̃(N)

∑

(g,h)∈W (N)[0,L]

H(N)(x, g, h)W(N)(g, h).

Barraquand and Le Doussal [BLD23] give a sketch of the proof of pointwise convergence H(N)(x, g, h) →
H(x, g, h) and conjecture weak convergence of the sequence of measures given by these Radon-Nikodym
derivatives. We provide a proof of pointwise convergence in Appendix B.

Theorem 2.8. For all u+ v > 0, H(N)(x, g, h) converges pointwise to H(x, g, h) under Assumptions 2.2.

In this article, we demonstrate weak convergence of the associated measures. For the rest of the article,
we will deal with H(N)(x, g, h) instead of R(N)(x, g, h).

Definition 2.9. We define a sequence of measures Q
(N)
L;u,v which are given by the Radon-Nikodym derivative

defined above applied to P
(N)
L . Here, the arguments are x ∈ Z̃(N), (g, h) ∈ WN [0, L].

Q
(N)
L;u,v(A) : = E

P
(N)
L

[
(Z

(N)
L;u,v)

−1H(N)(x, g, h)1A

]
= (Z

(N)
L;u,v)

−1N− 1
2

∑

(x,g,h)∈A

H(N)(x, g, h)W(N)(g, h).

In the equation above, A is any event in the product Borel σ-algebra on R×C0[0, L]×C0[0, L]. The rescaled
stationary measure of the open ASEP increment process (2.2) can be written

{
h
(N)
L;u,v(x)

}

x∈[0,L]
=
{
n(N)(x) +m(N)(x)

}

x∈[0,L]

where (r(N), n(N)(x),m(N)(x)) are sampled from the measure Q
(N)
L;u,v. This notation for functions n(N)(x)

and m(N)(x) will not be used again, it is intended to suggest the notation in Definition 2.3, but these are
not random walks: they are continuous functions on [0, L].

We can now state the main technical result which allows us to prove Theorem 1.4.

Theorem 2.10. Under Assumptions 2.2, the measures Q
(N)
L;u,v converge weakly in the uniform on compact

topology to QL;u,v (Definition 1.2).

The proof of Theorem 2.10 will be the subject of most of the rest of the paper. It follows from two different

KMT-type embedding theorems. We demonstrate first that the partition functions Z
(N)
L;u,v are uniformly

bounded in N , using a KMT embedding result for random walk bridges and Brownian bridges established
by Dimitrov and Wu [DW21]. We also provide an independent proof that Zu,v is bounded, following a paper
of Yor [Yor92]. Then we use the standard KMT embedding to establish a bound on the distance between
EW(N) [F (x, g, h)H(N)(x, g, h)] and EW[F (x, g, h)H(x, g, h)] in terms of N , x, and CF := sup |F (x, g, h)| for
any bounded continuous function F (x, g, h). We use this bound to show that EP(N) [F (x, g, h)H(N)(x, g, h)]

converges to EP[F (x, g, h)H(x, g, h)]. The case where F (x, g, h) ≡ 1 demonstrates that Z
(N)
L;u,v → Zu,v.

Combining these observations allows us to conclude that Q
(N)
L;u,v converges weakly to QL;u,v.

The most technically challenging part of the paper is the proof of Lemma 3.1. This argument, and the
applicability of the KMT embedding for random walk bridges, which is used to obtain the bound, crucially
relies on the fact that the part of the function H(N)(x, g, h) which depends on the route of the path g is
bounded between 0 and 1 for all permissible paths.
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2.3. Proof of Theorem 1.4. In this section, we will use Theorem 2.10 to prove Theorem 1.4. The version
of the open KPZ equation stated in (1.1) takes a different form than that in the papers by Corwin and
Knizel [CK24], Corwin and Shen [CS18], and Parekh [Par19]. We can recover that form of the open KPZ
equation (with coefficients of 1/2 in front of both derivative terms on the right-hand side of the equation
and a coefficient of 1 in front of the noise) by applying the transformation t 7→ 2t to (1.1). Since this is
only a time transformation, these two versions of the open KPZ equation have the same stationary measure.
This justifies applying the results of those papers. The result that we quote is proved in Corwin and Shen
[CS18] and Parekh [Par19] for L = 1. We quote the statement as it appears in Corwin and Knizel [CK24,
Proposition 3.2] for the sake of clarity. The proof by Parekh [Par19, Theorem 5.7], for instance, is unchanged
when the interval length is altered to [0, L].

Proposition 2.11. Consider any N -indexed sequence of open ASEPs, which scale under Assumptions 2.2.
Assume also that these ASEPs satisfy

(1) 4 : 2 : 1 height function scaling: For t ≥ 0 and x ∈ [0, L], define

h(N)
u,v (t, x) := N− 1

2 hN

(
e

1√
N N2t

2
, NL−1x

)
+
Nt

2
+

t

24

z(N)
u,v (t, x) := exp

(
h(N)
u,v (t, x)

)

where hN is the height function process for ASEP of size N .
(2) Hölder bounds on initial data: the sequence of initial data hN (0, ·) satisfies that for all θ ∈ (0, 1/2)

and n ∈ Z>0, there exist positive C(n), C(θ, n) such that for every X,X ′ ∈ [0, 1] and N ∈ Z>0,

‖z(N)
u,v (0, x)‖n ≤ C(n), ‖z(N)

u,v (0, x)− z(N)
u,v (0, x

′)‖n ≤ C(θ, n)|x − x′|θ.

Where ‖ · ‖n := (E[| · |n])
1
n for expectation taken over hN (0, ·).

Then the sequence of laws of z
(N)
u,v (·, ·) ∈ D([0, T0], C[0, L]) is tight as T → ∞ for any fixed T0 > 0 and all

limit points are in C([0, T0], C[0, L]). If there exists a non-negative function z(0, ·) such that as N → ∞,

z(N)(0, x) converges weakly to z(0, x) in the space of continuous processes on x ∈ [0, L], then z
(N)
u,v (t, x)

converges weakly to zu,v(t, x) in D([0, T0], C[0, L]) for any T0 > 0 as N → ∞, where zu,v(t, x) is the unique
mild solution to the stochastic heat equation with boundary parameters compatible with Neumann boundary
conditions u, v ∈ R, and initial data z(0, x).

The Hölder bounds (2) follow from [CK24, Proposition 4.2], in which the coupling argument is unchanged
if the interval [0, 1] is everywhere replaced by [0, L]. Therefore, the proposition above allows us to conclude

that z
(N)
u,v (t, x) converges weakly to zu,v(t, x) := exp (hu,v(t, x)), the unique mild solution to the stochastic

heat equation with appropriate boundary parameters and initial data. Since we began with stationary

initial data, we see that the function x 7→ z
(N)
u,v (t, x)/z

(N)
u,v (t, 0) is independent of t, and consequently, by the

convergence to the stochastic heat equation, x→ zu,v(t, x)/zu,v(t, 0) is also stationary. Taking the logarithm
implies that x 7→ hu,v(t, x)− hu,v(t, 0) is independent of t. This justifies stating the following theorem.

Theorem 2.12. For any u, v ∈ R, all sub-sequential limits of the sequence of open ASEP stationary incre-
ment measures under Assumptions 2.2 are stationary measures of the open KPZ increment process.

Proof of Theorem 1.4. By Theorem 2.10, we conclude that h
(N)
L;u,v(x) − h

(N)
L;u,v(0) converges weakly to the

measure of (H(x) − Gu,v(x)) defined in Theorem 1.4, where (X,Gu,v(x), H(x)) are sampled from QL;u,v.
What remains is to conclude that the resulting measure is the stationary measure of the open KPZ increment
process on [0, L]. This follows from Theorem 2.12. �

3. Bounds on the Partition Functions

In this section, we prove estimates on the partition functions ZN and Zu,v. To understand the contribu-

tions of the expectation over g and h, we first demonstrate that the expectation of H(N)(x, g, h) with respect

to the simple random walk measure W
(N)
L is uniformly bounded in N for each x. We likewise show that
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EWL [H(x, g, h)] satisfies a similar bounded. In the next section, we will use these estimates to show that for
any bounded function F (x, g, h), E

P
(N)
L

[F (x, g, h)H(N)(x, g, h)] → EPL [F (x, g, h)H(x, g, h)].

We separate the computation of the expectation of E
P
(N)
L

[H(N)(x, g, h)] into a sum over x of terms which

depend on the paths under the measure W
(N)
L . We will approach the bound on this partition function by first

giving a bound on the component of the partition function which depends on the paths. One motivation for
this approach is that we already know that the random walk measure is closely related to a Brownian measure,
and in fact, converges weakly. Therefore, it seems likely that we could make sense of terms depending only
on the path without regard to x. This turns out to be true. We recall Definition 2.7 and the formula for the
partition function.

Z
(N)
L;u,v = N− 1

2

∑

x∈Z̃(N)

e−2(u+v)xE
W

(N)
L

[
e−2vg(L)

N∏

i=0

(
1− e−2(g(ti)+x)

N

)]
.

Considering the expression inside the expectation over the random walk measure, we might want to try to
approximate it by limit expression using a KMT-type embedding. However, there is an obstacle to applying
this technique directly, since the function inside the expectation is not necessarily bounded on every random
walk path. To deal with this challenge, we separate the expectation into a sum over random walk endpoints,

noting the probability that g(L) lands at a value N− 1
2 k is given by P(g(L) = N− 1

2 k) = 4−N
(

2N
N+k

)
,

E
W

(N)
L

[
e−2vg(L)

N∏

i=0

(
1− e−2(g(ti)+x)

N

)]

= 4−N
N∑

k=−N

exp

(
− 2vk√

N

)(
2N

N + k

)
E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

) ∣∣∣∣g(L) =
k√
N

]
.

The function inside the conditional expectation is now uniformly bounded by 1 for all random walk paths
under the measure W(N), so it may be easier to obtain a bound via the Brownian approximation of the
random walks. Before we state the relevant random walk bridge KMT result and get into specifics, we will
state the bound on EW(N) [H(N)(x, g, h)].

Lemma 3.1. We can bound the component of the expectation which depends on (g, h) for all values of x as
follows: There exist constants Cv,1, Cv,2,Kv > 0 depending only on v, and β > 0, such that for all x ∈ R

and N ∈ N,

E
W

(N)
L

[
H(N)(x, g, h)

]
≤ e−2(u+v)x

(
Cv,1 exp

(
−βW

(
e−xβ− 1

2K
1
2
v

)2)
+ Cv,2e

−y

)
,

where W (·) is Lambert’s product-log function (x = W (a) solves the equation xex = a), and we define

y := −
√
N log (

√
N) log

(
ρr(1−ρℓ)
(1−ρr)ρℓ

)
= 2(u+ v) log (

√
N).

We will use two intermediate results in the proof of Lemma 3.1. The first is the following approximation
of the random walk bridge expectation in terms of an expectation over Brownian bridge paths.

Lemma 3.2. For all k ∈ [[−N,N ]], there exists K > 0 such that for any function of N , y = y(N) satisfying
y ∈ O (log (N)),

E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

) ∣∣∣∣g(L) =
k√
N

]
≤ 4EWL

[
exp

(
−e

−2x

2

∫ L

0

e−2g(t)dt

)∣∣∣∣g(L) =
k√
N

]
+Ke−y.

Remark 3.1. In the bound above, we will ultimately choose y := 2(u + v) log (
√
N). This choice will be

necessary in order to prove Lemma 3.1.

The other intermediate result that we apply is a bound which arises due to change of measure calculations.
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Lemma 3.3. For all any bounded continuous functional F : C[0, L] → R>0 such that F (g(t)) for g(t) a path

of a Brownian motion with diffusion coefficient 1/
√
2 on [0, L], has a continuous probability distribution on

R>0, and any m ∈ R, then there exists a constant Cm > 0 depending only on m such that

EWL

[
F (g(t))

∣∣∣∣g(L) =
k√
N

]
= Cm exp

(
− mk√

N

)
EWL

[
F (g(t)−mt)

∣∣∣∣g(L) =
k√
N

+m

]

The proof of this lemma appears in Appendix A. The following theorem of Dimitrov and Wu [DW21],
adapted to the language of our problem, provides a KMT embedding result adapted for random walk bridges
and Brownian bridges, and will allow us to prove Lemma 3.2.

Theorem 3.2 (Theorem 1.2, [DW21]). Suppose {Xl}∞l=0 are a collection of independent, identically dis-
tributed integer valued random variables, with P(Xl = −1) = P(Xl = 1) = 1/4 and P(Xl = 0) = 1/2, and,

for ti = iLN−1, g(ti) := N− 1
2

(∑tiNL−1

l=0 Xl

)
, and gk(ti) denotes g(ti) conditioned to end at g(L) = N− 1

2 k.

Then for every positive integer N there exists a probability space (we refer to the measure on this space as
PBKMT for “bridge KMT”) and constants M,K, λ > 0 such that

PBKMT

(
sup

0≤ti≤L

∣∣g̃k(ti)− gk(ti)
∣∣ ≥MN− 1

2 (log (N) + y)

)
≤ Ke−λy,

where g̃k is a path sampled from the measure of a Brownian motion with diffusion coefficient 1/
√
2 conditioned

to end at N− 1
2 k.

With this result in hand, we will give the proof of Lemma 3.2

Proof of Lemma 3.2. Throughout this proof, we will use g̃ to denote the Brownian bridge path under the
KMT measure, and g to denote the random walk path under the KMT measure. When the measure is

specified as either W
(N)
L or WL, we will simply use g to denote a path under the appropriate measure. By

Theorem 3.2,
∣∣∣∣EW

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

) ∣∣∣∣g(L) =
k√
N

]
− EWL

[
exp

(
−e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣g(L) =
k√
N

] ∣∣∣∣

=

∣∣∣∣EPBKMT

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

)
− exp

(
−e−2x

∫ L

0

e−2g′(t)dt

)∣∣∣∣g(L) = g̃(L) =
k√
N

] ∣∣∣∣.
(3.1)

We separate this into two regions:

Ak,N :=

{
max
0≤t≤L

‖g̃ − g‖ < MN− 1
2 (log (N) + y)

}
∩
{
g(L) = g̃(L) =

k√
N

}
,

Bk,N :=

{
max
0≤t≤L

‖g̃ − g‖ ≥MN− 1
2 (log (N) + y)

}
∩
{
g(L) = g̃(L) =

k√
N

}
.

By Theorem 3.2, P (Bk,N ) ≤ Ke−λy. Since both expectations in (3.1) are positive and bounded by 1, we
conclude that for K,λ > 0 as in Theorem 3.2,

∣∣∣∣EPBKMT

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

)
− exp

(
−e−2x

∫ L

0

e−2g̃(t)dt

)∣∣∣∣Bk,N

] ∣∣∣∣P (Bk,N ) ≤ 2Ke−λy.

In the remaining region defined by Ak,N , we can expand the terms as follows
∣∣∣∣EPBKMT

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

)
− exp

(
−e−2x

∫ L

0

e−2g̃(t)dt

)∣∣∣∣Ak,N

] ∣∣∣∣

≤
∣∣∣∣EPBKMT

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

)
− exp

(
−e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣Ak,N

] ∣∣∣∣

+

∣∣∣∣EPBKMT

[
exp

(
−e−2x

∫ L

0

e−2g(t)dt

)
− exp

(
−e−2x

∫ L

0

e−2g̃(t)dt

)∣∣∣∣Ak,N

] ∣∣∣∣.

(3.2)
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We deal with the latter term first,

∣∣∣∣EPBKMT

[
exp

(
−e−2x

∫ L

0

e−2g(t)dt

)
− exp

(
−e−2x

∫ L

0

e−2g̃(t)dt

)∣∣∣∣Ak,N

] ∣∣∣∣

= EPBKMT

[
exp

(
−e−2x

∫ L

0

e−2g̃t)dt

)∣∣∣∣ exp
(
−e−2x

(∫ L

0

e−2g̃(t)
(
e−2(g(t)−g̃(t)) − 1

)
dt

))
− 1

∣∣∣∣

∣∣∣∣Ak,N

]

≤ EPBKMT


exp

(
−e−2x

∫ L

0

e−2g̃(t)dt

)
sup





∣∣ exp
(
−e−2x

∫ L

0 e−2g̃(t)dt
)(e2δ−1)

− 1
∣∣,

∣∣ exp
(
−e−2x

∫ L

0
e−2g̃(t)dt

)(e−2δ−1)
− 1
∣∣





∣∣∣∣Ak,N


 .

We note that Xk = e−2x
∫ L

0
e−2g̃(t)dt|

g̃(L)=N− 1
2 k

can be considered as a random variable taking values

r ∈ [0,∞), with some probability distribution function ρX,k(r). The bound above can therefore be written
as

≤ sup

{∣∣∣∣
∫ ∞

0

e−r
(
e−r(e2δ−1) − 1

)
ρX,k(r)dr

∣∣∣∣,
∣∣∣∣
∫ ∞

0

e−r
(
e−r(e−2δ−1) − 1

)
ρX,k(r)dr

∣∣∣∣
}
.

There exists Nδ such that for all N > Nδ, 0 < e2δ − 1 < 1
4 and 0 > e−2δ − 1 > 1

4 , which implies that the
expression above is bounded by

≤ sup

{∫ ∞

0

e−r
(
1− e−r/4

)
ρX,k(r)dr,

∫ ∞

0

e−r
(
er/4 − 1

)
ρX,k(r)dr

}
.

In particular, e−r(1 − e−r/4) and e−r(er/4 − 1) are both bounded by e−r/2 for all r ≥ 0, and therefore,

both terms in the supremum environment are themselves bounded by EPBKMT
[exp (− 1

2e
−2x

∫ L

0 e−2g̃(t)dt)].
We similarly bound the first term on the right-hand side of (3.2) as follows:

∣∣∣∣EPBKMT

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

)
− exp

(
−e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣Ak,N

] ∣∣∣∣

≤ EPBKMT

[
exp

(
−e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣ exp
(
e−2x

∫ L

0

e−2g(t)dt+

N∑

i=0

log

(
1− e−2(g(ti)+x)

N

))
− 1

∣∣∣∣
∣∣∣∣Ak,N

]

The definition of the random walk paths implies
∫ L

0
e−2g(t)dt = N−1

∑N
i=0 e

−2g(ti). Therefore,

N∑

i=0

log

(
1− e−2(g(ti)+x)

N

)
+

∫ L

0

e−2(g(t)+x)dt =

N∑

i=0

(
log

(
1− e−2(g(ti)+x)

N

)
+
e−2(g(ti)+x)

N

)
. (3.3)

Since we are restricted to subset of paths g(ti) for each x where the Taylor expansion of the logarithm

converges, we see that each term in this expression is equal to −∑∞
l=2

e−2l(g(ti )+x)

lN l , which is always a negative
value. This implies that

∣∣∣∣ exp
(
e−2x

∫ L

0

e−2g(t)dt+

N∑

i=0

log

(
1− e−2(g(ti)+x)

N

))
− 1

∣∣∣∣ ≤ 1.

Applying this bound, and the calculation for the other term in (3.2), we see that

∣∣∣∣EPBKMT

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

)
− exp

(
−e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣Ak,N

] ∣∣∣∣

≤ EPKMT

[
exp

(
−e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣Ak,N

]
≤ 2EPBKMT

[
exp

(
−e−2x

∫ L

0

e−2g̃(t)dt

)∣∣∣∣Ak,N

]
.

11



Therefore, we can bound the full expression in (3.1) by

≤ 2EWL

[
exp

(
−e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣g(L) =
k√
N

]

+ EWL

[
exp

(
−1

2
e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣g(L) =
k√
N

]
+Ke−λy

≤ 3EWL

[
exp

(
−1

2
e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣g(L) =
k√
N

]
+Ke−λy.

Finally, relabeling λy as y finishes the proof. �

We note that, applying essentially the same bounds as those which appear in the proof above, we can also
obtain

EWL

[
exp

(
−1

2
e−2x

∫ L

0

e−2g(t)dt

)∣∣∣∣g(L) =
k√
N

]

≤ 4E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)+x)

4N

) ∣∣∣∣g(L) =
k√
N

]
+Ke−y. (3.4)

We note that we can choose y to be any value which still allows limN→∞MN− 1
2 (log (N) + y) = 0. The

specific value of y will be engineered for arguments later in this section. The reason that it is crucial to do
this random walk bridge KMT embeddding is because using the bound in Lemma 3.2 allows us to leverage
an important property of the conditional expectation in the continuous setting which is not available to us
in the discrete setting: that is, a nice expression for a change of measure, Lemma 3.3. We can now begin
the proof of Lemma 3.1

Proof of Lemma 3.1. Conditioning on the endpoint of g(t), as above, we find that

E
W

(N)
L

[
H(N)(x, g, h)

]
= e−2(u+v)x4−N

·
N∑

k=−N

exp

(
− 2vk√

N

)(
2N

N + k

)
E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)+x)

N

) ∣∣∣∣g(L) =
k√
N

]
. (3.5)

Applying the equality above, as well as Lemma 3.2, and then Lemma 3.3, to (3.5), we can bound the entire
expression by

≤ 4Cme
−2(u+v)x4−N

·
N∑

k=−N

exp

(
− (2v +m)k√

N

)(
2N

N + k

)
EWL

[
exp

(
−e

−2x

2

∫ L

0

e−2(g(t)−mt)dt

)∣∣∣∣g(L) =
k√
N

+m

]

+Ke−ye−2(u+v)x4−N
N∑

k=−N

exp

(
− 2vk√

N

)(
2N

N + k

)
.

Now, applying the inequality from (3.4), this is bounded by

≤ 16Cme
−2(u+v)x4−N

·
N∑

k=−N

exp

(
− (2v +m)k√

N

)(
2N

N + k

)
E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)−mti+x+log (2))

N

) ∣∣∣∣g(L) =
k√
N

+m

]

+Ke−ye−2(u+v)x4−N
N∑

k=−N

(
2N

N + k

)(
4Cm exp

(
− (2v +m)k√

N

)
+ exp

(
− 2vk√

N

))
.

(3.6)

To deal with the first term, we want to turn the sum back into an expression which we can neatly sum over

k. We can think of the distribution P(g(L) = N− 1
2 k) = 4−N

(
2N
N+k

)
as an approximation of a Gaussian on

12



the domain |k| ≤ N . In this setting, we can understand the multiplicative factor of exp
(
−(2v +m)k/

√
N
)

as “shifting the center” of this Gaussian by a displacement of approximately
(
v + m

2

)√
N . We make this

notion precise in the following proposition, which is proved in Appendix A.

Proposition 3.3. For all a ∈ R, and any k such that |k|, |k + a
√
N | < N

5
6 , then there exists Da > 0,

depending only on a such that for all N ∈ N,

exp

(−2ak√
N

)(
2N

N + k

)
≤ Da

(
2N

N + k + a
√
N

)
.

Remark 3.4. The choice of N c with c = 5
6 as the threshold in Proposition 3.3 is somewhat arbitrary: all

that is necessary for the lemma to hold is that c ≤ 5
6 , and all that is necessary for this lemma to be used in

the ongoing proof is that c > 3
4 .

Setting m = 2v, this lemma implies that for all |k|, |k + (2v +m)
√
N | < N

5
6 ,

exp

(
− (2v +m)k√

N

)(
2N

N + k

)
≤ Dv+m

2

(
2N

N + k +
(
v + m

2

)√
N

)
= D2v

(
2N

N + k + 2v
√
N

)
.

Likewise, for all |k|, |k + v
√
N | < N

5
6 ,

exp

(
− 2vk√

N

)(
2N

N + k

)
≤ Dv

(
2N

N + k + v
√
N

)
.

Therefore, we can bound (3.6) by

≤ 16C2vD2ve
−2(u+v)x4−N

·
∑

|k|,|k+2v
√
N |<N

5
6

(
2N

N + k + 2v
√
N

)
E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)−2vti+x+log (2))

N

) ∣∣∣∣g(L) =
k√
N

+ 2v

]

+Ke−ye−2(u+v)x4−N


4D2vC2v

∑

|k|,|k+2v
√
N |<N

5
6

(
2N

N + k + 2v
√
N

)
+D4Dv

∑

|k|,|k+v
√
N |<N

5
6

(
2N

N + k + v
√
N

)



+ e−2(u+v)x
(
16C2vERR1 + 4C2vKe

−yERR2 +Ke−yERR3

)
.

The error terms are defined by

ERR1 := 4−N
∑

|k|≥N
5
6 ∨|k+2v

√
N |≥N

5
6

exp

(
− 2vk√

N

)(
2N

N + k

)

· E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)−2vti+x+log (2))

N

) ∣∣∣∣g(L) =
k√
N

+ 2v

]
,

ERR2 := 4−N
∑

|k|≥N
5
6 ∨|k+2v

√
N |≥N

5
6

exp

(
− 2vk√

N

)(
2N

N + k

)
,

ERR3 := 4−N
∑

|k|≥N
5
6 ∨|k+v

√
N |≥N

5
6

exp

(
− 2vk√

N

)(
2N

N + k

)
.

13



In particular, ERR1 ≤ ERR2. Since this sum only considers terms with |k| ≤ N , and because the binomial
coefficients are symmetric, we have the following bound on the error terms.

ERR1,2 ≤ e4|v|
√
N4−N

N∑

k=N
5
6 −4|v|

√
N

(
2N

N + k

)
≤ (N −N

5
6 + 2|v|

√
N)e4|v|

√
N4−N

(
2N

N +N
5
6 − 2|v|

√
N

)
,

ERR3 ≤ e2|v|
√
N4−N

N∑

k=N
5
6 −|v|

√
N

(
2N

N + k

)
≤ (N −N

5
6 + |v|

√
N)e2|v|

√
N4−N

(
2N

N +N
5
6 − |v|

√
N

)
.

Noting that 4−N
(

2N
N+x

)
≤ 4−N

(
2N
N

)
e−

x2

2N < N− 1
2 e−

x2

2N for all |x| ≤ N , we see that,

ERR1,2 <
(
N

1
2 −N

3
8 + 4|v|

)
exp

(
−1

2
N

3
4 + 4|v|N 1

2 + 4|v|N 3
8 − 8|v|2

)
,

ERR3 <
(
N

1
2 −N

3
4 + |v|

)
exp

(
−1

2
N

3
4 + 2|v|N 1

2 + |v|N 3
8 − 1

2
|v|2
)
.

Both of which tend to 0 as N → ∞. Furthermore, for any polynomial p(N) of constant order in N , we

see that p(N)ERR1 → 0 as N → ∞. In particular, with y = 2(u + v) log (
√
N), we have ey = Nu+v. We

define ERR4 := eyERR1. Our calculation shows that ERR4 → 0. Thus, relabeling constants, there exist
Dv,1, Dv,2, Dv,3 > 0 such that we can bound (3.6) by

≤ Dv,1e
−2(u+v)x4−N

·
N−2v

√
N∑

k=−N−2v
√
N

(
2N

N + k + 2v
√
N

)
E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)−2vti+x+log (2))

N

) ∣∣∣∣g(L) =
k√
N

+ 2v

]

+Dv,2e
−ye−2(u+v)x4−N




N−2v
√
N∑

k=−N−2v
√
N

(
2N

N + k + 2v
√
N

)
+

N−v
√
N∑

k=−N−v
√
N

(
2N

N + k + v
√
N

)


+ e−yDv,3e
−2(u+v)x (ERR4 + ERR2 + ERR3) .

From the equation above, we produce a looser upper bound by adding more (strictly positive) terms to each
of the sums so that all k where the binomial coefficients are supported appear in the sum. This allows us to
re-sum each term. We conclude that there exist Dv,4, Dv,5 > 0 depending only on v such that the expression
above is abounded by

≤ Dv,4e
−2(u+v)xE

W
(N)
L

[
N∏

i=0

(
1− e−2(g(ti)−2vti+x+log (2))

N

)]
+Dv,5e

−ye−2(u+v)x.

Setting AN
s to be the event AN

s := {maxti;i∈{1,...,N} |g(ti)| > s}, we see that

E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)−2vti+x+log (2))

N

)]
= E

W
(N)
L

[
N∏

i=0

(
1− e−2(g(ti)−2vti+x+log (2))

N

) ∣∣∣∣A
N
s

]
P
(
AN

s

)

+ E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)−2vti+x+log (2))

N

) ∣∣∣∣A
N,c
s

]
P
(
AN,c

s

)
.

Noting that for all g which represent a simple random walk path of N steps, and for any m ∈ R, there exists
D1 > 0 such that

N∏

i=0

(
1− e−2(g(ti)−2vti+x+log (2))

N

)
≤ D1 exp

(
−e−2x−2 log (2)

∫ L

0

e−2(g(t)−2vt)dt

)
.
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We apply [LL10, Proposition 2.1.2] to obtain the bound

E
W

(N)
L

[
N∏

i=0

(
1− e−2(g(ti)−2vti+x+log (2))

N

)]
≤ Ce−βs2 +D1 exp

(
−e−2(x+s+log (2))

∫ L

0

e4vtdt

)
.

The terms in the expression above are balanced at s =W
(
e−xβ− 1

2K
1
2
v

)
, where Kv := 1

16

∫ L

0 e4vtdt. Setting

Cv,1 := (D1 + C)Dv,4 and Cv,2 := Dv,5 finishes the proof. �

Corollary 3.5. The partition function Z
(N)
L;u,v is bounded by a global constant for all N ∈ N.

Proof. We begin by noting that the previous lemma tells us that there exist constants Cv,1, Cv,2,Kv > 0
depending only on v, and β > 0, such that for all x ∈ R and N ∈ N,

E
W

(N)
L

[
H(N)(x, g, h)

]
≤ e−2(u+v)x

(
Cv,1 exp

(
−βW

(
e−xβ− 1

2K
1
2
v

)2)
+ Cv,2e

−y

)
. (3.7)

Since u+ v > 0,
(

ρr(1−ρℓ)
(1−ρr)ρℓ

)
= e−2(u+v)/

√
N < 1. We begin by dealing with the second term of the sum. By

setting y = 2(u+ v) log (
√
N), we find

Cv,2e
−y

√
N

∑

x∈Z̃(N)

e−2(u+v)x =
Cv,2√
N

∑

x∈Z̃(N)

e−2(u+v)(x+log (
√
N)) =

Cv,2√
N

∞∑

x=1

e
− 2(u+v)x

√
N =

Cv,2√
N

(
e
− 2(u+v)√

N

1− e
− 2(u+v)√

N

)
,

which converges to a constant as N → ∞, and which is therefore bounded by a constant D1 > 0 for all
N ≥ 1. We split the first term of the sum in (3.7) into two pieces, corresponding to when x ≥ 0 and x < 0.
When x ≥ 0, the multiplicative factor with the product log function is bounded by a constant

exp

(
−βW

(
e−x−log (2)β− 1

2K
1
2
v

)2)
≤ exp

(
−βW

(
2−1β− 1

2K
1
2
v

)2)
=: Dv,1.

Therefore, when x ≥ 0,

Cv√
N

∑

x∈Z̃(N)∩[0,∞)

e−2(u+v)x exp

(
−βW

(
e−x−log (2)β− 1

2K
1
2
v

)2)
≤ CvDv,1√

N

∑

x∈Z̃(N)∩[0,∞)

e−2(u+v)x.

Likewise, when x < 0, W
(
e−x−log (2)β− 1

2K
1
2
v

)2
grows super-linearly in |x|, and therefore there exists a

constant, which we will denote by Dv,2, such that for all such x,

e−2(u+v)x exp

(
−βW

(
e−x−log (2)β− 1

2K
1
2
v

)2)
≤ Dv,2e

2(u+v)x.

Therefore,

Cv√
N

∑

x∈Z̃(N)∩(−∞,0)

e−2(u+v)x exp

(
−βW

(
e−x−log (2)β− 1

2K
1
2
v

)2)
≤ CvDv,2√

N

∑

x∈Z̃(N)∩(−∞,0)

e2(u+v)x.

which is bounded by a constant depending only on u and v for all N . �

We demonstrate a similar result for Zu,v, which allows us to conclude that Q is a probability measure.
First we prove a bound for EWL [H(x, g, h)].

Lemma 3.4. There exist C2, C3, C4, C5 > 0 such that for all x ∈ R and for all v ∈ R, when v ≥ 0,

EWL [H(x, g, h)] ≤ e−2(u+v)xC2K0

(√
2e−x

)
,

and when v < 0,

EWL [H(x, g, h)] ≤ e−2(u+v)xC3K0

(√
2e−x

)
+ C4e

−2(u+v)+xvKv

(
2C5e

−x
)
.
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Proof. By the Corollary in Section 6.2 of [Yor92], we note that

EW

[
f
(
eg(1)

)
g

(∫ L

0

e−2g(t)dt

)]
,

= D1

∫ ∞

0

∫ ∞

0

f(y)g

(
1

r

)
exp

(
− r
2
(1 + y2)

)
ψyr(L)drdy,

= D1

∫ ∞

0

∫ ∞

0

f(y)g

(
1

r

)
exp

(
− r
2
(1 + y2)

)(∫ ∞

0

exp

(
− p2

2u
− yr cosh (y)

)
sinh (p) sin

(πp
L

)
dp

)
drdy,

for a constant D1 > 0. We achieve EWL [H(x, g, h)] by setting f(t) = t−2v and g(t) = e−e−2xt. We can bound
this quantity in steps. We begin by looking at the innermost integral,

∫ ∞

0

exp

(
−p

2

2
− yr cosh (p)

)
sinh (p) sin

(πp
L

)
dp ≤ 1

2

∫ ∞

0

exp

(
−p

2 + epyr − 2p

2

)
dp.

We note that there exists a constant D2 > 0 such that exp
(
− p2+epyr−2p

2

)
≤ exp (−D2e

pyr). A sufficient

choice of constant is any D2 such that, for all x > 0, D2 ≤ 1
2 + x2−2x

2exyr . For reasons which will be apparent

later in the argument, we also want to select D2 as a function of v so that 1
2 −D2

2|v| ≥ 0, so we pick

D2 := min

{
min
x≥0

{
1

2
+
x2 − 2x

2exyr

}
,

1√
2|v|

}
.

Therefore,
∫ ∞

0

exp

(
−p

2

2
− yr cosh (p)

)
sinh (p) sin

(πp
L

)
dp ≤ 1

2

∫ ∞

0

exp (−D2e
pyr)dp =

1

2
Γ(0, D2ry).

We can bound Γ(0, D2ry) by
e−D2ry

D2ry
when y ≥ 1, and on the domain [0, 1], |y−2v exp

(
− r

2y
2
)
| ≤ 1, therefore,

EWL

[
exp

(
−2vg(1)−

∫ L

0

e−2g(t)dt

)]
≤ D1

∫ ∞

0

g

(
1

r

)
exp

(
− r
2

)(∫ 1

0

Γ(0, D2yr)dy

)
dr

+
D1

2D2

∫ ∞

0

1

r
g

(
1

r

)
exp

(
− r
2

)

·
(∫ ∞

1

y−2v−1 exp
(
− r
2
y2 −D2yr

)
dy

)
dr.

(3.8)

We deal with the first term,

D1

∫ ∞

0

g

(
1

r

)
exp

(
− r
2

)∫ 1

0

Γ(0, D2ry)dydr = D1

∫ ∞

0

g

(
1

r

)
exp

(
− r
2

)−e−D2r +D2rΓ(0, D2r) + 1

D2r
dr

=
D1

D2

∫ ∞

0

−1

r
exp

(
−e

−2x

r
− r

2
−D2r

)
dr

+D1

∫ ∞

0

exp

(
−e

−2x

r
− r

2

)
Γ(0, D2r)dr

+
D1

D2

∫ ∞

0

1

r
exp

(
−e

−2x

r
− r

2

)
dr.

Each of these pieces is bounded by D1

D2
K0(

√
2e−x), so the entire expression is bounded by 3D1

D2
K0(

√
2e−x).

To deal with the second line of (3.8), we note that the interior integral over y is a Mellin transform of
exp

(
− r

2y
2 −D2ry

)
. Identity 3.13 in [Obe74] tells us that for all z with Re(z) > 0,
∫ ∞

0

xz−1 exp
(
−ax2 − bx

)
dx =

Γ(z)

(2a)
z
2
exp

(
b2

8a

)
D−z

(
b√
2a

)
,
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where Dz(·) is the parabolic cylinder function (see [Obe74] for further description). Therefore, when v < 0,
this evaluates to

rvΓ(−2v) exp

(
D2

2

4
r

)
D2v(C2

√
r).

The second line of (3.8) becomes

=
D1

2D2
Γ(−2v)

∫ ∞

0

rv−1 exp

(
−e

−2x

r
− r

2
+
D2

2

4
r

)
D2v(D2

√
r)dr.

This expression is bounded by

≤ D1

2D2
Γ(−2v)2v

∫ ∞

0

rv−1 exp

(
−e

−2x

r
− r

(
1

2
+D2

2v

))
dr,

which is also a Mellin transform. Identity 3.16 from [Obe74] tells us that
∫ ∞

0

xz−1 exp

(
−ax− b

x

)
dr = 2

(
b

a

) z
2

Kz

(
2
√
ab
)
.

Using this identity, the equation above becomes

≤ D1Γ(2|v|)2v
D2

(
1

2
+D2

2v

)v/2

exvKv

(
2e−x

(
1

2
+D2

2v

) 1
2

)
.

Finally, we consider the second line of (3.8) in the case where v > 0. Then
∫ ∞

1

exp
(
− r

2y
2 −D2yr

)

y2|v|+1
dy ≤ 1

2|v| ,

and therefore, the second line is bounded by D1

4|v|D2
K0

(√
2e−x

)
. In conclusion, when v ≥ 0,

EWL

[
exp

(
−2vg(1)−

∫ L

0

e−2(g(t)+x)dt

)]
≤
(
3D1

D2
+

D1

4|v|D2

)
K0

(√
2e−x

)
,

and when v < 0,

EWL

[
exp

(
−2vg(1)−

∫ L

0

e−2(g(t)+x)dt

)]

≤ 3D1

D2
K0

(√
2e−x

)
+
D1Γ(2|v|)2v

D2

(
1

2
+D2

2v

)v/2

exvKv

(
2

(
1

2
+D2

2v

) 1
2

e−x

)
.

Choosing

C2 :=
3D1

D2
+

D1

4|v|D2
, C3 :=

3D1

D2
, C4 :=

D1Γ(2|v|)2v
D2

Cv
5 , C5 :=

(
1

2
+D2

2v

) 1
2

,

finishes the proof. �

From these bounds, we can provide an alternate, and very short, proof for the fact that Zu,v is finite,
which is also proved in other references, such as [BKWW23].

Corollary 3.6. The partition function Zu,v is finite for all u+ v > 0.

Proof. When v ≥ 0,

Zu,v ≤ C2

∫ ∞

−∞
e−2(u+v)xK0(

√
2e−x)dx.

Identity 16 in [GR15], Section 6.563 states that for all µ, ν, a such that Re(µ+ 1± ν) > 0 and Re(a) > 0,
∫ ∞

0

xµKν(ax)dx = 2µ−1a−µ−1Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
. (3.9)
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Making the change of coordinates r = e−x, we can use this identity to evaluate the integral

Zu,v ≤ C2

∫ ∞

0

r2(u+v)−1K0(
√
2r)dr = C22

(u+v)−2 (Γ (u+ v))
2
.

and when v < 0,

Zu,v ≤ C3

∫ ∞

−∞
e−2(u+v)xK0(

√
2e−x)dx+ C4

∫ ∞

−∞
e−2(u+v)x+xvKv

(
2C5e

−x
)
dx,

≤ C32
(u+v)−2 (Γ(u+ v))

2
+ C4C

−v(2u−v)/2
5 Γ (u+ v) Γ (u+ 2v) .

We note that 2(u+ v)− v > 0 because v < 0. We use the same integral identity as before (3.9) to evaluate
the integral. �

Corollary 3.7. The measure Q (Definition 2.9) is a probability measure.

4. Bounds on the Path Measure

We want to show weak convergence of the sequence Q(N). In service of this goal, we will use this
section to prove some bounds on the speed of convergence of the part of Q(N) which depends only on
the path of the random walk. We consider an arbitrary bounded continuous function F (x, g, h), and set
CF := supx,g,h |F (x, g, h)|. In this section, we will see our second application of a KMT theorem, this

time the standard KMT embedding, which will help us compare H(N)(x, g, h) and H(x, g, h) on the same
probability space. The difference between the expectations over the paths is given by

E
W

(N)
L

[
F (x, g, h)H(N)(x, g, h)

]
− EWL [F (x, g, h)H(x, g, h)] ,

≤ E
W

(N)
L

[
F (x, g, h)H(N)(x, g, h)− F (x, g, h)H(x, g, h)

]
,

+ E
W

(N)
L

[F (x, g, h)H(x, g, h)]− EWL [F (x, g, h)H(x, g, h)] .

(4.1)

This section will be concerned with producing a bound on the final line of the equation above. For conve-
nience, suppressing dependence on F (x, g, h), u, and v, we define

ΠN :=
∣∣E

W
(N)
L

[F (x, g, h)H(x, g, h)]− EWL [F (x, g, h)H(x, g, h)]
∣∣.

To show a bound on ΠN , we will use the (standard) KMT embedding theorem to put everything onto the
same probability space.

Theorem 4.1 ([KMT75]). Let (Ω̃, F̃ ,PW(N)) be the probability space of two-dimensional Brownian motion
with respect to the two-dimensional Wiener measure and let (Ω,F ,PW) be the probability space of two-

dimensional simple random walks with N steps, scaled in time by N−1, and in space by N− 1
2 , with respect to

the appropriately scaled two-dimensional simple random walk measure. We will use (g, h) to denote elements

of Ω and (g̃, h̃) to denote elements of Ω̃. Then there exists a probability space with measure PKMT and a
constant C > 0 such that for all N, y ≥ 0,

PKMT

[
sup

0≤t≤L
‖(g, h)− (g̃, h̃)‖ ≥ CN− 1

2 (log (N) + y)

]
≤ e−y.

With this theorem in hand, we can prove the following bound:

Proposition 4.2. There exists Nv, Cv > 0 depending only on v such that for all N > Nv for all bounded
continuous functions F (x, g, h) with CF := sup |F (x, g, h)|, and for all x, v ∈ R,

ΠN ≤ 2CFCv log (N)N− 1
2 e−2(u+v)xEWL

[
exp

(
−e

−2x

4

∫ L

0

e−2g(t)dt

)]

+ 2CFN
− 1

2 sup
{
E
W

(N)
L

[H(x, g, h)] ,EWL [H(x, g, h)]
}
.
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Proof. We note that
∣∣EWL [F (x, g, h)H(x, g, h)]− E

W
(N)
L

[F (x, g, h)H(x, g, h)]
∣∣

=
∣∣EPKMT [F (x, g, h)H(x, g, h)− F (x, g̃, h̃)H(x, g̃, h̃)]

∣∣.
We define the set

KN,y :=

{
((g, h), (g̃, h̃))| sup

0≤t≤L
‖(g, h)− (g̃, h̃)‖ ≥ CN− 1

2 (log (N) + y)

}
,

and split the expectation in terms of KN,y and its complement.
∣∣EPKMT [F (x, g, h)H(x, g, h)− F (x, g̃, h̃)H(x, g̃, h̃)]

∣∣

=
∣∣EPKMT [F (x, g, h)H(x, g, h)− F (x, g̃, h̃)H(x, g̃, h̃)|Kc

N,y]
∣∣P(Kc

N,y)

+
∣∣EPKMT [F (x, g, h)H(x, g, h)− F (x, g̃, h̃)H(x, g̃, h̃)|KN,y]

∣∣P(KN,y).

(4.2)

By Theorem 4.1, P(KN,y) ≤ e−y and therefore the second term above is bounded by

≤ 2CF e
−y sup{E

W
(N)
L

[H(x, g, h)],EWL [H(x, g, h)}. (4.3)

The terms inside this supremum are bounded in Lemma 3.1 and Lemma 3.4. To bound the first term on the
left-hand side of (4.2), we note that when ‖g − g̃‖ < δ,

∣∣H(x, g, h)−H(x, g̃, h̃)
∣∣

= H(x, g̃, h̃)
∣∣ exp

(
−2v(g(L)− g̃(L))− e−2x

∫ L

0

e−2g′(t)
(
e−2(g(t)−g̃(t)) − 1

)
dt

)
− 1
∣∣,

∣∣H(x, g, h)−H(x, g̃, h̃)
∣∣ ≤ H(x, g̃, h̃) sup





exp
(
2|v|δ − e−2x(e−2δ − 1)

∫ L

0 e−2g̃(t)dt
)
− 1,

1− exp
(
−2|v|δ − e−2x(e−2δ − 1)

∫ L

0
e−2g̃(t)dt

)
,

exp
(
−2|v|δ − e−2x(e−2δ − 1)

∫ L

0 e−2g̃(t)dt
)
− 1




. (4.4)

We define the random variable Xk := e−2x
∫ L

0 e−2g̃(t)dt

∣∣∣∣
g̃(L)=k

which takes values in [0,∞) and has distribu-

tion ρX,L(m, k) ≥ 0, which, by calculations in Section 3, must satisfy

EWL [H(x, g, h)] = e−2(u+v)x

∫ ∞

−∞

∫ ∞

0

e−2vk−mρX,L(m, k)dmdk <∞.

We set δ = CN− 1
2 (log (

√
N) + y) to match the KMT constraints, and choose y = log (

√
N). Therefore, for

all N > Nδ, (4.4) is bounded by

≤ sup






e−2(u+v)x
∫∞
−∞ e−2vk

∫∞
0
e−m

(
e2|v|δ+m(e−2δ−1) − 1

)
ρX,L(m, k)dmdk,

e−2(u+v)x
∫∞
−∞ e−2vk

∫∞
0 e−m

(
1− e−2|v|δ+m(e−2δ−1)

)
ρX,L(m, k)dmdk,

e−2(u+v)x
∫∞
−∞ e−2vk

∫∞
0
e−m

(
e−2|v|δ+m(e−2δ−1) − 1

)
ρX,L(m, k)dmdk





.

There exist Nδ, Dv > 0, depending only on |v| such that for all N > Nv, all of the functions inside the
interior integrand are bounded by Dvδe

−m
4 (for instance, when N = 1000, and Dv = sup{|v|−1, 2|v|} for all

m ≥ 0, this inequality holds). Thus, the supremum of the terms above is bounded by

≤ Dvδe
−2(u+v)x

∫ ∞

−∞
e−2vk

∫ ∞

0

e−
m
4 ρX,L(m, k)dmdk,

≤ Dδe−2(u+v)xEWL

[
exp

(
−e

−2x

4

∫ L

0

e−2g(t)dt

)]
.
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We conclude that there exists Cv > 0 such that equation above is bounded by

≤ Cv log (N)N− 1
2 e−2(u+v)xEWL

[
exp

(
−e

−2x

4

∫ L

0

e−2g(t)dt

)]
.

Therefore, with y = log (
√
N), and noting that P(Kc

N,y) ≤ 1, for all v ∈ R, we see that

ΠN ≤ 2CFCv log (N)N− 1
2 e−2(u+v)xEWL

[
exp

(
−e

−2x

4

∫ L

0

e−2g′(t)dt

)]

+ 2CFN
− 1

2 sup
{
E
W

(N)
L

[H(x, g, h)] ,EWL [H(x, g, h)]
}
.

�

5. Proof of Weak Convergence

In this section, we prove Theorem 2.10. The proof of this theorem relies on the following intermediate
proposition, the proof of which will occupy most of this section.

Proposition 5.1. For all bounded continuous functions F (x, g, h)

lim
N→∞

E
P
(N)
L

[F (x, g, h)H(N)(x, g, h)] = EPL [F (x, g, h)H(x, g, h)].

Before proving Proposition 5.1, we give the proof of Theorem 2.10 using this result. We state the following
corollary of Proposition 5.1, which we obtain by setting F (x, g, h) = 1.

Corollary 5.2. The partition functions converge, limN→∞ Z
(N)
L;u,v = Zu,v.

With these propositions, we can prove Theorem 2.10.

Proof of Theorem 2.10. We combine the results of Corollary 5.2 and Proposition 5.1. This proves that for
all bounded continuous functions F (x, g, h).

lim
N→∞

(Z
(N)
L;u,v)

−1E
P
(N)
L

[
F (x, g, h)H(N)(x, g, h)

]
= Z−1

u,vEPL [F (x, g, h)H(x, g, h)] .

�

Finally, we finish the proof of Proposition 5.1.

Proof of Proposition 5.1. In this proof, we will use x to denote lattice points in Z̃(N) and r to denote

elements of R. We define the minimal element in Z̃(N) as x̃ := 1√
N

− log (
√
N). We must show that the

difference of these terms goes to zero.
∑

x∈Z̃(N)

N− 1
2E

W
(N)
L

[
F (x, g, h)H(N)(x, g, h)

]
− EL×W [F (r, g, h)H(r, g, h)]

=
∑

x∈Z̃(N)

E
L[x,x+1/

√
N]

[
E
W

(N)
L

[
F (x, g, h)H(N)(x, g, h)

]
− EWL [F (r, g, h)H(r, g, h)]

]

+ EL(−∞,x̃]×WL [F (r, g, h)H(r, g, h)] .

(5.1)

As before, we write CF := supx,g,h |F (x, g, h)|. We can deal with the final term of the bound simply by
integrating and applying the bound from Lemma 3.4. when v ≥ 0,

EL(−∞,x̃]×WL [F (r, g, h)H(r, g, h)] ≤
∫ 1√

N
−log (

√
N)

−∞
e−2(u+v)rCFC2K0

(√
2e−r

)
dr

≤ CFC2

∫ ∞

√
Ne−1/

√
N

t2(u+v)−1K0(
√
2t)dt

≤ CFC2D1

∫ ∞

√
Ne−1/

√
N

t2(u+v)−1e−
√
2tdt

≤ CFC2D12
−2(u+v)Γ

(
2(u+ v),

√
Ne−1/

√
N
)
.
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The first change of coordinates was t = e−x, and then we used the fact that for t > 1, there exists D1 > 0

such that K0(
√
2t) ≤ D1e

−
√
2t. And when v < 0,

EL(−∞,x̃]×WL [F (r, g, h)H(r, g, h)] ≤
∫ 1√

N
−log (

√
N)

−∞
e−2(u+v)rCFC3K0

(√
2e−x

)
dr

+

∫ 1√
N

−log (
√
N)

−∞
e−2(u+v)rCFC4e

xvKv

(
2C5e

−x
)
dr.

We already have a bound on the first term similar to the one we obtained for v ≥ 0, by

C3CFD22
−2(u+v)Γ(2(u+ v),

√
Ne−1/

√
N ), so we proceed to bound the second term,

∫ 1√
N

−log (
√
N)

−∞
e−2(u+v)rCFC4e

xvKv

(
2C5e

−x
)
dr = C4CF

∫ ∞

√
Ne−1/

√
N

t2(u+v)−v−1Kv(2C5t)dt

≤ C4D3CF

∫ ∞

√
Ne−1/

√
N

t2(u+v)−v−1e−2C5tdt

≤ C4D3CF (2C5)
−2u−vΓ

(
2(u+ v)− v, 2C5

√
Ne−1/

√
N
)
.

Where D3 > 0 is chosen so that Kv(2C5t) ≤ D3e
−2C5t for all t ≥ 1. Since the limits as N goes to

infinity of Γ(2(u + v),
√
Ne−1/

√
N ) and Γ(2(u + v) − v, 2C5

√
Ne−1/

√
N ) are both 0, we conclude that

limN→∞ EL(−∞,x̃]×W[F (r, g, h)H(r, g, h)] = 0. Now, we bound the second line of (5.1),

∑

x∈Z̃(N)

E
L[x,x+1/

√
N]

[
E
W

(N)
L

[
F (x, g, h)H(N)(x, g, h)

]
− EWL [F (r, g, h)H(r, g, h)]

]

≤
∑

x∈Z̃(N)

E
L[x,x+1/

√
N ]

[
E
W

(N)
L

[
F (x, g, h)H(N)(x, g, h)

]
− EWL [F (x, g, h)H(x, g, h)]

]

+
∑

x∈Z̃(N)

E
L[x,x+1/

√
N ] [EWL [F (x, g, h)H(x, g, h)]− EWL [F (r, g, h)H(r, g, h)]] .

(5.2)

To deal with the first line on the right-hand side of (5.2), we use the expression in (4.1) and then Proposi-
tion 4.2 to write

∑

x∈Z̃(N)

E
L[x,x+1/

√
N ]

[
E
W

(N)
L

[
F (x, g, h)H(N)(x, g, h)

]
− EWL [F (x, g, h)H(x, g, h)]

]

= 2CFEP(N)

[
H(N)(x, g, h)−H(x, g, h)

]

+ 2CFCv,1 log (N)N− 1
2

∑

x∈Z̃(N)

N− 1
2 e−2(u+v)EWL

[
exp

(
−e

−2x

4

∫ L

0

e−2g(t)dt

)]

+ 2CFN
− 1

2

∑

x∈Z̃(N)

N− 1
2 sup

{
E
W

(N)
L

[H(x, g, h)] ,EWL [H(x, g, h)]
}
.

Now, by the pointwise convergence ofH(N)(x, g, h) toH(x, g, h) (Theorem 2.8) and the fact thatH(N)(x, g, h)−
H(x, g, h) is bounded by an integrable function due to the results in Section 3, the first line of the expression
above converges to 0 by dominated convergence. The terms inside each of the sums in the equation above
are bounded by a constant, by a calculation identical to that in Corollary 3.5 and Corollary 3.6. Therefore,

the extra factors of log (N)N− 1
2 and N− 1

2 guarantee that those terms also converge to zero as N → ∞.
We proceed to deal with the second line of (5.2). For r ∈ [x, x + 1√

N
], there exists D1 > 0 such that the

above is bounded by

|H(x, g, h)−H(r, g, h)| ≤ N− 1
2D1H(r, g, h).
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Therefore,

2CF

∑

x∈Z̃(N)

E
L[x,x+1/

√
N] [EWL [H(x, g, h)−H(r, g, h)]] ≤ 2CFD1N

− 1
2

∫ ∞

−∞
EWL [H(r, g, h)] dr

Then, by Lemma 3.4, there exists D2 > 0 such that the equation above is bounded by D2N
− 1

2 , which goes
to 0 as N → ∞. Combining these bounds, we see that the right-hand side of (5.1) goes to zero. �

Appendix A. Technical Lemmas

In this appendix, we will prove Proposition 3.3, which essentially relies on Stirling’s approximation.

Proof of Proposition 3.3. By Stirling’s approximation, we see that for all |k| ≤ N , there exists a global
constant D1 > 0 such that for all N ∈ N,

(
2N

N + k

)
≤ D1√

2πN

(
1− k2

N2

)−N (
1− k2

N2

)− 1
2
(
1− 2k

N + k

)k

. (A.1)

Likewise, for |k + a
√
N | ≤ N there is a global constant D2 > 0 such that for all N ∈ N,

(
2N

N + k + a
√
N

)
≥ D2√

2πN

(
1− (k + a

√
N)2

N2

)−N (
1− (k + a

√
N)2

N2

)− 1
2
(
1− 2(k + a

√
N)

N + k + a
√
N

)k+a
√
N

.

(A.2)

We define a set

Ka := {k||k| < N, |k + a
√
N | < N

5
6 }.

We will show that on this domain, the following ratio can be bounded by a constant, possibly depending on
a, for all N ∈ N;

exp
(
− (k+a

√
N)2

N + k2

N

)(
1− (k+a

√
N)2

N2

)N

(
1− k2

N2

)N = exp

(
− (k + a

√
N)2

N
+N log

(
1− (k + a

√
N)2

N2

))
,

· exp
(
k2

N
−N log

(
1− k2

N2

))
.

Noting that |k|, |k + a
√
N | < N

5
6 , we see that the Taylor expansion of the logarithm converges, for all finite

N , in both cases. Therefore, the expression above becomes

= exp

(
− (k + a

√
N)2

N
+

(k + a
√
N)2

N

( ∞∑

l=1

(k + a
√
N)2l−2

lN2l−2

)
+
k2

N
− k2

N

( ∞∑

l=1

k2l−2

lN2l−2

))

= exp

(
k2

N

( ∞∑

l=1

(k + a
√
N)2l−2 − k2l−2

lN2l−2

)
+

2ak√
N

( ∞∑

l=1

(k + a
√
N)2l−2

lN2l−2

)
+ a2

( ∞∑

l=1

(k + a
√
N)2l−2

lN2l−2

))

≤ exp

((
k2

N
+

2|ak|√
N

+ a2
) ∞∑

l=1

1

lN
l
3

)
≤ exp


N

2
3 + 2|a|N 1

3 + a2

N
1
3

(
N

1
3 − 1

)


.

As N → ∞, the expression above will converge to a constant. In particular, we can choose Da,1 > 0, possibly
depending on a such that, for all N ∈ N, the expression above is bounded by Da,1 This allows us to conclude
that for any a ∈ R

exp

(
− (k + a

√
N)2

N
+
k2

N

)(
1− (k+a

√
N)2

N2

)N

(
1− k2

N2

)N = exp

(
− 2ak√

N
− a2

)
(
1− (k+a

√
N)2

N2

)N

(
1− k2

N2

)N ≤ Da,1.
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Likewise, for k ∈ Ka,

lim
N→∞

(
1− k2

N2

)− 1
2
(
1− 2k

N + k

)k

= 1, lim
N→∞

(
1− (k + a

√
N)2

N2

)− 1
2
(
1− 2(k + a

√
N)

N + k + a
√
N

)k+a
√
N

= 1,

and, therefore, there exists a constant Da,2 > 0 such that for all N ∈ N,

(
1− k2

N2

)− 1
2
(
1− 2k

N + k

)k
(
1− (k + a

√
N)2

N2

) 1
2
(
1− 2(k + a

√
N)

N + k + a
√
N

)−k−a
√
N

< Da,2.

Putting this together, we see that

exp

(
− 2ak√

N

)(
2N

N + k

)(
2N

N + k + a
√
N

)−1

≤ ea
2

Da,1Da,2.

�

Finally, we give the proof of Lemma 3.3.

Proof. We begin by noting the Radon-Nikodym derivative changing between Brownian motion and Brownian
motion with drift −m,

Zt(g) :=
dW
∣∣
Ft

dWm

∣∣
Ft

(g) = exp

(
mg(t)− 1

2
m2t

)
.

We study the conditional expectation expression

EW

[
F (g(t))

∣∣∣∣g(L) =
k√
N

]
=

∫ ∞

0

rρF (g(t))|g(L)= k√
N

(r)dr.

By assumption, the distribution of F (g(t)) is continuous, therefore

ρF (g(t))|g(L)= k√
N

(r) =
ρF (g(t)),g(L)

(
r, k√

N

)

ρg(L)

(
k√
N

) .

Therefore,

EW

[
F (g(t))

∣∣∣∣g(L) =
k√
N

]
=

1

ρg(L)

(
k√
N

)
∫ ∞

0

rρF (g(t)),g(L)

(
r,

k√
N

)
dr,

which allows us to conclude that

EW

[
F (g(t))1g(L)= k√

N

]
= EW

[
F (g(t))

∣∣∣∣g(L) =
k√
N

]
exp

(
−k

2

N

)
.

We can then perform the following change of measure calculation,

EW

[
F (g(t))1g(L)= k√

N

]
= EWm

[
F (gm(t))1gm(L)= k√

N

]
,

= EWm

[
F (g(t)−mt)1g(L)= k√

N
+m

]
,

= EW

[
F (g(t)−mt)ZL(g)1g(L)= k√

N
+m

]
,

= EW

[
F (g(t)−mt)ZL(g)

∣∣∣∣g(L) =
k√
N

+m

]
exp


−

(
k +m

√
N
)2

N


,

= EW

[
F (g(t)−mt)

∣∣∣∣g(L) =
k√
N

+m

]
exp

(
− mk√

N
− L+ 2

2
m2 − k2

N

)
.

The conclusion follows directly. �
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Appendix B. Pointwise Convergence

In this appendix, we recap the argument in [BLD23] that gives the proof of pointwise convergence of the
Radon-Nikodym derivatives. We quote a proposition from Durrett [Dur19].

Proposition B.1 (Exercise 3.1.1 [Dur19]). If the following three conditions are met

lim
n→∞

max
0≤j≤n

|cj,n| = 0, lim
n→∞

n∑

j=0

cj,n = λ, sup
n

n∑

j=0

|cj,n| <∞,

then

lim
n→∞

n∏

j=0

(1 + cj,n) = eλ.

Proposition B.2. H(N)(x, g, h) → H(x, g, h) for all (x, g, h) ∈ R× C0[0, L]× C0[0, L].

Proof. We recall the expressions for H(N)(x, g, h) and H(x, g, h), removing the restriction of H(N)(x, g, h)
to a subset of the domain R× C0[0, L]× C0[0, L] (compare to Definition 2.7).

H(N)(x, g, h) = exp (−2(u+ v)x− 2vg(L))

N∏

i=0

(
1− e−2(g(ti)+x)

N

)
,

H(x, g, h) = exp

(
−2(u+ v)x − 2vg(L)− e−2x

∫ L

0

e−2g(t)dt

)
.

We consider the sequence ci,N = −N−1e−2(g(ti)+x). For any fixed function g(t) on the interval [0, L], the

value e−2(g(t)+x) is bounded by a constant Cg > 0. Therefore,

lim
N→∞

|ci,N | ≤ lim
N→∞

N−1Cg = 0.

Likewise, because g ∈ C0[0, L], we also know that e−2g(ti) ∈ C[0, L]. Therefore, by the definition of the
Riemann integral,

lim
N→∞

−
N∑

i=0

e−2(g(ti)+x)

N
= −e−2x

∫ L

0

e−2g(t)dt.

Finally, by the same reasoning,

lim
N→∞

N∑

i=0

|ci,N | = lim
N→∞

N∑

i=0

N−1e−2(g(ti)+x) = e−2x

∫ L

0

e−2g(t)dt,

and therefore supN
∑N

i=0 |ci,N | <∞. Putting all of these calculations together, Proposition B.1 allows us to
conclude that

lim
N→∞

exp (−2(u+ v)x − 2vg(L))

N∏

i=0

(
1− e−2(g(ti)+x)

N

)

= exp

(
−2(u+ v)x− 2vg(L)− e−2x

∫ L

0

e−2g(t)dt

)
.

�
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