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Topological flat moiré bands with nearly ideal quantum geometry have been identified in AA
homobilayer transition metal dichalcogenide moiré superlattices, and are thought to be crucial for
understanding the fractional Chern insulating states recently observed therein. Previous work pro-
posed viewing the system using an adiabatic approximation that replaces the position-dependence
of the layer spinor by a nonuniform periodic effective magnetic field. When the local zero-point
kinetic energy of this magnetic field cancels identically against that of an effective Zeeman energy, a
Bloch-band version of Aharonov-Casher zero-energy modes, which we refer to as Aharonov-Casher
band, emerges leading to ideal quantum geometry. Here, we critically examine the validity of the
adiabatic approximation and identify the parameter regimes under which Aharonov-Casher bands
emerge. We show that the adiabatic approximation is accurate for a wide range of parameters
including those realized in experiments. Furthermore, we show that while the cancellation leading
to the emergence of Aharonov-Casher bands is generally not possible beyond the leading Fourier
harmonic, the leading harmonic is the dominant term in the Fourier expansions of the zero-point
kinetic energy and Zeeman energy. As a result, the leading harmonic expansion accurately captures
the trend of the bandwidth and quantum geometry, though it may fail to quantitatively reproduce
more detailed information about the bands such as the Berry curvature distribution.

I. INTRODUCTION

The recent observation of fractional Chern insula-
tor (FCI) states1–5 has triggered tremendous inter-
est in the strongly correlated states of twisted tran-
sition metal dichalcogenide (TMD) homobilayer moiré
superlattices6–11. The standard continuum model12 of
TMD homobilayer moiré superlattices predicts a magic
twist angle range13 in both MoTe2 and WSe2 at which
the first valence valley-projected moiré band is nearly
flat14–16, and topologically nontrivial12,15,17 with nearly
ideal quantum geometry18. These properties are believed
to be key19–29 to FCI states at fractional band fillings. In
a recent Letter30, some of us have proposed an explana-
tion for these properties based on an adiabatic approxi-
mation that recognizes the non-trivial topological charac-
ter of the layer-pseudospin field in TMD homobilayers12
and assumes that the layer pseudospin is locked to the
local direction of the model’s pseudospin field ∆(r) (see
Fig. 1 (a)). A similar approximation has been adopted
in the past31–34 to speculate on the possibility of quan-
tum hall effects in thin-film Skyrmion crystals. In this
approximation the real-space Berry phase of the layer
pseudospin is represented by a position-dependent effec-
tive magnetic field35 which has a nonzero average value
with one flux quantum per moiré unit cell. The adia-
batic approximation is accurate in the small twist angle
limit where the moiré period is large, and is shown in this
work to maintain accuracy near the magic twist angles
of homobilayer TMD moiré models with experimentally
realistic model parameters14.

The adiabatic approximation Hamiltonian Had is that
of a 2-dimensional (2D) hole with a periodic (dimension-
less) effective magnetic field B(r) and a periodic poten-
tial Z(r) that we view as a position dependent effective

(a) continuum model

nearly flat and ideal at magic angle

(c) Aharonov-Casher

exactly flat and ideal in all cases

(b) adiabatic approximation

nearly flat and ideal when U1 = 0

suitable model
parameters

not too large
twist angle

U(r) = 0

FIG. 1: An outline of various approximation regimes we
use to understand the ideal flat band behavior of twisted
homobilayer TMDs. Here σ = (σx, σy, σz) is the layer-
pseudospin Pauli matrix vector, p̂ = p̂x + ip̂y = −i∂x +
∂y (ℏ = 1) and A(r) = Ax(r) + iAy(r). Details are
explained in the text.

Zeeman energy (see Fig. 1 (b)). Our picture of TMD
homobilayers draws on the observation of Aharonov and
Casher36 that a particle in an arbitrary (not necessar-
ily uniform) magnetic field has a number of zero energy
states37–39 – one for each quantum of magnetic flux –
when the zero point kinetic energy B(r)/2m cancels lo-
cally against the Zeeman energy Z(r). In the case consid-
ered by Aharonov and Casher, this cancellation is a prop-
erty of a spin-1/2 electron with spin g-factor g = 2 where
Z(r) is simply the true Zeeman energy produced by the
magnetic field. In the case of interest here, the effective
magnetic field does not couple to spin and the cancelling
Z(r) must have a different origin. When cancellation
does occur (see Fig. 1 (c)), a special case of the situation
considered by Aharonov and Casher is presented in which
the position-dependent magnetic field has crystal trans-
lational symmetry and the zero energy states therefore
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U1 = 0U3 = 0

(a) (b)

(c) (d)

U1 = 0U3 = 0

FIG. 2: (a)-(b) Dependence of the bandwidth of the
first moiré miniband of Had on U(r) characterized by
its Fourier coefficients Ui, where i labels a shell of re-
ciprocal lattice vectors. We have taken the typical WSe2
model parameter from Ref. 14 and assumed Ui = 0 for all
i > 3 and (a) U3 = 0; (b) U1 = 0. (c)-(d) The quantum
geometry idealness of the first band under the same pa-
rameter settings. Here the idealness is characterized by
the minimum over the entire moiré Brillouin-zone (mBZ)
of the ratio of the Berry curvature Ωk to the trace of the
Fubini-Study metric gk. This ratio is always smaller than
or equal to 119, and is identically equal to 1 for an ideal
band. All the plots cover most of the range over which
the Chern number is 1.

form a (quasi-) Bloch band40, which we refer to as the
Aharonov-Casher (AC) band. Since each AC zero energy
state has the form of a holomorphic function of z = x+iy
times a common factor, the AC band is vortexable28, and
has ideal quantum geometry, and therefore21,26,27 wave
functions similar to those of Landau levels.

In TMD AA homobilayer moirés, the local Zeeman en-
ergy Z(r) never cancels the zero-point energy perfectly.
We refer to the difference as the residual potential U(r)
(see Fig. 1 (b)). It follows from the emergent honey-
comb lattice symmetry of Had that the residual potential
is characterized by Fourier components Ui that are real
and constant within shells labelled by index i. Although a
perfect flat ideal band is realized only when all Ui = 0, we
show in this paper that U1 = 0 is usually sufficient to pro-
duce narrow bands with nearly ideal quantum geometry.
This property is illustrated in Fig. 2. The Landau-level
like regime can therefore be reached by varying a single
tuning parameter, for example twist angle. Interestingly
though, we find that the higher Fourier components of
U(r) can significantly alter the wave function of the AC
band while keeping the quantum geometry nearly ideal.

This paper is organized as follows. In Sec. II B we spec-
ify the adiabatic approximation continuum model Hamil-
tonian of twisted homobilayer TMDs, discuss some of its
properties, and comment on model parameters appropri-
ate for WSe2 and MoTe2. In Sec. II C we describe the

properties of the AC band. In Sec. II D we introduce
the numerical method we use to diagonalize Had using a
Landau level basis. In Sec. III we demonstrate the valid-
ity of adiabatic approximation in near-magic-angle WSe2
by comparing the adiabatic approximation and contin-
uum model results for the band structure, bandwidth,
quantum geometry, Berry curvature distribution and full-
band charge density distribution. In Sec. IV we discuss
the influence of the residual potential U(r) on the full-
band charge density distribution and Berry curvature,
taking the WSe2 parameters14 under the adiabatic ap-
proximation magic angle as an example. In Sec. V we
show that the adiabatic approximation accurately repro-
duces the topological phases of higher energy bands as
a function of twist angle, and point to a transition be-
tween Landau-level-like and Haldane-model-like41 band
structures, which has been previously identified12,16,42,43

in the continuum model. In Sec. VI we conclude and
discuss some possible future developments.

II. MODELS

A. Continuum Model

The continuum model Hamiltonian12 of the valence
bands of TMD AA homobilayers has the form of a hole
with effective mass m in the presence of a spatially peri-
odic scalar potential ∆0(r) and a spatially periodic vector
field ∆(r) that couples to the layer pseudospin (see Fig.
1 (a)). Here

∆0(r)±∆z(r) = 2V

2∑
j=0

cos (G2j · r ∓ ψ) , (1a)

∆x(r)± i∆y(r) = w

2∑
j=0

e±iqj ·r, (1b)

where qj = q(sin(2jπ/3), − cos(2jπ/3)) and Gj =√
3q(cos(jπ/3), sin(jπ/3)) are the interlayer and in-

tralayer transfer momenta due to the moiré potential,
q = 4π/3aM is the radius of the mBZ, aM = a/2 sin(θ/2)
is the moiré lattice constant of the superlattice at twist
angle θ and a is the lattice constant of the single-layer ma-
terial. Note that we have chosen a C3 symmetric gauge30

that is different than in previous literature12.
The material-specific model parameters w, V and

ψ respectively characterize the strength of interlayer
tunneling, the strength of the potential energy in each
layer and a phase angle that captures the positions at
which the potential has its extrema. We note that a sign
flip in the basis on either layer leads to w → −w, and
that since the two valleys are related by time-reversal
symmetry T , a combined operation of in-plane 2-fold
rotation C2 and time reversal T (C2T ) does not change
the physics while it brings ∆(r) to ∆∗(−r), which results
in an overall change in model parameter ψ → −ψ. In
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addition, the substitution (V, ψ) → (−V, ψ + 180◦)
leaves the model Hamiltonian unchanged. Hereby, the
parameter space is folded into the regime w > 0, V > 0
and 0 < ψ < 180◦. A compilation of ab initio-based pa-
rameter values for WSe2 and MoTe2 from previous work,
after the symmetry folding described above, is provided
in Table I in the appendix. For simulations of WSe2 and
MoTe2, we respectively take the values from Refs. 14
(a,m,w, V, ψ) = (3.317Å, 0.43me, 18meV, 9meV, 128◦)
(V/w = 0.5) and 11 (a,m,w, V, ψ) =
(3.52Å, 0.6me, 23.8meV, 20.8meV, 107.7◦) (V/w = 0.87),
assuming them to be twist angle independent, though
they certainly do depend on the twist angle when moiré
relaxation strains are accounted for. Here me is the free
electron mass. Some work44–46 has also taken into ac-
count higher harmonics of both interlayer tunneling and
intralayer potential terms. Although these can improve
models for specific materials, we choose to ignore them
here to focus on the small number of parameters that
have greatest importance.

B. Adiabatic Approximation for Twisted
Homobilayer TMDs

The adiabatic approximation Hamiltonian30 Had is ob-
tained from a layer-pseudospin U(2) gauge transforma-
tion of the continuum model Hamiltonian Hcont that lo-
cally rotates the vector field ∆(r) to the out-of-plane +z
direction, followed by projection into the (rotated) spin-
up sector, in which an effective magnetic field emerges
from the real-space Berry phase of the vector field. The
approximation is valid at small twist angles, where the
smooth spatial variation of the vector field ensures good
spatial adiabaticity. The detailed derivation is presented
in Appendix A.Had can be written in the following equiv-
alent forms:

Had = − (p̂+A(r))
2

2m
+ Z(r) (2a)

= −
(
p̂† +A∗(r)

)
(p̂+A(r))

2m
+ U(r) (2b)

= − Π̂†
0Π̂0

2m
− Π̂†

0A′(r) +A′∗(r)Π̂0

2m
+ U ′(r), (2c)

where A(r) is the vector potential of the effective mag-
netic field B = ∇ × A; p̂ = p̂x + ip̂y = −2i∂z∗ , p̂† =
p̂x − ip̂y = −2i∂z, z = x+ iy, A(r) = Ax(r) + iAy(r) =
A0(r) +A′(r), A0(r) = iB0z/2 is the vector potential of
the spatial average B0 = −2π/AM of the magnetic field,
Π̂0 = p̂+A0(r), AM =

√
3a2M/2 is the area of the moiré

unit cell, aM = a/2 sin(θ/2) ≈ a/θ is the moiré period, a
is the lattice constant of the TMD material and θ is the
twist angle. The potential terms in Eqs. (2) have the

WSe2 (V/w=0.5, ψ=128°)

MoTe2 (V/w=0.87, ψ=107.7°)

(a) (b) (c)

(d) (e) (f)

AA

AB M BA

FIG. 3: (a)-(c) Plots of (a) the dimensionless effec-
tive magnetic field −B(r)AM/2π, (b) the dimension-
less zero-point energy ξ(r) and (c) the effective Zee-
man energy ∆+(r) (in units of w) in the adiabatic
approximation calculated using WSe2 parameter esti-
mates (w, V, ψ) = (18meV, 9meV, 128◦). (d)-(f) The
same plots for MoTe2 with model parameters (w, V, ψ) =
(23.8meV, 20.8meV, 107.7◦)11. In all panels, the hexagon
is the Wigner-Seitz moiré unit cell. The high-symmetry
positions AA, AB (chalcogen on metal for WSe2, metal
on chalcogen for MoTe2), BA, and Wigner-Seitz edge
mid-point M are marked in (a).

form

Z(r) = ∆+(r)−
D(r)

2m
= ∆+(r)− ωcd(r), (3a)

U(r) = Z(r) +
B(r)
2m

= ∆+(r)− ωcξ(r), (3b)

U ′(r) = U(r)− |A′(r)|2

2m
= ∆+(r)− ωcξ

′(r), (3c)

where ∆+(r) = ∆0(r)+ |∆(r)| is the local energy of the
layer pseudospin that is aligned with the moiré skyrmion
field, ωc = |B0|/m ∝ θ2 ∝ A−1

M is the spacing between
the Landau levels defined by B0, and D(r) is a kinetic
potential that arises from mixing between aligned and
anti-aligned layer spinors and turns out to be exactly
the trace of the real-space quantum metric of the layer-
pseudospin skyrmion field texture, as shown in Appendix
A.47 The amplitude of ∆+(r) is independent of twist an-
gle for a given (w, V, ψ) as are those of the scaled fields
d(r) = AMD(r)/4π, ξ(r) = AM (D(r) − B(r))/4π and
ξ′(r) = AM (D(r) + |A′(r)|2 − B(r))/4π.

For the WSe2
14 and MoTe2

11 parameter sets we have
taken, we respectively have ωc ≈ 3.56meV · (θ[◦])2 and
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ωc ≈ 2.27meV·(θ[◦])2. The spatial structure of some real-
space fields employed in the adiabatic approximation that
are calculated from these parameter sets is illustrated
in Fig. 3. The two materials have similar shapes for
the functions |B(r)|, ξ(r) and ∆+(r), and these are also
similar to the results30 obtained from non-relaxed MoTe2
parameters12. We note that the fields are generally more
sharply peaked in MoTe2 than in WSe2.

C. The Aharonov-Casher Limit

When U(r) in Eq. (2b) vanishes identically, the anal-
ysis of Aharonov and Casher36 implies that the Hamil-
tonian has a perfectly flat zero-energy band with wave-
functions of the form:

ψAC(r) = f(z)eα(r) = f(z)e−
r2

4ℓ2
+χ(r) = eχ(r)ψLLL(r),

(4)
where f is arbitrary holomorphic function that is reminis-
cent of lowest Landau level wavefunctions48 and ∂z∗α =
iA/2. Choosing a symmetric gauge with ∇ · A = 0,
the real periodic function χ(r) can be found by solving
∇2χ(r) = B′(r) = B(r)−B0 (or ∇2α(r) = B(r)), where
B′(r) is a periodic function with zero average. Since
ψAC(r) differs from a lowest-Landau-level wave func-
tion only by the periodic factor eχ(r), the corresponding
pseudo-Bloch states differ from the lowest Landau level
pseudo-Bloch states only by the same factor and a nor-
malization constant. It follows that the AC band Berry
curvature is given by27

ΩAC
k =

2π

ABZ
+

1

2
∇2

k ln
〈
ψAC
k

∣∣ψAC
k

〉
, (5a)

〈
ψAC
k

∣∣ψAC
k

〉
=
〈
ψLLL
k

∣∣∣e2χ(r)∣∣∣ψLLL
k

〉
=
∑
G

ηGλGΦGe
iℓ2G×k,

(5b)

where ABZ = 4π2/AM is the area of mBZ, ηG is the
parity of G in the reciprocal lattice (i.e. 1 if G/2 is
a reciprocal lattice vector and −1 otherwise), the mag-
netic form factor λG = e−ℓ2G2/4, and ΦG is the Fourier

component of e2χ(r). Note that this Berry curvature is
independent of twist angle up to a factor of A−1

BZ , which
is a feature specific to the AC limit. It follows from Eq.
(5a) that the AC band has Chern number C = 1.

D. Landau Level Representation

The perfect AC limit is only reached when U(r) = 0,
which requires an identical cancellation between ∆+(r)
and ξ(r), as seen from Eq. (3b). Importantly we see
in Fig. 3 that these two functions are both peaked near
the Wigner-Seitz cell boundary but at different positions.
Their relative scale is dictated by twist angle, but per-
fect cancellation is impossible because of this shape mis-
match. (We have identified a region in the continuum
model parameter space in which U(r) is small so that
HAC is a good approximation to Had, which is discussed
in Appendix B. Unfortunately, that is also a region where
the adiabatic approximation fails.) With the mismatch,
the band structure of Had must be calculated numeri-
cally.

We express Had in the representation of the Landau
levels defined by B0 and converge its spectrum with re-
spect to the Landau level cutoff. Because there is one
quantum of flux in the unit cells defined by the periodic-
ities of A′(r) and U ′(r), we can use a convenient lowest
Landau level quasi-Bloch basis

∣∣ψLLL
k

〉
, detailed in Ap-

pendix C, with one state per mBZ k point. Higher Lan-
dau level states are constructed by using Landau level
raising operators

∣∣ψnLL
k

〉
=

(
a†0

)n
√
n!

∣∣ψLLL
k

〉
. (6)

The
∣∣ψnLL

k

〉
are eigenstates of the magnetic translation

operator with quasimomentum k, so that states with
different k’s in the mBZ are decoupled. In Eq. (6)
a†0 = ℓΠ̂†

0/
√
2 is the Landau level raising operator, ℓ =

1/
√

|B0| =
√
AM/2π is the magnetic length defined by

B0, and nLL stands for the nth Landau level and the
superscript LLL is used to label n = 0 states. In this
representation the first term in Eq. (2c) gives the diago-
nal Landau level kinetic energy contribution and the sum
of the second and third terms is

〈
ψnLL
k

∣∣∣H ′
∣∣∣ψn′LL

k

〉
=

(−1)n√
n!n′!

∑
G

ηGλG

(
Lnn′(Γ∗,Γ)U ′

G +

(
nL(n−1)n′(Γ∗,Γ)

Γ∗ +
n′Ln(n′−1)(Γ

∗,Γ)

Γ

)
B′
G

2m

)
eiℓ

2G×k.

(7)

(See Appendix C for a detailed derivation.) In Eq.
(7), Γ = ℓ(Gx + iGy)/

√
2, the bivariate polyno-

mial Lnn′(x, y) = exy∂nx∂
n′

y e
−xy is related to the gen-

eralized Laguerre polynomial L(α)
n by Lnn′(x, y) =

(−1)n
′
n!xn

′−nL(n′−n)
n (xy), and U ′

G and B′
G are respec-

tively the Fourier components of U ′(r) and B′(r). Be-
cause both U ′(r) and B′(r) have honeycomb lattice sym-
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metry, their Fourier expansions are specified by one real
number for each shell of reciprocal lattice vectors. The
exponentially decaying nature of λG converges the recip-
rocal lattice sum. Whereas the first shell is usually suf-
ficent to get relatively accurate results30 for n = n′ = 0,
higher shells become important at larger n and/or n′
because of the Lnn′(Γ∗,Γ) factors. Formulas for Berry
curvature and other components of the quantum geome-
try tensor in terms of the Landau level basis quasi-Bloch
state representation vectors obtained by diagonalizing
this Hamiltonian, which will figure importantly in our
analysis, are derived in Appendix D.

III. COMPARISON BETWEEN ADIABATIC
AND CONTINUUM MODEL BAND

PROPERTIES

We have so far shown that in the adiabatic approxi-
mation the physics of TMD AA homobilayer moirés is
mapped to a problem of scalar electrons in a periodic
potential and a periodic magnetic field, and argued that
the adiabatic approximation is accurate in the small twist
angle limit. In this section, we will show by comparing
the explicit numerical results that for a realistic set of pa-
rameters typical of WSe2

14 the adiabatic approximation
accurately captures a wide range of moiré band proper-
ties over a large range of twist angles up to the magic
angle.

Theoretical studies of AA TMD moirés show that the
bandwidth narrows and the quantum geometry becomes
nearly ideal over narrow ranges of twist angle. (The
correspondence between these narrow ranges and exper-
imental FCI observations is suspected but not yet estab-
lished.) Fig. 4 compares the twist-angle dependences of
the bandwidth and quantum geometry of the first valence
band of twisted homobilayer TMDs calculated directly
from the continuum model with the corresponding quan-
tities calculated in the adiabatic approximation using the
average field Landau level representation. Results are
presented for a variety of different Landau level trunca-
tions (NLL). For each NLL, the number of shells (Nshell)
retained in the Fourier expansions of B(r) and U ′(r)
is indicated. Figs. 4 (a) and (b) plot bandwidths for
WSe2 and MoTe2 vs. twist angle, characterized here by
the average-field Landau level energy separation. Band-
widths have an overall trend of increasing with ωc as
the moiré periods get shorter and energy scales increase.
In both continuum and adiabatic cases, though, there
is a sharp local minimum that interrupts the increasing
trend, which is associated with the magic angle behav-
ior. In Fig. 4 (a) we see that the magic angle of twisted
bilayer WSe2 defined by minimum bandwidth in the adi-
abatic approximation (ωad

c0 /w ≈ 0.55, corresponding to
θad0 ≈ 1.67◦) is somewhat larger than, but still similar
to, the continuum model result (ωcont

c0 /w ≈ 0.4, corre-
sponding to θcont0 ≈ 1.42◦).

Far above the magic angle the adiabatic approximation

WSe2 (V/w=0.5, ψ=128°)

continuum model
(NLL,Nshell)=(1,3)
(5,5)
(15,8)
(25,15)

ωc/w = 0.2 (θ [°])
2

magic WSe2 (V/w=0.5,
ψ=128°, ωc/w=0.4)

γ

m
k

(a) (b)

(c) (d) WSe2 (V/w=0.5, ψ=128°)

ωc/w = 0.2 (θ [°])
2

MoTe2 (V/w=0.87, ψ=107.7°)

ωc/w = 0.095 (θ [°])
2

FIG. 4: (a)-(b) The width of the first moiré valence band
of (a) twisted bilayer WSe2 and (b) twisted bilayer MoTe2
vs. twist-angle, predicted by the continuum model and
the adiabatic approximation. For the adiabatic approxi-
mation we use a Landau level representation (see Eq. 7).
The plots in (a,b) illustrate the dependence on Landau
level NLL cutoff. For each NLL we have indicated the
number of momentum space shells Nshell that we have
retained in the Fourier expansions of the potentials and
magnetic fields to achieve convergence. The color code is
defined in (a). (c) Comparison of the continuum model
and adiabatic approximation moiré band structures of
twisted WSe2 at ωc/w = 0.4, plotted along the path
shown in the right panel. (d) The minimum of the trace
condition ratio Ωk/trgk over the mBZ as a function of
twist angle of WSe2. The solid and dashed vertical lines
mark the minimum-bandwidth magic angles in the con-
tinuum model and in the adiabatic approximation with
(NLL, Nshell) = (25, 15), respectively.

becomes inaccurate, as expected. We find that the adia-
batic approximation generally underestimates the band-
width. Within the adiabatic approximation, more Lan-
dau levels are required for convergence at smaller twist
angles. The single-Landau level projection (NLL = 1) ap-
proximation fails to capture the decrease in bandwidth as
the twist angle approaches zero, but including more Lan-
dau levels reproduces this feature correctly. For WSe2 we
find that the adiabatic approximation bandwidth near
the magic angle converges after including only a small
number of Landau levels, although, as we see in Fig. 4
(c), more levels are needed to converge absolute energies.

We also show results for the bandwidth of the MoTe2
model, which has a larger value of V/w. As Fig. 4 (b)
indicates, not only is the adiabatic approximation less
accurate than in the WSe2 case, but the convergence with
respect to NLL is slower. We argue that the accuracy
of adiabatic approximation generally persists to larger
twist angles when both V/w and ψ are at intermediate
values. The influence of V/w can be seen by tracking the
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variation of the layer-pseudospin vector field ∆(r) along
an edge of the real-space Wigner-Seitz cell, which can be
obtained from Eq. (1):

∆(rAB) =
(
0, 0, −3

√
3V sinψ

)
, (8a)

∆(rM ) =

(
w

2
,

√
3w

2
, 0

)
, (8b)

∆(rBA) =
(
0, 0, 3

√
3V sinψ

)
. (8c)

Here rAB , rBA and rM are respectively the high-
symmetry positions AB, M and BA labeled in Fig. 3
(a). Too large or too small V/w values would cause the
direction of ∆(r) to vary abruptly with position near
the real-space M point when V/w is large or near the
AB and BA points when V/w is small. In either case
adiabaticity applies only at small twist angles and sharp
peaks appear in the real-space fields −B(r) and ξ(r) (il-
lustrated in Figs. 3 (d) and (e) with the MoTe2 pa-
rameter set) that mix up more Landau levels. On the
other hand, because ∆0(r) ∝ cosψ, if ψ is close to 0◦ or
180◦, the spatial variation in the scalar field ∆0(r) will
be strong enough to make the (rotated) pseudospin-up
and down branches ∆±(r) = ∆0(r) ± |∆(r)| overlap in
energy hence mix the pseudospins. Appendix B shows
that the adiabatic approximation indeed works less well
with a larger ψ. A more formal treatment of deviation
from the adiabatic approximation based on second-order
perturbation theory is presented in Appendix E.

Fig. 4 (d) shows that the adiabatic approximation also
reproduces the appearance of nearly ideal quantum ge-
ometry over a small range of twist angles, including and
mostly above those at which the bandwidth is minimized.
In the rest of the paper we will assume that adiabatic ap-
proximation results are converged with respect to Lan-
dau level and momentum space shell cutoffs at NLL = 25
and Nshell = 15 in WSe2 above 0.2◦. Figs. 5 (a)-(b)
show that the adiabatic approximation qualitatively well
reproduces both the real-space total charge density and
the momentum-space Berry curvature of the first valence
moiré band of twisted bilayer WSe2 near the continuum-
model magic angle ωcont

c0 ≈ 0.4.

IV. COMPARISONS BETWEEN
AHARONOV-CASHER AND ADIABATIC BAND

PROPERTIES

In Sec. II C, we have pointed out that when the resid-
ual potential U(r) in Eq. (2b) vanishes we are presented
with a Bloch version of AC36 states, and that the re-
sulting AC bands have ideal quantum geometry. When
the residual potential U(r) is non-zero, the adiabatic flat
band generally develops dispersion and the Bloch state
wave functions are altered by k-dependent mixing be-
tween the AC band and higher energy bands. We expect
that, because the flat band wavefunctions are smooth,

Hcont

Had

ωc/w = 0.4

γ

m
k

ωc/w = 0.4

Hcont

Had

AA

AB M

real space

(a) (b)

Had

Hid

HAC

ωc/w = 0.55

(c)

ωc/w = 0.55Had

Hid
HAC

(d)

k space

FIG. 5: (a) The real-space charge density distribution
of the filled first band of twisted bilayer WSe2 with the
twist angle ωc/w = 0.4, calculated using both the con-
tinuum model and the full adiabatic approximation. (b)
The k-space Berry curvature distribution Ωk of the first
band of ωc/w = 0.4 WSe2, calculated under the same
two models. (c)-(d) The same quantities as (a)-(b), now
calculated for the adiabatic approximation band (Had)
under ωc/w = 0.55, the hypothetical ideal band fitted
from the adiabatic charge density distribution (Hid) at
ωc/w = 0.55, and the AC band (HAC). All real-space
and k-space plots are along the symmetric lines indicated
in the middle panel. The full 2D plots for these parame-
ter values are presented in Fig. A1 in the appendix.

band properties will be less sensitive to higher recipro-
cal lattice vector shells in the Fourier expansion of U(r).
In particular, when the first (and most important) har-
monic of the potential U1 = ∆+,1−ωcξ1 (see Eq. (3b)) is
tuned to zero, fractionally-filled-band many-body ground
states are still expected to exhibit lowest-Landau-level
like correlations. This argument is supported by Fig. 2
in the introduction, from which we see that higher shells
of U(r) very weakly affect the bandwidth and the ideal
quantum geometry when U1 = 0. (We do note that there
seems to be a line, whose origin we do not understand
at present, in the U2 − U3-plane along which idealness
remains particularly robust.) We ascribe the relative in-
sensitivity to higher Fourier components to the smooth-
ness of wavefunctions in the lowest energy hole bands.
The twist angle at which U1 vanishes corresponds to
ωU1
c0 = ∆+,1/ξ1 ≈ 0.52w under the parameter set of WSe2

we focus on, which is close to the adiabatic approxima-
tion magic angle condition ωad

c0 ≈ 0.55w. The approxi-
mate match between these two twist angles occurs over
a wide region of the continuum model parameter space
as discussed in Appendix F.

We have noticed from Fig. 4 (d) that at the adiabatic
approximation magic angle ωad

c0 /w ≈ 0.55 the first moiré
band is extremely close to an ideal band, which is con-
firmed in Appendix G by comparing its wave functions
with a hypothetical ideal band reconstructed by fitting to
the charge density distribution. The fitting method will
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be described shortly and yields an ideal band that is very
different from the AC band. In the rest of this section, we
examine the influence of sub-leading Fourier components
of the residual potential U(r) on the first moiré band by
comparing the charge density and Berry curvature distri-
butions calculated from the AC band, the hypothetical
ideal band and the full adiabatic approximation under
this magic angle.

A. Charge Density Distribution

In Fig. 5 (c) we plot the real-space charge density dis-
tribution of a full band in the three models. The charge of
the full AC band is concentrated at M points (as labeled
in Fig. 3 (a)). This is a direct result from the distribution
of effective magnetic field B(r): by the plasma analogy49,
B(r) acts like a nonuniformly charged background with
the charge opposite to the carrier, which gives an elec-
trostatic potential −α(r) via ∇2α = B. Because of the
sharp peaks in |B(r)| at the M points, as shown in Fig.
3 (a), the periodic part of the electrostatic potential,
−χ(r), has potential wells at those points, which attracts
the band carrier charge via the factor eχ(r) in the wave
function form Eq. (4).

Now, we examine the effect of U(r). We see from Fig.
3 (b) and (c) that the two contributing parts of U(r) in
Eq. (3b), ∆+(r) and ξ(r), are peaked at different real-
space points, which implies that U(r) has high peaks,
or deep potential wells in terms of holes, at the AB and
BA points labeled in Fig. 3 (a). This explains the high
concentration of charge density at these points in the
adiabatic approximation. On this basis we expect that
at a larger twist angle, the contribution of ∆+(r), and
hence the high peaks in U(r), are smaller relative to the
Landau-level separation ωc and results in a more uniform
charge distribution along the Wigner-Seitz cell edge.

At the adiabatic magic angle the extremely ideal quan-
tum geometry suggests an ideal band approximation

ψad
k (r) ≈ ψid

k (r) = eχ
id(r)ψLLL

k (r), (9)

which can be viewed as an “AC” band with a different ef-
fective magnetic field Bid(r) = ∇2χid. While there is no
analytical way to solve for the exact form of χid(r) given
, we make a very accurate approximation that the charge
density distribution has the same shape as e2χ

id(r), which
is analytically demonstrated in Appendix H. On this ba-
sis, we assume e2χ

id(r) ∝ ρad(r), which is the adiabatic
charge density distribution, and see from Fig. 5 (c) that
the charge density of that ideal band is indeed nearly
identical to that of the adiabatic band, and very differ-
ent from that of the AC band.

B. Berry Curvature Distribution

Fig. 5 (d) shows that both the AC band and the fitted
ideal band have more uniform Berry curvature distribu-
tions than the adiabatic band. The overall smoothness
and the shallow dip at the mBZ center can be easily
understood from Eq. (5) for a general AC (or ideal)
band: because of the suppression30 provided by the λG
form factors which take the values 0.163, 4.33 × 10−3

and 7.06× 10−4 on the first three shells of the reciprocal
lattice, all higher-shell Fourier components of the Berry
curvature variation are negligible.

In contrast, the full adiabatic approximation Berry
curvature distribution has small but visible peaks at the
k and γ points, which is a signature of non-negligible
second-shell Fourier component. This indicates that it is
impossible to find an ideal band that reproduces both the
charge profile and the Berry curvature profile of the adia-
batic band. In fact, it seems unlikely that any exact ideal
band could reproduce this Berry curvature distribution
– if such ideal band does exist, its e2χ(r) will have an ex-
ponentially large second-shell Fourier component which
easily violates the positive definiteness of e2χ(r). We do
attempt to apply the inverse procedure of Eqs. (5) to
the adiabatic Berry curvature, assuming it to be identi-
cal to that of some alternative AC band. We find that the
violation of positive definiteness in e2χ(r) persists upon
including further shells of Fourier components until the
exponentially growing numerical error turns everything
meaningless. While it is not to exclude the possibil-
ity that very high spatial harmonics of its e2χ(r) could
form a strange shape that compensates for the negative
parts introduced by the lower harmonics, in this case,
e2χ(r) would have exponentially high sharp peaks that
are totally inconsistent with the charge density distri-
bution of the adiabatic band. Rather, we argue that
the second-shell Fourier component of the Berry curva-
ture has to mostly come from the deviation of the wave
functions from the ideal band limit (δψk). Simply speak-
ing, the change in the idealness of quantum geometry,
1 − Ωk/trgk, is second order in δψk, while the change
in Berry curvature is first order. Details are provided in
Appendix G.

V. LANDAU-LEVEL TO HALDANE-MODEL
CROSSOVER

Figures 6 (a) and (b) show that the twist angle depen-
dence of the Chern numbers of the first few valence bands
are well reproduced by the Landau-level-representation
adiabatic approximation with a practical 25-Landau-level
cutoff except at very small twist angles. The critical
twist angles for topological phase transition are generally
slightly underestimated. While the first valence band al-
ways has Chern number C1 = 1, the Chern number of
the second band C2 transitions from −1 to 1 at a critical
twist angle that is larger than the magic angle in the con-
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FIG. 6: (a)-(b) Dependence of Chern numbers of the first
4 valence bands on the twist angle of twisted WSe2 cal-
culated under (a) the continuum model and (b) the Lan-
dau level formulation of adiabatic approximation with
(NLL, Nshell) = (25, 15). Different colors stand for differ-
ent Chern numbers, as the color bar on the left shows.
The precision in ωc/w is 0.05 for both panels. The
minimum-bandwidth magic twist angles are marked by
vertical dashed lines. (c)-(d) The moiré band structures
of the two models with parameters indicated on the top,
along the path illustrated on the left.

tinuum model but smaller than the magic angle in the
truncated adiabatic approximation. In both cases, the
transition is triggered by a quadratic inversion between
the second and the third bands at the γ point with 4π
Berry curvature transfer, as suggested by Figs. 6 (c) and
(d)

An effective Haldane model41 (or Kane-
Mele model50,51, considering both spins/valleys)
describes12,16,42,43 the first two bands in the small
twist angle regime where they have opposite Chern
numbers. In the continuum model, the Wannier orbitals
corresponding to this two-band truncation sit on a
honeycomb lattice with the A and B sublattices at
the AB and BA stacking points in the moiré pattern.
The A and B sublattice Wannier orbitals are polarized
toward the top and bottom layers. Since the adiabatic
approximation is accurate at small twist angles, we
expect that it also captures the C2 = −1 regime of
the continuum model. In the adiabatic approximation,
the layer polarization of localized Wannier orbitals is
encoded by the position-dependence of the effective
magnetic field, which results in turn from the spatial
variation of the local layer pseudospin fields which point
in opposite directions at the AB and BA stacking points.

At larger twist angles, the Chern numbers of the
first few bands are uniformly 1, which is a signature
of a LL-like structure, at least in a topological sense.
This crossover between a Haldane-model like regime at
small twist angles and a Landau-level-like regime at large
twist angles has also been predicted under the parame-
ters of twisted homobilayer MoTe2

6,52. In the Landau
level regime, it may be possible to engineer states that

are similar to those in the n = 1 Landau level of a
2D electron gas that support non-Abelian fractionalized
quasiparticles53–55, possibly by making the charge den-
sity of the filled band as uniform as possible.

VI. SUMMARY AND DISCUSSION

The adiabatic approximation provides an alternative
picture of twisted AA homobilayer K-valley TMDs that
is valid at small enough twist angles, in which the layer
degree-of-freedom is removed and replaced by an effec-
tive magnetic field. We have shown that with realistic
model parameters14 near the magic angle, the adiabatic
approximation indeed accurately reproduces continuum
model band properties12. It describes homobilayer states
in terms of charged particles moving in a nonuniform
periodic effective magnetic field and a periodic effective
potential. It was first introduced30 to explain the appear-
ance of ideal flat bands18 in twisted homobilayer TMDs
in terms of minimal mixing between a flat adiabatic-
approximation lowest Landau level and higher Landau
levels. By introducing the concept of Aharonov-Casher
bands, we have explicitly shown that nearly-ideal bands
can emerge even when Landau level mixing is strong.

In AA homobilayer TMD moirés, non-perturbative
many-body methods are needed6,8–11 to study the com-
petition between FCI and charge-density-wave states at
fractional band fillings. The Landau level representa-
tion of the adiabatic approximation Hamiltonian pro-
vides an attractive basis for numerical many-body simu-
lation methods like density matrix renormalization group
(DMRG) and exact diagonalization (ED). By using Lan-
dau level basis states, it may be possible to achieve a
deeper understanding of the essential physics of this spe-
cific FCI system.

Research that is directed toward deriving the most ac-
curate continuum model Hamiltonians for specific AA ho-
mobilayers is still in progress6,11,44–46,56. In some cases
the accuracy of adiabatic approximation can be limited
by rapid spatial variations in the Hamiltonian or small
magnitudes of the layer-pseudospin field. The adiabatic
approximation can be improved, we believe, by relaxing
the strict locking invoked here between the layer pseu-
dospin polarization function us(r) and the layer pseu-
dospin field, allowing Bloch bands with spinors of the
form

ψcont
k,s (r) = us(r)ψ

ad
k (r), (10)

where s is the layer index. Both us(r) and ψad
k (r) can in

principle be obtained self-consistently using a variational
approach or by directly fitting the continuum-model wave
functions so that the effective magnetic field distribu-
tion in the adiabatic approximation is optimized. We
expect that the optimized effective magnetic field will be
smoother than in the original simple adiabatic approxi-
mation, giving a more accurate description of the moiré
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band properties that works in a wider region of parame-
ter space.

There is evidence from experiment1–4 that the Chern
band character of AA homobilayer moiré bands is most
robust not near zero density, but near band filling ν =
−1. It may be that the ideal bands relevant to experi-
ment are the electron and hole-like quasiparticle bands
of the ν = −1 states, which are influenced by Hartree
and Fock self-energies. Because the Fock self-energies
are non-local, the simple adiabatic approximation can no
longer be applied to this Hamiltonian, but the general-
ization imagined in the preceeding paragraph can still be
applied. The Hartree potential of the hole-filled bands at
ν = −1 will tend to smooth the layer skyrmion field, and
may give rise to a more uniform effective magnetic field
and a more uniform effective potential. With smoother
magnetic field, the adiabatic approximation is expected
to converge at a smaller Landau-level cutoff, which would
allow future DMRG and ED simulations to give more ac-
curate results.

The adiabatic approximation can be directly general-
ized to multilayer systems. One example is symmetric
twisted homotrilayer TMDs, which can be decoupled into
an effective bilayer and an effective monolayer based on
the mirror symmetry about the middle layer in analogy
to ABA twisted trilayer graphene57,58. Another exam-
ple is the twisted homobilayer TMD proximitized with
a third layer of a different type of TMD, in which the
twist-angle-tuned interplay between hombilayer and het-
erobilayer moiré patterns, analogous to a similar inter-
play in twisted bilayer graphene aligned with hexago-
nal boron nitride59–61, could lead to interesting physics.
Both types of systems could potentially host triangular
lattices of atomic-like Wannier orbitals that lead to frus-
trated Hubbard models and to exotic strongly correlated
phases upon doping. It may even be possible to engi-
neer higher-Chern number ideal bands62–67 in multilayer
TMDs, which have more interesting color-entangled wave
functions68,69 that can be mapped to multilayer Landau
levels, and can be topologically classified based on the
motion of zeros in their wave functions.

In this paper we have argued that the nearly ideal
bands of AA homobilayers are related to the Aharonov-
Casher states36 of a two-dimensional electron gas with
a g-factor equal to 2. The cancellation between zero-
point kinetic energy and Zeeman energy in the Aharonov-
Casher case is replaced by a vanishing first-shell Fourier
component of the residual potential U(r). We have
shown that under this circumstance the effect of the a
realistic residual potential U(r) on the flat dispersion
and ideal quantum geometry of the AC band is gener-
ally small, despite the band mixing effects from the sub-
leading Fourier shells. It will be interesting to seek a
more complete analytical understanding of this property
and to explore under what conditions it still holds upon
introducing the exchange potential and/or interaction-
induced band mixing effects. Also, since the residual
potential moves the charge density maxima of the ideal

band from M to AB and BA points, all of which are
on the edge of the hexagonal Wigner-Seitz moiré cell, we
suggest a simplified but still realistic model that includes
only the first shell of the magnetic field for AC bands,
in which the charge is concentrated near, and evenly dis-
tributed along, the Wigner-Seitz cell edge. AC bands
provide an attractive starting point to understand the
many-body physics of a partially-filled Chern band.
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Appendix A: Adiabatic Approximation

In this appendix section, we start from a generalized
version of the continuum model for twisted homo-N -layer
TMDs, where the valence bands are described by nonrel-
ativestic holes moving under an N ×N layer-pseudospin
entangled potential. The holes have 2 spin-valley locked
flavors and N layer pseudospins. The projected Hamil-
tonian in valley K (or spin up) writes

H = − p̂2

2m
1N +∆(r), (A1)

where m is the effective hole mass in the valence band
of the material, 1N is the N × N identity matrix and
the position-dependent N×N matrix ∆(r) describes the
moiré potential.

For the adiabatic approximation, we do a U(N) gauge
transformation on the continuum Hamiltonian Eq. (A1)
that locally diagonalizes ∆(r):

H̃ = U†HU = − (p̂1N +A(r))
2

2m
+ ∆̃(r), (A2)

where ∆̃(r) = U†(r)∆(r)U(r) is a diagonal N ×N ma-
trix, U(r) is a space-dependent N × N unitary matrix,
and

A(r) = −iU†(r)∇U(r) (A3)

is the non-Abelian connection associated with the gauge
transformation U . The sth diagonal element of H̃ is

H̃ss = − (p̂+Ass(r))
2

2m
− Ds(r)

2m
+∆s(r), (A4)

where ∆s(r) is the sth eigenvalue of ∆(r), and the extra
term

Ds(r) =
∑
s′ ̸=s

Ass′(r) ·As′s(r) (A5)
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FIG. A1: (a)-(e) 2D color plots of the real-space charge density of the filled first band calculated from the model
parameters associated with WSe2: (a) the continuum model under the minimum-bandwidth magic twist angle ωc/w =
0.4, (b) the adiabatic approximation under the same twist angle, (c) the adiabatic approximation under the adiabatic
magic angle ωc/w = 0.55, (d) the ideal band fitted from the adiabatic charge density distribution under ωc/w = 0.55
and (e) the AC band under arbitrary magic angle. (e)-(h) 2D color plots of the k-space Berry curvature under the
same model and parameter settings as (a)-(d).

Reference Material a (Å) m (me) w (meV) V (meV) ψ (◦) V/w

12 MoTe2, rigid 3.472 0.62 8.5 8 89.6 0.94

56 MoTe2, relaxed 3.52 0.62 13.3 11.2 91 0.84

6 MoTe2, relaxed 3.52 0.62 11.2 9.2 99 0.82

11 MoTe2, relaxed and corrugated 3.52 0.6 23.8 20.8 107.7 0.87

14 WSe2, relaxed 3.317 0.43 18 9 128 0.5

18 WSe2, relaxed 3.297 0.337 8.9 6.4 115.7 0.72

TABLE I: A compilation of model parameters obtained from first principle simulations in literature. me is the free
electron mass. Note that by making symmetry transforms to the system one can always make all the parameters
positive.

comes from the off-diagonal elements of A(r). Denote
the sth column vector of U(r) as us(r), so that

Ass′(r) = −iu†
s∇us′ = i

(
∇u†

s

)
us′ , (A6)

hence

Ds(r) =
∑
s′ ̸=s

(
∇u†

s

)
us′ · u†

s′∇us

= ∇u†
s ·∇us −

(
∇u†

s

)
us · u†

s∇us,

(A7)

which is exactly the trace of quantum metric of the sth
eigenstate manifold of ∆(r).

If we are interested only on the highest energy valence
band states we can truncate to the highest-eigenstate
manifold. For the N = 2 case appropriate to homobi-
layers, we label this as “+” so that Had = H̃++. In this
case, Eq. (A4) becomes Eq. (2a) in the main text, where
A(r) = A++(r) and Z(r) is given by Eq. (3a). Now
we have ∆+(r) = ∆0(r) + |∆(r)| and the effective mag-
netic field B(r) and the function D(r) = D+(r) given

respectively by

B(r) = ∇×A(r) =
n · (∂xn× ∂yn)

2
(A8)

and

D(r) = A+−(r) ·A−+(r) =
|∂xn|2 + |∂yn|2

4
, (A9)

where n(r) = ∆(r)/|∆(r)| and “−” is the label of the
lower eigenstate of ∆(r).

Appendix B: Relationship Between Model
Parameters and Residual Potential

The first few Fourier components of ∆+(r) and ξ(r),
the two parts of the residual potential U(r) as defined
in Eq. (3b), are presented in Fig. A2 as maps of the
continuum model parameter space. The points in the
parameter space that correspond to the explicit param-
eter sets on which we focus are marked on these plots
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(a) (b) (c)

(d)

(g)

(e) (f)

V/w

0.87 107.7° –0.307 0.247 –0.141 –0.262 –0.408 0.574

0.5 128° –0.145 0.075 –0.063 –0.281 –0.13 0.34

0.5 150° –0.21 0.016 –0.038 –0.314 0.037 0.221

ψ Δ+,1/w ξ1 ξ2 ξ3Δ+,2/w Δ+,3/w

FIG. A2: (a)-(f) Maps of the first three harmonic shells
of Fourier components of (a)-(c) ∆+(r)/w and (d)-(f)
ξ(r), the two contributions to the residual potential
U(r) in Eq. (3b). The red dashed lines are the zero
contour lines. The positions of the MoTe2 parameter
set (V/w, ψ) = (0.87, 107.7◦), the WSe2 parameter set
(0.5, 128◦) and the extra parameter set (0.5, 150◦) are re-
spectively marked by square, circle and rhombus in each
channel. The region where |∆+,i| and |ξi| are small for
both i = 2 and 3 are roughly indicated by dashed grey
circles in (b), (c), (e) and (f). (g) The table of local values
of the plotted quantities in (a)-(f) at the marked points.

and give a sense of the part of the space that is most
experimentally relevant. We see that since ξ1 is negative
definite because the effective magnetic field is peaked on
the Wigner-Seitz cell boundary, the favorable region for
Landau level like physics is the part of the parameter
space in which ∆+,1 is negative, so that U1 can be tuned
to zero at some particular twist angle ωU1

c0 = ∆+,1/ξ1. In
this region both the signs of ∆+,i and ξi are generally op-
posite for both the i = 2 and the i = 3 sub-leading shells,
implying that they cannot cancel. Nevertheless, the devi-
ation from the AC limit is expected to be smaller within
the narrow region of the phase diagram near where ∆+,i

and ξi are small for both i = 2 and i = 3 indicated in
Fig. A2.

To verify this argument, we take an example param-
eter set (V/w, ψ) = (0.5, 150◦) from this region and see
from Fig. A3 (a)-(b) that for this parameter set, the
AC band does reproduce the wave function of the first
adiabatic band well – at least better than in the WSe2
case discussed in the main text (see Figs. 5 (c)-(d)).
However, the rest of Fig. A3 shows that for this pa-

Had
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ωc/w = 0.6

Hcont
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continuum model
adiabatic approx.
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V/w=0.5, ψ=150°

FIG. A3: (a) The real-space charge density distribu-
tion of the filled first band, and (b) the k-space Berry
curvature distribution Ωk of the first band of the adia-
batic approximation and the AC band derived from the
system under continuum model parameters (V/w, ψ) =
(0.5, 150◦), under the twist angle ωc/w = 0.6, which
is near the adiabatic magic angle. (c)-(d) The same
quantities as (a)-(b), now calculated for the contin-
uum model and adiabatic approximation bands under
ωc/w = 0.4, which is near the continuum magic angle.
All real-space and k-space plots are along the symmet-
ric lines indicated in the middle panel. (e) The band-
width and (f) the quantum geometry idealness charac-
terized by min(Ωk/trgk) of the first band of the system
under (V/w, ψ) = (0.5, 150◦), as a function of twist an-
gle, calculated under both the continuum model and the
adiabatic approximation. In all adiabatic approximation
results, the convergent Landau level and reciprocal space
shell truncations (NLL, Nshell) = (25, 15) are used, as in
the main text.

rameter set, the adiabatic approximation reproduces the
continuum model band properties less well than in the
WSe2 case (only the charge density distribution is well
reproduced; See Figs. 4 (a), (d) and 5 (a)-(b) for com-
parison with WSe2). Also, the quantum geometry of the
first continuum-model band here is generally less ideal
than in WSe2, suggesting that systems near this param-
eter regime is not a better candidate than materials like
WSe2 to realize FCI.
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Appendix C: LL Wave Functions and Derivation of
LL-Basis Hamiltonian Elements

We start from introducing the magnetic momentum
eigenstates in the LLL manifold27,70–73 of the uniform
magnetic field B0 = −|B0|: for Bravais lattice spanned
by the basis vectors {a1,a2}, we define

ψLLL
k (r) = e

i
2k·rψLLL

0 (r + ℓ2nz × k), (C1)

ψLLL
0 (r) = π

1
4

√
2ℓ

|a1|
e

1
4ℓ2

(
a∗
1z2

a1
−r2

)
ϑ1

(
z

a1

∣∣∣∣a2a1
)
, (C2)

where nz is the out-of-plane unit vector in +z direction,
ℓ = 1/

√
|B0| is the magnetic length, aj = ajx + iajy for

j = 1, 2, and the (auxiliary) Jacobi theta function ϑ1 is
defined as

ϑ1(ζ|τ) =
∞∑

n=−∞
e
iπ

[
(2n+1)(ζ+ 1

2 )+(n+
1
2 )

2
τ
]
. (C3)

Multiplication by an extra phase factor makes the wave
function modular-invariant72 (i.e. independent of the

choice of a1,2 in the Bravais lattice), but this is not
important in the current context. One can check that∣∣ψLLL

k

〉
is normalized up to the system area A:

〈
ψLLL
k

∣∣ψLLL
k

〉
=

1

A

∫
d2r

∣∣ψLLL
k (r)

∣∣2 = 1, (C4)

and is an eigenstate of all magnetic translation operators
T̂R on the Bravais lattice:

T̂Rψ
LLL
k (r) = e

iR×r
2ℓ ψLLL

k (r −R) = ηRe
−ik·RψLLL

k (r),
(C5)

where ηR = (−1)µ+ν+µν is the parity of lattice vector
R = µa1 + νa2 in the Bravais lattice, i.e. 1 if R/2 is in
the Bravais lattice and −1 otherwise.

Now we apply the Landau level raising operator a†0 =

(ℓ/
√
2)(p† + A∗

0(r)) = (i/2
√
2ℓ)(z∗ − 4ℓ2∂z) to find the

higher Landau level wave functions. We note that a†0
commutes with T̂R, hence the state obtained from Eq.
(6) is also an eigenstate of T̂R, and is also box-normalized.
Explicitly, we have from Eq. (C1),

ψnLL
k (r) =

1√
n!(2

√
2ℓ)n

(iz∗ − 4iℓ2∂z)
n
(
e

i
2k·rψLLL

0 (r + ℓ2nz × k)
)

=
e

i
2k·r

√
n!(2

√
2ℓ)n

(iz∗ + ℓ2k∗ − 4iℓ2∂z)
n ψLLL

0 (r + ℓ2nz × k)

=
e

i
2k·r

√
n!(2

√
2ℓ)n

(iz∗ + ℓ2k∗ − 4∂k)
n ψLLL

0 (r + ℓ2nz × k)

=
eik·r√

n!(2
√
2ℓ)n

(ℓ2k∗ − 4∂k)
nuLLLk (r),

(C6)

where

uLLLk (r) = e−ik·rψLLL
k (r) = e−

i
2k·rψLLL

0 (r + ℓ2n× k).
(C7)

Before proceeding to the derivation of Hamiltonian ma-
trix elements, let us define the notation

IG
kp =

〈
uLLLk

∣∣eiG·r∣∣uLLLp

〉
, (C8)

which can be calculated with the assist of the formula for

the LLL wave function form factor27〈
uLLLk

∣∣uLLLk+q

〉
= e

ℓ2
(

i
2k×q− q2

4

)
(C9)

and the k-space quasiperiodicity

uLLLk+G(r) = ηGe
−iG·r+ iℓ2

2 G×kuLLLk (r), (C10)

where ηG is the parity of the reciprocal lattice vector G
as described just after Eq. (7) in the main text. The
ultimate expression of IG

kp is

IG
kp = ηGe

ℓ2

2 ((k+G)∗p−k∗G)− ℓ2

4 (G2+k2+p2). (C11)

In calculating the matrix element of U ′(r) in Eq. (2c)
between Landau levels, we use the following equation:
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(ℓ2k − 4∂k∗)n(ℓ2p∗ − 4∂p)
n′
IG
kp = (−1)n(2ℓ)n+n′

ηGLnn′(ℓ(G+ k − p)∗, ℓ(G+ k − p)) e
ℓ2

2 ((k+G)∗p−k∗G)− ℓ2

4 (G2+k2+p2)

(C12)
to obtain 〈

ψnLL
k

∣∣∣U ′(r)
∣∣∣ψn′LL

k

〉
=

1√
n!n′!(2

√
2ℓ)n+n′

∑
G

U ′
G (ℓ2k − 4∂k∗)n (ℓ2p∗ − 4∂p)

n′
IG
kp

∣∣∣
p=k

=
(−1)n√
n!n′!

∑
G

U ′
GηGLnn′

(
ℓG∗
√
2
,
ℓG√
2

)
e
ℓ2

(
iG×k−G2

4

)
,

(C13)

where Lnn′(x, y) = exy∂nx∂
n′

y e
−xy. The contribution of

the other parts of H ′ can be obtained by noting that
from the relation between Π̂0 and a0,〈
ψnLL
k

∣∣∣Π̂†
0A′(r)

∣∣∣ψn′LL
k

〉
=

√
2n

ℓ

〈
ψ
(n−1)LL
k

∣∣∣A′(r)
∣∣∣ψn′LL

k

〉
(C14)

and by rewriting Eq. (C13) in term of A′(r). All com-
bined gives Eq. (7) in the main text.

Appendix D: Berry Curvature and Quantum
Geometry Under Landau level Basis

We use74,75

ln
〈
uk− q

2

∣∣∣uk+ q
2

〉
= iq ·R(k)− q · gq

2
+O(q3) (D1)

to approximate the quantum geometry on a 48×48 mesh
in the mBZ, where R(k) = −i ⟨uk|∇kuk⟩ is the Berry
connection and g is the 2 × 2 Fubini-Study metric. In
particular, the average Berry curvature in the triangle
{k,k±q1,k±q2} is obtained by accumulating the Berry
phase along its perimeter, and the average Fubini-Study
metric is solved from the obtained values of q ·gq/2 along
the three edges, where qj = Gj/48. This approach is
used to calculate both real-space and momentum-space
quantum geometries, and in theory always gives exact
integer values of Chern number76.

For a band with wave functions expressed upon the
Landau level basis

|uk⟩ =
NLL−1∑
n=0

cnk
∣∣unLLk

〉
(D2)

where according to Eq. (C6)

unLLk (r) = e−ik·rψnLL
k (r) =

(ℓ2k∗ − 4∂k)
nuLLLk (r)√

n!(2
√
2ℓ)n

,

(D3)
the form factor ⟨uk|uk+q⟩ can be obtained from the Lan-
dau level form factor

〈
unLLk

∣∣∣un′LL
p

〉
=

(ℓ2k − 4∂k∗)n(ℓ2p∗ − 4∂p)
n′I0

kp√
n!n′!(2

√
2ℓ)n+n′ , (D4)

where the notation I is defined in Eq. (C8). By formula
Eq. (C12), we get

〈
unLLk

∣∣∣un′LL
k+q

〉
=

(−1)n
′

√
n!n′!

Lnn′

(
ℓq∗√
2
,
ℓq√
2

)
e
ℓ2

(
i
2k×q− q2

4

)
.

(D5)

Appendix E: Beyond Adiabatic Approximation:
Perturbation Theory Treatment

In this section we attempt a perturbative estimate of
the bounds of the twist-angle regime where the adiabatic
approximation is accurate. We employ second-order per-
turbation theory to address the difference between the
adiabatic approximation and the continuum model. For
N = 2 the gauge-transformed continuum model Hamil-
tonian (Eq. (A2)) is given explicitly by

H̃ = − 1

2m

 (p̂+A++(r))
2
+D(r) p̂ ·A+− +A+− · p̂+A+− · trA

p̂ ·A−+ +A−+ · p̂+A−+ · trA (p̂+A−−(r))
2
+D(r)

+

∆+(r) 0

0 ∆−(r)

 , (E1)

where we have used ± to label the rotated pseudospin
up/down components, D(r) = D+(r) = D−(r) and
∆±(r) = ∆0(r)±|∆(r)|. Locking the U(1) gauges of the
two pseudospin sectors by the pseudo-time-reversal sym-

metry u−(r) = iσyu∗
+(r) guarantees that trA = 0 and

that A+−(r) is bound in space. For any eigenstate |ψ̃+⟩
of the adiabatic approximation Hamiltonian Had = H̃++

with eigenvalue Ẽ+, the energy shift due to virtual occu-
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pation in the pseudospin-down subspace can be captured
by a Schrieffer-Wolf-like transformation:

δE =

〈
ψ̃+

∣∣∣∣H̃+−

(
Ẽ+ − H̃−−

)−1

H̃−+

∣∣∣∣ψ̃+

〉
. (E2)

From a semiclassical point of view, both p̂ and A−+(r)

scale linearly with the twist angle θ, while (Ẽ+ −
H̃−−)

−1 ∼ (∆+ − ∆−)
−1 does not scale with θ, which

tells us that δE (δE/ωc) scales with θ4 (θ2), indicat-
ing breakdown of the adiabatic approximation by large
δE/ωc when the twist angle exceeds a certain limit.

To estimate δE, we employ a simplified formulation
where the pseudospin-up state is taken as an LLL state:

δEk =

〈
ψLLL
k

∣∣∣∣(p̂ ·A+− +A+− · p̂)
(
E+ − H̃−−

)−1

(p̂ ·A−+ +A−+ · p̂)
∣∣∣∣ψLLL

k

〉
4m2

. (E3)

Next we replace p̂ · A−+ + A−+ · p̂ with Π̂0 · A−+ +

A−+ · Π̂0, where Π̂0 = p̂ − A0 is the time-reversal
counterpart of Π̂0 = p̂ + A0, A0 is the vector poten-
tial of the uniform part of the effective magnetic field in
the pseudospin-up subspace. It can be shown from the
quasiperiodicity of A−+(r) that A−+(r) acting on any
magnetic translational eigenstate in the pseudospin-up
subspace yields a magnetic translational eigenstate with
the same quasimomentum k in the pseudospin-down sub-
space, whose effective magnetic field is exactly the oppo-
site of the pseudospin-up one. In addition, Π̂0 is associ-
ated with the Landau level raising and lowering opera-
tors by Π̂0x+ iΠ̂0y = Π̂0 =

√
2â0/ℓ (see Sec. IID), which

does not change the quasiperiodicity of the pseudospin-
up magnetic translational eigenstate. Similarly, Π̂0 is as-
sociated with the Landau level raising and lowering oper-
ators in the pseudospin-down subspace. Hereby we have
proved that Π̂0 ·A−++A−+ ·Π̂0 conserves the quasimo-
mentum while switching the pseudospin, which justifies
replacing the middle Green’s function in Eq. (E3) with
its quasimomentum-k sector.

Now we take a further simplification that replaces the
Green’s function with that of a uniform Landau level sys-
tem with a global energy downshift from the pseudospin-
up one by the global spatial gap ∆g = min∆+(r) −
max∆−(r):〈

ψ̃nLL
−,k

∣∣∣∣(E+ − H̃−−

)−1
∣∣∣∣ψ̃n′LL

−,k

〉
∼ δnn′

∆g + nωc
, (E4)

where ψ̃nLL
−,k (r) = ψ̃nLL∗

+,(−k)(r) = ψnLL∗
−k (r) is the wave

function of the nth Landau level in the pseudospin-down
subspace with quasimomentum k, which is the com-
plex conjugate of that of the nth Landau level in the
pseudopin-up subspace with quasimomentum −k. We
truncate the Green’s function within the first N ′

LL = 50
Landau levels and get the formula

δEk =

N ′
LL−1∑
n=0

∣∣∣〈ψ̃nLL
−,k

∣∣∣(Π̂0 ·A−+ +A−+ · Π̂0

)∣∣∣ψLLL
k

〉∣∣∣2
4m2 (∆g + nωc)

,

(E5)

WSe2: 1.0

(150º, 0.5):
0.3

MoTe2: 0.45

FIG. A4: The estimated ωc of the threshold twist an-
gle under which the adiabatic approximation is expected
to work well according to our second-order perturbation
theory treatment, as a map of the continuum model pa-
rameters. The positions of MoTe2 and WSe2 parameter
sets and the extra parameter set (0.5, 150◦) are respec-
tively marked by square, circle and rhombus, with their
local values of estimated threshold ωc/w marked on the
side.

in which the numerator is numerically computed for each
(n,k) and some specific twist angle by summing up 48×
48 real-space sample points, and obtained for other twist
angles by the θ4 (or ω2

c ) scaling law. The “overall” energy
shift δE is taken as the maximum of δEk over the mBZ.

Though the perturbation theory becomes inaccurate
for small or negative ∆g, we do expect in other cases
that δEk qualitatively well captures the dependence of
deviation from the adiabatic approximation on the model
parameter and twist angle. When ∆g > 0, we define the
“threshold” twist angle under which the adiabatic approx-
imation is good as the twist angle at which δE/ωc = 0.2.
Otherwise, we specify that this threshold twist angle is
0. The map of threshold ωc/w over the model param-
eters is shown in Fig. A4. Our formulation predicts a
parameter window of V/w between 0.2 ∼ 0.5 and ψ be-
tween 30◦ ∼ 150◦, within which a relatively wide range
of twist angle is accepted for good adiabatic approxima-
tion. The map correctly captures our previous obser-
vation that the adiabatic approximation gives a better
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estimate of the magic angle with the WSe2 parameter
set than with the MoTe2 parameter set or the extra pa-
rameter set (V/w, ψ) = (0.5, 150◦). It also reproduces
the tendency of adiabatic approximation to break down
at side values of V/w and ψ as we have argued in Sec.
III.

Appendix F: AC Limit of the Adiabatic
Approximation

Here we approximate the dispersion of the first band
by projecting the potential U(r) into the AC ideal band
subspace. From Eq. (4) we have

EAC
k =

〈
ψAC
k

∣∣U(r)
∣∣ψAC

k

〉〈
ψAC
k

∣∣ψAC
k

〉 =

〈
ψLLL
k

∣∣e2χ(r)U(r)
∣∣ψLLL

k

〉〈
ψLLL
k

∣∣e2χ(r)∣∣ψLLL
k

〉
=

∑
G ηGλGŨGe

iℓ2G×k∑
G ηGλGΦGeiℓ

2G×k
,

(F1)
where ŨG and ΦG are respectively the Fourier compo-
nents of e2χ(r)U(r) and e2χ(r). (See Eq. (7) and asso-
ciated definitions.) Assumming that the exponentially
decaying nature of λG allows us to truncate the recipro-
cal space summation after the first shell:

EAC
k ≈ EAC1

k =
Ũ0 − λ1Ũ1

∑5
j=0 e

iℓ2Gj×k

Φ0 − λ1Φ1

∑5
j=0 e

iℓ2Gj×k
. (F2)

According to the expression of U in Eq. (3b), the flat
band condition Ũ0/Φ0 = Ũ1/Φ1 implies that the band-
width vanishes for

ωAC1
c0 =

Φ0∆̃+,1 − Φ1∆̃+,0

Φ0ξ̃1 − Φ1ξ̃0
, (F3)

where ∆̃+,n and ξ̃+,n are the nth-shell Fourier compo-
nents of e2χ(r)∆+(r) and e2χ(r)ξ(r), respectively.

This formula differs quantitatively in two ways
from the one proposed previously30 based on the
(NLL, Nshell) = (1, 1) limit, which gives ωLLL1

c0 =
∆+,1/ξ

′
1. (See Eq. (3c)). First, replacing the AC wave

function with the LLL wave function flattens the space-
dependent factor eχ(r), leading to Φ1 → 0, ξ̃1 → ξ1
and ∆̃+,1 → ∆+,1, and yields ωU1

c0 , defined in Sec. IV,
as the optimal value of ωc. Second, the extra term
− |A′(r)|2 /2m in Eq. (3c), which takes magnetic field
variation into account, replaces ξ1 with ξ′1. From Figs.
A5 (a) and (b), we see that all three (ωLLL1

c0 , ωU1
c0 and

ωAC1
c0 ) are generally good approximations to the magic

angle of the full adiabatic approximation ωad
c0 . At larger

ψ’s, ωAC1
c0 matches ωad

c0 particularly well, which is another
verification of our argument in Appendix B that the de-
viation of the full adiabatic approximation from the AC
limit is relatively small in this regime due to small higher
Fourier components of U(r).

V/w = 0.87

MoTe2:
107.7º

ωc0ωAC1/w

ωc0ωLLL1/w
ωc0ωad/w

ωc0ωU1/w

continuum

V/w = 0.5

WSe2:
128º 150º

(a) (b)

FIG. A5: The magic angle, defined as the twist angle
with minimum bandwidth, as a function of the model
parameter ψ, calculated with (a) V/w = 0.5 and (b)
V/w = 0.87 in various approximations including the
full continuum model, the full adiabatic approxima-
tion ((NLL, Nshell) = (25, 15)), the lowest Landau level
projection30, the AC band projection (Eq. (F3)) and
ωU1
c0 , as indicated by the inset of (b). The ψ values of the

MoTe2 and WSe2 models discussed in the main text, as
well as the (V/w, ψ) = (0.5, 150◦) point, are marked by
grey vertical dashed lines.

Appendix G: Wave Functions of Nearly Ideal Bands
in Adiabatic Approximation

We look into the wave functions ψad
k (r) of the nearly

ideal band identified in the adiabatic approximation of
twist bilayer WSe2 in Fig. 4 (d) in the main text.
Figures A6 (a)-(d) show that the function ϕk(r) =
ψad
k (r)/ψLLL

k (r) has about the same shape at all k points
plotted, which is approximately consistent with the com-
mon factor of a perfectly ideal C = 1 band. Figures
A6 (b)-(d) show that the main difference between ϕk(r)
and ϕ0(r) is near the spatial point −ℓ2nz × k (and its
translational images), which are the spatial zero points
of ψLLL

k (r). For example, the wavefunction ratio ϕk1
(r)

at the low symmetry point k = k1, illustrated in Fig.
A6 (b), has a singularity at −ℓ2nz × k1 due to a slight
deviation of the zero in ψad

k (r) from the ideal band zero
position.

As a comparison, we reset U(r) = 0 in the system and
recompute this function. Figures A6 (e)-(f) show perfect
correspondence between ϕk(r) functions two different k
points to within numerical accuracy limited by the trun-
cation of the Hilbert space into 25 Landau levels. (There
is a slight zero shift for k = k1 case at the zero points
of ψLLL

k1
(r).) The plotted functions accurately approxi-

mate the function eχ(r) defined in Sec. II C, which has
peaks at the real-space M points due to the potential
wells caused by the effective magnetic field pockets in
the plasmon analogy. The term U(r) moves the peaks
to the corners of the Wigner-Seitz cell, at which the hole
potential wells of U(r) sit. These behaviors arise from
the same mechanism as the shift in charge density peaks
discussed in Sec. IV A.

To observe the deviation of the wave functions from
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complex legend
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(i) (j) (k)

mBZ

FIG. A6: (a)-(d) Plots of the real-space complex func-
tions ϕ̄k(r) = ψ̄ad

k (r)/ψLLL
k (r) where ψ̄ad

k (r) is the nor-
malized wave function of the state |ψad

k ⟩ calculated un-
der the adiabatic approximation of twisted bilayer WSe2
with ωc/w = 0.55, (NLL, Nshell) = (25, 15) and k is taken
as various points in the mBZ as indicated in (g): (a) γ
point (k = 0), (b) some general non-symmetric point k1,
(c) k point, and (d) m point. (e), (f) The same plots
taking U(r) ≡ 0, i.e. the AC limit, but still using the
Landau level formulation with (NLL, Nshell) = (25, 15),
at (e) γ point and (f) k1. (g) The positions of the k
points in the mBZ, under which other panels are plot-
ted. (h)-(k) The plots of δūk(r), which is the com-
ponent of ūadk (r) = e−ik·rψ̄ad

k (r) that is orthogonal to
ϕ̄0(r)u

LLL
k (r). The bottom panels show the color scales

used in various complex number maps. In (a)-(f) and
(h)-(k), the black hexagons are the real-space Wigner-
Seitz moiré cell.

the ideal limit in the presence of U(r) we define

∣∣δψad
k

〉
=
∣∣ψad

k

〉
−
∣∣ψid

k

〉 〈
ψid
k

∣∣ψad
k

〉〈
ψid
k

∣∣ψid
k

〉 , (G1)

where
∣∣ψid

k

〉
is the perfect C = 1 ideal band constructed

from the adiabatic charge density ρad(r) via

ψid
k (r) = ϕid(r)ψLLL

k (r) ∝
√
ρad(r)ψLLL

k (r) (G2)

(We have redefined the notation ϕid(r) = eχ
id(r). See

Eq. (9) and around). We plot δuadk (r) = e−ik·rδψad
k (r)

in Figs. A6 (h)-(k) under the normalization choice that∣∣ψad
k (r)

∣∣2 averages to 1. We see that not only are the
amplitudes of δuadk (r) at least one order of magnitude
smaller than ψid

k (r), but the ranges of δuadk (r) are also
in general somewhat small compared to the mBZ and
mostly concentrated near the zeros of ψLLL

k (r) (which
are also zeros of ψid

k (r)).
To roughly understand the behavior of quantum geom-

etry, we start by presenting the following general formu-
las:

trgk +Ωk

4
=

⟨∂kuk|∂kuk⟩
⟨uk|uk⟩

− |⟨uk|∂kuk⟩|2

⟨uk|uk⟩2
, (G3a)

trgk − Ωk

4
=

⟨∂k∗uk|∂k∗uk⟩
⟨uk|uk⟩

− |⟨uk|∂k∗uk⟩|2

⟨uk|uk⟩2
, (G3b)

where Ωk is the Berry curvature, trgk is the trace of the
Fubini-Study metric, |uk⟩ = e−ik·r|ψk⟩ is the cell (quasi-
) periodic part of the band wave function of a general
band, and k = kx + iky. In our notation, ⟨∂kuk| is the
adjoint of |∂kuk⟩, which means that ⟨∂kuk| = ∂k∗⟨uk|.
Eqs. (G3) hold for arbitrary k-space gauge, including
the unnormalized ones.

We next apply these formulas to our adiabatic approx-
imation band where∣∣uadk 〉 = e−ik·r ∣∣ψad

k

〉
=
∣∣uidk 〉+ ∣∣δuadk 〉 , 〈

uidk
∣∣δuadk 〉 = 0.

(G4)
We first choose the gauge so that the ideal band |uidk ⟩ is
holomorphic in k (i.e. has no k∗ derivative) and apply
Eq. (G3b). From |∂k∗uadk ⟩ = |∂k∗δuadk ⟩ it is clear that
trgk − Ωk is second order in |∂k∗δuadk ⟩, giving the ex-
tremely ideal quantum geometry. Then we select another
gauge where uidk (r) = ϕid(r)uLLLk (r) (from Eq. (G2))
with no k dependence further than the normalized factor
uLLLk (r) = e−ik·rψLLL

k (r). Because of orthogonality, the
contribution of |δuadk ⟩ to the denominators of all terms
of Eq. (G3a) is second order, thus negligible. We also
assume that trgk ≈ Ωk, hence we have

Ωad
k − Ωid

k

4
≈
〈
∂ku

id
k

∣∣∂kδuadk 〉〈
uidk
∣∣uidk 〉 −

〈
∂ku

id
k

∣∣uidk 〉 〈uidk ∣∣∂kδuadk 〉〈
uidk
∣∣uidk 〉2 + c.c.. (G5)
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Though both terms in Eq. (G5) are first order in
|∂kδuadk ⟩, the function ∂kδu

ad
k (r) tends to localize near

the zero points of uidk (r) as we have observed, further sup-
pressing the second term. On the other hand, ∂kuidk (r)
tends to have large absolute values near the zero points of
uidk (r), making the first term relatively significant. Fur-
thermore, since ∂kuidk (r) contains a k-independent factor
ϕid(r), which has peaks at the corners of the Wigner-
Seitz cell, the inner product on the numerator of the first
term tends to be larger at those k points where ∂kδuadk (r)
are localized near the Wigner-Seitz cell corners, which are
the mBZ corners. In the meantime, the denominator of
the first term cannot have significant peaks at the mBZ
corners due to suppression from the magnetic form fac-
tor λG when applying the formula Eq. (5b) to the ideal
band. These observations explain the occurrence of the
Berry curvature peaks at the mBZ corner upon deviation
from the ideal band limit.

Appendix H: Relation Between Charge Density and
Common Factor of Ideal Bands

Under the normalization convention we define in Ap-
pendix C, the charge density of a full ideal band with
wave function ψid

k (r) specified in Eq. (9) is

ρid(r) =
1

A

∑
k∈mBZ

∣∣ψid
k (r)

∣∣2〈
ψid
k

∣∣ψid
k

〉
=
e2χ

id(r)

A

∑
k∈mBZ

∣∣ψLLL
k (r)

∣∣2〈
ψLLL
k

∣∣e2χid(r)
∣∣ψLLL

k

〉 , (H1)

where A is the total system area. The Fourier compo-
nents of the spatial function |ψLLL

k (r)|2 can be obtained
from Eqs. (C8) and (C11):

1

A

∫
d2re−iG·r ∣∣ψLLL

k (r)
∣∣2 = I−G

kk = ηGλGe
iℓ2k×G,

(H2)

and the denominator in the summation in Eq. (H1) can
be directly copied from the AC case presented in Eq.
(5b), which then gives

ρid(r) =
e2χ

id(r)

A

∑
k∈mBZ

∑
G ηGλGe

i(G·r+ℓ2k×G)∑
G ηGλGΦid

Ge
iℓ2G×k

, (H3)

where Φid
G is the Fourier component of e2χ

id(r).

Now we apply the first-shell approximation to both
the numerator and the denominator in the summation of
Eq. (H3) as we did in Appendix F, and then do a Taylor
expansion over λ1:

ρid(r) ≈ e2χ
id(r)

AΦid
0

∑
k∈mBZ

1− λ1

5∑
j=0

ei(Gj ·r+ℓ2k×Gj)


×

1 +
λ1Φ

id
1

Φid
0

5∑
j′=0

eiℓ
2Gj′×k + O

(
λ21
) .

(H4)
Since all nontrivial harmonic terms in k (i.e. that depend
on k as ∼ eiℓ

2k×G with nonzero reciprocal lattice vector
G) are integrated out by summation over the mBZ, up
to the leading term of r dependence we get

ρid(r) ≈ e2χ
id(r)

AMΦid
0

1− λ21Φ
id
1

Φid
0

5∑
j=0

eiGj ·r

 . (H5)

We see that compared to e2χ
id(r), the spatially varying

part of the bracket in Eq. (H5) is suppressed by a factor
of λ21 ≈ 0.027, hence conclude that ρid(r) has almost
identical shape as e2χ

id(r).
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to eÃ, eBz

eff , 2m∗D, ∆̃ and m∗ in Ref. 30.
48 S. M. Girvin and T. Jach, Phys. Rev. B 29, 5617 (1984).
49 R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
50 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
51 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
52 W.-X. Qiu, B. Li, X.-J. Luo, and F. Wu, Phys. Rev. X

13, 041026 (2023).
53 M. Fujimoto, D. E. Parker, J. Dong, E. Khalaf, A. Vish-

wanath, and P. Ledwith, “Higher vortexability: Zero field
realization of higher Landau levels,” (2024), comment: 12
pages, 5 figures, arxiv:2403.00856 [cond-mat].

54 A. P. Reddy, N. Paul, A. Abouelkomsan, and L. Fu,
“Non-Abelian fractionalization in topological minibands,”
(2024), comment: V1: 5 pages, 4 figures. V2: 5 pages,

5 figures. Added exact diagonalization results for twisted
MoTe2, arxiv:2403.00059 [cond-mat].

55 C. Xu, N. Mao, T. Zeng, and Y. Zhang, “Multiple
Chern bands in twisted MoTe$_2$ and possible non-
Abelian states,” (2024), comment: 5+4 pages, 4+6 figures,
arxiv:2403.17003 [cond-mat].

56 A. P. Reddy, F. Alsallom, Y. Zhang, T. Devakul, and
L. Fu, Phys. Rev. B 108, 085117 (2023).

57 X. Li, F. Wu, and A. H. MacDonald, “Electronic Structure
of Single-Twist Trilayer Graphene,” (2019), comment: 6
pages, 4 figures, arxiv:1907.12338 [cond-mat].

58 E. Khalaf, A. J. Kruchkov, G. Tarnopolsky, and A. Vish-
wanath, Phys. Rev. B 100, 085109 (2019).

59 T. Cea, P. A. Pantaleón, and F. Guinea, Phys. Rev. B
102, 155136 (2020).

60 J. Shi, J. Zhu, and A. H. MacDonald, Phys. Rev. B 103,

http://dx.doi.org/10.1103/PhysRevB.109.L121107
http://dx.doi.org/ 10.1103/PhysRevLett.132.036501
http://dx.doi.org/ 10.1103/PhysRevLett.122.086402
http://dx.doi.org/ 10.1038/s41467-021-27042-9
http://dx.doi.org/ 10.1038/s41467-021-27042-9
http://dx.doi.org/ 10.1103/PhysRevResearch.3.L032070
http://dx.doi.org/ 10.1103/PhysRevResearch.3.L032070
http://dx.doi.org/10.1103/PhysRevB.107.L201109
http://dx.doi.org/10.1103/PhysRevResearch.2.033087
http://dx.doi.org/10.1103/PhysRevResearch.2.033087
http://dx.doi.org/ 10.1103/PhysRevResearch.5.L032022
http://dx.doi.org/ 10.1103/PhysRevResearch.5.L032022
http://dx.doi.org/10.1103/PhysRevB.90.165139
http://dx.doi.org/10.1038/ncomms9629
http://dx.doi.org/10.1038/ncomms9629
http://dx.doi.org/ 10.1103/PhysRevLett.114.236802
http://dx.doi.org/10.1103/PhysRevB.96.165150
http://dx.doi.org/10.1103/PhysRevB.96.165150
http://dx.doi.org/10.1103/PhysRevResearch.2.023237
http://dx.doi.org/10.1103/PhysRevB.104.045103
http://dx.doi.org/10.1103/PhysRevB.104.045104
http://dx.doi.org/10.1103/PhysRevB.104.115160
http://dx.doi.org/ 10.1103/PhysRevLett.127.246403
http://dx.doi.org/ 10.1103/PhysRevLett.127.246403
http://dx.doi.org/10.1103/PhysRevB.108.205144
http://dx.doi.org/10.1103/PhysRevB.108.205144
http://dx.doi.org/10.1016/B978-0-323-90800-9.00136-0
http://dx.doi.org/10.1103/PhysRevLett.132.096602
http://dx.doi.org/ 10.1103/PhysRevLett.83.3737
http://dx.doi.org/10.1103/PhysRevB.62.R6065
http://dx.doi.org/10.1103/PhysRevB.62.R6065
http://dx.doi.org/10.1103/PhysRevB.92.115417
http://dx.doi.org/10.1103/PhysRevB.92.115417
http://dx.doi.org/10.1103/PhysRevB.87.024402
http://dx.doi.org/10.1103/PhysRevB.87.024402
http://arxiv.org/abs/2402.02251
http://arxiv.org/abs/2402.02251
http://arxiv.org/abs/2402.02251
http://arxiv.org/abs/2402.02251
http://arxiv.org/abs/2402.02251
http://dx.doi.org/10.1103/PhysRevA.19.2461
http://dx.doi.org/10.1103/PhysRevResearch.5.L032048
http://dx.doi.org/10.1103/PhysRevResearch.5.L032048
http://arxiv.org/abs/2305.10477
http://arxiv.org/abs/2305.10477
http://arxiv.org/abs/2305.10477
http://arxiv.org/abs/2305.10477
http://arxiv.org/abs/2305.10477
http://arxiv.org/abs/2301.00824
http://arxiv.org/abs/2301.00824
http://arxiv.org/abs/2301.00824
http://arxiv.org/abs/2301.00824
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/ 10.1103/PhysRevResearch.5.L012005
http://dx.doi.org/ 10.1103/PhysRevResearch.5.L012005
http://dx.doi.org/ 10.1103/PhysRevLett.132.146401
http://arxiv.org/abs/2311.12776
http://arxiv.org/abs/2311.12776
http://arxiv.org/abs/2311.12776
http://arxiv.org/abs/2311.07533
http://arxiv.org/abs/2311.07533
http://arxiv.org/abs/2311.07533
http://arxiv.org/abs/2311.07533
http://arxiv.org/abs/2311.04958
http://arxiv.org/abs/2311.04958
http://arxiv.org/abs/2311.04958
http://arxiv.org/abs/2311.04958
http://dx.doi.org/10.1103/PhysRevB.29.5617
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/ 10.1103/PhysRevX.13.041026
http://dx.doi.org/ 10.1103/PhysRevX.13.041026
http://arxiv.org/abs/2403.00856
http://arxiv.org/abs/2403.00856
http://arxiv.org/abs/2403.00856
http://arxiv.org/abs/2403.00059
http://arxiv.org/abs/2403.00059
http://arxiv.org/abs/2403.00059
http://arxiv.org/abs/2403.17003
http://arxiv.org/abs/2403.17003
http://arxiv.org/abs/2403.17003
http://arxiv.org/abs/2403.17003
http://dx.doi.org/ 10.1103/PhysRevB.108.085117
http://arxiv.org/abs/1907.12338
http://arxiv.org/abs/1907.12338
http://arxiv.org/abs/1907.12338
http://dx.doi.org/10.1103/PhysRevB.100.085109
http://dx.doi.org/10.1103/PhysRevB.102.155136
http://dx.doi.org/10.1103/PhysRevB.102.155136
http://dx.doi.org/10.1103/PhysRevB.103.075122


19

075122 (2021).
61 J. Shin, Y. Park, B. L. Chittari, J.-H. Sun, and J. Jung,

Phys. Rev. B 103, 075423 (2021).
62 J. Wang and Z. Liu, Phys. Rev. Lett. 128, 176403 (2022).
63 P. J. Ledwith, A. Vishwanath, and E. Khalaf, Phys. Rev.

Lett. 128, 176404 (2022).
64 D. Guerci, Y. Mao, and C. Mora, “Chern mosaic and

ideal flat bands in equal-twist trilayer graphene,” (2023),
comment: 7+7 pages, 5 figures, arxiv:2305.03702 [cond-
mat].

65 D. Guerci, Y. Mao, and C. Mora, “Nature of even and odd
magic angles in helical twisted trilayer graphene,” (2023),
comment: 14 pages, 6 figures, arxiv:2308.02638 [cond-mat].

66 F. K. Popov and G. Tarnopolsky, Phys. Rev. B 108,
L081124 (2023).

67 D. C. W. Foo, Z. Zhan, M. M. Al Ezzi, L. Peng, S. Adam,

and F. Guinea, Phys. Rev. Research 6, 013165 (2024).
68 J. Dong, P. J. Ledwith, E. Khalaf, J. Y. Lee, and A. Vish-

wanath, Phys. Rev. Research 5, 023166 (2023).
69 J. Wang, S. Klevtsov, and Z. Liu, Phys. Rev. Research 5,

023167 (2023).
70 R. Ferrari, Phys. Rev. B 42, 4598 (1990).
71 R. Ferrari, Int. J. Mod. Phys. B 09, 3333 (1995).
72 F. D. M. Haldane, Journal of Mathematical Physics 59,

071901 (2018).
73 J. Wang, S. D. Geraedts, E. H. Rezayi, and F. D. M.

Haldane, Phys. Rev. B 99, 125123 (2019).
74 F. Wu and S. Das Sarma, Phys. Rev. B 102, 165118 (2020).
75 A. Abouelkomsan, K. Yang, and E. J. Bergholtz, Phys.

Rev. Research 5, L012015 (2023).
76 T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn.

74, 1674 (2005).

http://dx.doi.org/10.1103/PhysRevB.103.075122
http://dx.doi.org/ 10.1103/PhysRevB.103.075423
http://dx.doi.org/10.1103/PhysRevLett.128.176403
http://dx.doi.org/10.1103/PhysRevLett.128.176404
http://dx.doi.org/10.1103/PhysRevLett.128.176404
http://arxiv.org/abs/2305.03702
http://arxiv.org/abs/2305.03702
http://arxiv.org/abs/2305.03702
http://arxiv.org/abs/2305.03702
http://arxiv.org/abs/2308.02638
http://arxiv.org/abs/2308.02638
http://arxiv.org/abs/2308.02638
http://dx.doi.org/10.1103/PhysRevB.108.L081124
http://dx.doi.org/10.1103/PhysRevB.108.L081124
http://dx.doi.org/ 10.1103/PhysRevResearch.6.013165
http://dx.doi.org/ 10.1103/PhysRevResearch.5.023166
http://dx.doi.org/10.1103/PhysRevResearch.5.023167
http://dx.doi.org/10.1103/PhysRevResearch.5.023167
http://dx.doi.org/10.1103/PhysRevB.42.4598
http://dx.doi.org/10.1142/S0217979295001300
http://dx.doi.org/10.1063/1.5042618
http://dx.doi.org/10.1063/1.5042618
http://dx.doi.org/10.1103/PhysRevB.99.125123
http://dx.doi.org/10.1103/PhysRevB.102.165118
http://dx.doi.org/10.1103/PhysRevResearch.5.L012015
http://dx.doi.org/10.1103/PhysRevResearch.5.L012015
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1143/JPSJ.74.1674

	Adiabatic Approximation and Aharonov-Casher Bands in Twisted Homobilayer TMDs
	Abstract
	Introduction
	Models
	Continuum Model
	Adiabatic Approximation for Twisted Homobilayer TMDs
	The Aharonov-Casher Limit
	Landau Level Representation

	Comparison Between Adiabatic and Continuum Model Band Properties
	Comparisons between Aharonov-Casher and Adiabatic Band Properties
	Charge Density Distribution
	Berry Curvature Distribution

	Landau-Level to Haldane-Model Crossover
	Summary and Discussion
	Acknowledgments
	Adiabatic Approximation
	Relationship Between Model Parameters and Residual Potential
	LL Wave Functions and Derivation of LL-Basis Hamiltonian Elements
	Berry Curvature and Quantum Geometry Under Landau level Basis
	Beyond Adiabatic Approximation: Perturbation Theory Treatment
	AC Limit of the Adiabatic Approximation
	Wave Functions of Nearly Ideal Bands in Adiabatic Approximation
	Relation Between Charge Density and Common Factor of Ideal Bands
	References


