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Generalization of Task Parameterized Dynamical
Systems using Gaussian Process Transportation

Giovanni Franzese, Ravi Prakash, and Jens Kober

Abstract—Learning from Interactive Demonstrations has revo-
lutionized the way non-expert humans teach robots. It is enough
to kinesthetically move the robot around to teach pick-and-place,
dressing, or cleaning policies. However, the main challenge is
correctly generalizing to novel situations, e.g., different surfaces
to clean or different arm postures to dress. This article proposes
a novel task parameterization and generalization to transport the
original robot policy, i.e., position, velocity, orientation, and stiff-
ness. Unlike the state of the art, only a set of points are tracked
during the demonstration and the execution, e.g., a point cloud of
the surface to clean. We then propose to fit a non-linear transfor-
mation that would deform the space and then the original policy
using the paired source and target point sets. The use of function
approximators like Gaussian Processes allows us to generalize, or
transport, the policy from every space location while estimating
the uncertainty of the resulting policy due to the limited points in
the task parameterization point set and the reduced number of
demonstrations. We compare the algorithm’s performance with
state-of-the-art task parameterization alternatives and analyze
the effect of different function approximators. We also validated
the algorithm on robot manipulation tasks, i.e., different posture
arm dressing, different location product reshelving, and different
shape surface cleaning. A video of the experiments can be found
here: https://youtu.be/FDmWF7K15KU.

I. INTRODUCTION

One of the main appeals of robot learning from demonstra-
tions is that it enables humans with different levels of robotic
expertise to transfer their knowledge and experience about
skills and tasks to the robot [1]. This alleviates the need to
program such skills by hand, which is tedious, error-prone, and
requires an expert. However, one of the long-term challenges
of this approach is generalizing the learned behavior to novel
situations.

By enhancing the policy with task parameterization [2],
robots can generalize their learned knowledge to different
variations of the same task, thus promoting scalability and data
efficiency in robot learning, allowing robots to learn faster and
adapt to new scenarios. For instance, a robot can be trained to
clean surfaces with a reduced set of shapes, to dress an arm
in a certain configuration, or to pick objects with a certain
shape and place them on the right shelf. Ideally, the robot
would generalize the learned skill to novel situations without
extensive retraining. This paper proposes a way of transfer, or
“transport”, the original learned behavior from the old to the
new situation.

For example, let us imagine teaching a robot how to draw
on a flat canvas, as depicted in Fig. 1. The robot can learn
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Fig. 1: Example of Policy Transportation. The human demon-
strates to a robot how to perform a task on a flat canvas.
Then, the robot, when facing a new curved canvas, “transports”
its knowledge in the new situation by adapting the end
effector velocity, orientation, and stiffness to correctly adapt
the drawing on the new canvas.

to imitate the human on the same flat canvas, however, when
the desired surface to reproduce the task is changed, i.e., the
blue curvy surface, the user may have to teach the task again
on the new surface. Instead, by knowing the correspondence
of a set of points from the two surfaces, we propose to learn
a function that could generalize the policy from the original
parameter distribution to the new one.

The learned function is locally deforming the space accord-
ing to the new location of the tracked points and this can be
used to generalize the learned velocity field, learned stiffness
and orientation. Fig. 2, depicts how the trajectory and the
learned desired dynamics of drawing a letter C depicted as
red dots, on a flat surface, depicted in green; the robot would
learn the desired behavior, i.e., the velocity depicted as black
arrows, form any position of the space. However, when the
desired surface to reproduce the task is changed, i.e., the blue
curvy surface, the user may have to teach the task again on
the new surface. Instead, by knowing the correspondence of
a set of points from the two surfaces, we show how to learn
a function that could generalize the policy from the original
surface shape to the new one.

Our algorithm contributes with the formalization and testing
of a policy transportation theory that can
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Fig. 2: The demonstrations (in red) are given on the green
surface, and the learned dynamics, depicted as arrows, are
learned from them. Later, the demonstration and the dynam-
ics are projected on another curved blue surface using the
proposed Gaussian Process Transportation.

• transport the demonstration from the original space to the
new space, see Sec. IV-B;

• transport the velocity field, end-effector orientations, stiff-
ness and damping by exploiting the derivative of the
transportation mapping, see Sec. IV-C;

• estimates the final uncertainty due to the reduced set
of demonstrations and the estimated uncertainty in the
transportation map, see Sec. IV-E.

The same algorithm was tested on generalizing complex
manipulation tasks like cleaning surfaces with different shapes,
picking and placing objects at other locations, and dressing an
arm in various configurations, see Sec. VI.

II. RELATED WORKS

One classical method to generalize behavior to new situa-
tions involves task parameterization, such as the picked object
location, target goal, or via points. This idea of behavior repre-
sentation and generalization in varying task configurations has
been popularly achieved using Dynamic Movement Primitives
(DMPs) [3] through a single or multiple demonstration per
task. The DMP model consists of stable second-order linear
attractor dynamics with alterable target parameters (end goal
or velocities).

An approach to adapt the DMPs via points is addressed in
[4], but it demands combining several DMPs for a single task.
Alternatively, a roto-translation can be applied to the original
dynamical systems according to the tracked frame or points
in the environment.

Approaches for modeling and generalizing demonstrations
that have shown improved performances with respect to the
DMPs are Probabilistic Movement Primitives (ProMPs) [5].
ProMPs model the distribution over the demonstrations that
capture temporal correlation and correlations between the
DoFs using a linear combination of weights and a set of
manually designed basis functions. Adaptation to new task
parameters or via points is achieved using Gaussian condi-
tioning. While this approach allows modeling the structure and

variance of the observed data in the absolute reference frame,
the generalization to the new task parameters is satisfactory
only within the confidence bound of the demonstration data.
For example, showing many demonstrations for different goal
points, the probabilistic model can be conditioned on a novel
object position and retrieve the most probable trajectory that
brings the robot to that final position.

However, when learning reactive policies, i.e., a function of
the state and not of the phase of the motion, the use of ProMPs
is limited since the number of basis functions overgrows with
the dimension of the input, limiting its applications.

Kernelized Movement Primitives (KMP) [6] proposed a
non-parametric skill learning formulation.

This formulation allows modulation of the recorded trajec-
tories to new via points, obtaining the deformation of the
original movement primitives given the temporal correlation
of the demonstration and the via point, calculated with the
kernel function. However, the user must specify the time and
the corresponding waypoint to deform the original trajectory
or rely on a heuristic that, for example, matches each waypoint
with the closest point in the trajectory.

Gaussian Mixture Models (GMM) [7]–[9] have successfully
been employed in modeling demonstration, endowing with a
successful generalization in its task parameterized version (TP-
GMM) [2].

Given a set of reference frames that are tracked during
demonstration and execution, the central idea of TP-GMM is
the local projection of the demonstrations in each of the local
reference frames and encoding each model as a mixture of
Gaussians [2], [10]–[12]. The local models are then fused in
global coordinates, using the Product of Gaussian (PoG), and
a new motion is rolled out from the resulting mixture model.
This approach, however, requires many demonstrations to fit
the model and does not scale well with the increasing number
of task frames. This is because the PoG does not scale well
when dealing with many reference frames and can lead to
undesirable generalizations.

The generalization of the demonstrations, encoded as a
chain of events in a graph, with respect to multiple via
points, can be done using Laplacian Editing [13], [14]. It
uses Laplace-Betromi operator, a well-known algorithm in
the computer graphics community, to deform meshes [15], to
encode geometric trajectory properties and generate deformed
trajectories using task constraints, i.e., new via points. The op-
erator ensures a smooth deformation of the trajectory through
the via points.

However, this approach is very specific for trajectory re-
shaping and requires explicit knowledge of the new via-point
for some trajectory nodes.

In this paper, we relax the need to explicitly specify the
new via-points for a specific node in the trajectory since the
via-point definition can be error-prone and requires ad-hoc
algorithms.

Moreover, while all the previous approaches only address
generalizing a demonstration/robot trajectory, our proposed
approach relaxes the requirement of generalizing only trajec-
tories. It provides the means also to generalize the velocity
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field of the original dynamics, as well as the orientation and
the stiffness.

For generalization, we use a combination of linear transfor-
mation and non-linear deformation to transport demonstrations
to new situations while estimating the process uncertainty. We
validated the algorithm on three use cases: robot reshelving,
robot dressing, and robot cleaning.

Robot Reshelving Authors of [16] propose, within the
realm of robotic retail automation, to enable non-expert su-
permarket employees to teach a robot a reshelving task and
then adeptly generalize its learned policy to accommodate
diverse task situations. The generalization of the policy for
varying object locations is achieved by switching between the
dynamical system learned between the object and the goal
frame. However, the switching strategy entails having a good
prior on when to switch and all the possible implications of
generating instability by suddenly changing the policy online.
TP-GMM alternatives [2], solved the problem of the switching
by obtaining the final GMM as the product of the relative
models; however more than one demonstration is necessary to
fit an informative model.

Robot Dressing Robot dressing is a challenging task since
it includes manipulation of deformable objects, and the margin
of error to correctly go through the human arm is very low.

Task parameterized dynamical system has been applied to
learn the dressing task in the robotics research. The dressing
demonstrations w.r.t. the wrist and the shoulder of a human
arm have been used to learn a dressing policy via DMP [17],
TP-HMM [18] and a TP-GMM [19].

Robot Surface Cleaning Efficient and fast generalization of
robotic surface cleaning is achieved using task-parameterized
learning.

In [20] the cleaning dynamics is the sum of two dynamical
systems, one that learns the desired motion on the surface and
another that computes the modulation term on the desired force
to apply on the perpendicular direction of the surface (where
the shape is known a priori). This second term is learned as
a non-linear function that allows learning larger forces in a
region of the surface compared to others.

The shape of the surface can also be estimated using the
wrench measured with a force-torque sensor attached at the
end-effector; for instance, [21] generalizes the polishing task
on the novel curved surface by adapting the orientation and the
direction of the contact force such that to minimize perceived
torque.

The following section will provide some background on the
main concepts necessary for learning a policy from demonstra-
tion and generalize it using Gaussian Process Transportation.

III. PRELIMINARIES

We review the learning of policies from demonstration using
a dynamical system formulation in Sec. III-A and the specific
use of a Gaussian Process (GP) for learning the policy itself
or the transportation policy in Sec. III-B.

A. Interactive Learning of Dynamical System from Demon-
strations

A non-linear dynamical system (DS) can be described by

ẋ = f(x) (1)

where x is the state of the system, such as the end effector or
the joint position, while ẋ is the observed state transition.

The demonstrated dynamics are captured by a non-linear
function f that is agnostic to the function approximation
used. However, the resulting properties for out-of-distribution
predictions depend on it. For example, the robot may extrap-
olate the wrong behavior and make the motion to diverge
in undesired regions of the workspace. To enforce stability
of the motion dynamics, the Stable Estimator of Dynamical
Systems (SEDS) [22], constrains the properties of each of
the linear models of a Gaussian mixture to enforce global
asymptotic stability. Alternatively, the global dynamics can
be coupled with latent (linear) stable dynamics, using a deep
neural network projector to ensure the global stability of the
learned task dynamics [23], [24].

Differently, [25] proposes to minimize the epistemic uncer-
tainties predicted as an output of a GP dynamical system to
attract the motion in regions with high confidence, i.e., close
to the training set. Moreover, [25] also proposes a way of
updating the learned attractor and stiffness field online, to
learn for example, how to apply enough pressure on a table,
and clean it successfully. Fig. 2 shows the dynamics learned
from the drawing of a letter C from multiple demonstrations,
where the attractor delta in z is set to be constantly negative,
i.e., the vector arrows point under the surface. Since, in
the context of this article, the policy and the transportation
are learned with a Gaussian Process, the next section will
introduce the fundamental equations used to fit and predict
mean and variance using a GP (or its approximation).

B. Gaussian Process Regression

A Gaussian Process is a collection of random variables, any
finite number of which have a joint Gaussian distribution. To
fit a Gaussian process, we start with a prior distribution over
functions. The prior is typically specified as a mean function
and a kernel function. The prior distribution represents our
beliefs about the functions before observing any data. For
example, when learning a dynamical system, it is safer to have
a zero mean prior, such that the robot does not attempt to do
any movement if there is no significant evidence from the
human demonstration.

The posterior distribution is used to make predictions or
perform inferences, and assuming Gaussian likelihood, the
mean and variance predictions are

µ =KX∗,X(KX,X + σ2
nI)

−1y (2)

Σ =KX∗,X∗ −KX∗,X(KX,X + σ2
nI)

−1KX,X∗ (3)

where X∗ ∈ Rn×m are the evaluation inputs and X ∈
RN×m and y ∈ RN×l are the training inputs and outputs; the
correlations KX,X ∈ RN×N , KX∗,X ∈ Rn×N , KX∗,X∗ ∈
Rn×n are the correlation matrix between every input training
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point, between testing and training points and between testing
points.

Every entry of this matrices is computed using a kernel
function, for example, the squared exponential kernel, defined
as

kSE(xi,xj) = σ2
p exp

(
− (xi − xj)2

2ℓ2

)
,

where xi,xj are any pair of training-training, testing-training,
or testing-testing data points; σp and ℓ are the kernel hy-
perparameters and, together with the likelihood noise σn are
optimized with a maximization of the log-likelihood of the
given data [26].

Given the computationally expensive inversion of the co-
variance matrix that grows with the number of data points,
optimizing kernel hyperparameters and inference becomes
prohibitive when having big datasets. Therefore, variational
inference aims to approximate the true posterior p(f |X,y)
with a simpler distribution q(f). Stochastic Variational Gaus-
sian Process (SVGP) optimizes the location and values of a set
of pseudo data, usually referred to as inducing points Z and
a variational distribution q(u). The parameters of the kernel
and the variational parameter of the approximated distribution
are optimized using the evidence lower bound (ELBO) as the
evidence of the data [27].

The use of SVGP, in the context of this paper, can make the
computation significantly faster when fitting a transportation
function with many points from the source and target distribu-
tion; however, any of the proposed algorithms, formalized in
the next section, is independent of the approximation nature
of the GP.

IV. POLICY TRANSPORTATION

We learn and correct a manipulation policy from an in-
teractive demonstration [1], using, for example, a GP as the
function approximator to fit the demonstration dynamics.

However, although the task execution would succeed from
any given starting configuration of the robot, it will fail to
generalize if the task is changed, e.g., if the object to pick
is moved or if the robot faces a differently shaped surface to
clean.

Intending to find a task parameterization that scales from
pick-and-place to continuous surface, we assume to track
a set of environment-specific points that are descriptive of
the situation. For example, when picking a box, the eight
corners are tracked, or when cleaning a surface, a point cloud
representation is used. This is the most straightforward yet
most general task parameterization while being technically
feasible, given the current development of LiDAR and depth
camera technology.

We define the tracked N point recorded in the demonstration
scenario as the source distribution, i.e.,

S = {(xs,i, ys,i, zs,i)}Ni=1 (4)

while the moved points in the new scenario are defined as
the target distribution, i.e.,

T = {(xt,i, yt,i, zt,i)}Ni=1. (5)

We assume that the points of target and source distribution
are already paired. Many algorithms are available to (opti-
mally) pair the two distributions [28]; hence this is not the
focus of our work.

We define a map ϕ such that each point si in S is paired
with one and only one point tj in T . This can be represented
as:

ϕ : S → T
si 7→ tj

(6)

where i, j ∈ {1, 2, . . . , n}. We aim to find the function
that maps from the source space to the target space, given
the evidence of the input-output pairs from the source and
target distribution. Estimating a continuous process allows the
deformation of the complete space to match the source and
the target distribution, as depicted in Fig. 3.

The structure of the function ϕ that we want to approximate
can be any nonlinear function that maps any point of the
Cartesian space to itself, e.g., ϕ : R3 → R3. However, in the
context of this article, we consider the transportation function
to have the following definition,

ϕ(x) := γ(x) +ψ(γ(x)) (7)

where γ and ψ are, respectively, a linear and nonlinear
transformation. The fitting of the function is made in two
steps: first the linear transformation γ(x) is obtained, and then
the nonlinear transformation ψ(γ(x)) is fitted on the residual
error.

A. Linear Transformation

To fit the optimal rotation matrix between the source and the
target distribution, the centered source and target distribution
are used as labels for the fitting of the function γ, i.e.

T − T̄︸ ︷︷ ︸
ylabel

= γ(S − S̄︸ ︷︷ ︸
xlabel

) (8)

where S̄ and T̄ are the centroid of the source and the target
distribution, respectively. We can find the rotation between the
two centered distributions using the Singular Value Decompo-
sition (SVD) imposing

U ,Σ,V ⊤ = (S − S̄)⊤(T − T̄ ) (9)

and the rotation matrix is defined as,

A = V U⊤, (10)

however, if det(A) < 0, the last column of V is flipped in
sign, and the computation of the rotation matrix is repeated.
This ensures the transformation is a proper rotation matrix
without any reflection; see [29] for more details. Hence,
the linear transformation on any point in the space can be
computed as

γ(x) = A(x− S̄) + T̄ . (11)

Fig. 3,c shows a linear transformation of the source and a
grid of points from the original space depicted in Fig. 3,b.
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B. Non-linear Transportation

After fitting the linear transformation of Eq. (11), the
residual transformation is obtained by substituting the source,
target points, and the fitted linear function in Eq. (7), obtaining
that

T − γ(S)︸ ︷︷ ︸
ylabel

= ψ(γ(S)︸ ︷︷ ︸
xlabel

). (12)

The nonlinear function ψ can be any nonlinear regressor, such
as a Neural Network, a Random Forest, a Gaussian Process,
etc. However, the inducting bias given by the nature of the
nonlinear function will affect the regression output when going
out of distribution, i.e., far away from the given data. For
example, suppose the function is approximate with a GP with
a distance-based kernel k, such as a square exponential kernel.

If the prior distribution is set to be a zero-mean function,
when making predictions, see (2) in regions of the space
far away from the source distribution points, the final trans-
portation converges to just being a linear transformation, see
Fig. 3,d. Knowing the out-of-distribution (o.o.d.) properties of
our transportation policy is desirable, considering that we will
transport points that are not necessarily close to the point of
the source/target distribution.

C. Transportation of the Dynamics

Although the transportation map allows the transport of any
point of the original demonstration in the new situation, for
example, to generalize the demo on cleaning a new surface,
we still have not formulated a transportation function for
the velocity field ẋ. It is not as trivial as computing the
numerical differentiation of the transported trajectories. We
consider the policy labels as independent points, no longer
part of a trajectory. This allows us to learn from multiple
demonstrations and to change the velocity label connected to
them if providing (teleoperated) feedback or aggregating new
data from interactive demonstrations [25].

Nevertheless, the partial derivative of the transportation
mapping can be exploited in the velocity field generalization.

Given the transportation function defined in the source space
and projecting in the target space, i.e.,

x̂ = ϕ(x)

by differentiating w.r.t. time on both sides and using the chain
rule, we obtain the velocity field in the transported space as

˙̂x =
∂ϕ(x)

∂x
ẋ = J(x)ẋ (13)

where the Jacobian matrix, using the definition of Eq. (7), can
be defined as

J(x) :=
∂γ(x)

∂x
+

∂ψ(x)

∂γ(x)

∂γ(x)

∂x

where ∂γ(x)
∂x = A and ∂ψ(x)

∂γ(x) can be obtained using auto-
matic differentiation of the chosen regressor. In the following
sections, we will simplify notation by omitting the explicit
dependence of J on x.

Fig. 4 summarizes all the steps done during transportation
that can also be visualized in Fig. 5 on a 2D example. In
the first row of the two figures, the original demonstration is
used to compute the vector field. Then, in the second row, the
demonstration and the vector field are transported, thanks to
the transportation map ϕ fitted on the observed source and
target distribution.

In particular, after the transportation of x̂ and ˙̂x, in the
vertical lines of scheme in Fig. 4, the new policy, denoted as
f̂ , is fitted again using the transported x̂ and ˙̂x labels.

D. Robot Orientation and Stiffness Generalization

However, when learning and controlling the Cartesian robot
pose, we must also generalize the desired end-effector orien-
tation.

Let us consider the end effector to be a vector of infinitesi-
mal length with the base x0 on the end effector position and
pointing in the direction of the robot orientation during the
demonstration, Ree. The transportation of the tip of the vector
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Fig. 6: Standard Deviation quantification on the velocity field. Transportation Uncertainty was computed with Eq. (16) and
quantifies the (heteroscedastic) uncertainty on the transported label (velocity) corresponding to the transported demonstration.
Epistemic Uncertainty is the resulting model uncertainty when fitting the new policy f̂ . Total Uncertainty is the resulting
standard deviation after computing the variance sum of transportation and epistemic uncertainties.

can be obtained using the Taylor approximation of Eq. (7),
according to

x̂tip = ϕ(xtip) ≈ ϕ(x0)+
∂ϕ

∂x
ϵ = ϕ(x0)+ JReeϵ0 (14)

where Ree ∈ R3×3 is the original robot orientation, ϵ0 is a
vector with infinitesimal dimension that has zero orientation.
From Eq. (14), it is readily apparent that the transported
orientation matrix of the robot end-effector becomes

R̂ee := JRee. (15)

The transported orientation matrix needs to be orthogonal with
the determinant equal to 1; hence, the pre-multiplication matrix
J must have the same properties. We enforce this by normal-
izing J with its determinant and finding the corresponding
orthogonal matrix with a QR decomposition.

Additionally, when implementing policies on a Cartesian
impedance control, the stiffness Ks and the damping matrix
D must also be transported. The change of coordinates of
the stiffness and the damping follows from the transportation
of the robot-applied force on the environment found using
Hooke’s law, i.e.,

F̂s = K̂s∆x̂ = K̂s

∆x̂︷ ︸︸ ︷
J∆x = J

Fs︷ ︸︸ ︷
Ks∆x .

Hence, the generalization of the stiffness matrix becomes

K̂s = JKsJ
T

and following a similar reasoning for the damping matrix, we
obtain,

D̂ = JDJT ,
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considering that the inverse of an orthogonal matrix is equal
to the transpose of the matrix itself.

E. Transportation Uncertainty

A probabilistic function approximator, like a GP, will also
provide the uncertainty on transportation output from Eq. (3)
that can be propagated in the transported dynamical system. In
particular, a GP derivative is also a GP [26] and its existence
will depend on the differentiability of the kernel function. The
correlation between derivative samples can be expressed as
the second partial derivative k11 = ∂2

∂xi∂xj
k(xi, xj) while the

correlation between derivative samples and function samples
is k10 = ∂

∂xi
k(xi, xj). Thus, the mean and variance prediction

of the derivative of the Gaussian Process become

µ′ =K10
X∗,X(KX,X + σ2

nI)
−1y

Σ′ =K11
X∗,X∗

−K10
X∗,X(KX,X + σ2

nI)
−1K01

X,X∗
.

(16)

The uncertainty quantification of the transportation policy
becomes essential for calculating the final uncertainty on the
control variable, e.g., the velocity. In Fig. 5, the uncertainty is
also displayed as a shaded area around the demonstration and
as the “warmness” of the color in the vector field.

The uncertainty of the velocity labels is due to the prop-
agation of the original labels through the derivative of the
(uncertain) transportation map of (13), i.e.,

Σx̂ = Σ ∂ϕ(x)
∂x

ẋ2. (17)

given the definition of the weighted sum of Gaussian variables
[30].

Hence, considering that the labels are uncertain, the predic-
tion of the resulting heteroscedastic GP [31] can be computed
as the sum of the epistemic and (variable) aleatoric uncertainty,
that is

Σ ˙̂x = Σf̂ +Σx̂. (18)

Fig. 6 depicts the transportation uncertainty on the norm of the
velocity, calculated with Eq. (16) and the epistemic uncertainty
of the model f̂ , computed with Eq. (3) using transported
position and transported velocities labels. From Fig. 5 and 6,
it is possible to appreciate that the transportation uncertainties
grow when evaluating in regions that are far away from the
task parameterization points since the transportation is less
certain when going far away from the distribution data; on the
other hand, the epistemic uncertainty grows when evaluating
in points that are far from the transported demonstration.

In conclusion, the sum of the two uncertainty fields in Fig. 6
grows either when we go far away from the (transported)
demonstration or away from the points of the source/target
distribution.

V. 2-D SIMULATIONS AND COMPARISONS

The availability of (calibrated) uncertainties is an important
feature to improve the trustworthiness in deploying robot
motion generalization. In this section, we evaluate Gaussian

Process Transportation (GPT) on generalizing the demonstra-
tion in a 2D surface cleaning task and on a reference frame-
to-frame motion generalization. Our goal for these simulated
experiments is

• to illustrate and compare how the generalization process
differs when employing regressors other than a Gaussian
Process or methodologies from the state-of-the-art while
generalizing a cyclic demonstration that approaches and
then retreats from the surface “to clean”, in Sec. V-A;

• assess and compare GPT’s ability to generalize in multi-
reference frame tasks, measuring its performance against
state-of-the-art algorithms, in Sec. V-B.

A. 2-D surface cleaning
Fig. 5 visualizes the transportation of the given demonstra-

tion, in red, from the source to the target space, using the
transportation map ϕ where the non-linear component was
chosen to be a GP, given the out-of-distribution prediction
and the calibrated uncertainty quantification. However, other
state-of-the-art function approximators can be used to fit the
transportation function without loss of generality. To ensure
a fair comparison, the mean linear transformation, i.e., γ, is
applied to all trajectories before using the different methods
to perform the non-linear transportation. Table I summarises
the method with their properties, while Fig. 7 shows the
generalization of the demonstration when these methods are
used.

Kernelized Movement Primitives (KMP) [6], in this study,
fits the motion as a function of time while Laplacian editing
(LE) [13] considers the topology of the demonstration to be
a chain, i.e., a graph where only consecutive vertices are
connected with an edge or as a ring, when the demonstration
is periodic, i.e. also starting and ending nodes are connected,
like in Fig. 7. Hence, every point of the source distribution
is matched with the closest point of the demonstration. Then,
each point of the trajectory, or the graph, is moved, knowing
the new desired target location of the matched points.

Hence, LE and KMP do not provide any uncertainty on the
transportation process.

All the other transportation regressors, a part of the GP,
are ensembles of popular regression functions, i.e., Ensemble
Random Forest (E-RF). Ensemble Neural Networks (E-NN)
and Ensemble Neural Flows (E-NF). An ensemble is a col-
lection of multiple individual models, trained independently,
whose combined predictions are used to estimate a distribution
on the prediction, i.e., mean and variance. In this example,
Neural Networks are simple multi-layer perceptrons while
Neural Flows [32] are bijective neural networks, i.e., flows,
usually used to learn a mapping from a simple probability
distribution to a more complex target distribution.

Fig. 7 depicts the mean and the uncertainty bounds of 2-σ
for the transported trajectories when using ensembles and GPs.
The bounds are computed from the different fitted models in
the ensembles while it is computed analytically for the GP
and the depicted GP samples of Fig. 7 are drawn from the
posterior distribution.

From Fig. 7, the reader can appreciate how the GP is the
only regressor with well-calibrated and unbiased epistemic
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TABLE I: Summary table of different methods used to trans-
port trajectories to different surfaces.

Method Modality Vel. Gen. Transportation Uncertainty

KMP [6] way-points ✗ ✗
LE [13] way-points ✗ ✗

E-RF [33] continuous ✓ estimated
E-NF [24] continuous ✓ estimated
E-NN [34] continuous ✓ estimated

GP [26] continuous ✓ analytical

uncertainty quantification and minimal mean prediction dis-
tortion of the trajectory when transporting points far away
from the source distribution. For example, the E-NN, has
higher uncertainty on the right side of the demonstration,
even though the points are at the same distance from the
surface, while E-RF generates an un-distorted overconfident
transformation, i.e., the uncertainty does not grow when going
out of distribution.

B. Multiple Reference Frames

In the literature, one of the main applications of task pa-
rameterization is the generalization w.r.t. one or more reference
frames. For example, if we teach a robot how to pour water
into a glass, we want the robot to automatically generalize the
motion w.r.t. any glass position. The task, in this particular
case, can be parameterized with the location of the reference
frames of each object, which is necessary to track for a
successful generalization of the motion. Typically, the motion
is projected in any of the reference frames, and a policy is
learned w.r.t. each of the frames, leaving out the decision
on the relevance of each frame for every timestep. Task-
Parametrized Gaussian Mixture Model (TP-GMM) learns a
GMM model for the projected demonstration for each of
the frames and, during executions, the Gaussians of each
frame are combined using the property that the product of
Gaussian (PoG) is still a Gaussian, see [2] for more details.
Given the GMM, different control formulations are possible,
for example only relying on the current state of the system,
i.e., ∆xi = f(xi) [35] [2] or by using a Hidden Markov
Model (HMM) formulation that also considers the progress
during the execution of the trajectory xi+1 = f(xi,αi),
where αi, in the context of a mixture mode, selects the
properties of the model (mean and variance) that can be used
in a tracking algorithm, such as a Linear Quadratic Regulator
(LQR) [2], [36]. However, the latent transition matrix between
the different states of the HMM is unknown. They need to
be estimated using a forward pass algorithm, i.e., the Viterbi
algorithm [36], that requires an initial guess trajectory to infer
the most likely state transition that generated that initial guess
and again generate the most likely motion according to the
model. However, having an initial guess can be prohibitive
when evaluating the movement in a novel configuration of
starting and goal frames.

Differently from these task-parameterized approaches, our
proposed method does not track only the reference frame but a
set of points that are relevant to the starting and goal object. To
guarantee a fair comparison with the state of the art, in Fig. 8,

when generalizing using GPT, only 5 points are tracked w.r.t.
each reference frame, capturing the position but also the local
orientation of the frames. In Fig. 8, what we describe as DMP
uses the same mathematical structure of GPT but only relies
on a linear transformation, which is why the result is not able
to capture the non-linear deformation due to the frame orien-
tation. One of the main perks of our proposed method is the
ability to generalize any dynamical system generated by even
only one demonstration, unlike GMM-based methods where,
to capture a meaningful mixture model, at least two diverse
demonstrations need to be provided. Additionally, the GMM
uncertainty of the final multi-frame model that results from the
PoG does capture the uncertainty of the transportation, while,
as depicted in Fig. 8, the GP transportation results in growing
uncertainties when transporting points of the demonstrations
that are less correlated with the source-target points.

Fig. 8 highlights the discrepancy in the performance of
GMM methods on the training set and the test set. At the
same time, the reproduction of a known combination of the
frames results in accurate rollouts of the policies both when
executing them as a dynamical system (TP-GMM)1 [35] then
as an optimal tracking problem of a multi-transition Hidden
Markov Model (HMM)2 [36], when evaluating on the test
set, generated on random reorganization of the frames, the
resulting trajectories do not successfully reach the goal frame
neither in position or orientation. To quantify and compare
the different methods, we conducted a quantitative analysis
comparing the generalization on known trajectories from the
demonstration set or the reaching performance on a randomly
generated frame set.

Quantitative Analysis: Fig. 9 shows the box plot that
compares the performance of the different models, i.e., TP-
GMM, HMM, DMP, and GPT, on the training set. Nine
demonstrations are available for different configurations of the
starting and goal frame. When training the GMM models,
i.e., TP-GMM and HMM, a subset of demonstration m is
randomly chosen from the training set and compared with the
remaining (9−m) demonstrations when evaluating the model
in that unknown situation; the number of used demonstration
is highlighted as an apex, e.g., HMM 6 means that we used
an HMM model with six demonstrations. When training the
transportation models, linear or non-linear, i.e., DMP or GPT,
only one demonstration is randomly picked from the training
set and compared with the other eight unseen situations.
For each model, the random selection of demonstration and
comparison is repeated 20 times. Five metrics are used to
compare the rollout trajectory and the actual demonstration:

• Frechet distance that does not consider any knowledge
of time but finds the maximum distance among all the
possible closest pairs among the two curves [37];

• area between the two curves that constructs quadrilaterals
between two curves and calculates the area for each
quadrilateral [37];

1Implementation available at https://github.com/BatyaGG/
Task-Parameterized-Gaussian-Mixture-Model

2Implementation available at https://gitlab.idiap.ch/rli/pbdlib-python/-/blob/
master/notebooks/

https://github.com/BatyaGG/Task-Parameterized-Gaussian-Mixture-Model
https://github.com/BatyaGG/Task-Parameterized-Gaussian-Mixture-Model
https://gitlab.idiap.ch/rli/pbdlib-python/-/blob/master/notebooks/
https://gitlab.idiap.ch/rli/pbdlib-python/-/blob/master/notebooks/
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Fig. 7: Qualitative comparison of transportation of demonstration in target space for 2D surface cleaning. The colored lines
are the samples of the final transported trajectory policy, i.e. x̂ = ϕ(x), and the orange area is 2 standard deviation. The black
curve is the 1-D surface to clean.

• Dynamic Time Warping (DTW) that computes the cumu-
lative distance between all points in the trajectory [37];

• final position error, computed as the Euclidean distance
between the final point of the trajectory and the rollout;

• final trajectory angle, that computes the approach “dock-
ing” angle of the trajectory. A low error in the angle
distance means that the reproduced trajectory approaches
the goal from the same direction as the provided demon-
stration in the same circumstance.

Considering that we have many models that can behave
differently according to the amount and quality of the demon-
stration, it is not straightforward to deduce any conclusions
on which method is statistically better from the boxplot of
Fig. 9. For this reason, we run a U test, also known as
the Mann-Whitney non-parametric test [38], to deduce if the
distribution of results of each of the methods is statistically
lower (p < 0.05) than each of the others. When computing the
U test between two methods, in case of a statistical difference,
the winning method gets one point. The numbers on top of
the figure for each of the methods indicate the performance
ranking, i.e., the method that obtained the most points when
computing the U-test is going to be first in the ranking. When
more methods share the same position in the ranking, it simply
means they were significantly better than the same amount of
other methods during the comparisons.

Fig. 9 shows that for Frechet, final position and orientation
error, GPT (trained with a single demonstration) performs the
best. In contrast, for Area btw the curves and DTW, GPT
performs equally or better than GMM and HMM models
trained with five demonstrations.

Finally, Fig. 10 shows the box plot and ranking for the
model evaluated in a test set with randomly placed frames,
and GPT performs statistically better than any other method

when reaching the right goal and from the right direction.

C. Multi-source single-target generalization

Fig. 8, in the column of Gaussian Process Transportation,
depicts the generalization of a single demonstration from one
single 2-frame source to multiple 2-frame targets. Although, in
Fig. 1, we already depicted the generalization of many demon-
strations and the learned dynamics from one source surface to
another target, we still did not mention the generalization from
multi-source to a single target. When dealing with n source
distributions, we fit n different transportation functions ϕ, each
trained with different source points but the same target points.

Fig. 8 highlights how the many demonstrations given in
different frame configurations can be transported in the same
target frame and how we can extract a reactive policy, encoded
in the vector field, as a function of the global position [25].

VI. REAL ROBOT VALIDATION

To validate the proposed method on real manipulation tasks,
we selected three challenging tasks, i.e., robot reshelving
(Sec. VI-A), dressing (Sec. VI-B) and cleaning (Sec. VI-C), to
teach as a single demonstration and generalize it in different
scenarios. These are all tasks where the training set will never
be similar to the test set; for example, when dressing a human,
the configuration and shape of the arm may change, and we
expect the robot to generalize the behavior accordingly.

We controlled a Franka Robot using a Cartesian impedance
control3.

The dynamics of the demonstrations are learned with a
non-parametric function approximation for motor learning

3https://github.com/franzesegiovanni/franka human friendly controllers

https://github.com/franzesegiovanni/franka_human_friendly_controllers
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proposed method does not rely on reference frames but only on source and target points.
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Fig. 9: Box plot results and performance ranking on frame configuration from the training set. The number on top of each box
plot is the position of the method in the performance ranking.

G
PT

D
M

P

H
M

M
_9

TP
-G

M
M

9

0

10

20

30

40

1 2 3 4
Final Position Error

G
PT

H
M

M
_9

TP
-G

M
M

9

D
M

P

0

1

2

3

4

5 1 2 3 4
Final Orientation Error

Fig. 10: Box plot results and performance ranking on randomly
generated frame configurations.

that uses a joint position-time encoding, proposed in [39].
The distance from the next attractor position and orientation
are a function of the current robot position. Our goal is to
show how the proposed transportation theory can correctly

generalize the pose, velocity, and stiffness of the robot. The
following sections will summarize the robot validation ex-
periments. A video of all the experiments can be found at
https://youtu.be/FDmWF7K15KU.

A. Robot Reshelving
Robot reshelving refers to picking an object in one location,

moving it, and placing it in a desired position on a shelf.
Our assumptions for the problem are:
• one global frame dynamical system is learned from a

single demonstration and transported in the different
object/goal configurations;

• corner points of the objects and the shelf slot are tracked
rather than position/orientation.

Fig. 12 depicts the experimental setup where a milk box,
with an AprilTag [40] on it, has to be positioned on a
compartment on a shelf, also marked by another tag. Before
the demonstrations or execution, the robot searches for any
frames in the spaces using the camera attached to its end-
effector. For every frame, the transportation policy extracts

https://youtu.be/FDmWF7K15KU
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Multi Source Single Target Transportation

Fig. 11: Multi-source single target generalization. Demonstra-
tions from different frame positions (see Fig. 8 are trans-
ported on a single target multi-frame configuration ( unknown
from the training set). The dashed line is the given human
demonstration in that configuration. The vector field is the
resulting dynamics learned also with a Gaussian Process with
minimization of uncertainties from [25].

TABLE II: Range of Variability for Object and Goal Frames.

Frame x [m] y [m] z [m] yaw [deg]
Object 0.225 0.366 - 94.6
Goal 0.337 0.036 0.675 -

a cube’s center and corners with predefined side dimensions
as the markers. Fig. 12 shows how the demonstration for
reshelving on the left of the central compartment can be
generalized to any other floor, both on the left and right. We
randomized the object position and orientation and the goal
on the shelf ten different times, all successfully generalized.
Table II shows the range of x,y,z, and yaw angles of the object
and goal markers during the ten different executions, while
Fig. 13 depicts the relative position w.r.t. the object and the
frame of the different rollouts; from the figure it is possible
to appreciate how the execution lines converge on the (initial)
object position when picking and on the goal position when
placing the object.

B. Robot Dressing

The task of dressing is a primary task in elderly care. It
consists of pulling a deformable sleeve over the posture of a
human arm.

Complicated motions need to be executed by the robot to
increase the dressing success rate, i.e., reaching the shoulder
without getting stuck or exercising too large force on the
arm. Fig. 14 depicts the robot experimental setup where an
articulated mannequin is posed in different shoulder positions
and arm configurations. Four AprilTags [40] are glued on
the arm, shoulder, elbow, wrist, and hand, captured by the
camera on the robot wrist at the beginning of each demon-
stration/execution. From the markers, only the position is
extracted this time. The piece of cloth is pinched in the
end effector by the user before starting the experiments. We

leverage the assumption that the pose will not change during
the demonstration; however, it is worth mentioning that the
arm structure is not fixed on the table, so if the generalization
is not good and the robot maliciously touches the arm, the
resulting displacement would result in unsuccessful dressing.
Only one demonstration was given to the robot. Then, the
arm was reset for a different range of x,y positions of
the shoulder and configuration of the arm. The ranges of
variation of the task parameters are ∆xshoulder = 0.122 [m],
∆yshoulder = 0.259 [m], ∆α = 56 [deg], where α is the angle
that the elbow intercepts with the connecting line between the
shoulder and the wrist. A fully stretched arm (easy pose to
dress) has α = 180, and when the hand touches the shoulder
(impossible pose to dress) α = 0. The policy transportation
was able to generalize the policy for every requested arm
configuration.

C. Robot Surface Cleaning
Surface cleaning/grinding tasks require robots to not only

track surface shapes but also apply the right amount of force
for successful cleaning/grinding. Robotic cleaning or grinding
involves automated machines equipped with specialized tools
to perform cleaning tasks.

In this experiment, we want to show that
• we can learn a general policy that may involve polishing

phases and free movement phases;
• we do not need any force sensors to align to the surface;
• the surface is unknown, and only an ordered point cloud

is obtained from the camera sensors.
One of the main advantages of the proposed method is

that it does not need to reconstruct the surface but only
learns the map from the source to the target pointcloud. The
deformation between the source and the target surface point
cloud is modeled using a Stochastic Variational Gaussian
Process Transportation (SV-GPT) to generalize the demon-
strated policy position, orientation, and stiffness profile for
a successful cleaning task. Given the large number of points
in the source and target point cloud, i.e., 400 points, using
a reduced set of inducing points, i.e., 100, makes fitting the
transportation model more computationally efficient.

Fig. 15 depicts the teaching of a cleaning task on a flat
surface and the generalization on different higher, titled, and
curved surfaces that belong to common objects. The lower
row shows what the robot perceives of the environment;
the blue dots in space are the source distribution, recorded
before giving the demonstration (depicted as dashed line),
and target distributions recorded before executing the roll-
out transported policy (depicted a solid line). Fig. 15 also
highlights how the roll-outs follow the shape of the surface,
showing a successful generalization of the robot position and
orientation. As previously stated, no external force-torque
sensor is used to adapt the orientation of the end-effector on
the tangential direction of the surface. However, an observer of
the applied external force between the robot and the surface is
estimated from measured torques in the joints. Fig. 16, depicts
the estimated norm of the force exchanged with the surface,
where the same increasing/decreasing trend is captured on the
different surfaces.
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VII. LIMITATIONS AND OPEN CHALLENGES

Despite the successful application of the proposed policy
transportation on different challenging tasks, we can foresee
some limitations and future challenges to improve the appli-
cability and have a broader impact.

For example, we assume knowing the matching between
the points of the source and the target distribution. However,
in many complex scenarios, this limitation can be problem-
atic, and some different pre-processing algorithms, such as
optimal transport [41] or iterative closest point (ICP), need to
be adopted to perform the matching. Additionally, semantic
matching can increase cross-domain generalization, for ex-
ample, by adapting the reshelving strategy to a completely
different shelf type or adjusting the dressing policy from an
adult to a baby arm.

Another assumption of the developed method is dealing with
static environments, i.e., the target distribution does not change
during the policy’s rollout. However, this assumption can fall
when dealing with the reshelving of moving objects or when
trying to dress real humans that will probably move before
and during the interaction. Nevertheless, supposing to know
the state of the target distribution, the transportation policy

can be updated inexpensively online since only the label ŷ
of Eq. (7) and the (cheap) linear transformation needs to be
recomputed. However, the fitting of the transported policy f̂
makes it challenging to perform the generalization online.

Finally, given that in complex scenarios, the generalization
may be inaccurate, the use of interactive human corrections
may increase the resulting manipulation performance [1].
However, changing the generalized policy opens the ques-
tion of whether interactive corrections should be propagated
back to the source policy and how. Additionally, in case
many source distributions/policies are recorded, the choice
of generating the target policy by transporting all of them,
like in Fig. 8, or by selecting the best one, according to
some similarity criteria, can open exciting developments of
the proposed theory.

VIII. CONCLUSIONS

In this paper, we address the prominent but challenging
problem of policy generalization to novel unseen task sce-
narios. We formulate a novel policy transportation theory that,
given a set of matched source and target points in the task
space of the robot, regresses the function that, most likely,
would match the source and target distribution. Additionally,
we showed how the same transportation function and its
derivatives can be exploited to transport the original policy
dynamics, rotation, and stiffness while retaining uncertainties
in the process. The same algorithm, which uses a Gaussian
Process at its core, was tested and compared with different
state-of-the-art regressors or different generalization methods,
showing how, even with only one source demonstration, it
results in better or comparable performance. However, the
main requirement, for a successful generalization is to track
and match important task points in the original scenario, where
the demonstration was given, and the corresponding points in
the new scenarios.

We validated the proposed approach on a Franka Robot,
testing it on three different tasks: product reshelving, arm
dressing, and surface cleaning. These various tasks were
never tackled together by the same generalization algorithm,
and they usually were performed with ad hoc solutions, for
example, to keep a constant force when cleaning a surface.
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Despite this, our policy transportation algorithm performed
successfully in all of them. The tracking requirements were
satisfied using fiducial markers or directly the point cloud
estimated with the infrared camera sensor. Future develop-
ment will have to focus on scaling the process on big and
unmatched point clouds of complex (and deformable) objects
to manipulate while allowing the use of human feedback in
the fine-tuning of the resulting policy.
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