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Abstract. We consider the anomalous, spin, valley, and valley spin Hall effects in a

pristine ex-so-tic graphene-based van-der-Waals (vdW) heterostructure consisting of a

bilayer graphene (BLG) between semiconducting van-der-Waals material with strong

SOC (e.g., WS2) and ferromagnetic and insulating vdW material (e.g. Cr2Ge2Te6).

Reducing the effective Hamiltonian derived by Zollner et al [Phys. Rev. Lett. 125(19),

196402 (2020)] to low-energy states, and using the Green function formalism, we

derived analytical results for the Hall conductivities as a function of the Fermi level and

gate voltage. Depending on these parameters, we found quantized valley conductivity.

Keywords: ex-so-tic van-der-Waals structures, Berry curvature, anomalous Hall effect,

spin Hall effect, valley Hall effect

1. Introduction

Two-dimensional (2D) van-der-Waals (vdW) materials, being promising materials for

further development of spintronics and a real step towards further miniaturization of

electronic devices [1, 2], focus nowadays an enormous attention. The most fascinating

aspect of van-der-Waals structures is the possibility of designing electronic, magnetic

and topological properties on demand due to a simple consequence of stacking selected

2D van-der-Waals crystals (having specific physical properties) and proximity effects

that emerge in such stacks [3]. Accordingly, van-der-Waals hybrid structures, created

by stacking 2D crystals that reveal a wide range of physical properties and phases

(e.g., insulators, semiconductors, metals, superconductors, magnetics, ferroelectrics,

etc. [4, 5, 6, 7, 8]), constitute a unique class of materials with a combination of different

physical properties, that can be tuned not only by external fields and forces but also

due to mutual coupling between different phases of matter within the structure. This

is the case, for example, in van-der-Waals multiferroics [9, 10], that can be obtained by

stacking two van-der-Waals crystals: ferroelectric and ferromagnetic ones.
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Figure 1. Ex-so-tic van-der Waals structure (on the left) consisting of a bilayer

graphene (BLG) between other 2D vdW crystals: semiconducting with strong SOC

(e.g., transition metal dichalcogenide such as WS2) and ferromagnetic insulator such as

Cr2Ge2Te6. The intralayer hopping parameter γ0 and interlayer hopping ones γ0,1,3,4
taken into account in the considered Hamiltonian of BLG are indicated on the right

side. Here A1,2 (B1,2) correspond to the graphene top (1) or bottom (2) layer, and

graphene sublattice A or B.

According to the main paradigm of spin-electronics, which assumes the usage of

electron spin on equal footing with its charge, the all-electrical control of the spin

degree of freedom and search for additional degrees of freedom that can be coupled

to the spin are of special interest [11]. Naturally, the spin-orbit-driven transport

phenomena, such as current-induced spin polarization, anomalous and spin Hall effects

and their quantum counterparts [12, 13, 1, 14] have become a hallmark of modern

spin electronics. Importantly, van-der-Waals hybrid structures with their additional

degrees of freedom, such as a valley or pseudospin (related to the sublattices and other

orbital properties of vdW structures), seem to be a perfect platform for designing

a new generation of spintronic devices [6, 7, 15, 16, 17, 18]. Among the van-der-

Waals hybrid structures, the stacks containing graphene are under great attention.

In this particular case, one can design structures that explore the unique and high-

quality electronic properties of graphene, enriched with additional physical properties

revealed as a consequence of the proximity effects due to its contact with adjacent

layers (see for example [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and

reviews [34, 35, 36, 37, 38, 39]).

Here we consider the Hall effects in a pristine ex-so-tic graphene-based van-der-

Waals heterostructure [24]. In other words, we restrict our considerations to transport

properties in the clean limit, i.e., we do not consider the effect of spin-orbital scatterers,

that could lead to an extrinsic contribution to the Hall conductivities due to the skew-

scattering or side-jump mechanisms [12]. The name ’ex-so-tic structure’ originates from

the building blocks in the structure under consideration. Namely, a bilayer of graphene

(BLG) is deposited on a magnetic 2D insulator, e.g., on Cr2Ge2Te6 (CGT), that creates

a strong proximity-induced exchange field in the bottom (1st) layer of BLG and only

weakly affects the electronic properties of the top (2nd) layer. Additionally, from the top,

the BLG is covered by a semiconducting 2D transition metal dichalcogenide (TMDC),
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i.e. WS2, responsible for a strong proximity-induced spin-orbit coupling in the top layer

of BLG and a weak one in the bottom layer. The structure is presented in Fig 1.

Interestingly, the electronic band structure is highly tunable by an external gate voltage

that dramatically changes the impact of the spin-orbit and exchange interactions on the

electronic conduction and valence bands (for details, see [24]).

The paper is organized as follows. In Sec. 2 we introduce the k · p Hamiltonian

provided in [24] and derive a reduced Hamiltonian that describes the low-energy

electronic spectrum around the K and K’ points. The reduced Hamiltonian is used

in the following sections to derive all the analytical results. Then, in Sec. 3 we present

the formalism, which we use in Sec. 4 to calculate the intrinsic components of the

anomalous, spin Hall, valley, and spin-valley Hall effects. The general summary and

conclusions are provided in Sec. 5.

2. Model

We consider ex-so-tic graphene-based van-der-Waals heterostructure, i.e. the system

consisting of a bilayer of graphene (BLG) deposited on the magnetic 2D insulator,

Cr2Ge2Te6 (CGT), that creates a strong proximity-induced exchange field in the bottom

layer of BLG, and covered by a semiconducting 2D TMDC, WS2, responsible for a

strong proximity spin-orbit coupling in the top layer of BLG. The structure is presented

schematically in Fig 1.

2.1. k · p Hamiltonian

The effective k · p Hamiltonian describing CGT/BLG/TMDC structure has been

derived in Ref. [24] based on DFT modelling and symmetry considerations. This

Hamiltonian describes electronic states in the vicinity of K and K’ points (indexed

by τ = ±1) of the Brillouin zone [24, 40, 41]:

Ĥτ = Ĥτ
ORB + Ĥτ

SOC + Ĥτ
R + ĤEX. (1)

The first term of the above Hamiltonian describes the orbital physics of the structure

and takes the form [24]:

Ĥτ
ORB = −

√
3γ0a

2
µ̂0 ⊗ (τkxσ̂x + kyσ̂y)⊗ ŝ0 +

γ1
2
(µ̂x ⊗ σ̂x − µ̂y ⊗ σ̂y)⊗ ŝ0

−
√
3γ3a

4
µ̂x ⊗ (τkxσ̂x − kyσ̂y)⊗ ŝ0 −

√
3γ3a

4
µ̂y ⊗ (τkxσ̂y + kyσ̂x)⊗ ŝ0

−
√
3γ4a

2
(τkxµ̂x − kyµ̂y)⊗ σ̂0 ⊗ ŝ0

+ V µ̂z ⊗ σ̂0 ⊗ ŝ0 +∆(µ̂+ ⊗ σ̂+ + µ̂− ⊗ σ̂−)⊗ ŝ0,

(2)

where γ0,1,3,4 define the intralayer electron hopping between nearest neighbors, as well

as interlayer hoppings between nearest and next nearest sites, as indicated in Fig.1, a
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Table 1. Parameters fitted by Zollner et al. [24] to the model Hamiltonian 1.

Numerical data presented in this manuscript are calculated for these parameters.

Hopping parameters [eV]: γ0 γ1 γ3 γ4

2.432 0.365 - 0.273 - 0.164

Proximity-induced SO [meV]: λA1
I λB1

I λA2
I λB2

I

0 0 1.132 - 1.132

Proximity-induced EX [meV]: λA1
EX λB1

EX λA2
EX λB2

EX

- 3.874 - 3.874 0 0

Other parameters: a ∆

2.5 [Å] 8.854 [meV]

is the lattice constant of graphene, V describes an effect of gate voltage (transverse

displacement field), and ∆ is the so-called orbital gap, being a consequence of the

asymmetry in the energy shift of the bonding and antibonding states.

The next term describes the intrinsic spin-orbital proximity effect and has the following

form [24]:

Ĥτ
SOC = µ̂+ ⊗ τ(λA1

I σ̂+ + λB1

I σ̂−)⊗ ŝz − µ̂− ⊗ τ(λA2

I σ̂+ + λB2

I σ̂−)⊗ ŝz, (3)

with the spin-orbit coupling constant λXn
I , where X = {A,B} and n = {1, 2} indicate

sublattice (A or B) in the top (1) or bottom (2) layer, σ̂± = (σ̂z ± σ̂0)/2, and

µ̂± = (µ̂z ± µ̂0)/2.

The Rashba Hamiltonian for BLG reads [24]:

Ĥτ
R =

1

2
(λIRµ̂z + 2λBRµ̂0)⊗ (τ σ̂x ⊗ ŝy − σ̂y ⊗ ŝx), (4)

where λIR describes the strength of the so-called intrinsic Rashba spin-orbit coupling

(or Dresselhaus-like SOC), originating from a local bulk-inversion-asymmetry due to the

contact with adjacent layers; and λBR is the Bychkov-Rashba coupling constant due to

the global space symmetry breaking [40].

The magnetic proximity effect responsible for the exchange interaction in BLG as a

result of interaction with an adjacent magnetic layer with out-of-plane anisotropy (i.e.,

magnetization oriented in the z-direction) is described by the following term [24]:

ĤEX = µ̂+ ⊗ (−λA1

EXσ̂+ + λB1

EXσ̂−)⊗ ŝz − µ̂− ⊗ (−λA2

EXσ̂+ + λB2

EXσ̂−)⊗ ŝz (5)

where λXn
EX (X = {A,B}, n = {1, 2}) is the parameter describing the strength of

proximity exchange coupling in the sublattice X of the n-th layer.

Figure 2 presents the electronic spectrum around the K and K’ points, obtained

based on Hamiltonian (1) (solid lines) and calculated for the parameters collected in

Tab. 1. The band structure consists of four pairs of subbands (for each K point): two

pairs, form the valence and conduction bands close to the Fermi level, and two other
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Figure 2. Energy spectrum around the K and K’ points, obtained based on k · p
model described by Hamiltonian (1) (a,b); and low-energy states around the K and

K’ points (c,d), where the eigenvalues of k · p Hamiltonian (solid lines) are compared

with the eigenvalues corresponding to the low-energy reduced Hamiltonian given by

Eq.(11) (dotted lines).

pairs correspond to the valence and conduction bands shifted in energy away from the

Fermi level by ±γ1 = ±0.36eV. The latter conduction and valence bands are formed

mainly from the pz orbitals at atoms A1 and B2, whereas the former bands are formed

mainly from the orbitals of atoms A2 and B1. In the following considerations we assume

λA2
I = λI, λ

B2
I = −λI, λ

A1
EX = λB1

EX = λEX

2.2. Reduced low-energy Hamiltonian

As the transport properties are related to the four low-energy bands (for each Dirac

point) in the vicinity of the Fermi level, one can further reduce the 8×8 Hamiltonian (1)

to a simpler 4× 4 form. We derived the reduced Hamiltonian using the Green function

method [42, 34]. In the first step the Hamiltonian (1) was written in the basis

(B1↑,B1↓,A2↑,A2↓, A1↑,A1↓,B2↑, B2↓) and separated into 2× 2 blocks:

Ĥτ =

Ñ
H11 H12

H21 H22

é
(6)
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In consequence one can define the block H22 that is formed by A1-B2 dimer (related to

the higher energy states), and the block H11 that is formed by low-energy states. Next,

the Hamiltonian (6) has been expanded with respect to the parameter p = 1/γ1. This

procedure allows one effectively to exclude the atomic sites involved in the A1-B2 dimer

bond. Accordingly, the Green function related to (6) has the form:

G =

Ñ
G11 G12

G21 G22

é
, (7)

where G11 contains information on the low-energy states and can be used to determine

the effective reduced Hamiltonian [42]. Using the definition of the Green function one

can write

G =

Ñ
H11 − ϵ H12

H21 H22 − ϵ

é−1

=

Ñ
G0−1

11 H12

H21 G0−1
22

é−1

(8)

where

H0
αα = (H0

αα − ϵ)−1. (9)

Evaluation of (8) gives:

G−1
11 + ε = H11 −H12G0

22H21. (10)

Assuming that |ε| ≪ γ1, the expression defining G0
22 can be expanded with respect to

the parameter p = 1/γ1. Finally, the reduced Hamiltonian corresponding to G11 can be

written in the form:

Ĥτ

B1A2
= −v

2

γ1

(
1 + γ240

) (
(k2x − k2y)η̂x − 2kxkyη̂y

)
⊗ ŝ0

− 2
v2

γ1
γ40k

2(η̂0 ⊗ ŝ0)− vγ30(τkxη̂x + kyη̂y)⊗ ŝ0

− λEX(η̂+ ⊗ ŝz) + λIτ(η̂− ⊗ ŝz) + V (η̂z ⊗ ŝ0),

(11)

where γ30 = γ3/γ0, γ40 = γ4/γ0, and η̂α,η̂0 represent Pauli matrices and identity matrix

acting in the B1-A2 dimer space, k± = kxτ ± iky, and η̂± = 1
2
(σz ± σ0).

The eigenvalues of Hamiltonian (11) take the form:

Eτ
1,2 = −F τ

k ± 1

2
(λEX − τλI)− 2

γ40
γ1
v2k2 (12)

Eτ
3,4 = F τ

k ± 1

2
(λEX − τλI)− 2

γ40
γ1
v2k2 (13)

where

F τ
k =

ï
v2γ230k

2 +
v4

γ21
(1 + γ240)

2k4 +
1

4
(2V ± (λEX + τλI))

2 − τ

2
γ1γ3(1 + γ240)kx(k2x − 3k2y)

ò1/2
.

(14)
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Figure 3. Electronic band structure corresponding to the reduced Hamiltonian

(11) describing ex-so-tic vdW structure (top panel). Red and blue curves present

Eigenvalues given by Eqs. (12) and (13). For comparison the band structure

for γ3,4 = 0 is plotted in grey. The bottom panel presents the Berry curvature

corresponding to the bands presented in the upper panel.

The energy spectrum related to the reduced Hamiltonian is presented in Fig. 2 by the

dashed lines. From the bottom panel of Fig. 2 one can see that in the energy window

between -25meV and +25meV the reduced model is a good approximation of the k · p
model.

The topological properties of the electronic structure are described by the Berry

curvature:

Ωj = ∇k ×Aj(k) (15)

where Aj = i⟨ψj|∇k|ψj⟩ is the Berry connection.

Effects of interlayer hoppings between the sites A1-A2 and B1-B2, defined by γ4,

and of the hoppings between the sites A2-B1, defined by γ3 (see Fig. 1), are small and

give only a correction to the above expressions. In fact, the hoppings γ3,4 introduce

a small tilting of the energy branches as well as their shift from the K/K’ point, as

depicted in Fig.3, where the eigenvalues of the reduced Hamiltonian are plotted for zero

gate voltage (solid gray lines denote the eigenvalues (12) and (13) for γ3,4 = 0). In the

context of transport characteristics studied in this manuscript, the assumption γ3,4 = 0

does not affect general trends but only leads to small quantitative changes. In turn, a

big advantage of such a simplification is the possibility of obtaining analytical formulas
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for transport characteristics.

The eigenvalues of Hamiltonian (11) for the case γ3,4 = 0 take the simple forms:

Eτ
1,2 = −

 
v4

γ21
k4 +

Å
V ± 1

2
(λEX + τλI)

ã2
± 1

2
(λEX − τλI), (16)

Eτ
3,4 =

 
v4

γ21
k4 +

Å
V ± 1

2
(λEX + τλI)

ã2
± 1

2
(λEX − τλI). (17)

In turn, Berry curvatures for the valence bands Eτ
1,2 take following simple forms:

Ωτ
1,2 = τ

4π v4

γ2
1
k2

(
V ± 1

2
(λEX + τλI)

)Ä
v4

γ2
1
k4 +

(
V ± 1

2
(λEX + τλI)

)2ä3/2 , (18)

where τ = ±1 indicates the valley K/K’, respectively, and the sign ± corresponds to

band Eτ
1,2, respectively. In turn, Berry curvature for the conduction bands Eτ

3,4 reads:

Ωτ
3 = −Ωτ

1 Ωτ
4 = −Ωτ

2. (19)

Figure 4 shows how the energy dispersion and Berry curvature change with the

gate voltage (here defined in the energy units). By changing the gate voltage from

-8 meV to +8 meV, one can observe swapping between the domination of exchange

or spin-orbit coupling in the valence and conduction electronic states. For example,

the spin polarizations of the conduction bands in the K and K’ points are identical

for V = 8meV, which suggests the dominant role of exchange interaction in the

corresponding electronics states, whereas the spin polarizations of the valence bands

are opposite in the K and K’ points, which indicates on the dominant role of spin-orbit

interaction in the electronic states. This is, because the spin-orbit interaction does not

break the time-reversal symmetry, and thus leads to the opposite spin splitting in the

K and K’ points, whereas the spin splitting due to the exchange interaction (that leads

to breaking of the time-reversal symmetry) should be the same in the K and K’ points.

Accordingly, tuning the gate voltage leads to swapping of the character of spin splitting

in the valence and conduction bands, i.e., to the swapping between spin-orbital and

exchange dominated character of the electronic states at the fixed Fermi level. Another

important feature of the ex-so-tic structure is the fact that the energy spectrum in

the K and K’s points is substantially different, which opens the route towards valley-

contrasting phenomena in these structures.

3. Method

The transverse dc electric and spin conductivity can be written in terms of Green’s

function formalism in the following valley-dependent form:

στ
xy = lim

ω→0

e2ℏ
ω

∫
dε

2π

∫
d2k

(2π)2
Tr

[
v̂τxG

τ
k(ε+ ω)v̂τyG

τ
k(ε)

]
(20)
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Figure 4. Band structure and the corresponding Berry curvature of ex-so-tic structure

at K and K’ point for indicated values of the gate voltage. Here, γ3,4 = 0 and the

other parameters are listed in Tab. 1. The dashed and solid lines indicate positive and

negative spin polarization, sz = ±1/2, respectively.

σsz τ
xy = lim

ω→0

e2ℏ
ω

∫
dε

2π

∫
d2k

(2π)2
Tr
î
ĵsz τx Gτ

k(ε+ ω)v̂τyG
τ
k(ε)
ó

(21)

where v̂α = 1
ℏ
∂Ĥτ

B1A2

∂kα
denotes the velocity operator (α = x, y), and ĵsz τx = 1

2
[v̂τx, Ŝz]+

is the spin current density operator, with the spin operator defined as Ŝz = ℏ
2
η̂0 ⊗ ŝz.

Furthermore, Gτ
k is the casual Green’s function defined as Gτ

k = [(ε+µ+ iδsign(ε))η̂0⊗
ŝ0 − Ĥτ

B1A2]
−1, where µ denotes the chemical potential, and δ → 0+ (as we consider the

clean limit). Taking into account contributions from both valleys (K and K’) one finds

the following expressions for the anomalous and spin Hall conductivity:

σAH
xy = σK

xy + σK′

xy := AHC (22)

σSH
xy = σsz K

xy + σsz K′

xy := SHC (23)
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In the clean limit, when we consider only topological contribution to the Hall

conductivity, Eq. (20) can be rewritten in terms of the Berry curvature as follows:

στ
xy =

e2

ℏ
∑
j

∫
d2k

(2π)2
Ωτ

j f(Ej) (24)

where f(Ej) denotes the Fermi-Dirac distribution function for the j-th subband (for

details see e.g. [43, 23]).

To explore valley contrasting Hall effects, one needs to subtract the transverse

charge (spin) Hall conductivity for the K and K’ points. Accordingly, we use the

following definitions for valley and valley spin Hall effects:

σV H
xy = σK

xy − σK′

xy := VHC (25)

σV SH
xy = σsz K

xy − σsz K′

xy := VSHC (26)

4. Results and discussion

Here, we present and discuss the results obtained for the anomalous and spin Hall

effects, as well as for two valley-contrasting phenomena known as the valley Hall effect

and valley spin Hall effect. First, we present the results obtained when neglecting the

interlayer hopping integrals γ3,4. In such a case, all the numerical results presented

in the next two subsections have been obtained based on fully analytical solutions (all

formulas are presented in the supplementary material). Then, in the last subsection we

will discuss the influence of a nonzero γ3,4.

4.1. Anomalous and Spin Hall Effects

Figure 5 presents the anomalous Hall and spin Hall conductivities as a function of

chemical potential and gate voltage. Both AHE and SHE do not achieve quantized

values in the energy gap. Thus, there is no transition to a topologically nontrivial phase.

The AHC displays very sharp peaks in a well-defined range of chemical potential and

gate voltage. More precisely, AHE is negative for positive chemical potentials, µ, and

negative values of gate voltage, V , while it is positive for negative chemical potentials

and positive values of gate voltage. Moreover, it displays very sharp peaks only for a

very narrow range of µ and V . In the top right plot in Fig. 5, the peaks in AHC are

well-seen as red and blue hot spots, that appear for the gate voltage range, where the

spin-orbit interaction dominates in the valence or conduction band. In Fig. 5 one can

see, that SHC behaves in a similar way, however, it is positive in the whole range of µ and

V , and reveals peaks when the Fermi energy is in the valence or conduction band and

the gate voltage ensure the dominant role of spin-orbit interaction in the corresponding

electronic states. These characteristics of the anomalous and spin Hall effects can be

very attractive in the context of applications and construction of electronic elements

with very strong electronic signals only in a very specific energy range.
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Figure 5. Anomalous Hall conductivity and spin Hall conductivity as a function

of chemical potential, µ and gate voltage,V . The other parameters are listed in the

Tab. 1.

4.2. Valley Hall effects

An important feature of the ex-so-tic structure under consideration is a clear distinction

between the energy dispersion around the K and K’s points. This allows one to measure

the system response that comes from only a single valley or at least is dominated by

electronic states from a specific valley. Recently, the valley Hall effects in graphene-

based systems have been considered in Refs [23, 44, 45]. However, as long as the energy

bands are not distinguishable in the K and K’ points, the valley-dependent transport

properties are very difficult to be measured. The ex-so-tic structure seems to be a big

step forward in the development of valleytronics.

Figure 6 shows behaviour of the valley Hall and valley spin Hall conductivities as

a function of chemical potential and gate voltage. The valley Hall effect is nonzero in

the system under consideration, and VHC reaches the quantized value when the Fermi

energy lies inside the energy gap. This quantized value changes from +4e2/h to −4e2/h,

depending on the gate voltage. It is worth noting that the quantized valley Hall effect

appears in the system because the Hall conductivity associated with electronic states

in the K and K’ points achieves a quantized value equal ±2e2/h respectively for K/K’

point, when the Fermi level is inside the energy gap. This explains not only the quantized

VHC but also a zero AHC when the Fermi energy lies in the energy gap. Figure 6 also
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Figure 6. Valley Hall conductivity and valley spin Hall conductivity as a function

of chemical potential, µ and gate voltage,V . The other parameters are listed in the

Tab. 1.

shows, that in ex-so-tic structures one can expect a nonzero valley spin Hall effect.

The corresponding VSHC, in contrast to the SHC, is positive for the whole range of

parameters V and µ. Moreover, the well-defined picks in VSHC are observed for the

Fermi levels in the valence or conduction bands, depending on the value of gate voltage

that ensures the dominant role of exchange interaction in electronic states.

4.3. Effect of interlayer shopping γ3 and γ4

Now, we discuss the effect of nonzero hopping integrals γ3,4. Fig. 7 presents all the

Hall conductivities discussed in the previous two subsections, but with γ3,4 taken into

account. The results have been obtained numerically and do not differ qualitatively from

those presented in Figs. 5 and 6. However, in all these characteristics, one can identify

additional kinks or spikes. These sharp spikes reflect the valley-contrasting physics and

band structure. This is clearly visible in Fig. 8, where in the left panel we present charge

Hall conductivity for the K and K’ points as a function of chemical potential, as well as

their sum (that is the AHC) and their difference (that is the VHC), see the right panel.

In this plot, it is clearly seen that each kink or spike in the Hall conductivity reflects

the position of the local extremes in energy bands.
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of chemical potential and gate voltage in case of nonzero γ3,4 hoppings. The other

parameters are listed in the Tab. 1.
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chemical potential and anomalous and valley Hall effect (right panel) as a function of

chemical potential in case of nonzero γ3,4 hoppings. The other parameters are listed

in the Tab. 1.

5. Conclusions

We investigated the anomalous, spin, and valley-contrasting effects in an ex-so-tic van-

der-Waals structure consisting of a bilayer graphene deposited on a ferromagnetic 2D

insulator, such as CGT, and covered by a semiconducting 2D crystal, such as WS2.
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Accordingly, one 2D crystal ensures proximity-induced exchange coupling, and the

second one ensures proximity-induced spin-orbit coupling, and both affect the electronic

structure of BLG. We have derived the reduced Hamiltonian describing the low-energy

spectrum of the ex-so-tic structure, and subsequently we have used the Green’s function

formalism to calculate the specific charge and spin Hall conductivities. Interestingly, for

a fixed position of Fermi level, one can tune the gate voltage to obtain strong nonzero

anomalous or spin Hall conductivity. The well-picked AHC (or SHC) characteristic can

be useful for new elements for spintronics (such as diodes or transistors). Moreover, we

showed that the system can be tuned to the specific range of gate voltage and chemical

potentials, for which it displays the quantized valley Hall conductivity. The quantized

VHC can be equal ±4e2/h depending on the sign of gate voltage.
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