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Ciliated microorganisms near the base of the aquatic food chain either swim to en-
counter prey or attach at a substrate and generate feeding currents to capture passing
particles. Here, we represent attached and swimming ciliates using a popular spherical
model in viscous fluid with slip surface velocity that afford analytical expressions of cil-
iary flows. We solve an advection-diffusion equation for the concentration of dissolved
nutrients, where the P’eclet number (Pe) reflects the ratio of diffusive to advective time
scales. For a fixed hydrodynamic power expenditure, we ask what ciliary surface ve-
locities maximize nutrient flux at the microorganism’s surface. We find that surface
motions that optimize feeding depend on Pe. For freely swimming microorganisms at
finite Pe, it is optimal to swim by employing a "treadmill" surface motion, but in the limit
of large Pe, there is no difference between this treadmill solution and a symmetric dipo-
lar surface velocity that keeps the organism stationary. For attached microorganisms,
the treadmill solution is optimal for feeding at Pe below a critical value, but at larger Pe
values, the dipolar surface motion is optimal. We verified these results in open-loop
numerical simulations, asymptotic analysis, and using an adjoint-based optimization
method. Our findings challenge existing claims that optimal feeding is optimal swim-
ming across all P’eclet numbers, and provide new insights into the prevalence of both
attached and swimming solutions in oceanic microorganisms.
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1 Introduction

Feeding of oceanic microbes is essential for their biological fitness and ecological func-

tion [1–5]. The metabolic processes of microbes, from small bacteria to larger ciliates

like the Stentor or Paramecium, hinge on the absorption of particles or molecules at

their surface [6–11]. These particles or molecules vary widely depending on the organ-

ism and encompass dissolved oxygen and other gases, lightweight molecules, complex

proteins, organic compounds, and small particles and bacteria. The typical random

motion of these particles and bacteria is akin to a diffusive process at the scale of

the microorganism [12–16]. For simplicity, all cases will be collectively referred to as

"nutrients."

Ciliated microorganisms use surface cilia to generate flows in viscous fluids [10,

17–21]. Ciliates either swim [3, 14, 22–24] or attach to a surface and generate feeding

currents [9, 11, 23, 25–28]. Whether motile or sessile, these ciliates perform work

against the surrounding fluid, creating flow fields that affect the transport of nutrients

and maintain a sufficient turnover rate of nutrients, unattainable by diffusion only [1].

These nutrients can thus be modeled using a continuous concentration field subject to

diffusion and advection by the microorganism’s induced flows.

The coupling between diffusive and advective transport can be essential for mi-

croorganisms to achieve feeding rates that match their metabolic needs [1]. The rela-

tive importance of advective transport is quantified by the Péclet number Pe = τdiff/τadv,

defined as the ratio of diffusive τdiff to advective τadv time scales. The diffusive time

scale τdiff = a2/D is given by the typical size of the organism a and the diffusivity D of

the nutrient of interest, while the advective time scale τadv = a/U is governed by the

flow speed U created by the microorganism.

To generate flows in a viscous fluid, a ciliated microorganism, through ciliary activ-

ity, must execute a series of irreversible surface deformations [29, 30]. We call "stroke"

such sequence of surface deformations. A stroke can induce a net force on the organ-

2



ism causing it to swim, or in the case of an attached organism, can require a reaction

force, applied via a tether or a stalk, to resist swimming. Alternatively, the stroke itself

could produce zero net force and be non-swimming. The question is, for a fixed rate of

energy dissipation in the fluid, what are the optimal strokes that maximize nutrient flux

at the organism’s surface?

For a freely-moving organism, [14] showed that the “treadmill” stroke, where on

average all cilia exert tangential forces pointing from one end of the organism to the

opposite end, is the only stroke that causes swimming. Importantly, [14] proposed that

the treadmill stroke optimizes swimming and feeding at once for all Pe values. All other

strokes were deemed suboptimal for feeding.

In this study, we evaluate, given a fixed amount of available energy, the effect of

surface velocities on feeding rates in attached ciliated microorganisms and it’s compar-

ison to swimming ciliated microorganisms. We consider a simplified spherical geom-

etry, with the ciliated envelope modeled via a tangential slip velocity at the spherical

surface [31]. The Stokes equations is solved analytically using a linear decomposition

of the ciliary stroke in terms of swimming and non-swimming modes [12, 14, 31], which

we then optimize to maximize the organism’s nutrient uptake for a given energetic cost.

Our results can be organized as follows: we first compare analytic solutions of

the Stokes equations around the sessile and motile ciliated sphere. The difference

in flow fields is fundamental and not reconcilable by a mere inertial transformation.

We solve numerically the advection-diffusion equation around the sessile and motile

sphere for a range of Pe values and for three distinct strokes: the treadmill mode, a

symmetric dipolar mode, and a symmetric tripolar mode. Only the treadmill mode leads

to swimming in the motile sphere case and requires a tethering force in the sessile

case. By symmetry, higher order modes are stationary, thus identical in the motile and

sessile cases. We find that nutrient uptake depends non-trivially on Pe values and,

we successfully validate our numerical results by conducting an asymptotic analysis
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in the two limits of large and small Pe for the sessile sphere and comparing these

asymptotic results to their counterparts in the motile case [12, 14]. We then turn to

optimal feeding strokes in the sessile case and seek, for a given amount of energy, the

optimal stroke (possibly combining multiple simpler strokes) that maximizes nutrient

uptake. We find consistent results through an open loop search and an adjoint-based

optimization method. We conclude by commenting on the implications of our findings

to understanding biological diversity at the micron scale.

2 Mathematical formulation

2.1 Fluid flows around sessile and motile ciliates

The fluid velocity u in a three-dimensional domain bounded internally by a spherical

ciliate of radius a (Fig.1A) is governed by the incompressible Stokes equation [32],

−∇p + η∇2
u = 0, ∇ · u = 0, (1)

where p is the pressure field and η is the dynamic viscosity. To solve these equations,

we consider the spherical coordinates (r, θ, φ) and assume axisymmetric boundary

conditions in φ at the spherical surface, with the axis of symmetry labeled by z and the

angle θ measured from the z-axis (Fig.1A). For notational convenience, we introduce

the unit vectors (er, eθ) and unit vector ez along the axis of symmetry, ez = cos θer −
sin θeθ (Fig.1A).

Following Blake’s envelope model [31], the cilia motion imposes a tangential slip

velocity u(r = a, θ) = V eθ at the surface of the spherical boundary. We introduce the

nonlinear transformation µ = cos θ and expand V =
∑∞

n=1BnVn(µ) in terms of the basis

function Vn(µ) defined in terms of the Legendre polynomials Pn(µ) (APPENDIX A). All

modes result in surface velocities with φ-axis rotational symmetry. For mode 1, B1 = 1
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and Bn = 0 for all n 6= 1, the ciliary surface motion is referred to as a “treadmill” motion

(Fig. 1B).

We distinguish between two cases: a sessile sphere, fixed in space, and a motile

sphere moving at a swimming speed U in the ez direction. The latter was considered

in [14, 22, 31]. In the motile case, the coordinate system (r, θ) is attached to the sphere

and the equations of motion and boundary conditions are described in the body-fixed

frame (er, eθ). We get two sets of boundary conditions,

Sessile : u|r=a =

∞
∑

n=1

BnVn(µ)eθ, u|r→∞ = 0,

Motile : u|r=a =

∞
∑

n=1

BnVn(µ)eθ, u|r→∞ = −Uez .
(2)

Substituting 2 into the general solution of 1, we obtain analytical expressions for the

fluid velocity field and pressure field for sessile and motile sphere (Table 1).

In the motile case, we need an additional equation to solve for the swimming speed

U . This equation comes from consideration of force balance. The hydrodynamic force

acting on the sphere is given by Fh =
∫

σ · ndS, where σ = −pI + η(∇u + ∇T
u) is

the stress tensor. The total hydrodynamic force Fh = 0 should be zero, leading to

U = 2B1/3.

In the sessile case, the hydrodynamic force is balanced by an external force Ft,

provided by a tether or stalk, that fixes the sphere in space. From force balance,

Ft = −Fh = 4πηaB1ez.

It is instructive to examine the leading order term in the fluid velocity (ur, uθ) in the

sessile and motile case (Table 1). In the sessile case, the far-field fluid velocity is of

order 1/r, similar to that of a force monopole (Stokeslet). In the motile case, the far-

field fluid velocity is of order 1/r3, as in the case of a three-dimensional potential dipole.

The fluid velocity fields corresponding to the sessile and motile cases are not related

to each other by a mere inertial transformation.
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Table 1: Comparison of Stokes flow around sessile and motile ciliate model. Mathe-
matical expressions of fluid velocity field, pressure field, hydrodynamic power, forces
acting on the sphere for both sessile and motile ciliated sphere. And the swimming
speed for freely swimming ciliated sphere. All quantities are given in dimensional form
in terms of the radial distance r and angular variable µ = cos θ.

Sessile ciliated sphere

Fluid velocity field ur(r, µ) =
∞
∑

n=1

(

an+2

rn+2
− an

rn

)

BnPn(µ)

uθ(r, µ) =
∞
∑

n=1

1

2

(

nan+2

rn+2
− (n− 2)an

rn

)

BnVn(µ)

Pressure field p(r, µ) = p∞ − η
∞
∑

n=1

4n− 2

n+ 1

an

rn+1
BnPn(µ)

Energy dissipation rate P = 16πaη
∞
∑

n=1

B2
n

n(n+ 1)

Hydrodynamic force Fh = −4πηaB1ez

Motile ciliated sphere

Fluid velocity field ur(r, µ) =

(

−2

3
+

2a3

3r3

)

B1P1(µ) +
∞
∑

n=2

(

an+2

rn+2
− an

rn

)

BnPn(µ)

uθ(r, µ) =

(

2

3
+

a3

3r3

)

B1V1(µ) +
∞
∑

n=2

1

2

(

nan+2

rn+2
− (n− 2)an

rn

)

BnVn(µ)

Pressure field p(r, µ) = p∞ − η
∞
∑

n=2

4n− 2

n+ 1

an

rn+1
BnPn(µ)

Energy dissipation rate P = 16πaη

(

1

3
B2

1 +
∞
∑

n=2

B2
n

n(n+ 1)

)

Swimming speed U =
2

3
B1

In order to compare sessile and motile ciliates that exert the same hydrodynamic

power P on the surrounding fluid, we introduce a characteristic velocity scale U based
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on the total hydrodynamic power U =
√

P/(8πaη). To obtain non-dimensional forms

of the equations and boundary conditions, we consider the spherical radius a = 1

and T = 1/U = 1 as the characteristic length and time scales of the problem. These

considerations impose the following constraints on the velocity coefficients Bn (Table 1)

Sessile :
∞
∑

n=1

2B2
n

n(n+ 1)
= 1, Motile :

2

3
B2

1 +
∞
∑

n=2

2B2
n

n(n+ 1)
= 1. (3)

Considering only the treadmill mode leads to B1 = 1 in the sessile case and B1 =
√

3/2

in the motile case, with all other coefficients identically zero (Bn 6=1 = 0). That is, for the

same hydrodynamic power P, the sessile sphere exhibits a slower surface velocity

than the motile sphere (B1 = 1 versus B1 =
√

3/2). Considering only the second

mode, we get B2 =
√
3 and Bn 6=2 = 0 in both the sessile and motile spheres, and when

only the third mode is considered, B3 =
√
6 and Bn 6=3 = 0 (Fig. 1B). In the sessile

case, when a surface motion consists of multiple modes simultaneously, the portion

of energy assigned to each mode is denoted by β2
n, such that Bn = βn

√

2/(n(n+ 1)).

For example, if the total energy budget P is equally distributed between the first two

modes, we have β2
1 = 0.5, β2

2 = 0.5, and B1 =
√
0.5, B2 =

√
1.5.

2.2 Advection-Diffusion Model of Nutrient Concentration

To determine the effect of the advective flows generated by the ciliated sphere on

the nutrient concentration field around the sphere, we consider the advection-diffusion

equation for the steady-state concentration C of nutrients subject to zero concentration

at the spherical surface [7, 12, 14, 16],

u · ∇C = D∆C, C(µ)|r=a=1 = 0, C(µ)|r→∞ = C∞. (4)
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Figure 1: Modeling motile and sessile ciliates at zero Reynolds number. (A) Spher-
ical envelope model with coordinates (r, θ, φ), where θ ∈ [0, π] and, due to axisymmetry,
φ ∈ [0, 2π) is an ignorable coordinate. Ciliary motion is represented via a slip surface
velocity. (B) First three modes of surface velocity all at the same energy value: tread-
mill (mode 1), dipolar (mode 2), and tripolar (mode 3) modes, corresponding to B1V1(µ)
(B1 = 1 for sessile and

√

3/2 for motile), B2V2(µ) and B3V3(µ) with B2 =
√
3, B3 =

√
6

for both sessile and motile. Dotted lines represent lines of symmetry of surface ve-
locity. (C) Flow streamlines (white) and concentration fields (colormap) at Pe = 100
(top row) and 1000 (bottom row) for the same hydrodynamic power P = 1 and distinct
surface motions. In the treadmill mode, the streamlines, concentration field, and Sh
number differ between the sessile and motile spheres, but are the same in the dipolar
and tripolar surface modes.

We normalize the concentration field by its far-field value C∞ at large distances away

from the sphere and consider the transformation of variable c = (C∞ − C)/C∞ [12,

14]. Writing the advection-diffusion equation and boundary conditions (4) in non-
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dimensional form in terms of the new variable c(r, µ) yields

Pe u · ∇c = ∆c, c(µ)|r=a=1 = 1, c(µ)|r→∞ = 0, (5)

where the Péclet number Pe = aU/D, which quantifies the ratio of diffusive to advective

time scales. When advection is dominant, the advective time is much smaller than the

diffusive time and Pe ≫ 1, when diffusion is dominant, the advective time is much

larger and Pe ≪ 1. At Pe = 1, the two processes are in balance.

We substitute the analytical solutions of the flow field u from Table 1 into (5). We

arrive at governing equations for the concentration field c, which we solve analytically in

the asymptotic limit of small and large Péclet numbers ( APPENDIX B) and numerically

using a spectral method ( APPENDIX C).

2.3 Sherwood number

To quantify the uptake of nutrients at the surface of the sphere, we introduce the Sher-

wood number. The nutrient uptake rate is equal to the area integral of the concentration

flux over the spherical surface

I = −
∮

n̂ · (−D∇C)dS, (6)

where dS = 2πa2 sin θdθ is the element of surface area of the sphere. The sign conven-

tion is such that the concentration flux is positive if the sphere takes up nutrients. In the

case of pure diffusion, the steady-state concentration obtained by solving the diffusion

equation is given by C(r) = C∞(1 − a/r), and the steady-state inward current due to

molecular diffusion is given by

Idiffusion = 4πaDC∞. (7)
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Accounting for both advective and diffusive transport, the Sherwood number Sh is

equivalent to a dimensionless nutrient uptake, where I is scaled by Idiffusion,

Sh =
I

Idiffusion
= − 1

4πaDC∞

∮

n̂ · (−D∇C)dS = −1

2

∫ 1

−1

∇c · er|r=a=1 dµ. (8)

3 Results

3.1 Comparison of feeding rates in sessile and motile ciliates

In Fig. 1C, we show the streamlines (white) around the motile and sessile spheres with

slip surface velocity corresponding to the treadmill mode (mode 1), dipolar mode (mode

2), and tripolar mode (mode 3). In all cases, the hydrodynamic power P/8πηa = 1

is held constant. Modes 2 and 3 produce zero net force on the sphere, causing no

net motion even in the motile case, thus the streamlines are the same. Mode 1, the

treadmill mode, is the only mode that leads to motility. The associated streamlines are

shown in body-fixed frame in the motile case and in inertial frame in the sessile case.

The steady state concentration field (colormap) is obtained from numerically solving

the advection-diffusion equation around the motile and sessile spheres at Pe = 100

and Pe = 1000. In the treadmill mode, the motile sphere swims into regions of higher

concentration, which thins the diffusive boundary layer at its leading surface, leaving

a trailing plume or “tail” of nutrient depletion. Similar concentration fields are obtained

in the sessile sphere, albeit with wider trailing plumes, because, although the sphere

is fixed, the surface treadmill velocity generates feeding currents that bring nutrients

towards the surface of the sphere. In the dipolar and tripolar modes, feeding currents

bring fresh nutrients to the spherical surface from, respectively, two opposite and three

nearly-equiangular directions.

We evaluated the Sh number associated with each mode at both Pe = 100 and

Pe = 1000. Clearly, larger Pe leads to higher nutrient uptake. In the treadmill mode,
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evaluating Sh number for the motile and sessile spheres led, respectively, to 7.6 and 6.7

at Pe = 100 and 23.2 and 20.8 at Pe = 1000. Indeed, at each Pe, the motile sphere with

treadmill surface velocity produced the largest Sh number, implying that for the same

hydrodynamic power, motility maximized nutrient uptake. But the percent difference

in nutrient uptake between the motile and sessile sphere decreased with increasing

Pe, from 13.4% to 11.5%. For the swimming sphere, comparing the treadmill mode

and dipolar mode (mode 2), we found Sh = 7.6 and 6.0 at Pe = 100 and Sh = 23.2

and 22.7 at Pe = 1000. That is, for the motile sphere, the difference in nutrient uptake

between mode 1 and mode 2 also decreased with increasing Pe from 26.7% to 2.2%.

Interestingly, for the sessile sphere, the nutrient uptake in mode 2 (Sh = 22.7) exceeded

that of mode 1 (Sh = 20.8) at Pe = 1000, with a 9.1% increase.

To probe the trends in Sh number over a larger range of Pe values, we computed,

for the same hydrodynamic power, the steady state concentration field for the sessile

and motile sphere, and for mode 1, 2, and 3, for Pe ∈ [0, 1000]. The increment in Pe

are dynamically adjusted from △Pe = 0.01 for Pe< 1 (denser grid) to △Pe = 100 for

Pe > 100 (sparser grid), with 173 discrete points in total between Pe = 0 and Pe = 1000.

In Fig.2A, we show the results for the sessile sphere. The solid lines in color blue,

purple and grey represent mode 1, mode 2, and mode 3, respectively. Mode 1 exhibits

the best feeding performance (highest Sh) for Pe ≤ 284. Mode 2 exceeds mode 1

after this critical Pe value. At Pe= 1000, Sh number of mode 2 is about 10% higher

than that of mode 1. Numerical results for the motile sphere are shown in Fig.2B.

Mode 1 outperforms modes 2 and 3 for the entire range of Pe values, but the difference

between mode 1 and mode 2 seems to decrease and the two modes seem to approach

each other asymptotically at larger Pe.

To further understand the asymptotic behavior of Sh in the limit of large Pe, we

performed an asymptotic analysis to obtain the scaling of Sh with Pe (APPENDIX B).

To complete this analysis, we considered the two limits of small Pe ≪ 1 and large
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Pe ≫ 1 for the sessile ciliated sphere. Our approach is similar to that used in [12, 14]

for the treadmill mode in the motile ciliated sphere. In Table 2, we summarize the results

of our asymptotic analysis for mode 1 and mode 2 of the sessile sphere. Note that the

asymptotic analysis of mode 2 applies equally to the sessile and motile spheres. For

comparison reasons, we also include in this table the asymptotic results of [12, 14] for

the swimming ciliated sphere. These asymptotic results are superimposed onto the

numerical computations in the two insets in Fig.2A and B.

At small Pe (Pe ≪ 1), in the treadmill mode, Sh scales with Pe2 and Pe1, respec-

tively, for the sessile and motile spheres and, in the dipolar mode, Sh scales with Pe2.

That is, at Pe ≪ 1, the treadmill mode outperforms the dipolar mode in the motile case,

and the motile sphere outperforms the sessile sphere in the treadmill mode.

At large Pe (Pe ≫ 1), in the treadmill mode, Sh scales with
√
Pe in both the sessile

and motile ciliated spheres. That is, there is no distinction in the scaling of Sh with

Pe between the motile and sessile spheres. Interestingly, we found that in the dipolar

mode, Sh also scales with
√
Pe, indicating no distinction between the treadmill and

dipolar modes. The constant coefficients in the asymptotic scaling differ slightly: Sh ≈
0.65

√
Pe (treadmill, sessile) and Sh ≈ 0.72

√
Pe (treadmill, motile), and Sh ≈ 0.74

√
Pe

(dipolar, both). Thus, in the motile sphere, the treadmill and dipolar modes perform

nearly similarly in the large Pe limit, while in the sessile sphere, the dipolar mode

outperforms the treadmill mode by a distinguishable difference (by about 10%).

3.2 Optimal feeding in sessile ciliates

We next focused on the sessile ciliated sphere and, keeping the total hydrodynamic

power constant, we investigated numerically how Sh number varies when multiple sur-

face modes coexist.

In Fig. 3A, we distributed the total hydrodynamic power into the first two modes

only, assigning a fraction β2
1 to mode 1 and the remaining fraction 1−β2

1 to mode 2. We
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Table 2: Asymptotic expressions for Sh as a function of Pe for sessile and swimming
ciliated sphere model. The velocity coefficients associated with each mode are chosen
satisfying same constraint hydrodynamic power.

Large Pe limit Small Pe limit
Sessile Motile Sessile Motile

Mode 1 Sh =
2√
3π

Pe
1

2 Sh =
2√
3π

(

3

2

)
1

4

Pe
1

2 , Sh = 1 +
43

720
Pe2 Sh = 1 +

1

3

√

3

2
Pe,

[12, 14] [12, 14]

Mode 2 Sh =
1√
π
3

1

4Pe
1

2 Sh = 1 +
41

8400
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S
h

e
rw

o
o

d
 n

u
m

b
e

r,
 S

h

B

Small Pe

2

1

=
1

2

1

2

10
0

10
-4

10
-2

mode1

mode2

mode3

A

5

10

15

20

25

1

5

10

15

20

25

1

Péclet number, Pe

0

mode1

mode2

mode3

Péclet number, Pe

0 500 1000
10

0
10

-1
10

1

 2

 210
0

10
-4

10
-2

S
h

 -
 1

10
0

10
-1

10
1

Small Pe

1

2
1

2

MotileSessile

15

20

25

500 1000
15

20

25

10
3

500

Large PeLarge Pe

S
h

e
rw

o
o

d
 n

u
m

b
e

r,
 S

hS
h

Pe

S
h

 -
 1

S
h

slope

Pe

500 1000

Sessile Motile

Figure 2: Sherwood numebr as a function of Péclet number. (A) sessile ciliate
model and (B) motile ciliate model for the same hydrodynamic power P = 1. Solid
lines are numerical calculations for mode 1 (blue), mode 2 (purple), and mode 3 (grey).
Dashed lines and scaling laws in the limit of large and small Pe are obtained from
asymptotic analysis for mode 1 (blue) and mode 2 (purple).

varied β2
1 from 1 (all hydrodynamic power assigned to mode 1) to 0 (all hydrodynamic

power assigned to mode 2) at fixed intervals ∆β2
1 = 0.05. We also varied Pe from 0 to

1000 at ∆Pe = 0.1. For each combination of (Pe, β2
1), we computed the steady state

concentration field and calculated the resulting Sh number. We found that at small

Pe, Sh increased monotonically as β2
1 varied from 0 to 1, indicating that mode 1 is
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optimal. At larger Pe, a new local maximum appeared at β2
1 = 0 (mode 2). This change

is evident when comparing Fig. 3B and Fig. 3C, which illustrate Sh as a function of

β2
1 at Pe = 10 and Pe = 1000, respectively. At Pe = 10, the maximal Sh at β2

1 = 1

is a global optimum. At Pe = 1000, two local optima in Sh number are obtained at

β2
1 = 1 and β2

1 = 0, with Sh|β2

1
=0 > Sh|β2

1
=1, indicating that mode 2 is a global optimum.

Interestingly, when calculating the sensitivity ∂Sh/∂β2
1 of these maxima to variations in

β2
1 , we found that the maximum at β2

1 = 0 (mode 2) is more sensitive to variations in β2
1 ,

with |∂Sh/∂β2
1 |β2

1
=0 ≫ |∂Sh/∂β2

1 |β2

1
=1. That is, a small variation in β2

1 leads to larger drop

in Sh at β2
1 = 0 (mode 2), while the same variation in β2

1 leads to a small drop in Sh at

β2
1 = 1 (mode 1). In Fig.3C, we show that a 10% variation of β2

1 leads to a 3% drop from

the optimal value at mode 1 and 20% drop from optimal value at mode 2.

We next considered the case when the total hydrodynamic power P is distributed

over the first three modes, with a fraction β2
1 assigned to mode 1, a fraction β2

2 assigned

to mode 2, and the remaining fraction (1−β2
1−β2

2) assigned to mode 3. We considered

five values of Pe = [10, 100, 200, 500, 1000]. For each Pe value, we varied β2
1 and β2

2 from

0 to 1 at ∆β2
(·) = 0.1, computed the steady state concentration field at each grid point

and evaluated the corresponding Sh number. Results are shown in Fig. 3D. A similar

trend appears: at small Pe, feeding is optimal when all the energy is assigned to mode

1 (β2
1 = 1, β2

2 = 0), but as Pe increases, a new local optimum appears at mode 2

(β2
1 = 0, β2

2 = 1). To test the sensitivity of these optima to variations in surface motion,

we highlighted in light grey regions in the (β2
1 , β

2
2) space that correspond to a 10% drop

in Sh number from the corresponding optimal value. Although at high Pe, mode 2

reaches higher values of Sh, it is more sensitive to variations in surface motion. The

local optimum at mode 1 is more robust to such perturbations.

The optima in Fig. 3 are identified in an open loop search over the parameter spaces

(β2
1 ,Pe) and (β2

1 , β
2
2 ,Pe). Such open loop search becomes unfeasible when consider-

ing higher order surface modes. A closed loop optimization algorithm that seeks sur-

14
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face velocities that optimize Sh is needed. Here, we adapted the adjoint optimization

method with gradient ascent algorithm used in [14] APPENDIX D.

In Fig. 4, we considered initial surface velocities with 10 modes, satisfying the con-

straint on the total hydrodynamic power
∑N

n=1 β
2
n = 1. We used the closed loop opti-

mization algorithm to identify optimal surface velocities that maximize Sh. In Fig. 4A,

we show the optimization results at Pe = 10 and two distinct initial conditions (grey line).

The optimization algorithm converges to an optimal solution (black line) that is close to

mode 1 (superimposed in blue). The energy distribution among all modes as a func-

tion of iteration steps shows that, while the initial energy was distributed among multiple

modes, in the converged solution, energy is mostly assigned to mode 1. Indeed, com-

paring Sh number (black marker ’∗’) to Sh number of mode 1 (blue line) shows that the

optimal Sh converges to that of mode 1. Flow streamlines and concentration fields at

these optima are shown in the bottom row of Fig. 4A.

In Fig. 4B, we show the optimization results at Pe = 1000 and the same two initial

conditions (grey line) considered in Fig. 4A. Here, unlike in Fig. 4A, the optimization

algorithm converges to two different optimal solutions depending on initial conditions:

one optimal (black line) is close to mode 1 (superimposed in blue) and the other opti-

mal is close to mode 2 (superimposed in purple), as reflected in the energy distribution

(second row) and in Sh values (third row). Flow streamlines and concentration fields

at these two distinct optima are shown in the bottom row of Fig. 4B. The second op-

timal, the one corresponding to mode 2, exhibits higher Sh value. These results are

consistent with the open loop analysis presented in Figs. 2 and 3.

4 Conclusion

This work outlines several novel contributions. (1) we extended the envelope model to

a fixed ciliated sphere, (2) analyzed the feeding rates around fixed and freely-swimming

16
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spheres and computed the Sherwood number numerically in a range of moderate Pé-

clet values, (3) performed asymptotic analysis for Sh as a function of Pe in the two

extreme (small and large) Pe limits and for the two first modes of surface velocities,

and (4) computed optimal surface velocities that maximize feeding rates using an ad-

joint feedback optimization method.

For motile ciliates, we found that assigning all energy into a treadmill surface velocity

that induces swimming is an optimal strategy for maximizing feeding rate but only in a

finite Pe range. This is in contrast to the findings in [14] that claimed optimality of the

treadmill mode for all Pe. In the limit of large Pe, we found no distinction in nutrient

uptake between the treadmill mode and the symmetric dipolar mode that applies zero

net force on the ciliated body, inducing no swimming motion.

For sessile ciliates, we found that the treadmill mode achieves optimal feeding rate

at relatively low Pe values below a critical value Pecr ≈ 280, while the dipolar mode

becomes optimal for Pe exceeding this threshold. Our asymptotic analysis supports

that, in the large Pe limit, the dipolar surface mode outperforms other modes in terms

of feeding rate. However, our sensitivity analysis shows that although at large Pe the

treadmill mode leads to lower Sherwood values, it is more robust to perturbations in

the surface velocity. The dipolar mode leads to higher Sherwood values but it is sig-

nificantly more sensitive to perturbations, with feeding efficiency dropping rapidly even

with small perturbations in surface motion.

Our findings challenge previous assumptions that motility inherently improves feed-

ing rate in ciliates [14, 23]. We demonstrate that the optimal cilia-driven surface velocity

for maximizing feeding rate varies significantly depending on the Péclet number, with

distinct advantages observed for both motile and sessile ciliates under different condi-

tions. This study enriches the understanding of the complexity of feeding strategies in

ciliated microorganisms and highlights the importance of considering various environ-

mental conditions when evaluating the ecological roles and evolutionary adaptations of

18



these microbes.

References

1. Solari, C. A., Ganguly, S., Kessler, J. O., Michod, R. E. & Goldstein, R. E. Multi-

cellularity and the functional interdependence of motility and molecular transport.

Proceedings of the National Academy of Sciences 103, 1353–1358 (2006).

2. Shekhar, S. et al. Cooperative hydrodynamics accompany multicellular-like colo-

nial organization in the unicellular ciliate Stentor. bioRxiv (2023).

3. Guasto, J. S., Rusconi, R. & Stocker, R. Fluid mechanics of planktonic microor-

ganisms. Annual Review of Fluid Mechanics 44, 373–400 (2012).

4. Gasol, J. M. & Kirchman, D. L. Microbial ecology of the oceans (John Wiley &

Sons, 2018).

5. Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers—single parti-

cle motion and collective behavior: a review. Reports on progress in physics 78,

056601 (2015).

6. Doelle, H. W. Bacterial metabolism (Academic Press, 2014).

7. Bialek, W. Biophysics: searching for principles (Princeton University Press, 2012).

8. Verni, F. & Gualtieri, P. Feeding behaviour in ciliated protists. Micron 28, 487–504

(1997).

9. Wan, K. Y. et al. Reorganization of complex ciliary flows around regenerating

Stentor coeruleus. Philosophical Transactions of the Royal Society B 375, 20190167

(2020).

10. Pettitt, M. E., Orme, B. A., Blake, J. R. & Leadbeater, B. S. The hydrodynamics of

filter feeding in choanoflagellates. European Journal of Protistology 38, 313–332

(2002).

19



11. Vopel, K., Reick, C. H., Arlt, G., Pöhn, M. & Ott, J. A. Flow microenvironment of

two marine peritrich ciliates with ectobiotic chemoautotrophic bacteria. Aquatic

Microbial Ecology 29, 19–28 (2002).

12. Magar, V., Goto, T. & Pedley, T. J. Nutrient Uptake by a Self-Propelled Steady

Squirmer. The Quarterly Journal of Mechanics and Applied Mathematics 56, 65–

91 (2003).

13. Magar, V. & Pedley, T. J. Average nutrient uptake by a self-propelled unsteady

squirmer. Journal of fluid mechanics 539, 93–112 (2005).

14. Michelin, S. & Lauga, E. Optimal feeding is optimal swimming for all Péclet num-

bers. Physics of Fluids 23, 101901 (2011).

15. Berg, H. C. in Random Walks in Biology (Princeton University Press, 2018).

16. Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophysical journal 20,

193–219 (1977).

17. Emlet, R. B. Flow fields around ciliated larvae: Effects of natural and artificial

tethers. Marine ecology progress series. Oldendorf 63, 211–225 (1990).

18. Christensen-Dalsgaard, K. K. & Fenchel, T. Increased filtration efficiency of at-

tached compared to free-swimming flagellates. Aquatic microbial ecology 33, 77–

86 (2003).

19. Kirkegaard, J. B. & Goldstein, R. E. Filter-feeding, near-field flows, and the mor-

phologies of colonial choanoflagellates. Physical Review E 94, 052401 (2016).

20. Sládecek, V. Indicator value of the genus Opercularia (Ciliata). Hydrobiologia 79,

229–232 (1981).

21. Hartmann, C., Özmutlu, Ö., Petermeier, H., Fried, J. & Delgado, A. Analysis of

the flow field induced by the sessile peritrichous ciliate Opercularia asymmetrica.

Journal of biomechanics 40, 137–148 (2007).

20



22. Michelin, S. & Lauga, E. Efficiency optimization and symmetry-breaking in a model

of ciliary locomotion. Physics of fluids 22, 111901 (2010).

23. Andersen, A. & Kiørboe, T. The effect of tethering on the clearance rate of suspension-

feeding plankton. Proceedings of the National Academy of Sciences 117, 30101–

30103 (2020).

24. Bullington, W. A further study of spiraling in the ciliate Paramecium, with a note on

morphology and taxonomy. Journal of Experimental Zoology 56, 423–449 (1930).

25. Sleigh, M. & Barlow, D. Collection of food by Vorticella. Transactions of the Amer-

ican Microscopical Society, 482–486 (1976).

26. Pepper, R. E., Roper, M., Ryu, S., Matsudaira, P. & Stone, H. A. Nearby bound-

aries create eddies near microscopic filter feeders. Journal of The Royal Society

Interface 7, 851–862 (2010).

27. Pepper, R. E. et al. A new angle on microscopic suspension feeders near bound-

aries. Biophysical journal 105, 1796–1804 (2013).

28. Zima-Kulisiewicz, B. E. & Delgado, A. Synergetic microorganismic convection

generated by Opercularia asymmetrica ciliates living in a colony as effective fluid

transport on the micro-scale. Journal of biomechanics 42, 2255–2262 (2009).

29. Purcell, E. M. Life at low Reynolds number. American journal of physics 45, 3–11

(1977).

30. Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Re-

ports on Progress in Physics 72, 096601 (2009).

31. Blake, J. R. A spherical envelope approach to ciliary propulsion. Journal of Fluid

Mechanics 46, 199–208 (1971).

32. Kim, S. & Karrila, S. Microhydrodynamics Butterworth 1991.

21



33. Batchelor, C. K. & Batchelor, G. An introduction to fluid dynamics (Cambridge

university press, 1967).

34. Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics: With Special

Applications to Particulate Media ISBN: 9789024728770 (Prentice-Hall, 1965).

22



APPENDIX A General Solution of the Stokes Equations

in Spherical Coordinates

Stokes equations. For solving fluid velocity u at zero Re limit, the incompressible

Stokes equation, we consider following approach. Due to the continuity property of

the fluid, the velocity vector u can be expressed in terms of a vector potential Ψ as

u = ∇× Ψ [33]. Taking the curl of the Stokes equation in (1), substituting u = ∇× Ψ

into the resulting equation and using the incompressibility condition, we get the classic

result that the vector potential Ψ is governed by the bi-Laplacian ∇2 · ∇2Ψ = 0 [34].

To solve for the fluid velocity in the fluid domain bounded internally by a spherical

boundary of radius a, it is convenient to introduce the spherical coordinates (r, θ, φ)

and associated unit vectors (er, eθ, eφ) (see Fig. 1.A). We express the fluid velocity in

component form u ≡ (ur, uθ, uφ). Here, we are interested only in axisymmetric flows,

for which uφ = 0 is identically zero, and the components of the vector potential Ψ can

be expressed in terms of an axisymmetric stream function ψ (see, e.g., [33]),

Ψ =

(

0, 0,
ψ

r sin θ

)T

. (9)

The non-trivial components (ur, uθ) of the fluid velocity are related to ψ(r, θ) as follows,

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
. (10)

The streamfunction ψ is governed by the biharmonic equation E2E2(ψ) = 0 given in

terms of the linear operator E2,

E2 =
∂2

∂r2
+

sin θ

r2
∂

∂θ

(

1

sin θ

∂

∂θ

)

. (11)

This biharmonic equation E2E2(ψ) = 0 can be solved analytically for arbitrary boundary
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conditions in terms of r and the coordinate µ obtained via the nonlinear transformation

of coordinate µ = cos θ. Explicitly expression of ψ(r, µ) can be found in [34],

ψ(r, µ) =
∞
∑

n=2

(anr
n + bnr

−n+1 + cnr
n+2 + dnr

−n+3)Fn(µ). (12)

Here, Fn(µ) = −
∫

Pn−1(µ)dµ are solution functions related to the Legendre Polynomi-

als of the first kind Pn(µ), satisfying equation (1− µ2)d
2Fn

dµ2 + n(n− 1)Fn = 0, and an, bn,

cn, and dn are unknown coefficients.

By subtituting 12 into 10, we obtain the velocity components (ur, uθ),

ur(r, µ) =

(

α0 + α13
1

r3
+ α11

1

r

)

P1(µ) +
∞
∑

n=2

(

αn+2
1

rn+2
+ αn

1

rn

)

Pn(µ),

uθ(r, µ) =

(

−α0 + α13
1

2r3
− α11

1

2r

)

V1(µ) +

∞
∑

n=2

1

2

(

αn+2
n

rn+2
+ αn

n− 2

rn

)

Vn(µ),

(13)

where α0, α11, . . . , αn are unknown coefficients, related to an, bn, cn, dn in (12), to be

determined from boundary conditions. The basis functions Vn(µ) are defined as

Vn(µ) = − 2
√

1− µ2

∫

Pn(µ)dµ =
2

n(n + 1)

√

1− µ2P ′
n(µ), (14)

where P ′
n(µ) =

dPn(µ)
dµ

. Both the Legendre polynomials Pn(µ) and basis functions Vn(µ)

satisfy the orthogonality conditions

∫ +1

−1

Pn(µ)Pm(µ)dµ =
2

2n+ 1
δnm,

∫ +1

−1

Vn(µ)Vm(µ)dµ =
8

n(n+ 1)(2n+ 1)
δmn.

(15)

Analytical expressions of the pressure field. The pressure is obtained by substi-

tuting (13) into Stokes equation (1) and integrating, yielding the pressure field p(r, µ)
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as

p = p∞ + η
∞
∑

n=1

4n− 2

n + 1

αn

rn+1
Pn(µ). (16)

Analytical expressions of the stress field. The fluid stress tensor σ is given by

σ = −pI + η(∇u+∇T
u). For the axisymmetric flows considered here, σ admits three

non-trivial stress components

σrr = −p + 2η
∂ur
∂r

, σrθ = η

(

1

r

∂ur
∂θ

+ r
∂

∂r
(
uθ
r
)

)

, σθθ = −p+ 2η

(

1

r

∂uθ
∂θ

+
ur
r

)

.

(17)

Explicit expressions for the stress components are obtained by substituting (13) and (16)

into (17).

Hydrodynamic force acting on the sphere. The hydrodynamic force exerted by

the fluid on the sphere can be calculated by integrating the stress tensor σ over the

surface S of the sphere. Due to axisymmetry, only the force in the direction of the axis

of axisymmetry, taken to be the z-axis, is non-zero,

F =

∫

S

σ · n̂dS = −4πηα11ez. (18)

Viscous dissipation energy The energy dissipation rate is defined as the volume

integral over the entire fluid domain V of the inner product of the velocity strain rate

tensor e = 1
2
(∇u+∇u

T) and stress tensor σ, which, given proper decay at infinity, can

be expressed as an integral over the surface of the sphere by applying the divergence

theorem (see, e.g., [32])

P =

∫

V

e : σdV =

∫

S

u · (σ · n̂)dS. (19)
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This general solution is applicable to moving or stationary sphere with slip or no slip

boundary conditions. With prescribed boundary condition, we can obtain fluid solution

to rigid sphere and haired sphere in uniform flow, which are consist with exist study.

In this article, we apply the general solution approach to sessile haired sphere in still

fluid.

APPENDIX B Asymptotic Analysis

In this section, we consider the flow field generated by the ciliary motion and derive

an asymptotic solution of the Sherwood number for sessile ciliated sphere in the limit

of large and small Péclet, respectively. Particulary, we seek asymptotic expressions

associated with mode 1 and mode 2.

APPENDIX B.1 Large Pe limit

Here, we start with a general expression of velocity field corresponding to the nth mode

surface velocity at the unit sphere a = 1, for which uθ(µ)|r=1 = BnVn(µ), where n =

1, n = 2 are considered later in this paper. The flow field corresponding to nth mode is

given by (see Tables 1)

ur =

(

1

rn+2
− 1

rn

)

BnPn(µ), uθ =

(

n

rn+2
− n− 2

rn

)

Bn

2
Vn(µ), (20)

We take the Taylor series expansion of flow field at r = 1 and keep only the leading

order terms,

ur(r, µ) = ur|r=1 +
∂ur

∂r

∣

∣

r=1
(r − 1) + · · · = −2Bn(r − 1)Pn(µ) + . . . ,

uθ(r, µ) = uθ|r=1 +
∂uθ

∂r

∣

∣

r=1
(r − 1) + · · · = BnVn(µ) + . . . .

(21)
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We define the temporary variable y = r − 1 (not to confused with the y-coordinated in

the inertial (x, y, z) space). The region y ≪ 1 represents a thin boundary layer around

the spherical surface. Since the concentration boundary layer is expected to be thinner

as Pe increases, we rescale r − 1 = y = Pe−mY , where Y is a new variable.

Next, we substitute the linearized flow field u from (21) into the advection-diffusion

equation (4) and use the new variable r − 1 = Pe−mY . Keeping only the leading-order

terms, we obtain the advection operator u · ∇,

ur
∂

∂r
= −2BnPnY

∂

∂Y
, uθ

1

r

∂

∂θ
= −BnVn

√

1− µ2
1

Pe−mY + 1

∂

∂µ
. (22)

Similarly, rewriting the Laplacian operator using the new variable r − 1 = Pe−mY , we

arrive at

∇2 = Pe2m
∂2

∂Y 2
+

2Pem

Pe−mY + 1

∂

∂Y
+

1

(Pe−mY + 1)2
∂

∂µ

(

(1− µ2)
∂

∂µ

)

. (23)

The leading-order term in the Laplacian operator scales with Pe2m, while the leading-

order term in the advection operator scales with Pe0. Matching order on both sides

of the advection-diffusion equation, we have 2m = 1. Thus, m = 1
2
, and we have

r − 1 = Pe−1/2Y .

We now substitute (22) and (23), with m = 1/2 into the dimensionless advection-

diffusion equation (5), keeping only the leading-order terms, we arrive at

−Bn

(

2PnY
∂c

∂Y
+ Vn

√

1− µ2
∂c

∂µ

)

=
∂2c

∂Y 2
. (24)

We define a similarity variable Z = Y/g(µ) such that, by the chain rule,

∂

∂Y
=

1

g

∂

∂Z
,

∂

∂µ
= g′

∂

∂g
= −Zg

′

g

∂

∂Z
. (25)

We substitute into (24) and rearrange terms to arrive at the ordinary differential equa-
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tion
∂2c

∂Z2
+Bn

(

2Png
2 − 1

n(n + 1)
(1− µ2)P ′

ngg
′

)

Z
∂c

∂Z
= 0. (26)

For a similarity solution to exist, the term 2µg2 − (1 − µ2)gg′ needs to be equal to a

constant. Setting the value of this constant to 2, the problem becomes that of solving

d2c

dZ2
+ 2Z

dc

dZ
= 0, Bn

(

2Png
2 − 1

n(n+ 1)
P ′
n(1− µ2)(g2)′

)

= 2. (27)

For the first mode, n = 1 and P1 = µ, the solution is in the form,

c(Z) = C1erf(Z) + C2, g2(µ) =
C3 − 12µ+ 4µ3

3B1(µ2 − 1)2
. (28)

Here, C1, C2 and C3 are unknown constants to be determined from the boundary con-

ditions c(Z = 0) = 1, c(Z → ∞) = 0, and from the condition that at µ = 1, the

concentration field and the function g(µ) must be bounded [12]. Put together, we get

that C3 = 8, C2 = 1, and C1 = −1. Thus, the asymptotic solution of the concentration

field in the limit of large Péclet, Pe ≫ 1, is given by

c(Z) = 1− erf(Z) = erfc(Z), (29)

where

Z = Pe
1

2

(r − 1)

g(µ)
, g(µ) =

√

8− 12µ+ 4µ3

3B1(1− µ2)2
. (30)

The Sherwood number at large Pe is given by,

Shmode 1 = −1

2

∫ 1

−1

∂c

∂r

∣

∣

∣

∣

r=1

dµ =
1

2
Pe

1

2

∫ 1

−1

2√
π
e−Z2 1

g

∣

∣

∣

∣

r=1

dµ

=
1√
π
Pe

1

2

∫ 1

−1

√

3B1(1− µ2)2

8− 12µ+ 4µ3
dµ =

√

4B1

3π
Pe

1

2 ,

(31)
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Similarly, for the second mode, n = 1 and P2 =
1
2
(3µ2 − 1), we obtain the solution

Z = Pe
1

2

(r − 1)

g(µ)
, g(µ) =

√

1 + µ4 − 2µ2

B2(1− µ2)2µ2
. (32)

The Sherwood number at large Pe is

Shmode 2 =

√

B2

π
Pe

1

2 , (33)

APPENDIX B.2 Small Pe Limit

At small Péclet number, we expand the concentration field as

c = Pe0c0 + Pe1c1 + Pe2c2 + . . . (34)

We substitute the expanded concentration into the dimensionless advection-diffusion

equation (20), we arrive at the following system of equations, to be solved at each order

in Pe,

Order 0 : 0 = ∇2c0, c0|r=1 = 1, c0|r→∞ = 0.

Order 1 : u · ∇c0 = ∇2c1, c1|r=1 = 0, c1|r→∞ = 0.

Order 2 : u · ∇c1 = ∇2c2, c2|r=1 = 0, c2|r→∞ = 0.

(35)

At the leading order, the solution is simply c0 = 1/r. To find the solution at higher

orders, we substitute the velocity field (20) into the higher order equations in (35). At

order Pe1, we get

−Bn

(

1

rn+2
− 1

rn

)

1

r2
Pn(µ) = ∇2c1, c1(r = 1) = 0. (36)
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Recall that the Legendre polynomials satisfy the Legendre differential equation d
dµ
[(1−

µ2)P ′
m] +m(m + 1)Pm = 0. Expanding c1 in terms of Legendre polynomials c1(r, µ) =

∑∞
m=0Rm(r)Pm(µ), and substituting back into the above equation, we get

−Bn

(

1

rn+2
− 1

rn

)

Pn(µ) =

∞
∑

m=0

(

d

dr
(r2

dRm

dr
)−m(m+ 1)Rm

)

Pm(µ). (37)

By equating the Legendre polynomials on both sides in the above equation, we get that

only the term Rn(r) survives,

−Bn

(

1

rn+2
− 1

rn

)

= r2R′′
1n + 2rR′

1n − 6R1n. (38)

For the first mode, solving the above ordinary differential equations with n = 1, taking

into consideration the boundary conditions, we get the solution for c1,

c1(r, µ) =

(

3

4
r−2 − 1

4
r−3 − 1

2
r−1

)

B1µ. (39)

Repeating the same procedure at order Pe2, we get that

∇2c2 = B2
1

(

4− 9r + 2r2 + 3r3

12r7
P0(µ)−

(r − 1)(5− 4r − 9r2 + 6r3)

8r7
2

3
P2(µ)

)

. (40)

We expand c2 =
∑∞

m=0Rm(r)Pm(µ) in terms of a Legendre polynomial expansion with

unknown Rm(r) and substitute back in the above equation; we get that only the terms

R0(r) and R2(r) survive, such that the general solution for c2(r, µ) is given by

c2(r, µ) = R0(r)P0(µ) +R2(r)P2(µ). (41)

One can readily verify that the ordinary differential equation governing R0(r) is given

by

r2R′′
0 + 2rR′

0 = B2
1

4− 9r + 2r2 + 3r3

12r5
. (42)
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The solution to this equation, taking into account the boundary conditions, is of the

form

R0(r) = B2
1

(

− 77

720r
+

1

60r5
− 1

16r4
+

1

36r3
+

1

8r2

)

. (43)

It turns out that, for computing the Sherwood number below, only R0(r) is needed, as

shown in

−1

2

∫ 1

−1

∂c2
∂r

∣

∣

∣

∣

r=1

dµ = −1

2

∞
∑

m=0

dRm

dr

∣

∣

∣

∣

r=1

∫ 1

−1

Pm(µ)dµ =
dRm

dr

∣

∣

∣

∣

r=1

δm0 (44)

with implementing the property of Legendre polynomials
∫ 1

−1
Pm(µ)dµ = 2δm0. We thus

need not calculate R2(r). For the first mode, Sh in the small Pe limit is given by

Shmode 1 = −1

2

∫ 1

−1

∂c0
∂r

∣

∣

∣

∣

r=1

dµ− 1

2

(
∫ 1

−1

∂c1
∂r

∣

∣

∣

∣

r=1

dµ

)

Pe− 1

2

(
∫ 1

−1

∂c2
∂r

∣

∣

∣

∣

r=1

dµ

)

Pe2

= 1 +
43B2

1

720
Pe2.

(45)

Similarly, we can compute Sherwood number for surface velocity containing only the

second mode by replacing velocity field with n = 2,

Shmode 2 = 1 +
41B2

2

25200
Pe2. (46)

APPENDIX C Spectral Method

We solve (5) using the Legendre spectral method; see, e.g., [14]. To this end, we first

expand the concentration field c(r, µ) in terms of the Legendre polynomials Pm(µ)

c(r, µ) =

∞
∑

m=0

Cm(r)Pm(µ), (47)

31



where Cm(r) are unknown coefficients associated with Legendre basis functions Pm(µ).

We substitute (47) into (5) and project the governing equation onto the kth Legendre

polynomial Pk(µ), to arrive at an infinite set of coupled boundary-valued ordinary dif-

ferential equations for the unknown coefficients Ck(r), k = 0, . . . ,∞

Pe
∞
∑

n=1

∞
∑

m=0

Bn

(

Emnkfnr
∂Cm

∂r
− Fmnkfnθ

Cm

r

)

=
∂2Ck

∂r2
+

2

r

∂Ck

∂r
− k(k + 1)

r2
Ck,

Ck|r=a=1 = δ0k, Ck|r=∞ = 0.

(48)

Here, the coefficients Emnk and Fmnk are obtained by projection, using the orthogonality

property of the Legendre polynomials,

Emnk =
2k + 1

2

∫ 1

−1

PnPmPkdµ, Fmnk =
(2k + 1)

2n(n+ 1)

∫ 1

−1

(1− µ2)P ′
nP

′
mPkdµ. (49)

The terms fnr and fnθ are the r components of the flow field

Sessile ciliated sphere:fnr =
(

1

rn+2
− 1

rn

)

, fnθ =

(

n

rn+2
− n− 2

rn

)

,

Motile ciliated sphere: f1r =
2

3

(

−1 +
1

r3

)

, f1θ =
2

3

(

2 +
1

r3

)

,

fnr =

(

1

rn+2
− 1

rn

)

(n ≥ 2), fnθ =

(

n

rn+2
− n− 2

rn

)

(n ≥ 2),

(50)

In the numerical calculation, we truncate the number of modes in the expansion

(35) of the concentration field to account for a finite number M of modes. To reach

far-field boundary condition, we used a non-uniform radial mesh such that the grid is

denser near the sphere surface and more sparse in the far-field. Specifically, we used

the exponential function r = es(ζ), where ζ ∈ [0, 1] and s(ζ) = w1ζ
3+w2ζ

2+w3ζ is a third

order polynomial of ζ with constants w1, w2, w3 chosen for getting converged results. To
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express (48) in terms of the transformed variable ζ , we used the chain rule

dCk

dr
=
dCk

dζ

dζ

dr
,

d2Ck

dr2
=

(

dζ

dr

)2
d2Ck

dζ2
+
d2ζ

dr2
dCk

dζ
. (51)

Considering N velocity modes and M concentration modes, the differential equations

in (48) can be rewritten as

Pe

N
∑

n=1

M
∑

m=0

Bn

(

Emnkfnr
dCm

dζ

dζ

dr
− Fmnkfnθ

Cm

r

)

−(
dζ

dr
)2
d2Ck

dζ2
− d2ζ

dr2
dCk

dζ
− 2

r

dζ

dr

dCk

dζ
+
k(k + 1)

r2
Ck = 0.

(52)

We discretized the spatial derivatives using the center difference scheme

dCm,j

dζ
=
Cm,j+1 − Cm,j−1

2△ζ ,
d2Cm,j

dζ2
=
Cm,j+1 − 2Cm,j + Cm,j−1

(△ζ)2 . (53)

We computed the concentration field and Sherwood number for various Péclet num-

ber and tested the convergence of the results as a function of mesh size △ζ , computa-

tional domain R, and the number of modes M in the concentration expansion at Pe =

100. To test the effect of mesh size on the convergence of our simulations, we fixed the

number of modes M and computational domain size R, and varied the mesh size as

δζ = [ 1
100
, 1
200
, 1
400
, 1
800

]. We computed the relative error of Sherwood number as a func-

tion of mesh size δζ ; the results converged as the mesh size got smaller. Consistent

with the second order accuracy of the discretization (53), we obtained a convergence

rate close to 2. When testing the convergence as a function of the number of modes

M in the concentration expansion and the computational domain size R, we found

that a higher number of concentration modes and larger computational domain size

are needed for higher Péclet numbers. Also, because the concentration field becomes

more front and back asymmetric as Péclet increases, a denser mesh is required to

33



capture the rapid change near the surface.

APPENDIX D Optimization Method

To search for optimal surface motions that maximize feeding in the sessile sphere

model, we considered an optimization method based on variational analysis and steep-

est ascent [14]. The problem consists of a PDE-constrained optimization problem,

where the goal is to find optimal Bn that maximize the Sherwood number, subject to

the concentration field c satisfying the advection-diffusion equation and surface velocity

satisfying the constant energy constraint,

max
Bn,c

Sh(Bn, c),

subject to L[c] = 0 and
N
∑

n=1

2B2
n

n(n+ 1)
= 1.

(54)

Here, the linear operator L = Peu · ∇ − ∇2 is that of the advection-diffusion equation

along with the corresponding boundary conditions.

We use a variational approach to derive an adjoint system of equation. Given a

surface motion, we consider small variations δBn in the coefficients associated with

each mode. The corresponding small variations in the velocity field and concentration

field are given by δu and δc, and result in a variation in Sh number 8

δSh = − 1

4π

∫

S

∇δc · ndS. (55)

The concentration variation δc must satisfy

Pe(u+ δu) · ∇(c+ δc) = ∇2(c+ δc), (c+ δc)(r = 1) = 1, (c+ δc)(r → ∞) = 0.

(56)
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Subtracting the PDE for c and keeping the leading order in δc, we arrive at

Pe(δu · ∇c + u · ∇δc) = ∇2δc, δc(r = 1) = 0, δc(r → ∞) = 0. (57)

Multiplying the above equation with a test function g(r, µ) and integrating over the entire

fluid domain, we get

Pe

∫

V

(gδu · ∇c + gu · ∇δc)dV =

∫

V

g∇2δc dV. (58)

Using integration by parts and standard vector calculus identities, together with the

appropriate boundary conditions and continuity property of the fluid, we obtain

−Pe

∫

V

cδu · ∇g dV −
∫

S

(g∇δc) · ndS =

∫

V

δc(Peu · ∇g +∇2g)dV, (59)

where dS is the surface element of the sphere with inward unit normal n = −er. Fol-

lowing a standard argument, we get that the test function g must satisfy the following

partial differential equation and boundary conditions

Peu · ∇g +∇2g = 0, g(r = 1) = 1, g(r → ∞) = 0, (60)

and the consistency equation

∫

S

∇δc · ndS = −Pe

∫

V

cδu · ∇g dV. (61)

From (55) and (61), we get that the variation in Sh number is given by

δSh = − 1

4π

∫

S

∇δc · ndS = −Pe

4π

∫

V

cδu · ∇g dV = −Pe

2

∫ ∞

1

∫ 1

−1

c(δu · ∇g) r2drdµ.

(62)
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We expand the test function g(r, µ) in terms of Legendre polynomials in µ,

g(r, µ) =

∞
∑

m=0

Gm(r)Pm(µ), (63)

and substitute back into (62) with the perturbation from surface velocity δu(r = 1) =

(δBn)Vneθ. We arrive at an expression for the gradient of nutrient uptake at each mode,

δSh

δBn
= −Pe

∞
∑

m=0

∞
∑

k=0

1

2k + 1

∫ ∞

1

[

CkfnrG
′
mEmnk −

CkGmfnθ
r

Fmnk

]

r2dr. (64)

We now consider a finite number of velocity modes and express the input surface

velocity as βnVn(µ), where βn =
√

2
n(n+1)

Bn. The weighted coefficients βn associated

with each velocity mode must satisfy the constraint on the energy dissipation rate, that

is,
∑

n β
2
n = 1.

Starting from an initial vector β0 = (β1, β2, . . . , βn, . . .) of weighted coefficients, our

goal is to find the optimal value of β that simultaneously maximize Sh and satisfy the

constraint ‖β(j)‖ = 1 at each iteration j in the optimization process. Thus, to get the

value of β(j) at subsequent iterations j > 0, we project the feeding gradient onto the

constraint space ‖β(j)‖ = 1 using the linear projection (I − β(j) ⊗ β(j)), where I is the

identity matrix. That is, the steepest ascent direction of Sh with respect to weighted

coefficients βn at the jth iteration is given by

∇dSh = ∇βSh− (β(j) · ∇βSh)β
(j). (65)

The optimization process consists of updating β(j+1) following the gradient ascent di-

rection, where α is step size that can be adjusted in each iteration.

β(j+1) =
β(j) + α∇dSh

‖β(j) + α∇dSh‖
. (66)
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