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Holomorphic Witten instanton complexes on stratified

pseudomanifolds with Kähler wedge metrics.

Gayana Jayasinghe

Abstract

We construct Witten instanton complexes for Kähler Hamiltonian Morse functions on stratified

pseudomanifolds with wedge Kähler metrics satisfying a local conformally totally geodesic condition.

We use this to extend Witten’s holomorphic Morse inequalities for the L
2 cohomology of Dolbeault

complexes, deriving versions for Poincaré Hodge polynomials, the spin Dirac and signature complexes

for which we prove rigidity results, in particular establishing the rigidity of L2 de Rham cohomology

for these circle actions. We generalize formulas studied by Witten and Gibbons-Hawking for the

equivariant signature and extend formulas used to compute NUT charges of gravitational instantons.

We discuss conjectural inequalities extending known Lefschetz-Riemann-Roch formulas for other co-

homology theories including those of Baum-Fulton-Quart. As far as the author is aware this article

contains the first extension of Witten’s holomorphic Morse inequalities to singular spaces, and the

first results on rigidity of L2 de Rham and Dolbeault cohomology for the actions studied on stratified

pseudomanifolds.
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6.3 Poincaré Hodge polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Applications: Rigidity and more formulas 47
7.1 Rigidity of L2 de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 NUT charge and signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3 Spin-Dirac complex and fractional powers of canonical bundles . . . . . . . . . . . . . . . 52

References 56

1 Introduction

In [Jay23] we extended the holomorphic Lefschetz fixed point theorem for L2 cohomology of twisted
Dolbeault complexes satisfying the Witt condition to stratified pseuodmanifolds with wedge metrics and
wedge complex structures. We also extended the Witten instanton complex for the de Rham operator for
such spaces, proving L2 de Rham Morse inequalities. In this article we construct the holomorphic Witten
instanton complex in the presence of Kähler Hamiltonian Morse functions, extending Witten’s equivariant
holomorphic Morse inequalities (as opposed to Demailly’s asymptotic holomorphic Morse inequalities
which are also sometimes referred to simply as the holomorphic Morse inequalities) for twisted Dolbeault
complexes satisfying the Witt condition on stratified pseudomanifolds with Kähler wedge metrics. We
do this for isometric Kähler Hamiltonian circle actions that preserve the strata, and have isolated fixed
points. There is a functorial equivalence between stratified spaces X̂ and manifolds with corners with
iterated fibration structures X which resolve the singularities, and we work in the latter category for the
most part. We give an outline of the main results, referring to the text for more details.

1.1 Overview of results and techniques.

In this article we study stratified spaces with wedge Kähler metrics (roughly these are “asymptotically
iterated conic metrics”) which admit Kähler Hamiltonian Morse functions. This includes many algebraic
varieties including so called “cusp” curves (see Subsection 2.5), singular algebraic surfaces appearing in
the boundary of the moduli space of K3 surfaces and conifolds, some of which we study in Section 6.1.
Moreover we assume that near critical points the metric is locally conformally totally geodesic, which
roughly means that the metric is conformal to a conic metric (product type metric) near singular strata,
up to a prescribed asymptotic behaviour. Many toric varieties including the examples we study in this
article satisfy this condition.

Given a twisted Dolbeault complex Pα(X) = (L2Ω0,·(X ;E),Dα(P ), P = ∂E) where E is a Hermitian
bundle on a resolution of a stratified pseudomanifold X , if there is an isometric Kähler circle action
generated by a Hamiltonian vector field V that lifts to fiberwise linear action on E, there is an induced
action

√
−1LV on sections in the domain. Here α corresponds to various choices of domains, where

for instance α = 0, 1/2, 1 correspond to the maximal, vertical Atiyah-Patodi-Singer (VAPS) and minimal
domains, which we introduce in Subsection 3.1. We define equivariant subcomplexes Pµ

α(X) by restricting
the operator to eigensections of

√
−1LV with eigenvalue µ. We also define local complexes Pα,B(Ua) and

local equivariant complexes Pµ
α,B(Ua) in fundamental neighbourhoods Ua of critical points a of the Kähler

Hamiltonian h, where the choice of domain indicated by B and the cohomology groups depend on the
normal form of the Hamiltonian near the critical point h. Roughly, it is the restricted complex of ∂E

(respectively ∂
∗
E) in neighbourhoods where the metric gradient of h is attracting (expanding), and a

suitable product domain if there are directions in which the gradient flow of h is both attracting and
expanding restricted to a product decomposition Ua = Ua,s × Ua,u near critical points. We denote the
geometric endomorphism corresponding to the circle action by Tθ, for θ ∈ S1.

Remark 1.1 (convention). In this article we restrict to actions of compact connected Lie groups G

for which the action by generic elements have only isolated fixed points on X̂, and we refer to these as
actions with isolated fixed points. It is clear that for any group action, the identity map induced
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by the action of the identity element of the group fixes the entire space, but our results apply as long as
generic elements have isolated fixed points.

If the equivariant complexes Pµ
α are Fredholm for every µ, then we call the complex Pα transversally

Fredholm, and we will restrict our study to such complexes. Given a stratified pseudomanifold X̂ with
isolated conic singularities the complexes Pα(X) are Fredholm and that local complexes Pα,B(Ua) are
transversally Fredholm, as is also the case for α = 1/2, α = 1 for general singularities and we will
formalize this in Proposition 3.13. It can be verified explicitly that the transversally Fredholm condition
holds for many other examples of complexes with various constant values of α ∈ [0, 1].

Given such a complex, we have an associated Witten deformed complex, where the Hilbert spaces on
the space are the same, but the Dolbeault operator P is deformed by a conjugation of eεh where ε is
a parameter, yielding the deformed operator Pε. Taking the adjoint P ∗

ε , we can construct a deformed
Dirac-type operator Dε = Pε + P ∗

ε , the square of which we call the deformed Laplace-type operator and
denote it by ∆ε. We denote the Witten deformed complex by Pα,ε(X) = (L2Ω0,·(X ;E),Dα(Pε), Pε), and
the equivariant complexes by Pµ

α,ε(X) = (L2
µΩ

0,·(X ;E),Dµ
α(Pε), Pε). We note that the case where ε = 0

corresponds to the undeformed complex. We denote the corresponding local complexes by Pµ
α,ε,B(Ua). In

Subsection 4.2 we will show that the deformed and undeformed complexes are isomorphic. The following
is the main theorem of this article, a restatement of Theorem 5.11.

Theorem 1.2 (holomorphic Witten instanton complex). Let X be the resolution of a stratified pseudo-
manifold of dimension 2n with a Kähler wedge metric and a stratified Kähler Hamiltonian Morse function
h corresponding to an isometric S1 action generated infinitesimally by a wedge vector field V , where the
metric is locally conformally totally geodesic at fundamental neighbourhoods of critical points of h. Let
E be a Hermitian vector bundle on X, to which the action lifts as a bundle action, yielding a geometric

endomorphism T
Pα(X)
θ = Tθ on the Dolbeault complex Pα,ε(X) introduced above, which we assume is

Fredholm, and where local complexes induced at isolated critical points are transversally Fredholm. Let µ
be an eigenvalue of

√
−1LV .

For any integer 0 ≤ q ≤ n, let F
[0,κ]
α,ε,µ,q ⊂ L2

µΩ
0,q(X ;E) denote the vector space generated by the

eigenspaces of ∆ε associated with eigenvalues in [0, κ]. Denoting κ = εf
+

there exists some f+ < 1/2

and some ε0 > 0 such that when ε > ε0, F
[0,κ]
α,ε,µ,q has the same dimension as

∑

a∈Cr(h)

dimHq(Pµ
α,B,ε(Ua)), (1.1)

and form a finite dimensional subcomplex of Pµ
α,ε(X) :

(
F[0,κ]
α,ε,µ,q, Pε

)
: 0 −→ F

[0,κ]
α,ε,µ,0

Pε−→ F
[0,κ]
α,ε,µ,1

Pε−→ · · · Pε−→ F[0,κ]
α,ε,µ,n −→ 0 (1.2)

which is quasi-isomorphic to Pµ
α,ε(X).

In the smooth setting, the result is implicit in [WZ98], where the “smaller” eigenvalues in [0, κ]
are shown to be small with f+ = −1/2 using results in [BL91] (see Remark 5.5). We will discuss this
complex in more detail in Subsection 1.2.

In this setting, we denote by Ts,θ the endomorphism (not necessarily realizable as a geometric en-
domorphism) on the cohomology groups, which acts on sections in the cohomology group by λ = seiθ

(observe that Tθ = T1,θ) where λ ∈ C∗ (see Remark 2.14). Then we notate the generating series for the
dimensions of the cohomology groups of each equivariant sub complex as

Tr(Ts,θ|Hq(Pα,B(Ua))) :=
∑

µ

dim(Hq(Pµ
α,B(Ua))λ

µ (1.3)

which is a power series that converges for s < 1 (see Remark 3.24). The following is a restatement of
Theorem 5.12.

Theorem 1.3 (Strong form of the holomorphic Morse inequalities). Let X be the resolution of a stratified
pseudomanifold of dimension 2n with a Kähler wedge metric and a stratified Kähler Hamiltonian Morse
function h corresponding to an isometric S1 action generated infinitesimally by a wedge vector field V .
Let E be a Hermitian vector bundle on X, to which the action lifts as a fiberwise linear action, yielding

a geometric endomorphism T
Pα(X)
θ = Tθ on the Dolbeault complex Pα(X) = (L2Ω0,·(X ;E),Dα(P ), P =

∂E) which we assume is Fredholm, and where local complexes induced at isolated critical points are
transversally Fredholm. Let µ be an eigenvalue of

√
−1LV . Then we have

( ∑

a∈Crit(h)

n∑

q=0

bqdim(Hq(Pµ
α,B(Ua))

)
=

n∑

q=0

bqdim(Hq(Pµ
α(X))) + (1 + b)

n−1∑

q=0

Qµ
q b

q (1.4)
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where Qµ
q are non-negative integers. Equivalently we have an equality of power series

( ∑

a∈Crit(h)

n∑

q=0

bqTr(Ts,θ|Hq(Pα,B(Ua)))
)
=

n∑

q=0

bqTr(Ts,θ|Hq(Pα(X))) + (1 + b)

n−1∑

q=0

Qqb
q (1.5)

where the Qq are power series in the variable λ = seiθ converging for |λ| = s < 1. The coefficients of this
series are non-negative integers.

The theorem is referred to as an inequality since the terms Qµ
q are non-negative integers. We call

the terms on the left hand side of equation (1.5) corresponding to each critical point a as the Morse
polynomial at the critical point, and the sum over all critical points of those terms as the Morse
polynomial, while the first set of terms on the right hand side is called the Poincaré polynomial of
the complex, and the second set of terms, the error polynomial. Here the polynomials are in the
variable b, with coefficients that are power series. The following is a restatement of Theorem 5.13.

Theorem 1.4. [Dual equivariant holomorphic Morse inequalities] In the same setting as Theorem 1.3,
let (Pα)SD(X) be the Serre dual complex

(Pα)SD(X) := Rα(X) = (L2Ωn,n−·(X ;E∗),Dα(∂
∗
E∗⊗K), ∂

∗
E∗⊗K) (1.6)

and let T
Rα(X)
θ be the geometric endomorphism induced on this complex corresponding to the Kähler

action, which we will denote as Tθ with some abuse of notation. Then we have that

bn
( ∑

a∈Crit(h)

n∑

q=0

b−qTr(Ts,−θ|Hq(Rα,B(Ua)))
)
= bn

n∑

q=0

b−qTr(Ts,−θ|Hq(Rα(X))) + (1 + b)
n−1∑

q=0

Q̃qb
q (1.7)

where the B subscript denotes a choice of domain for the local complex corresponding to the Kähler
hamiltonian −h (corresponding to T−θ) where the Q̃q are power series in the variable λ = seiθ which
converge for s = |λ| > 1. The coefficients of this series are non-negative integers. Moreover

n∑

q=0

bqTr(T1,θ|Hq(Pα(X))) = bn
n∑

q=0

b−qTr(T1,−θ|Hq(Rα(X))). (1.8)

As before, we refer to the term on the left hand side as the dual Morse polynomials, and the
terms on the right as the dual Poincaré polynomial and the dual error polynomial. These dual
polynomials and the dual inequalities can equivalently be phrased in terms of the adjoint complexes as
well using the dualities in Proposition 3.23.

Taken together these inequalities are very restrictive. Since equation (1.8) shows that the Poincaré
polynomials are the same for the inequalities and the dual inequalities, and since the power series converge
for opposite regimes of s = |λ|, one can conclude that only finitely many terms cµλ

µ with common powers
µ of λ will appear in the Morse polynomial and the dual Morse polynomial, reducing it to what we call
a classical Morse polynomial.

Definition 1.5 (Classical Morse polynomial). In the setting of Theorem 1.3, let cµ,q,1(cµ,q,2) be the
coefficient of the power series with power λµ of the polynomial corresponding to the monomial bq of the
Morse (dual Morse) polynomial. Let cµ,q := min{cµ,q,1, cµ,q,2}. Then the classical Morse polynomial is

n∑

q=0

∑

µ

bqcµ,qλ
µ (1.9)

The discussion immediately above this definition shows that for a given q, cµ,q > 0 only for finitely
many µ, and that the classical Morse inequality

n∑

q=0

∑

µ

bqcµ,qλ
µ =

n∑

q=0

bqTr(T1,θ|Hq(Pα(X))) + (1 + b)

n−1∑

q=0

bqdq,µλ
µ (1.10)

holds where dq,µ are non-negative integers, positive only for finitely many µ. Then one can invoke the
lacunary principle [BH04, Theorem 3.39] of Morse theory to get refined information on the cohomology
groups. We provide the example of a spinning sphere that Witten uses to illustrate this method in [Wit84].
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Example 1.6 (Spinning the 2-sphere). Consider CP
1 with projective coordinates [Z0 : Z1], equipped with

the Hamiltonian C∗ action (λ)[Z0 : Z1] = [λZ0 : Z1] where λ = seiθ ∈ C∗. This has two fixed points at
[0 : 1] and [1 : 0].

Let us consider the holomorphic Morse inequalities for the trivial bundle in the form of a generating
series. The local cohomology (converging for |λ| < 1) at [0 : 1], is simply the L2 bounded holomorphic
functions in a neighbourhood of the fixed point and has Schauder basis {1, z, z2, ...} where z = Z0/Z1. The
trace of the geometric endomorphism Ts,θ on the local cohomology group yields

∑∞
k=0 λ

k (converging for
|λ| < 1). Similarly the contribution

∑∞
k=1 λ

k is the trace of the geometric endomorphism over the local
cohomology at [1 : 0], which has a Schauder basis given by the anti-holomorphic one forms {ykdy}k∈N

where y = 1/z. The equivariant holomorphic Morse inequalities for the trivial bundle are encoded by

∞∑

k=0

λk + b

∞∑

k=1

λk = 1+ (1 + b)

∞∑

k=1

λk. (1.11)

Similarly we can show that the dual Morse inequalities are encoded by

b

∞∑

k=1

λ−k +

∞∑

k=0

λ−k = 1 + (1 + b)

∞∑

k=1

λ−k, (1.12)

(converging for |λ| > 1) and each term can be computed using explicit descriptions of the local cohomology
groups as earlier.

We see that the classical Morse polynomial (see Definition 1.5) is simply 1, whence the lacunary
principle shows that this corresponds to the Poincaré polynomial (since there are no (1 + b) factors).

Observe that the left hand side of equation (1.11) is a Laurent expansion for the first expression in

1

(1− λ)
+ b

λ

(1− λ)
, b

λ−1

(1 − λ−1)
+

1

(1− λ−1)
(1.13)

and substituting for b by 1/b and multiplying by an overall factor of −b = (−b)n yields the second
expression which is the formal sum of the left hand side of equation (1.12). The Morse polynomials and
the dual Morse polynomials correspond to series expansions that converge for the different connected
components of {λ ∈ C||λ| 6= 1}. We compute Morse polynomials for singular examples in
Subsection 6.1.

Corollary 1.7 (Weak Morse inequalities). In the same setting as Theorem 1.3, we have that
( ∑

a∈Crit(h)

dim(Hq(Pµ
α,B(Ua))

)
≥ dim(Hq(Pµ

α(X))). (1.14)

This is immediate from the statement of Theorem 1.3 since the coefficients of the power series of the
error polynomial are positive, and can be equivalently stated in terms of power series as has been done
for the smooth setting in [MW97,WZ98]. The Serre dual complex gives dual weak Morse inequalities.

When b = −1 the error polynomial vanishes and we recover the holomorphic Lefschetz fixed
point theorem that we proved in [Jay23] when the cohomology of the complex matches that of the
VAPS domain in the case of non-isolated singularities. The direct sum of the cohomology groups of the
Dolbeault complexes with minimal domain twisted by E = Λp(wT ∗X1,0) for all p = 0, .., n is isomorphic
to the de Rham cohomology on spaces satisfying the Witt condition.

We proved the holomorphic Lefschetz fixed point theorem in [Jay23] primarily for the VAPS domain
for ∂E , which corresponds to α = 1/2 in this article, and observed that it holds for the cases of α = 0
(the maximal domain), and α = 1 (the minimal domain) for the case of isolated singularities together
with considerations in [Bei14]. Building on this we computed other equivariant invariants, including
equivariant Hirzebruch χy, signature invariants, where we restricted to the case when the cohomology of
the VAPS domain equalled that of the minimal domain for the ∂E domain. Here we study the minimal
domain and certain other domains directly, and explore more general invariants in Subsections 6.3 and
7.3.

Remark 1.8. The results that we prove extend naturally to actions of compact connected Lie groups, as
in the proof of the theorem on page 22 of [AH70], and the proof of Theorem 2.2 of [Wu99]. Therefore we
study circle actions, for the most part.

The two inequalities in Theorem 1.3 and Theorem 1.4 correspond to the decomposition of the Lie
algebra of S1, R, into the two cones R+ ∪ R−. For general Lie group actions we can obtain more
restrictive inequalities using the inequalities corresponding to each cone of the Lie algebra following the
approach in [Wu99], and we will study this in a follow up article.
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In [Jay23] we showed that under certain assumptions, the Lefschetz-Riemann-Roch formulas for
Hilbert complexes that we proved correspond to those of Baum-Fulton-Quart [BFQ79, Bau82]. Theo-
rem 1.3 gives the corresponding equivariant holomorphic Morse inequalities. It is natural to formulate
holomorphic Morse inequalities in singular cohomology, and equivariant complexes studied more gener-
ally in [BFQ79], especially in light of more algebraic proofs in the smooth setting as in [Wu03]. We
explore the conjectural holomorphic Morse inequalities in Subsection 6.1, along with a discussion of the
smooth case and singular examples. We discussed holomorphic Lefschetz numbers in L2 cohomology in
great detail and in many examples in [Jay23], and we discuss enough details to enable one to work out
the holomorphic Morse inequalities in those and similar examples. Hilbert complexes which have Todd
classes that match those of the complexes studied in [BFQ79] have been constructed in [Lot19,Rup18]
and we briefly discuss Morse inequalities for these as well.

In Subsection 6.3, we study the equivariant Poincaré Hodge polynomials corresponding to the Dol-
beault complexes we study, in particular proving a Lefschetz-Hodge theorem in Theorem 6.9, and studying
dualities.

We then turn our attention to rigidity results, starting with the following theorem. These are the
first rigidity results for L2 de Rham and Dolbeault cohomology on Witt spaces as far as the
author is aware. We note that L2 de Rham cohomology is isomorphic to middle perversity intersection
cohomology on these spaces. The following is a restatement of Theorem 7.4.

Theorem 1.9. Let X be a resolved stratified pseudomanifold with a wedge Kähler metric and a Kähler
Hamiltonian morse function h. Then the Witten deformed de Rham complex in Theorem 6.33 of [Jay23]
is isomorphic as a Hilbert complex to the direct sum over p of the Witten deformed complexes given
in Theorem 1.2 for the equivariant Dolbeault complexes pPµ=0

α = (L2Ωp,·
µ=0(X ;C),Dµ=0

α (P ), P ) where

P = ∂Λp,0 for any α. In particular the Witten deformed de Rham complex inherits the Hodge bi-grading.

Basically this shows that for any of the domains we work with, the µ = 0 equivariant subcomplex is
isomorphic to the de Rham complex, which in particular shows that the Kähler group actions we study
act trivially on L2 de Rham cohomology. The phenomenon that the index of operators restricted to
equivariant Hilbert complexes vanishes for all µ 6= 0 is usually called rigidity (see, e.g. [BT89]). This
is not the case for singular cohomology, as seen by the examples in Subsection 6.2, including the case of
the cusp curve, and the variety Z4 −X3Y = 0 in CP

3.
We denote the Dolbeault complexes pPα = (L2Ωp,·(X ;E),Dα(P ), P ) where PE = ∂Λp,0⊗E . Given a

circle action as we study in this article, we define the equivariant Poincaré Hodge polynomial for
the Dolbeault complex to be

χy,b(Pα, Tθ) :=

n∑

p=0

yp
n∑

q=0

bqTrTθ|Hq(pPα) (1.15)

for global complexes as well as local complexes pPα(U) = (L2Ωp,·(U ;E),Dα(PU ), PU ), where we abuse
notation to denote the Dolbeault complexes for all p with fixed α in the left hand side of the above
equality. The following is a restatement of Theorem 7.6.

Theorem 1.10 (Rigidity of Poincaré Hodge polynomials). In the same setting as Theorem 1.9, for
E = C, α = 1 the global equivariant Poincaré Hodge polynomials are rigid. Moreover we have
that

χy,b(Pµ=0
α (X), Tθ) = χy,b(Q(X)) :=

n∑

p,q=0

ypbq dimHp,q(Q(X)) (1.16)

and for fundamental neighbourhoods Ua of critical points,

χy,b(Pµ=0
α,B (Ua), Tθ) = χy,b(QB(Ua), Tθ)) :=

n∑

p,q=0

ypbq dimHp,q(QB(Ua)) (1.17)

for any α, and these satisfy de Rham type Poincaré Hodge inequalities

∑

a∈crit(h)

χy,b(QB(Ua), Tθ)) = χy,b(Q(X)) + (1 + b)

n−1∑

q=0

Rqb
q, (1.18)

where Q is the Witten deformed de Rham complex with the Hodge bi-grading (see Remark 6.7).

In particular, the formula in equation 1.18 generalizes formulas in [Wit82] for the signature
invariant in the smooth setting when there are Killing vector fields on a smooth orientable
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manifold. This is when b = −1, y = 1. In the smooth setting this formula for the signature in the
presence of Killing vector fields has contributions of ±1 at zeros of the vector field. This is not always the
case in the singular setting, as we show in Example 7.10 where there is an isolated fixed point contributing
0. The case of y = −1 captures the Morse inequalities for the de Rham complex in [Jay23].

Rigidity is a crucial ingredient in the study of the equivariant signature theorem, and formulas derived
using it are of great interest in mathematics and physics. In Subsection 7.2 we present a third formula
for the equivariant signature, following ideas in [GH79] that were used by Gibbons and Hawking in
classifying gravitational instantons, and we extend formulas used to compute NUT charge contributions
for certain gravitational actions and entropy functionals by them.

In Subsection 7.3 we explore the rigidity of complexes twisted by fractional powers of the canonical
bundle K1/N = L when such line bundles exist, the case where N = 2 corresponding to spin Dirac
complexes. We show that given an isometric Kähler Hamiltonian S1 action on a stratified pseudomanifold
with a wedge Kähler metric, the group action lifts to one on L, following which we prove the following
result (a restatement of Theorem 7.16) in the smooth case.

Theorem 1.11. Let X be a smooth Kähler manifold with a Hermitian line bundle L such that L⊗N =
KX where KX is the canonical bundle, where N > 1 is an integer. Let E = Lk, where 0 < k < N is an
integer. We consider the complex P = (L2Ω0,q(X ;L),Dα(P ), P ) where P = ∂E.

If there is a Kähler action of a compact connected Lie group G with isolated fixed points (with at least
one fixed point), then the cohomology of the Dolbeault complex twisted by the bundle E vanishes in all
degrees. In particular the twisted Dirac operator is invertible.

We also prove a generalization to singular spaces for the case of the spin Dirac operator in Theorem
7.19, with additional assumptions, where we study torus actions instead of circle actions.

1.2 Summary of construction of the Witten instanton complex

The proof of Theorem 1.3 hinges on an analytic construction of a holomorphic Witten instanton
complex in Theorem 1.2 which builds on ideas in the smooth setting developed in [Wit84,BL91,WZ98]
with a few technical twists. Our construction of the instanton complex in the L2 de Rham case for
stratified spaces with wedge metrics in [Jay23] was based on those ideas, with differences arising in
technicalities.

Roughly the idea is as follows. The null spaces of model operators in neighbourhoods of critical points
of Kähler Hamiltonian Morse functions forWitten deformed Laplace-type operators ∆ε of local complexes
are shown to be isomorphic to local cohomology groups of the Hilbert complexes restricted to fundamental
neighbourhoods of fixed points. In the smooth case, estimates are used to show that the small eigenvalue
eigensections of ∆ε on unions of local neighbourhoods approximate the global eigensections of ∆ε on X
with eigenvalues which decay (of order ε−1) as ε goes to ∞, while the other eigenvalues of ∆ε grow of
order ε at the local and global levels. This yields a spectral gap [C1ε

−1, C2ε] for fixed C1, C2 > 0 for ∆ε

on X .
In the setting of this article we prove weaker estimates which give a much weaker spectral gap, namely

that there is a subcomplex of the Witten deformed Dolbeault complex that corresponds to eigensections
where the eigenvalues grow slower than ε2f where f < 1/2 as ε goes to ∞. This yields a spectral gap
[C1ε

2f , C2ε] for fixed C1, C2 > 0 for ∆ε which we use to construct a “smaller” eigenvalue complex/
Witten instanton complex. This suffices for the proof of the Morse inequalities.

The main ingredients are the following results.

1. Proposition 4.6, a spectral gap result for the model harmonic oscillator on tangent cones, for
equivariant complexes.

2. A polynomial expansion of the operator near the critical points of the Kähler Morse Hamiltonian,
given in Lemma 5.3. This step was be avoided in [Jay23] for the de Rham case by perturbing the
metric near the critical points to be the model metric.

3. Estimates for certain global operators in Proposition 5.7 obtained using information from the anal-
ysis of the local operator. Estimates in Proposition 4.4 showing the vanishing of harmonic forms of
the deformed operator away from critical points.

4. Parametric resolvent estimates in Lemma 5.9 and Proposition 5.10 showing that the dimension of
the vector space of approximate solutions is equal to the dimension of the vector space of “smaller”
eigenvalue eigensections, leading to the construction of the Witten instanton complex in Theorem
1.2.
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The first ingredient follows from an explicit description of an orthonormal basis of eigensections on the
tangent cone using separation of variables and Sturm-Liouville theory, together with a scaling argument.
The exact computation of an orthonormal basis of eigensections was carried out in detail for the case of
the Dolbeault complex in [Jay23] without Witten deformation. The case of the de Rham complex was
handled there as well.

The key ingredients necessary for the second numbered ingredient was proven in the smooth setting
in [BL91] in a generality that holds for Morse-Bott critical point sets, where the asymptotics of the metric
in the smooth setting allows one to prove much stronger estimates for the Dirac-type operator. In fact we
keep careful track of the constants in the crucial estimates in Section 5. In particular for wedge metrics
that are asymptotically δ with δ ≥ 1 there is a bona fide small eigenvalue complex, with the small
eigenvalues going to 0 for δ strictly greater than 1. We also see that for locally conformally product type
metrics where the conformal factor is radial (see Definition 2.22) that there is a small eigenvalue complex.
All the examples we study in this article can be easily seen to be of this type.

The third and fourth numbered ingredients are straightforward generalizations of results for the de
Rham case in [Jay23, Zha01] for equivariant complexes, accommodating the polynomial approximation
of the operator. The third ingredient can be thought of as the glue that uses the local model operator
and its properties to prove estimates for the global operator.

1.3 Background and related results

The Atiyah-Bott-Berligne-Vergne localization theorem and similar results relate important global and
local quantities. Supersymmetric localization, equivariant cohomology, Bott residue formulae and the
Atiyah-Bott-Lefschetz fixed point theorem are all instances of such results, and are tightly woven into
the fabric of many braches of mathematics and physics (see [Jay23, §1.2] for a survey). Ideas of Witten
were key in understanding the role of supersymmetry in such localization results. A large number of
localization results have been proven for Z2 graded Dirac type operators, related to equivariant K-theory
and K-homology (see [BFQ79]), even when there are richer Z gradings of complexes involved.

In [Wit82], Witten gave a groundbreaking take on Morse theory, where the Z grading of the de Rham
complex plays a more prominent role as opposed to results such as the Lefschetz fixed point theorem. In
particular he went beyond the case of the de Rham complex and formulated results for other operators
such as the signature operator when there are Killing vector fields on orientable spaces, outlining novel
proofs for the Hopf-index theorem and for formulas for the equivariant signature. In [Wit84] he expanded
on these ideas for the case of the Dolbeault complex on Kähler manifolds with Hamiltonian circle actions
acting by isometry.

The technique of Witten deformation in the smooth complex setting was used in the study of Quillen
metrics [BL91] by Bismut and Lebeau, from which many techniques and results were drawn in the proof
of the holomorphic Morse inequalities in the four articles [MW97,Wu99,WZ98,Wu03] authored by Wu,
Mathai and Zhang. Some pertinent results of [BL91] in the smooth case is worked out for non-isolated
fixed point sets which are Morse-Bott critical points of Hamiltonians. In the case of stratified spaces
there are natural Hamiltonian actions which have fixed point sets which are stratified subspaces, which
lead to additional technical complications and we postpone a treatment of that case to a later article.

In the case of S1 actions, we have the inequalities and dual inequalities. These correspond to the two
action chambers of the Lie algebra R of S1 in the formulation for more general compact connected Lie
groups G in [Wu99] acting on smooth spaces. There are no extra analytic considerations in the proof of
this more general situation even in the singular case, and we focus on the analysis in this article.

In [Wu99, §4], it is shown that the strong form of the inequalities do not hold for general Dolbeault-
Dirac complexes for actions that do not preserve a Kähler structure with an explicit counterexample, for
which the weak form of the inequalities in Corollary 1.7 continue to hold. In [Wu03] the strong form of the
inequalities is proven more generally for group actions on complex manifolds that give a Bialynicki-Birula
decomposition of the space.

In [KP21], the Morse inequalities have been extended to smooth manifolds with critical point sets that
are stratified spaces. Morse inequalities for the de Rham complex on spaces with conic and conformally
conic metrics have been studied in [Lud13a,Lud13b] by constructing an instanton complex, and in [ALC17,
ALCF18] avoiding it. In [Jay23], we constructed the de Rham instanton complex for Witt spaces with
wedge metrics which were of product type near neighbourhoods of critical points of the stratified Morse
functions considered in that article. That assumption can be removed using the technical results in Section
5. This is useful in extending studies such as those in [DR21] where the Witten deformed Laplace type
operators are studied without perturbing the metric. The methods developed in this article are related
to semi-classical analysis on stratified spaces (where the standard semi-classical parameter corresponds
to ~ = 1/ε where ε is the deformation parameter in this article), for instance as in [DR21] and references
therein including connections to Policott Ruelle resonances and analytic torsion via the Freed conjecture.
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Analytic torsion and the Cheeger-Müller theorem have also been studied widely using the techniques of
Witten deformation following the work of [BZ92] (see also [Lud20] in the singular setting).

The techniques developed here are also related to techniques needed to generalize the asymptotic
holomorphic Morse inequalities of Demailly, which have been investigated on some spaces with singular-
ities and with singular bundle metrics (see [CMW23,MM07]). Observations of Demailly in [Dem91] can
be used to see that candidate asymptotic holomorphic Morse inequalities can be formulated as soon as
there is a Hirzebruch-Riemann-Roch formula, which for the VAPS domain α = 1/2 is given by the index
theorem in [AGR23]. This is similar to how the candidate equivariant holomorphic Morse inequalities
can be formulated once there is a Lefschetz-Riemann-Roch theorem (see Subsection 6.2).

In the setting of Theorem 1.3, the holomorphic Morse inequalities are a generalization of the Lefschetz
fixed point theorem. Thus it can be used to strengthen certain results that are usually tackled by the
Lefschetz fixed point theorem. This includes questions of quantization commutes with reduction, as were
studied in [Bra99,TZ98], where certain inequalities associated to reduction were proven to be equalities.

The idea of Witten deformation compatible with equivariant actions was used in the work of [Pes12]
(see footnote 6 of that article and relevant deformations) in computing instanton contributions to path
integrals of integrable quantum field theories, which has been studied more generally since then (see,
e.g., [FQWZ20a, FQWZ20b, HO23,MR22]). In [Jay23] we discussed extensions of such theories to the
singular setting, how some symmetries of path integrals that are of physical importance fail to hold on
certain singular spaces, and the work in this article brings us a step closer to more rigorous studies of
related work in the singular setting (see Remark 6.10).

We prove our main results under the assumption that the complexes for the algebraic domains are
transversally Fredholm. Similar domains have been studied for other operators in [Ver15,BDV15] at the
global level, and it is plausible that similar techniques can be used to show that the complexes we study
here are transversally Fredholm, if not Fredholm.

In the smooth setting Witten uses the holomorphic Morse inequalities to prove that for smooth
manifolds admitting Hamiltonian Kähler circle actions with isolated fixed points, Hp,q(X) = 0 for p 6= q
(in fact Carrell and Liebermann had proven this for arbitrary holomorphic circle actions on Kähler
manifolds [CL73]). This is an analog of the Bochner-Kodaira-Nakano estimates on smooth manifolds,
which shows that assumptions on the curvature of line bundles imply vanishing results on the cohomology
of bundles. For instance is well known that if there is a trivializing section of the canonical bundle of a
smooth Kähler manifold X2n which gives rise to a non-trivial element in H0,n(X), then it is a Calabi-Yau
admitting a Ricci flat metric and does not admit Kähler circle actions.

Perhaps the simplest example of rigidity on smooth manifolds is for the global Lefschetz number of the
trivial bundle of a complex manifold for a holomorphic circle action, which follows by results of [CL73]
(c.f., page 330 [Wit84]) described above. Rigidity for the structure sheaf fails for certain non-normal
algebraic varieties in the Baum-Fulton-MacPherson theory, and for domains other than the minimal
domain (see Examples 7.33 and 7.37 of [Jay23], Subsection 6.2).

Following the landmark result of [AH70], rigidity phenomena were studied by Landweber and Stong,
leading to their elliptic genus and Witten’s conjectures on the rigidity of the Dirac operator on loop
spaces (see [LS88,Zag88,BT89]). Witten observes in [Wit82] that the rigidity result of [AH70] is related
to questions of fermion quantum numbers in Kaluza-Klein theories.

Our proof of the vanishing of harmonic spinors using the holomorphic Morse inequalities fits into a
circle of results related to positive scalar curvature, group actions and harmonic spinors. It is well known
that the Lichnerowicz inequality implies that there are no harmonic spinors on spaces with positive scalar
curvature metrics, and it is known that isometric group actions are abundant on geometries with positive
and zero scalar curvature. The relation between fixed points, spinors and positive scalar curvature has
been explored widely, for instance in [Wie16,LY74].

In the smooth setting, rigidity results on complete intersections have been studied in [DW17] where the
existence of circle actions on spaces with positive curvature metrics is explored. One can use arguments
similar to those in the proof of Theorem 7.19 for complete intersections with canonical singularities and
positivity conditions for the canonical bundle to study the rigidity of Dolbeault complexes twisted by other
powers of the canonical bundle. Elliptic genera have been studied on singular spaces with restrictions on
the singularities in [Web16,DBW18,BL03,Tot00], but as we observed in [Jay23], these are different from
the L2 versions in general. Rigidity and dualities of χy invariants that can be proven from properties of
elliptic genera in the smooth setting hold for L2 χy invariants with the minimal domain for the Dolbeault
complex.

Many important theories in mathematics and physics take the fact that cohomology is rigid under
the action of continuous Lie groups for granted, not true in localization theories generalizing formulas
of [BFQ79], for instance in [EG98]. The rigidity of the signature complex is intimately tied to the fact that
group actions act trivially on the cohomology of the de Rham complex on smooth manifolds, as observed
by Witten in [Wit82, §3] where he explains how this leads to important formulas in mathematics and
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physics for the signature in terms of the weights at fixed points. This is an important difference between
L2 cohomology and singular cohomology on singular spaces, in light of Theorem 1.9 and counterexamples
in singular cohomology we study in this article. We explore this in Subsection 7.2 as well (see Remarks
6.5 and 7.12). Witten also highlights the importance of picking orientations in deriving his signature
formulas (see Remark 7.8) and we observe that there are many publications which have sign errors in
important formulas due to failures in accounting for co-orientations of fixed point sets and critical point
sets (see Remark 7.11, [Rot16]).

We use rigidity of L2 cohomology to prove Theorem 1.10 establishing rigidity for the χy,b polynomials,
generalizing results in [Kos70], and [AH70, §3] for complex manifolds in our singular Kähler setting, and
we observe that similar arguments together with the holomorphic Lefschetz fixed point theorem in [Jay23]
can be used to establish rigidity of the χy invariant for Hamiltonian actions when there is only an almost
complex structure, and when the actions are locally Kähler Hamiltonian. It also generalizes some formulas
studied by Witten for the signature computed in terms of local quantities at fixed points, and give a third
formula for the index in Subsection 7.2 extending work of [GH79], where we extend formulas for NUT
charges that appear in the gravitational action and entropy functionals on gravitational instantons. We
chose this example since it showcases how paying closer attention to the equivariant formulas, already
studied and used in that article, would have made certain sign errors clear. We observe in Remark 7.11
that the cumbersome coordinate computations used in [GH79] leads to sign issues which should have
been clear to the authors already by crucial physical arguments drawn from the equivariant signature
formula that they already make that highly influential article.

The more recent study of gravitational instantons in [AAD+23] uses methods and results in [Jan18]
which are proven as consequences of rigidity, and gives a correct derivation of the formulas which we
emphasize were already clear from the equivariant signature formula. We also observe that while the
Kähler case seems special, conjecture 3 of [AAD+23] shows that for certain physical applications it
suffices to understand such equivariant formulae for Hermitian metrics, which can be obtained using
results in [Jay23].

Many physical consequences are drawn from such formulae and there is significant interest in gen-
eralizing this to singular spaces, both compact and non-compact with many interesting work done by
Hawking and his collaborators on those general settings (see [BG23,dA23] and references in the latter).
One sees glimpses of derivations of equivariant quantities in sections 5, 6 of [GH79], and relevant invari-
ants getting physical labels (see “mass” of the bolt in equation (6.6), the weights of actions corresponding
to surface gravities).

The equivariant χy,b polynomials, equivariant χy polynomials and equivariant signature invariants
appear in many related applications including classifying group actions with prescribed numbers of fixed
points [Wie16], group actions on 4 manifolds [Jan18] in addition to classifying gravitational instantons.
The ideas of [GH79] now appear in the study of supergravity theories that embrace the now better
understood theory of equivariant localization on orbifolds [GGS24], and extending such work to stratified
pseudomanifolds will require a more careful study of localization as we discuss in Subsection 7.2.

Acknowledgements: I thank my advisor Pierre Albin for many discussions on the subject of this
article, for ideas and valuable comments. A reading group on the Cheeger-Müller theorem organized by
him proved to be useful, and I thank all participants. Many conversations with Gabriele La Nave and
Hadrian Quan on wedge symplectic structures proved useful in this work. I thank Dan Berwick-Evans,
Eugene Lerman, Nachiketa Adhikari, and Donghoon Jang for some useful discussions. I thank Dhantha
Gunarathna for hosting me in the summer of 2023 when part of this work was developed. I was partially
supported by Pierre Albin’s NSF grant DMS-1711325.

2 Background

In this section, we review stratified spaces and their resolutions, as well as wedge Kähler structures and
the spinC Dirac operator, before discussing local structures in neighbourhoods of fixed points of the circle
actions that we study.

2.1 Stratified pseudomanifolds with Kähler structures

We review some of the background for stratified spaces and wedge Kähler geometry, referring the reader
to [AGR23] and [Jay23, §2] for more details.
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2.1.1 Stratified pseudomanifolds

All topological spaces we consider will be Hausdorff, locally compact topological spaces with a countable
basis for its topology. Recall that a subset W of a topological space V is locally closed if every point
a ∈ W has a neighborhood U in V such that W ∩ U is closed in U . A collection S of subsets of V is
locally finite if every point v ∈ V has a neighborhood that intersects only finitely many sets in S.

A Thom-Mather stratified pseudomanifold is a topologically stratified space (see Definition 4.11 of
[KW06]) with additional conditions and we refer the reader to [Ver84, §5] for more details on Thom-
Mather stratified spaces.

Definition 2.1. A Thom-Mather stratified space X̂ is a metrizable, locally compact, second countable
space which admits a locally finite decomposition into a union of locally closed strata S(X̂) = {Yα}, where
each Yα is a smooth manifold, with dimension depending on the index α. We assume the following:

1. If Yα, Yβ ∈ S(X) and Yα ∩ Yβ 6= ∅, then Yα ⊂ Yβ .

2. Each stratum Y is endowed with a set of ‘control data’ TY , πY and ρY ; here TY is a neighbourhood
of Y in X which retracts onto Y, πY : TY −→ Y is a fixed continuous retraction and ρY : TY → [0, 2)
is a ‘radial function’ in this tubular neighbourhood such that ρ−1

Y (0) = Y . Furthermore, we require

that if Ỹ ∈ S(X) and Ỹ ∩ TY 6= ∅, then

(πY , ρY ) : TY ∩ Ỹ \ Y −→ Y × [0, 2) (2.1)

is a proper differentiable submersion.

3. If W,Y, Ỹ ∈ S(X), and if p ∈ TY ∩ TỸ ∩W and πỸ (p) ∈ TY ∩ Ỹ , then πY

(
πỸ (p)

)
= πY (p) and

ρY
(
πỸ (p)

)
= ρY (p).

4. If Y, Ỹ ∈ S(X), then

Y ∩ Ỹ 6= ∅ ⇔ TY ∩ Ỹ 6= ∅,
TY ∩ TỸ 6= ∅ ⇔ Y ⊂ Ỹ , Y = Ỹ or Ỹ ⊂ Y .

5. For each Y ∈ S(X), the restriction πY : TY → Y is a locally trivial fibration with fibre the cone
C (ZY ) over some other stratified space ZY (called the link over Y ), with atlas UY = {(φ,U)}
where each φ is a trivialization

π−1
Y (U) → U × C (ZY ) , (2.2)

and the transition functions are stratified isomorphisms of C (ZY ) which preserve the rays of each
conic fibre as well as the radial variable ρY itself, hence are suspensions of isomorphisms of each
link ZY which vary smoothly with the variable y ∈ U .
If in addition we let X̂j be the union of all strata of dimensions less than or equal to j, and require
that

6. X̂n−1 = X̂n−2 and X̂\X̂n−2 is dense in X̂, then we say that X̂ is a stratified pseudomanifold.

We remark that this ensures that X̂j\X̂j−1 is a smooth manifold of dimension j, and the connected

components of this are called the strata of depth j. We define the regular part of X̂ to be Xreg :=
X̂n \ X̂n−2. The definition shows that it is natural to study the topology of these spaces using iterated
conic metrics, which we call wedge metrics and introduce more formally later in this section. The following
definition is based on the first proposition of [GM80, §4.1].

Definition 2.2. Given a stratified pseudomanifold X̂ of dimension n, if the link at each x ∈ X̂n−2 is
connected, it is called a normal pseudomanifold.

Goresky and MacPherson explore this definition in [GM80, §4] to which we refer the reader. The

metric completion of X̂reg with respect to a wedge metric corresponds to the topological normalization of
non-normal pseudomanifolds. This topological normalization is unique for a given pseudomanifold. We
explored how the L2 Atiyah-Bott-Lefschetz fixed point theorem holds without the normal assumption
in [Jay23] and the constructions in this article hold without it as well. There is a functorial equivalence
between Thom-Mather stratified spaces and manifolds with corners and iterated fibration structures (see
Proposition 2.5 of [ALMP12], Theorem 6.3 of [ALMP18]).
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2.1.2 Manifolds with corners with iterated fibration structures

In section 1 of [AGR23], there is a detailed description of iterated fibration structures on manifolds with
corners. We explain some of these structures from said article which we will use and refer the reader to
the source for more details. In [KR22], these are referred to as manifolds with fibered corners that are
interior maximal.

An n-dimensional manifold with corners X is an n-dimensional topological manifold with boundary,
with a smooth atlas modeled on (R+)n whose boundary hypersurfaces are embedded. We denote the set
of boundary hypersurfaces of X by M1(X). A collective boundary hypersurface refers to a finite union
of non-intersecting boundary hypersurfaces.

Definition 2.3. An iterated fibration structure on a manifold with cornersX consists of a collection
of fiber bundles

ZY −BY
φY−−→ Y

where BY is a collective boundary hypersurface of X with base and fiber manifolds with corners such
that:

1. Each boundary hypersurface of X occurs in exactly one collective boundary hypersurface BY .

2. If BY and BỸ intersect, then dim Y 6= dim Ỹ , and we write Y < Ỹ if dim Y < dimỸ .

3. If Y < Ỹ , then Ỹ has a collective boundary hypersurface BY Ỹ participating in a fiber bundle
φY Ỹ : BY Ỹ → Y such that the diagram

BY ∩BỸ BY Ỹ ⊆ Ỹ

Y

φ
Ỹ

φY φ
Y Ỹ

commutes.

The base can be assumed to be connected but the fibers are in general disconnected. As we mentioned
above, there is an equivalence between Thom-Mather stratified spaces and manifolds with corners with
iterated fibration structures.

If we view a cone over a link Z as the quotient space of [0, 1]x × Z under the identification where
the points of the link at {x = 0} × Z are identified, then the quotient map is a blow-down map. More
generally, there is an inductive desingularization procedure which replaces the Thom-Mather stratified
space with a manifold with corners with iterated fibration structures. This corresponds to a blow-down
map β : X → X̂, which satisfies properties given in Proposition 2.5 of [ALMP12]. See Remark 3.3
of [AGR23] for an instructive toy example.

Under this equivalence, the bases of the boundary fibrations correspond to the different strata, which
we shall denote by

S(X) = {Y : Y is the base of a boundary fibration of X}. (2.3)

The bases and fibers of the boundary fiber bundles are manifolds with corners with iterated fibration
structures (see for instance Lemma 3.4 of [AM11]). The condition dim ZY > 0 for all Y corresponds
to the category of pseudomanifolds within the larger category of stratified spaces. The partial order on
S(X) gives us a notion of depth

depthX(Y ) = max{n ∈ N0 : ∃Yi ∈ S(X) s.t. Y = Y0 < Y1 < ... < Yn}.
The depth of X is then the maximum of the integers depthX(Y ) over Y ∈ S(X).

We now introduce some auxiliary structures associated to manifolds with corners with iterated fibra-
tion structures. If H is a boundary hypersurface of X , then because it is assumed to be embedded, there
is a smooth non-negative function ρH such that ρ−1

H (0) = H and dρH does not vanish at any point on
H . We call any such function a boundary defining function for H . For each Y ∈ S(X), we denote
a collective boundary defining function by

ρY =
∏

H∈BY
ρH , and by ρX =

∏
H∈M1(X) ρH

a total boundary defining function , where M1(X) denotes the set of boundary hypersurfaces of X .
When describing the natural analogues of objects in differential geometry on singular spaces, the

iterated fibration structure comes into play. For example,

C∞
Φ (X) = {f ∈ C∞(X) : f

∣∣
BY

∈ φ∗
Y C∞(Y ) for all Y ∈ S(X)} (2.4)

corresponds to the smooth functions on X that are continuous on the underlying stratified space.
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2.1.3 Wedge metrics and related structures

On Thom-Mather stratified pseudomanifolds we can define metrics which are locally conic. For instance,
consider the model space X̂ = Rk × Z+, where Z+ is a cone over a smooth manifold Z. The resolved
manifold with corners that corresponds to the blowup of this space is X = Rk × [0,∞)x × Z. We have
the model wedge metric

gw = gRk + dx2 + x2gZ , (2.5)

which is a product metric on the product space Xreg and which we call a rigid/ product type wedge
metric, degenerating as it approaches the stratum at x = 0. These metrics are degenerate as bundle
metrics on the tangent bundle but we can introduce a rescaled bundle on which they are non-degenerate.

Formally, we proceed as follows. Let X be a manifold with corners and iterated fibration structure.
Consider the ‘wedge one-forms’

V∗
w = {ω ∈ C∞(X ;T ∗X) : for each Y ∈ S(X), i∗

BY
ω(V ) = 0 for all V ∈ ker DφY }.

We can identify V∗
w with the space of sections of a vector bundle which we call wT ∗X , the wedge cotangent

bundle of X, together with a map
iw : wT ∗X → T ∗X (2.6)

that is an isomorphism over Xreg such that,

(iw)∗C∞(X ;wT ∗X) = V∗
w ⊆ C∞(X ;T ∗X).

In local coordinates near the collective boundary hypersurface, the wedge cotangent bundle is spanned
by

dx, xdz, dy

where x is a boundary defining function for BY , dz represents covectors along the fibers and dy covectors
along the base. The dual bundle to the wedge cotangent bundle is known as the wedge tangent bundle,
wTX . It is locally spanned by

∂x,
1
x∂z, ∂y

A wedge metric is simply a bundle metric on the wedge tangent bundle.
The notion of a wedge differential operator P of order k acting on sections of a vector bundle E,

taking them to sections of a vector bundle F is described on page 11 of [AGR23]. We first define the
edge vector fields on X by

Ve = {V ∈ C∞(X ;TX) : V
∣∣
BY

is tangent to the fibers of φY for all Y ∈ S(X)}.

There is a rescaled vector bundle that is called the edge tangent bundle eTX together with a natural
vector bundle map ie :

eTX → TX that is an isomorphism over the interior and satisfies

(ie)∗C∞(X ; eTX) = Ve.

In local coordinates near a point in BY , (x, y, z), a local frame for eTX is given by

x∂x, x∂y , ∂z

Note that the vector fields x∂x and x∂y are degenerate as sections of TX , but not as sections of eTX .
The universal enveloping algebra of Ve is the ring Diff∗

e(X) of edge differential operators. That is,
these are the differential operators on X that can be expressed locally as finite sums of products of
elements of Ve. They have the usual notion of degree and extension to sections of vector bundles, as
well as an edge symbol map defined on the edge cotangent bundle (see [Maz91, ALMP12, ALMP18]).
Similarly, Diff∗

e(X ;E,F ) denotes the edge differential operators acting on sections of a vector bundle E
and taking them to a sections on a vector bundle F . The edge symbol (which can be defined on the
space of edge pseudo-differential operators in general) is used to define the notion of ellipticity used in
this article. We follow [AGR23] and define the map

σk : Diffk
e(X ;E,F ) → ρ−k

RCC∞(RC(eT ∗X), π∗hom(E,F )) (2.7)

which is the usual symbol map where RC(eT ∗X) denotes the radial compactification of the edge cotangent
bundle and π : eT ∗X → X is the projection map. We denote by ρRC a boundary defining function for
the boundary at radial infinity. Multiplying σk by ρkRC the resulting map σk is called the edge symbol
(see Section 3.3 of [AGR23]). This fits into the following short exact sequence

0 → Diffk−1
e (X ;E,F ) → Diffk

e(X ;E,F )
σ−→ C∞(eS∗X, π∗hom(E,F )) → 0. (2.8)
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If the edge symbol of a differential operator is invertible away from the zero section we call such an
operator edge elliptic. We define wedge differential operators by

Diffk
w(X ;E,F ) = ρ−k

X Diffk
e(X ;E,F )

following, e.g., [AGR23], where ρX is a total boundary defining function for X . If a wedge differential
operator Dk of order k can be written as ρ−k

X Ak where Ak is an edge elliptic differential operator of order
k, then Dk is said to be a wedge elliptic operator.

2.1.4 Asymptotically wedge metrics and Kähler structures

An asymptotically δ wedge metric is defined inductively. On depth zero spaces, which are just smooth
manifolds, a wedge metric is a Riemannian metric. Assuming we have defined asymptotically δ wedge
metrics on spaces of depth less than k, let us assume X has depth k. A wedge metric gw on X is
an asymptotically δ wedge metric if, for every Y ∈ S(X) of depth k there is a collar neighbourhood
C (BY ) ∼= [0, 1)x ×BY of BY in X , a metric gw,pt of the form

gw,pt = dx2 + x2gBY /Y + φ∗
Y gY (2.9)

where gY is an asymptotically δ wedge metric on Y, gBY /Y +φ∗
Y gY is a submersion metric for BY

φY−−→ Y
and gBY /Y restricts to each fiber of φY to be an asymptotically δ wedge metric on ZY and

gw − gw,pt ∈ x2δC∞(C (BY );S
2(wT ∗X))). (2.10)

If at each step gw = gw,pt, we say gw is a rigid or product-type wedge metric. Off of these collar
neighborhoods of the stratum of depth k, the form of the metric is fixed by the induction as a δ wedge
metric of lower depth.

Remark 2.4. In [AGR23] the case of 2δ = 1 (called exact wedge metrics) and 2δ = 2 (called totally
geodesic wedge metrics) were studied, the distinction only relevant in Getzler rescaling arguments at the
strata.

Given a stratified pseudomanifold with a wedge metric, a complex structure on the wedge tangent
bundle is called a wedge complex structure.

Definition 2.5 (wedge Kähler structures). If there is a symplectic form ω on Xreg extending to a non-
degenerate closed wedge two form such that it is tamed by a wedge complex structure J , yielding a wedge
metric g = ω(J ·, ·) on X , then we say that (g, ω, J) is a wedge Kähler structure on X .

As in the smooth case, any two of the three constituents of a triple (g, ω, J) determines the third.
Projective algebraic varieties with wedge metrics such as conifolds and even the cusp curve, as we studied
in [Jay23, §7.3] are examples of such spaces.

We briefly review some background on conic Kähler metrics, referring to [Jay23,BG08,DT06,Bla10,
§7.1] for more details on complex structures on cones and their CR structures, as well as Sasaki structures
of Kähler cones.

It is well known that a complex structure on a cone (C(Z), dx2+x2gZ) induces a CR structure on the
link (Z, gZ), which in particular yields an almost contact metric structure on the link if it is smooth (see
for instance Section 1.1.4 of [DT06]). In the case where the CR structure is pseudoconvex, the almost
complex structure is a contact structure. A Sasaki structure on M is equivalent to a Kähler structure
on the metric cone over M . In this case, the CR structure is pseudoconvex and has a contact structure.
Taking the quotient by the action of the Reeb vector field ξ, one gets (in general) an orbifold Σ = Z/ξ
which has a Kähler structure, usually known as the transversal Kähler structure on the Sasaki manifold.
The Reeb foliation Fξ on Z happens to be a taut Riemannian foliation, and the contact distribution has
a splitting into holomorphic and anti holomorphic components. The Kähler form can be written as

2dx ∧ xα+ x2dα (2.11)

where α is a contact form. Here dα is a transversal Kähler form that is non-degenerate on the contact
distribution TZ/TFξ. This is studied broadly in complex and CR geometry and we refer to chapter 7
of [BG08] for more details. The Kähler form of a disc 2dr ∧ rdθ corresponds to a trivial Sasaki structure
on the circle.

In the case where the boundary CR structure is pseudoconvex, it is known that the cohomology of
the Dolbeault complex on a smooth manifold with boundary is finite dimensional in all degrees greater
than 0 (see Theorem 5.3.8 [CS01]). While local cohomology vanishes for positive degrees for fundamental
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neighbourhoods of the tangent space in the smooth case, this is not so in the singular space, as we showed
in Proposition 7.1 of [Jay23]. There are many examples of spaces which have such higher cohomology
groups, and some broadly studied examples are conifolds. Reeb vector fields and Lefschetz fixed point
theorems for such spaces have been explored in the literature using orbifold resolutions in [MSY08,NS04],
and we studied the L2 cohomology perspective in [Jay23, §7.3.4].

A wedge symplectic form is a closed wedge 2 form, that is a smooth section ω of Λ2(wT ∗X) which
satisfies dω = 0. On a collar neighbourhood

C (BY ) ∼= [0, 1)x ×BY (2.12)

of BY in X , a closed wedge 2 form of the form

ωw,pt = dx ∧ xα+ x2α+ φ∗ωY (2.13)

is called a product type wedge symplectic structure, where α is a contact form for the link Z and
ωY is a 2 form on Y . In this article we consider asymptotically δ wedge symplectic structures ω
which satisfy

ω − ωw,pt ∈ x2δC∞(C (BY ); Λ
2(wT ∗X))). (2.14)

for some δ > 0 in a collar neighbourhood as described in equation (2.12).
An integrable almost complex structure on the wedge tangent bundle is called a wedge complex

structure. Given a triple (gw,pt, Jw,pt, ωw,pt) where gw,pt is a product wedge metric and ωw,pt is a wedge
symplectic structure, and Jw,pt is a wedge complex structure such that gw,pt(Jw,pt·, ·) = ωw,pt(·, ·), we
say that Jw,pt is a product type wedge complex structure.

Using a connection in a collar neighbourhood as described in equation (2.12) where we can extend
the fibration φ and fix a splitting, we can write this in coordinates as

Jw,pt = ∂x ⊗ xα− 1

x
∂ξ ⊗ dx+ JTZ/TFξ

+ JY . (2.15)

Here xα is a unit wedge covector field on C(Z), 1
xξ is the dual wedge vector field with respect to a

product type metric gw,pt on the collar neighbourhood, JTZ/TFξ
is an almost complex structure on the

distribution TZ/TFξ where Fξ is the integrable foliation generated by the flow of the vector field ξ on
Z, and where JY is a complex structure on TY restricted to the stratum. Given a metric product of
Ck × C(Z) where Z has a Sasaki structure, the corresponding Kähler structure is a product type wedge
complex structure, where α is a contact form and ξ is the Reeb vector field for the Sasaki structure and
JTZ/TFξ

is an almost complex structure on the contact distribution.
In this article we consider wedge complex structures J where

J − Jw,pt ∈ x2δC∞(C (BY );End(wTX))) (2.16)

for some δ > 0, and we call them asymptotically δ wedge complex structures.

2.2 SpinC Dirac operator.

We follow the conventions in [WZ98], referring to chapters 3 and 5 of [Dui11] for a more detailed con-
struction of the spinC Dirac operator where in the Kähler case this is also called the Dolbeault-Dirac
operator.

Given a wedge Kähler metric, the complexified wedge tangent bundle wTCX has an orthogonal splitting
into the holomorphic and anti-holomorphic tangent bundles as wTX1,0 ⊕w TX0,1 induced by the wedge
complex structure. Given v ∈ Γ(wTCX) where wTCX =w TX ⊗R C, we can write it as v = v1,0 + v0,1

where v1,0 ∈ Γ(wTX1,0) and v0,1 ∈ Γ(wTX0,1). Then the Clifford action of the complexified Clifford
algebra is defined as

cl(v1,0) =
√
2(v1,0)∗∧, cl(v0,1) = −

√
2iv0,1 ,

where (v1,0)∗ = ξ0,1 ∈ Γ(wT ∗X0,1) corresponds to v1,0 via the Kähler wedge metric gw. Given a Hermitian
bundle E on X equipped with a compatible connection, this extends to a Clifford action on End(F ) where
F = ⊕n

q=0Λ
q(wTX1,0)⊗ E by cl ⊗ Id, which we denote by cl with abuse of notation.

Given wedge vector fields v, e ∈ Γ(wTCX), we have the anti-commutation relation {cl(v), cl(e)} =
−2g(v, e). The holomorphic Hermitian connection on wTX⊗C corresponds to the Levi-Civita connection
on wTX , and we choose a compatible connection on F = Λq(wTX1,0) ⊗ E which we denote by ∇F .
Composing∇F with the Clifford action we obtain the spinC Dirac operatorD acting on sections supported
on X̊. Given a (local) orthonormal frame of the wedge tangent bundle {e1, e2, . . . , e2n}, we can write

D =

2n∑

i=1

cl(ei)∇F
ei . (2.17)
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It is easy to check that the symbol of this operator is given by Clifford multiplication and as a result it
is wedge elliptic, and we refer the reader to [Jay23, §2] for more details.

If, for some Y ∈ S(X), we restrict to a collar neighborhood of BY as in Subsection 2.1.4 where we
have an asymptotically δ wedge metric, the spinC Dirac operator takes the form

cl(∂x)∇F
∂x

+
∑

i

cl(
1

x
∂zi)∇F

1
x
∂zi

+
∑

j

cl(∂yj
)∇F

∂yj
(2.18)

up to a differential operator in xδDiff1
w(X ;F ). Here x is a boundary defining function for BY , and we

recognize (2.18) as a wedge differential operator of order one. We observe that D in general is not a wedge
differential operator because it is only of the form in equation (2.18) up to operators xδDiff1

w(X ;F ) where
δ need not be an integer.

It is well known that in the Kähler case we can write the operator as D =
√
2(∂ + ∂

∗
) where

∂̄ =
1

2
√
2

2n∑

i=1

cl(ei −
√
−1Jei)∇F

ei , ∂̄∗ =
1

2
√
2

2n∑

i=1

cl(ei +
√
−1Jei)∇F

ei . (2.19)

Here J is a complex structure that tames the wedge Kähler form. We will study self adjoint extensions
of this symmetric operator in Section 3.

Remark 2.6 (Conformal invariance of Dirac operators). It is well known that Dirac operators are con-
formally convariant, and we can identify the local cohomology groups of Dirac operators when there are
conformal changes of the metric, say by a factor of a function f . This is well known for the Dolbeault
Dirac operator and even the ∂ operator on smooth complex manifolds, where the space of holomorphic
functions can be identified on conformal complex manifolds.

We refer to [Hij86, §4] for a study of the conformal covariance of the spin Dirac operator on smooth
spaces, extending for more general twisted Dolbeault-Dirac operators. In our singular setting, a similar
analysis holds on Xreg which is dense in X, which can be used to see the conformal invariance of Spin
Dirac operators on X.

2.3 Fundamental neighbourhoods of fixed points

In this article we study self maps with isolated fixed points and focus a lot on neighbourhoods of such
fixed points. Given any point a of a stratified pseudomanifold X̂, we can find a neighbourhood Ûa which
has a homeomorphism as in equation (2.2)

φ̂ : Ûa −→ φ̂(Ûa) ⊂ R
k
y × Ẑ+

z (2.20)

where the image is bounded. We call such a neighbourhood Ûa a fundamental neighbourhood of a.
Here Ẑz is another stratified space in general, and Ẑ+ is the infinite cone over this link. We can choose
Ûa and φ such that φ(Ûa) = Dk × C̃(Ẑ), where by C̃(Ẑ) we denote the truncated cone [0, 1]x × Ẑz/∼
where the points at {x = 0} are identified. The restriction of a product type wedge metric to such a
neighbourhood is as we discussed in Subsection 2.1.3.

Definition 2.7. Given such a neighbourhood Ûa, we identify it with a neighbourhood Dk
y × C̃x(Ẑz). We

call the set
∂Ûa := (∂Dk

y)× C̃x(Ẑz) ∪ D
k
y × {x = 1} × Ẑ (2.21)

the boundary of the fundamental neighbourhood and we denote the pre-image of ∂Ûa under the
blow-down map β by ∂Ua, which we refer to as the metric boundary of Ua. We refer to the set where
ρX |Ua

= 0 as the singularities (singular set) of Ua.

We observe that the metric boundary of such a fundamental neighbourhood has an open dense set
that is smooth. By the equivalence of Thom-Mather stratified spaces and manifolds with corners with
iterated fibration structures, there exists a lift of φ̂ to a map φ : Ua → φ(Ua), where Ua is a manifold

with corners with iterated fibration structures, such that φ̂ ◦ β = β ◦ φ where β is the blow down map,
and where φ is a diffeomorphism of manifolds with corners. We will refer to Ua as a fundamental
neighbourhood of a as well, denoting the difference as needed by our notation. We refer to φ̂ as a
diffeomorphism of the fundamental neighbourhood Ûp.

If a is a singular point of X̂ contained on the stratum Y , and Ẑ is the link of X̂ at a, then the tangent
cone of X̂ at a is TaY × Ẑ+. Given a wedge metric on X̂, there is a canonical metric on the tangent cone
of a point obtained by freezing coefficients and extending homogeneously.
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We will denote the resolved truncated tangent cone at a by TaX , the metric product of the unit
ball in TaY and the resolved truncated cone C[0,1](Z) = [0, 1]×Z which is topologically a manifold with
boundary, but is metrically singular. The wedge metric obtained by freezing coefficients at β−1(a) is the
metric induced on TaX which is homogeneous and is of product type.

Given a neighbourhood Ûa = Dk × C̃(L̂), where we have denoted the (singular) metric cone by

C̃(L̂) we denote the resolved space Ua = [0, 1] × Z where Z is the resolution of Ẑ = Sk−1 ⋆ L̂ which

is the join of the links Sk−1 of the cone Dk and the link L̂. Indeed given C̃r1(S
k−1) × C̃r2(L̂) where

the factor C̃r1(S
k−1) = Dk is smooth, the new radial variable on C̃(Ẑ) is x =

√
(r1)2 + (r2)2. We refer

to [dBE21, §3.1] for a discussion of the product of cone metrics being a cone metric (c.f., [dBL22, §2.1]).

There is a refinement of the original stratification of Ûa and a refinement of the corresponding manifold
with fibered boundary structure to the resolved space Ua.

Definition 2.8 (Refined stratification). Given a fundamental neighbourhood Ûa = Dk × C̃r2(L̂) of a

point a, we consider the stratification of the neighbourhood given by C̃x(S
k−1 ⋆ L̂) = C̃(Ẑ). Consider the

case where L is smooth. Then Ua has a smooth stratum Dk × (0, 1)× L and a singular stratum Dk × L.
We define the refined stratification on Ua as the one which has smooth part (0, 1)r1 × Sk × (0, 1)r2 × L.
It has two strata of depth 1 given by {r1 = 0} × (0, 1)r2 × L and (0, 1)r1 × Sk × {r2 = 0}, and a stratum
of depth 2 given by {r1 = 0 = r2}. It is easy to see how this definition can be extended inductively when
L is stratified.

A simple example is when Ua = Dk is a smooth disc, whose refined stratification corresponds to
viewing it as a truncated cone over the sphere, the cone point is a depth 1 stratum.

Remark 2.9 (Convention for stratification on fundamental neighbourhoods). In the rest of this article,

unless otherwise stated, whenever we take fundamental neighbourhoods Ûa = C̃(Ẑ) with resolution Ua =
C(Z) of a point a we will consider the refined stratification, which has an open dense stratum of depth 0
given by the set

{(x, z) ∈ [0, 1)x × Z | x ∈ (0, 1), z ∈ Zreg}. (2.22)

The main reason for this convention is to simplify the notation and proofs. The main estimates that
we prove for Dirac operators are proven on the dense set in (2.22). When defining certain domains for the
Dolbeault complex globally on a space X , we will use the boundary defining functions corresponding to
the global stratification. We will use the boundary defining functions of the original stratification when
defining local domains for sections supported on fundamental neighbourhoods in Subsection 3.2.1.

Remark 2.10. Given a fundamental neighbourhood Ua = Cr1(S
k−1) × Cr2(L) of a, where the fac-

tor Cr1(S
k−1) = Dk is smooth as in the discussion above, the new radial variable on C(Z) is x =√

(r1)2 + (r2)2. We observe that given functions f which vanishes to order O(rm1 ) and O(rδ2) at a for

some δ > 0, it vanishes to order O(xδ′ ) at a for some 0 < δ′ = min{m, δ}.

2.4 Wedge Kähler Hamiltonians and circle actions

We now introduce the group actions in the wedge Kähler setting that we study, building on subsection
2.1.4. It is known that the symplectic reduction of a smooth compact symplectic manifold will always
yield a stratified pseudomanifold (see Theorem 2.1 of [SL91]), and so does Kähler reduction, and we study
actions in a generality which includes actions coming from reductions on smooth spaces. It is well known
that Kähler circle actions with fixed points on smooth manifolds are Hamiltonian by Frankel’s theorem,
and this extends to the singular case that we study (see, e.g., [MPR15, §3.2]). Therefore, if there is a
Kähler circle action which has fixed points, it is a Hamiltonian action.

2.4.1 Morse functions and local normal forms.

Let us review the normal form for Kähler Hamiltonian vector fields in neighbourhoods of smooth fixed
points. An S1 action on a smooth Kähler manifold X2n induces an S1 action on the tangent space Cn of
an isolated simple fixed point. Since the action preserves the Kähler metric, it preserves the radial sets,
and an S1 action is induced on the sphere S2n−1 ⊆ Cn at any fixed radial distance from the fixed point.
On the tangent space, this is generated infinitesimally by a holomorphic vector field which is of the form

V0 =

n∑

j=1

√
−1γj(zj∂zj − z∂zj

) =

n∑

j=1

γj∂θj (2.23)

for local holomorphic coordinates zj on the tangent space where the γj are all non-zero. Here the θj
correspond to the angular coordinates in polar coordinates for the polydiscs where zj = rje

iθj is the
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standard representation of holomorphic functions in polar coordinates. If the Kähler form on the tangent
space is

ω =

√
−1

2

n∑

j=1

dzj ∧ dzj (2.24)

then the Hamitonian condition, dh(·) = −ω(V1, ·) yields that h = h(0) +
∑

j γj |zj |2. The γj ’s are known
as the weights of the Kähler action on the tangent space of the fixed point.

Let us study the model case of a cone C̃r(Ẑ) with a product type Kähler wedge metric, with Kähler
wedge form 2dr ∧ rα+ r2dα where α is a contact form for the Reeb vector field W on the Sasaki link Z,
with the Kähler Hamiltonian h = r2. We observe that any vector field W on the link Z extends to the
cone over Z as r(1rW ), that is a wedge vector field that vanishes to first order in the boundary defining

function of the resolved tangent cone. The circle action generated by the Reeb vector field r 1
r Ṽ where

Ṽ = α# for a contact form α extends to r 1
r Ṽ on the resolved tangent cone, and has an isolated fixed

point at r = 0 on the singular tangent cone, whence we call the fixed point simple as in Definition 5.18
of [Jay23].

The following is the notion of stratified Morse function for which the de Rham Morse inequalities
were proven in [Jay23], which we give for comparison.

Definition 2.11 (stratified Morse function). Let X̂ be a stratified pseudomanifold with a wedge metric

gw and a continuous function f ′ ∈ C0(X̂) which lifts to a map f ∈ C∞
Φ (X) (see (2.4)) on the resolved

manifold with corners, i.e., f = f ′ ◦β and which is a Morse function when restricted to X̂reg. We demand
that the image of the set |df |−1

gw (0) under the blow-down map β consists of isolated points on the stratified
pseudomanifold.

We call such points the critical points of f . Moreover, at critical points a, we ask that there exist
fundamental neighbourhoods Ûa = Ûa,s × Ûa,u where the metric respects the product decomposition,

with radial coordinates rs on Ûa,s and ru on Ûa,u such that restricted to Ûa,s (respectively Ûa,u), rs
(respectively ru) is the geodesic distance to a, and such that the function f ′ restricted to Ûa can be
written as r2s − r2u. Then we say that f ′ is a stratified Morse function.

We modify this as follows to get the functions we study in this article.

Definition 2.12 (Kähler Hamiltonian Morse function). Let X̂ be a stratified pseudomanifold with a

wedge Kähler structure (g, J, ω). Let h′ ∈ C0(X̂) be a function which lifts to a function h ∈ C∞
Φ (X)

(see (2.4)) on the resolved manifold with corners, i.e., h = h′ ◦ β and which is a Morse function when

restricted to X̂reg. We demand that the image of the set |dh|−1
g (0) under the blow-down map β consists

of isolated points on the stratified pseudomanifold. We call such points the critical points of h . We
demand that there exists a wedge vector field V satisfying dh = −ιV ω called the Hamiltonian vector
field, the flow of which generates a stratum preserving S1 action on X̂ which lifts to one on X preserving
the wedge Kähler structure, which implies that dh is a smooth wedge one form.

We assume that there is a decomposition of the resolved truncated tangent cone TaX given by

TaX = Πl
j=1Crj (Zj) (2.25)

where rj is the distance to a given point from the cone point on each cone C(Zj). The metric induced
on the tangent cone of a can be obtained by freezing coefficients of the metric at β−1(a), and thus it is
a well defined wedge metric on Ua, and we have the functions rj (with abuse of notation) on Ua.

Then we demand that the Hamiltonian h has an expansion near each critical point a restricted to
a fundamental neighbourhood Ua of the form h = ha + O((r21 + r22 + ... + r2l )

c/2) where c > 2 and
ha =

∑
j γjr

2
j + C where C is some real constant. We call ha Hamiltonian on the tangent cone.

We will refer to the γj as the weights of the action at the singularities. We call the cone Ua,s :=
Πj:γj>0Crj (Zj) as the stable factor/attracting factor of the tangent cone, and the cone Ua,u :=
Πj:γj<0Crj (Zj) as the unstable factor/ expanding factor of the tangent cone.

We define the Hamiltonian vector field on the tangent cone to be Ṽ =:
∑

j γjrj(
1
rj
Vj) where

the Vj are the Reeb vector fields on each link Zj with respect to the Sasaki structures corresponding to
the wedge metric on Ua obtained by freezing coefficients at β−1(a).

We use the name Hamiltonian on the tangent cone since the function ha is indeed a well defined
Kähler Hamiltonian Morse function on the tangent cone with the induced metric and Kähler form.

Definition 2.13. In the setting of the definition above, we define the stable radius at a by r2s :=∑
j:γj>0 γjr

2
j , and the unstable radius at a by r2u :=

∑
j:γj<0 −γjr

2
j . Then we define the normalized

radius at a by r2n := r2s + r2u. Then ha = r2s − r2u.
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Remark 2.14 (Local extension to C∗ action). Given a self map fθ(rj , zj) on the tangent cone generated
by the flow at time θ of the Hamiltonian vector field, the map fθ(srj , zj) for s ∈ R gives an extension of
the S1 action for a C∗ action, where λ = seiθ ∈ C∗ acts on the tangent cone.

The asymptotics for the wedge Kähler structures discussed in Subsection 2.1.4 can be used to see
that the Hamiltonian vector field V is equal to the Hamiltonian vector field on the tangent cone Ṽ on a
fundamental neighbourhood of the fixed point up to a wedge vector field vanishing at order r1+δ

n for some
δ > 0 restricted to a fundamental neighbourhood, since V = −J∇h. Moreover the stratum preserving
condition implies that ιdρ#

X

dh|ρX
= 0.

Remark 2.15 (Sign convention for Hamiltonian actions). Here we follow the sign convention in [Wit84]
(different from that in [WZ98]) and take the Hamiltonian vector field to be V = −J∇h (where we denote
the gradient of h by ∇h), equivalently dh = −ιV ω.

The difference in this sign convention is the source of the difference between the local cohomology
groups on page 326 of [Wit84], and those in Proposition 3.2 of [WZ98].

Remark 2.16 (Nomenclature). Given a Kähler Hamiltonian Morse function, it is easy to see that the
metric gradient flow of h (as opposed to the symplectic gradient flow which gives the Hamiltonian flow)
is attracting on cones where the weights γj are positive and expanding on cones where the weights are
negative. This is the reason we call the factors defined above attracting and expanding.

The nomenclature is motivated from that used in [Jay23] for fixed point sets, as well as the notions
of stable and unstable manifolds in dynamical systems.

It is clear that in the smooth setting, we can take the links to be circles and recover the normal
form described in the smooth setting. A circle action corresponds to a family of self maps fθ : X → X
where θ ∈ S1, that are generated by the positive time θ flow of the Hamiltonian vector field V . Then
f−1
θ = f−θ given by the reverse time flow of the vector field will be equal to the positive time flow of −V .
The weights at the fixed points will have the same magnitudes but opposite signs for these two flows.
The weights have a interpretation as the frequencies of a Hamiltonian system in the study of harmonic
oscillators related to physical problems. The following example demonstrates this in the smooth setting,
which is the same one in Example 1.6.

Example 2.17 (Rotation on the round 2 sphere). Consider a rotation on the round sphere about the axis
joining the north and south poles. This is a Kähler action with respect to the standard Kähler structure of
CP

1. As in Definition 2.12, we have a decomposition of the tangent space into attracting and expanding
factors on a fundamental neighbourhood U = Us × Uu at each fixed point. While one fixed point will
see a clockwise rotation, the other will see an anticlockwise rotation so the γj will have opposite signs
at the two fixed points. We can see this explicitly using standard spherical coordinates on the sphere.
The volume form is ω = sin(φ)dθdφ in spherical coordinates and the height function h = cos(φ) is a
Hamiltonian for the vector field ∂θ generating the rotation. We can put complex coordinates z at the
north pole at φ = 0 and y=1/z at the south pole. On the north pole the γ factor is positive since the
vector field ∂θ = β∗(+i[z∂z − z∂z]) at the tangent space of the fixed point. At the south pole we have
∂θ = β∗(−i[y∂y − y∂y]) and the weight is negative. If instead of the symplectic gradient of h, one takes
the gradient with respect to the round metric, the north pole is strictly expanding while the south pole is
strictly attracting.

As discussed in Remark (1.8) while we work out all the details for circle actions, the results extend
to more general actions of compact connected Lie groups G by well known considerations. Thus we end
this section with a definition of a Kähler moment map in our setting.

Definition 2.18 (Kähler moment map). In the same setting as in Definition 2.12, but for G a general
compact connected Lie group, we define a (stratified) Kähler moment map as a moment map M in
the usual sense on Xreg which extends to a continuous function on X which we denote

M : X → g (2.26)

where g is the Lie algebra of G, where we demand that if g ∈ G generates circle actions on Xreg

corresponding to a Kähler Hamiltonian Morse function on Xreg, they extend to Kähler Hamiltonian
Morse function as in Definition 2.12. Then we denote a geometric endomorphism corresponding to an
element g ∈ S1 < G as Tg.

If the Dolbeault complex is twisted by coefficients of a holomorphic vector bundle E with a Hermitian
metric, we will consider group actions which lift to an action on the bundle, preserving the Hermitian
metric. Unless otherwise stated, we will always assume that our spaces are connected, and
that the Lie groups G that we consider are connected.
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2.4.2 Infinitesimal actions and Lie derivatives

In this subsection we introduce the infinitesimal actions and Lie derivatives on sections of Hermitian
bundles corresponding to Kähler actions of the type we study. Consider a resolution of a stratified
pseudomanifold X with a Hermitian bundle E, equipped with a compatible connection. Let V be the
Hamiltonian vector field corresponding to a Kähler Hamiltonian Morse function, where the action on X
lifts to a fiberwise linear action on E. Given actions that induce self maps fθ, we prove our results for
twisted complexes E only when the action lifts to one on E giving fiberwise linear isomorphisms. In our
singular setting, as discussed earlier, we demand that the flow of the vector field preserves the strata and
when we study Hermitian bundles E on X with a compatible connection ∇E we assume that the circle
action lifts to a Hermitian bundle map. We can define the Lie derivative of the vector field V using its
flow.

We follow the notation in [WZ98] and denote the Lie derivative on E by LV := {ιV ,∇E}. Given a
Kähler structure (g, J, ω) the condition that the flow of V generates Kähler isometries is equivalent to
LV g, LV J, LV ω all vanish as sections of the bundles on which g, J, ω are defined as sections. Given the
lifted action on E, we have a natural action on the sections of E which sends a section s to g ◦ s ◦ g−1

for g = eiθ ∈ S1. This action commutes with the operators ∂E , ∂
∗
E , cl(V ) (introduced in Subsection 2.2)

and we have the infinitesimal generator of this action

LV s = − lim
θ→0

g ◦ s ◦ g−1 − s

θ
(2.27)

where we use the notation introduced in [WZ98, §3] (this is notated as L̂V in [MW97]).
Since the difference LV − LV is linear over C∞

Φ (X), it is given by a section of End(E) over X . We
refer to [MW97] for more details.

2.5 Locally conformally totally geodesic wedge metrics

In order to motivate the conditions we impose on the metric at fundamental neighbourhoods of critical
points, we study the following example refering to sections 7.1.2 and 7.3.5 of [Jay23] for more details.

Example 2.19. Consider the singular algebraic variety V̂ given by p = ZY 2 − X3 = 0 in CP
2 which

admits the C∗ action (λ) · [X : Y : Z] = [λ2X : λ3Y : Z]. We consider the associated family of geometric
endomorphisms on the Dolbeault complex for the trivial bundle. The action has one smooth fixed point
at [0 : 1 : 0] with holomorphic Lefschetz number 1/(1 − λ−1). The other fixed point is at the singularity
a = [0 : 0 : 1]. On the affine chart Z = 1, we have the variety given by the equation y2 = x3, where
x = X/Z, y = Y/Z.

Consider the affine metric on the chart Z = 1. Away from the singularity the variety y2 = x3 can be
parametrized by the normalization map

t → (t2, t3) = (x, y) (2.28)

where t = reiα and α ∈ [0, 2π]. Let us compactify the regular part of this space with the choice of
boundary defining function ρ = |x| = |t|2 for the boundary corresponding to the resolved manifold with
boundary, where the pre-image of the boundary under the blowup-map is a (T 2,3 knotted) circle at ρ = 0.
We can compute the pullback of the affine metric on Z = 1 to the resolution of the singular space to see
that it is a wedge metric on the resolved manifold with boundary (where the pre-image of the singular
point corresponding to the real blow-up is a circle) as follows.

Let us denote x = t2 = ρeiθ where θ = 2α ∈ [0, 4π]. The pulled back metric is

4|t|2(dt⊗ dt)(1 + (9/4)|t|2) = 4|r|2(dr2 + r24dα2)(1 + (9/4)|r|2) (2.29)

which can also be written as

(dx ⊗ dx)(1 + (9/4)|x|) = (dρ2 + ρ2dθ2)(1 + (9/4)|ρ|) = (dρ2 + ρ24dα2)k2c (2.30)

where k2c = (1 + (9/4)|ρ|). We observe that this wedge metric is conformal to the metric on the tangent
cone (dρ2 + ρ2dθ2) obtained by freezing coefficients at the circle at ρ = 0.

Since the resolved truncated tangent cone at a fixed point is isometric to a fundamental neighbourhood
with the metric obtained by freezing coefficients, we can compare the two spaces (Ua, gw) and (Ua, ga)
where gw is the restriction of the metric on X to the fundamental neighbourhood while ga is the metric
obtained by freezing coefficients. Thus we say that the metric on a fundamental neighbourhood is
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conformal to that on the tangent cone if gw = (k2c )ga where k2c is a smooth function on the regular part
of Ua, extending to a continuous function on Ua.

Thus the local cohomology groups of the Dolbeault-Dirac operator corresponding to the trivial bundle
(for a given choice of domain) on the fundamental neighbourhood and the tangent cone can be identified.
In the example of the cusp curve above, it is easy to see that the local cohomology groups for an attracting
critical point at the singularity are for both the fundamental neighbourhood and the tangent cone are
the L2 bounded functions that admit Laurent series expansions in powers of t. We refer to [Jay23, §7.1.2]
for an extensive discussion on the local cohomology groups for choices of domains for the example above.

Remark 2.20. We refer to Remark 3.9 on how to define local cohomology groups for fundamental neigh-
bourhoods of critical points when the metric is not product type. There we observe that it is straightforward
for fundamental neighbourhoods where the weights are all either positive or negative (i.e. either purely
attracting or expanding). If there are weights of both types, when the metric is of product type we can
identify the local cohomology with the cohomology if it were purely attracting, up to duality in the ex-
panding factor. Thus as long as we can identify the local cohomology groups for an attracting factor for
conformally related metrics where one of the metrics is product type, we can use duality to define local
cohomology groups for the other metric when it is not product type.

Remark 2.21. The action is generated on the tangent cone by Ṽ = ρ 1
ρ∂θ, which for the global Kähler

actions of the type that we study extends by assumption to a well defined vector field on the fundamental
neighbourhood Ua. In the example above, on the fundamental neighbourhood it is generated by V =
ρkc

1
ρkc

∂θ, which shows that V − Ṽ = 0. This is because the conformal factor k2c is a function of the radial

variable ρ, which implies that LV k
2
c = 0 and LṼ k

2
c = 0 and thus the Hamiltonian action generated by

the weighted linear combination of Reeb vector fields on the tangent cone can be identified with that on a
fundamental neighbourhood. In particular it is easy to see that the action commutes with the spinC Dirac
operators for both metrics.

As discussed in the previous subsection, for general conformal factors we can only anticipate that the
difference will be given by a wedge vector field W that vanishes to order O(ρδ) where δ = 1/2 for the
metric on the cusp curve above.

Definition 2.22 (Locally conformally product-type wedge metrics). Given a fundamental neighbourhood
(Ua, gw) of an isolated critical point of a Kähler Hamiltonian Morse function equipped with a wedge metric
gw, we say that it is locally conformally wedge product type if the metric gw is conformal to that
on the tangent cone (Ua, ga) at the critical point (obtained by freezing coefficients as discussed above)
by some conformal factor k2c which is continuous on X and smooth on Xreg, and is equal to one at the

pre-image of the critical point a ∈ Ûa under the blow-down map, on Ua.
If in addition the function k2c can be expressed as a function of the radial distance functions rj on

the tangent cone (where we identify the fundamental neighbourhood with the resolved tangent cone as
resolved stratified spaces), we say that the metric gw is locally radially conformally wedge product
type, or simply say that the conformal factor is radial.

For a given Kähler Hamiltonian Morse function on X , if the asymptotically δ wedge metric restricted
to a small enough fundamental neighbourhood of Ua of a critical point a is conformal to the product type
metric on the tangent cone at a (obtained by freezing coefficients on the resolved link at the critical point),
up to terms that are asymptotically δ1, we say that the metric is locally conformally asymptotically
δ1 wedge at a. Following the nomenclature in Subsection 2.1.4 if δ1 = 1 (δ1 = 1/2), we say that the
metric is locally conformally totally geodesic (exact) wedge at a.

We can identify the local cohomology groups of operators for twisted Dolbeault complexes on fun-
damental neighbourhoods with those on the tangent cone when the metric on the fundamental neigh-
bourhood is conformal to that on the tangent cone. For instance, twisting by a square root bundle of
the canonical bundle, one has the spin-Dirac complex which we study in subsection 7.3. In the smooth
setting such identifications have been studied even without the Kähler structure in [Hij86, S 4]. Such
identifications can be easily extended on twisted bundles restricted to the fundamental neighbourhood,
for the wedge metric and the product type metric obtained by freezing coefficients.

3 Operators and Dolbeault complexes

In this section we discuss Dolbeault complexes on stratified pseudomanifolds, their restrictions to certain
subspaces of stratified pseudomanifolds, and equivariant sub-complexes of Dolbeault complexes. First we
review some facts on abstract Hilbert complexes, then set up domains for Dolbeault complexes associated
to resolutions of stratified pseudomanifolds, both at the global and local levels, as well as their equivariant
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subcomplexes. We then discuss geometric endomorphisms on these complexes corresponding to group
actions, then introduce various polynomial supertraces and duality results, building on the work in [Jay23].

3.1 Abstract Hilbert complexes

We define Hilbert complexes following [BL92].

Definition 3.1. A Hilbert complex is a complex, P = (H∗,D(P∗), P∗), of the form:

0 → D(P0)
P0−→ D(P1)

P1−→ D(P2)
P2−→ ...

Pn−1−−−→ D(Pn) → 0. (3.1)

where each map Pk is a closed operator which is called the differential, such that:

• the domain of Pk, D(Pk), is dense in Hk which is a separable Hilbert space,

• the range of Pk satisfies ran(Pk) ⊂ D(Pk+1),

• Pk+1 ◦ Pk = 0 for all k.

We will often denote such a complex by P = (H,D(P ), P ) without explicitly denoting the grading,
or by P = (H,P ) where the domain is either clear by context, or denoted in some decorated notation
for P . We shall sometimes notate the complex as P(X) when the Hilbert spaces are sections of a vector
bundle on the resolution of a stratified pseudomanifold X , and we say that the Hilbert complex P(X)
is associated to the space X . The cohomology groups of a Hilbert complex are defined to be
Hk(P) := ker(Pk)/ran(Pk−1). We shall often use the notation Hk, where the complex used is clear from
the context and Hk(P(X)) when the space needs to be specified (including spaces with boundary when
they come up later on). If these groups are finite dimensional in each degree, we say that it is a Fredholm
complex.

For every Hilbert complex P there is an adjoint Hilbert complex P∗, given by

0 → D((Pn−1)
∗)

(Pn−1)
∗

−−−−−→ D((Pn−2)
∗)

(Pn−2)
∗

−−−−−→ D((Pn−3)
∗)

(Pn−3)
∗

−−−−−→ ...
(P1)

∗

−−−→ H0 → 0 (3.2)

where the differentials are P ∗
k : Dom(P ∗

k ) ⊂ Hk+1 → Hk, the Hilbert space adjoints of the differentials of
P . That is, the Hilbert space in degree k of the adjoint complex P∗ is the Hilbert space in degree n−k of
the complex P , and the operator in degree k of P∗ is the adjoint of the operator in degree (n−1−k) of P .
The corresponding cohomology groups of P∗(H,P ∗) are Hk(H, (P )∗) := ker(P ∗

n−k−1)/ran(P
∗
n−k). For

instance, in the case of the de Rham complex (L2Ωk(X), dmax), the adjoint complex P∗ is the complex
Q = (L2Ωn−k(X), δmin), since the operators d and δ are formal adjoints of each other.

The main complexes we focus on this section are twisted Dolbeault complexes where the Hilbert
spaces are Hq = L2Ω0,q(X ;E) with operators P = ∂E with a choice of domain D(P ), which we study
later in this section. We can form a two step complex where the Hilbert spaces are H+ =

⊕
q=even Hq,

and H− =
⊕

q=oddHq. This leads to a wedge Dirac complex as introduced in Definition 3.3 [Jay23],

0 → D(D+)
D+

−−→ D(D−) → 0 (3.3)

where D± is the spinC-Dirac operator restricted to the spaces, together with the domain for the operator
D =

√
2(P + P ∗) given by

D(D) = D(P ) ∩ D(P ∗). (3.4)

There is an associated Laplace-type operator ∆k = P ∗
kPk + Pk−1P

∗
k−1 in each degree, which is a self

adjoint operator with domain

D(∆k) = {v ∈ D(Pk) ∩ D(P ∗
k−1) : Pkv ∈ D(P ∗

k ), P
∗
k−1v ∈ D(Pk−1)}, (3.5)

and with nullspace
Ĥk(P) := ker(∆k) = ker(Pk) ∩ ker(P ∗

k−1). (3.6)

The Kodaira decomposition which we present below in Proposition 3.2 identifies this with the cohomology
of the complex Hk(P). We observe that this Laplace-type operator can be written as the square of the
associated Dirac-type operator D = (P + P ∗), restricted to each degree to obtain ∆k, and that the
domain can be written equivalently as

D(∆k) = {v ∈ D(D) : Dv ∈ D(D)}. (3.7)

The null space is isomorphic to the cohomology for Fredholm complexes.
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Proposition 3.2. For any Hilbert complex P = (H,P ) we have the weak Kodaira decomposition

Hk = Ĥk(H,P )
⊕

ran(Pk−1)
⊕

ran(P ∗
k )

This is Lemma 2.1 of [BL92].

Proposition 3.3. If the cohomology of a Hilbert complex P = (H∗, P∗) is finite dimensional then, for

all k, ran(Pk−1) is closed and therefore Hk(P) ∼= Ĥk(P).

This is corollary 2.5 of [BL92]. The next result justifies the use of the term Fredholm complex.

Proposition 3.4. A Hilbert complex (Hk, Pk), k = 0, ..., n is a Fredholm complex if and only if, for each
k, the Laplace-type operator ∆k with the domain defined in (3.5) is a Fredholm operator.

This is Lemma 1 on page 203 of [Sch88]. Due to these results, we can identify the space of harmonic
elements, or the elements of the Hilbert space which are in the null space of the Laplace-type operator,
with the cohomology of the complex in the corresponding degree. We shall use the same terminology for
non-Fredholm complexes which we study as well.

For Fredholm complexes, the null space of the Laplacian is isomorphic to the cohomology of the
complex since the operator has closed range.

Proposition 3.5. A Hilbert complex P = (H,P ), is a Fredholm complex if and only if its adjoint complex,
(P∗) is Fredholm. If it is Fredholm, then

Hk(P) ∼= Hn−k(P∗). (3.8)

In particular, for operators with closed range, the reduced cohomology groups are the same as the
cohomology groups and are isomorphic to the null space of the Laplace-type operator, in which case the
decomposition in Proposition 3.2 is called the (strong) Kodaira decomposition .

Remark 3.6. Since the set X̂n−2 has measure 0 with respect to a conic metric, the L2 functions on Xreg

are the same for the space and its normalization and the Hilbert complexes on X̂ and its normalization
can be canonically identified. From now on we will study topologically normal pseudomanifolds
unless otherwise specified. In Example 7.36 of [Jay23] we went over how the holomorphic Lefschetz
fixed point theorem can be computed in the case of a non-normal pseudomanifold as well as its normaliza-
tion in detail, and it is easy to work out similar correspondences for the holomorphic Morse inequalities
for normal and non-normal pseudomanifolds.

3.2 Hilbert complexes on stratified pseudomanifolds

The twisted spinC Dirac operators corresponding to twisted Dolbeault complexes are not necessarily
essentially self adjoint on singular spaces. There are two canonical domains which are the minimal
domain,

Dmin(PX) = {u ∈ L2(X ;F ) : ∃(un) ⊆ C∞
c (X̊;F ) s.t. un → u and (PXun) is L

2 − Cauchy}, (3.9)

where PX = ∂F acting on L2(X ;F ) where F = Λ·(wT ∗X1,0) ⊗ E where E is a Hermitian bundle, and
the maximal domain,

Dmax(PX) = {u ∈ L2(X ;F ) : (PXu) ∈ L2(X ;F )},
wherein PXu is computed distributionally. For wedge Dirac type operators, these domains satisfy the
inclusions

ρXH1
e (X ;F ) ⊆ Dmin(DX) ⊆ Dmax(DX) ⊆ H1

e (X ;F ) (3.10)

where
H1

e (X ;F ) = {u ∈ L2(X ;F ) : V u ∈ L2(X ;F ) for all V ∈ C∞(X ; eTX)}
is the edge Sobolev space introduced in [Maz91]. In [Jay23] we studied the VAPS domain, following
[AGR23], and we generalize it in this article. Recall that we use the notation

ρX =
∏

H∈M1(X) ρH

for a total boundary defining function. A multiweight for X is a map

s : M1(X) → R ∪ {∞}

and we denote the corresponding product of boundary defining functions by
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ρsX =
∏

H∈M1(X) ρ
s(H)
H

We write s ≤ s′ if s(H) ≤ s′(H) for all H ∈ M1(X).

Definition 3.7 (Algebraic domain of exponent α). We define decay rates α to be multiweights α which
are real numbers in [0, 1] that are constant on each collection of boundary hypersurfaces H of X which
are connected.

Given the Dolbeault operator P = ∂E acting on L2Ω0,·(X ;E) for a pseudomanifold X̂, which is associ-
ated to the formal Dirac operatorD = P+P ∗ acting on sections in L2(X ;F ) where F = Λ·(wT ∗X1,0)⊗E
as introduced above, and given a decay rate α we define the domain Dα(P ) by

Dα(P ) = {u ∈ L2(X ;F ) : ∃(un) ⊂ ραXL2(X ;F ) ∩ Dmax(P )

such that un → u and (Pun) is L
2 − Cauchy} (3.11)

which is the graph closure of ραXL2(X ;F ) ∩ Dmax(PX), and refer to it as the algebraic domain of
exponent α.

TheVAPS domain for the Dolbeault complex that we studied in [Jay23] is the same as the algebraic
domain of exponent α = 1/2. Following the definition for the domain of the Dirac operator in (3.4),

we have the VAPS domain for D =
√
2(∂E + ∂

∗
E). We showed in [Jay23, §3.3] that the domain for the

Dirac operator D in (3.4) matches the VAPS domain for the Dirac operator constructed in [AGR23]
without referring to the Dolbeault complex. We present the following definitions.

Definition 3.8. The operator (DX ,D1/2(DX)) is said to satisfy the geometric Witt condition if

Y ∈ S(X), y ∈ Y =⇒ Spec(DZy
) ∩ (−1

2
,
1

2
) = ∅ (3.12)

If instead, we only require

Y ∈ S(X), y ∈ Y =⇒ Spec(DZy
) ∩ {0} = ∅ (3.13)

then we say that (DX) satisfies the Witt condition.

It is known that Dirac complexes which satisfy the geometric Witt condition are essentially self adjoint,
and we refer the reader to [AGR23] for a detailed discussion. If only the Witt condition is satisfied, then
we can pick domains Dα(P ) including the minimal, maximal and VAPS domains for P = ∂E (see,
e.g., [Jay23]).

It is easy to check that given Pα(X) := (L2Ω0,·(X ;E),Dα(P ), P ), when the Witt condition is satisfied,
the complex has the adjoint complex P∗

1−α(X) := (L2Ω0,n−·(X ;E),D1−α(P
∗), P ∗).

3.2.1 Domains and boundary conditions for complexes on fundamental neighbourhoods

In [Jay23] we studied local domains and local complexes for the de Rham and Dolbeault complexes at
isolated fixed points corresponding to the global VAPS domain on stratified pseudomanifolds with wedge
metrics. Here we extend this to the case of certain domains for complexes satisfying the Witt condition.

Remark 3.9 (Convention). We will only define local domains on truncated tangent cones of isolated fixed
points corresponding to Hamiltonian Kähler actions. In particular the metrics on the neighbourhoods are
product type metrics obtained by freezing coefficients on the set β−1

X (a′) ⊂ X where a′ is the fixed point

on X̂.
The main reason for this is the ease in defining product complexes for products of cones with product

type metrics. It is easy to extend the notions of local complexes we define here to non-product type
metrics when the weights γj at the given fixed point are either all positive or all negative since it is clear
to see that the definitions for local domains in (3.15) and (3.16) below can be extended to fundamental
neighbourhoods which are purely attracting and expanding, respectively.

When the truncated tangent cone of a critical point has both attracting and expanding factors, the
cohomology of the expanding factor is dual to the cohomology if it were attracting.

Given a twisted Dolbeault complex P(X) = (L2(X ;F ),Dmin(P ), P ) where P = ∂E on a smooth
Riemannian manifold X , given a fundamental neighbourhood Ua ⊂ X of a point a ∈ X , we study local
complexes on the neighbourhood. We will denote the operator restricted to U by PU , denoting it by P
when it is understood from context that we are studying the operator of the complex on U .
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We define the complex PN (U) to be (L2(U ;F ),Dmax(PU ), PU ) where PU is the restriction of the
operator P to sections in L2(U ;F ), and

Dmax(PU ) = {u ∈ L2(U ;F ) : Pu ∈ L2(U ;F )} (3.14)

where Pu is defined in the distributional sense. This fixes the domain for operators in the adjoint
Hilbert complex of PN(U) which we denote by (PN (U))∗. This induces a domain for the Dirac-type
operator D = P +P ∗. We refer the reader to [Jay23, §5.2.3] for a more detailed exposition of the choices
of domains in the smooth setting.

We now consider the case when Û ⊂ X̂ is singular. Given the complex Pα(X) = (L2(X ;F ),Dα(P ), P ),
we define the complex Pα,N(U) = (L2(U ;F ),Dα,N (PU ), PU ) with the domain

Dα,N (PU ) := graph closure of {Dmax(PU ) ∩ ραXL2(U ;F )} (3.15)

where ρX is the boundary defining function of the original stratification, as discussed in Subsection 2.3.
Similarly, we can define the complex Q1−α,N (U) = (L2(U ;F ),D1−α,N (P ∗

U ), P
∗
U ) with the domain

D1−α,N (P ∗
U ) := graph closure of {Dmax(P

∗
U ) ∩ ρ1−α

X L2(U ;F )}, (3.16)

the adjoint complex of which is Q∗
1−α,N(U) = (L2(U ;F ), (D1−α(P

∗
U ))

∗, PU ).
In the case where there is a metric product neighbourhood Us × Uu, it is clear that we can define

the product complex, and we do this for neighbourhoods of isolated fixed points on the tangent cone as
follows.

Definition 3.10. Consider a global complex Pα(X) = (L2(X ;F ),Dα(P ), P ) on a stratified pseudoman-

ifold X̂ equipped with a wedge Kähler structure, Kähler circle action and stratified Kähler Hamiltonian
Morse function h where the Kähler circle action gives rise to a geometric endomorphism Tθ which has
only isolated fixed points for generic values of θ. Let a be an isolated fixed point of Tθ with a fundamen-
tal neighbourhood of the resolved tangent cone Ua = Ua,s × Ua,u where we assume the metric respects
this splitting as in as in Definition 2.12. Then we define the local complex of Pα(X) at Ua, denoted
Pα,B(Ua) = (L2(Ua;F ), Dα,B(PUa

), PUa
) to be the product complex

Pα,N (Ua,s)×Q1−α,N(Ua,u) (3.17)

where the two factors are as defined above. We refer to this as simply the local complex when the
global complex is clear by context.

Remark 3.11 (Domains defined on tangent cones with the refined stratification). As discussed in Sub-
section 2.3, when considering an isolated fixed point with a fundamental neighbourhood Ua = Dk ×C(L),

we will use the fact that Ua is homeomorphic to C(Z) where Z is the resolution of the join Sk−1 ⋆ L̂,
equipped with a wedge metric over the link Z. Restricted to such a chart, the above discussion shows
that the choices of domains are completely determined by the metric and the boundary defining functions
corresponding to the original stratification on Ua as opposed to the refined stratification introduced in
Definition 2.8. The boundary defining functions of the original stratification lift to continuous functions
on the manifold with corners corresponding to the resolution of the fundamental neighbourhood with the
refined stratification. The multi-functions ρ(H)α(H) are defined using the boundary defining functions
corresponding to the original stratification, and we can use these in defining the domains.

3.2.2 Equivariant Hilbert complexes

Here we study the subcomplexes of Hilbert complexes obtained by restricting to eigensections of
√
−1LV

with a fixed eigenvalue µ, where V is a Hamiltonian vector field which is Killing, and L denotes the
Lie derivative. Given a twisted Dolbeault complex P = (H = L2Ω0,·(X ;E),D(P ), P ), where P = ∂E

where X has a Kähler Hamiltonian Morse function corresponding to the Hamiltonian vector field V ,
we have that there are equivariant Hilbert subspaces L2

µΩ
0,q(X ;E) such that there is an orthonormal

decomposition
L2Ω0,q(X ;E) = ⊕µ∈IL

2
µΩ

0,q(X ;E). (3.18)

where the indexing set I corresponds to the eigenvalues µ of
√
−1LV , and they can be indexed by integers

up to shifts due the periodicity of the circle action (or since the Pontryagin dual of S1 is Z), where the
shift accounts for various non-trivial twists E (see Subsection 7.3 for examples in the case of fractional
twists of canonical bundles).

The existence of such decompositions is well known when X is smooth as was utilized in [WZ98]. In
the singular setting, we can see that a decomposition as in equation (3.18) exists for the complexes we
focus on by the following argument.
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Here V is a wedge vector field since it generates an isometry for the wedge metric. Since it generates a
Kähler isometry,

√
−1LV commutes with P, P ∗ onD(D2), and thus withD. SinceD preserves eigenspaces

of D2 (with mixed degrees q) we see that
√
−1LV and D2 are simultaneously diagonalizable, and we have

a filtration of the eigenspaces of D2 = ∆ given by µ. If the eigenspaces of D2 give an orthonormal
decomposition of L2Ω0,q(X ;E), the decomposition in equation (3.18) follows, and we will show that the
complexes we mainly focus on in this article satisfy such decompositions in the proof of Proposition 3.13.
In fact such decompositions follow from the Peter-Weyl theorem since the S1 action induces a unitary
action on the eigenspaces of the Laplace-type operator D2.

Definition 3.12 (Equivariant Hilbert subcomplex of eigenvalue µ). Let P = (H,D(P ), P ) be a twisted
Dolbeault complex and

√
−1LV be as in the above discussion. Given an eigenvalue µ of

√
−1LV , we

define the equivariant subcomplex of eigenvalue µ to be Pµ = (Hµ,Dµ(P ), P ) where Hµ is defined
as in the discussion above and Dµ(P ) := {s ∈ D(P ) ∩Hµ}.

As explained in the introduction, if the equivariant complexes Pµ
α are Fredholm for all µ, then the

complex Pα is said to be transversally Fredholm.
We observe that this definition applies to local complexes on local neighbourhoods Ua of isolated fixed

points defined by restriction as earlier, where we used the product type metric and the corresponding
complex (see Remark 3.9).

Consider the case of a Kähler Hamiltonian circle action generated by a global vector field V , and the
Lie derivative on sections of the bundle E which we denote by LV . We have the action at an isolated
fixed point a, generated by the Hamiltonian vector field on the tangent cone Ṽa. We know that

√
−1LṼa

commutes with the model operators on the local domains, analogously to the global case we discussed
above. Then given Pα,B(Ua), we have the equivariant local complexes Pµ

α,B(Ua).

Proposition 3.13. Let X be the resolution of a stratified pseudomanifold X̂ of dimension 2n with a
Kähler wedge metric and a stratified Kähler Hamiltonian Morse function h corresponding to an isometric
S1 action generated infinitesimally by a vector field V . Let E be a Hermitian vector bundle on X, to which
the action lifts, and consider the twisted Dolbeault complex Pα(X) = (L2Ω0,·(X ;E),Dα(P ), P = ∂E). Let
µ be an eigenvalue of

√
−1LV , and let Ua be a fundamental neighbourhood of a zero of V . Then

1. if α = 1 of α = 1/2,Pα(X) is Fredholm and Pµ
α,B(Ua) is transversally Fredholm.

2. if X̂ has only isolated singularities, then Pα(X) is Fredholm and Pµ
α,B(Ua) is transversally Fredholm

for any choice of domain D(P ).

Proof. It is well known that the global Dolbeault complexes are Fredholm for any domain for the case when
X̂ has only isolated conic singularities (see, e.g. [Les99]). For α = 1/2 in the case of general singularities,
the global Dolbeault complexes are Fredholm by the results in [AGR23]. For α = 1, the global complex is
Fredholm since the complex and the cohomology can be defined independent of the metric (see Remark
6.7). In these cases we can find an orthonormal basis of eigensections and an orthonormal decomposition
of L2Ω0,q(X ;E).

Proposition 5.33 of [Jay23] shows that local Dolbeault complexes are not Fredholm, but have a direct
sum decomposition where the summands are finite dimensional joint eigenspaces of both the Laplace-type
operator on the link Z and the Laplace-type operator on C(Z). Thus there is a representation of the
circle action on the Hilbert spaces L2Ω0,q(Ua;E) (since the S1 action commutes with the Laplace type
operator on C(Z)) and the Peter-Weyl theorem implies the decomposition

L2Ω0,q(Ua;E) = ⊕µ∈IL
2
µΩ

0,q(Ua;E). (3.19)

In Proposition 5.33 of [Jay23] (in particular see Remark 5.35 of that article), we showed that the local
cohomology group on a cone C(Z) with product type metric has a countable basis, as long as the Laplace-
type operator on Z is Fredholm, which it is in the setting of this proposition.

Moreover in this case the null space of the Laplace-type operator on such a cone C(Z) is finite

dimensional when restricted to the eigenspaces µ of the operator
√
−1LṼa

where Ṽa is the Hamiltonian
vector field on the tangent cone. This can be seen as follows in the case of the VAPS domain for general
singulariities.

By our assumptions on action being a Kähler structure preserving and Killing, and that the fixed
points are isolated, we observe that Ṽa restricts to a vector field on the link, the flow of which preserves
the metric on the link. Thus the operator

√
−1LṼa

commutes with the Laplace type operator on the
link Z. We showed in Remark 5.35 of [Jay23] that the null space of the Laplace-type operator on Cx(Z)
has a basis given by harmonic sections of the form xai,jsi where ai,j is some real constant and si are
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eigensections of the Laplace-type operator on Z. Moreover for each such si, there are finitely many ai,j
such that xai,jsi are harmonic.

Thus we see that √
−1LṼa

(xaisi) = xai
√
−1LṼa

(si) = µxaisi (3.20)

and there is a decomposition
L2Ω0,q(Z;E) = ⊕µ∈IL

2
µΩ

0,q(Z;E). (3.21)

given by the eigensections of the Laplace-type operator on Z. Thus for each eigenvalue µ, there are only
finitely many linearly independent eigensections si for which the equation (3.20) holds, and we can find a
finite basis for the elements of the null space for the Laplace-type operator on Cx(Z) that has eigenvalue
µ with respect to

√
−1LṼa

.
Similar arguments work for the case of isolated singularities as as well as for α = 1 where the Laplace-

type operator on the link Z is Fredholm (since Z is a smooth manifold in the isolated case and by the
considerations in Remark 6.7 for α = 1), proving the result.

3.3 Geometric endomorphisms

In this section we briefly review the notion of a geometric endomorphism.

Definition 3.14. An endomorphism T of a Hilbert complex P = (H,D(P ), P ) is given by an n-
tuple of maps T = (T0, T1, ..., Tn), where Tk : Hk → Hk are bounded maps of Hilbert spaces, that satisfy
the following properties.

1. Tk(D(Pk)) ⊆ D(Pk)

2. Pk ◦ Tk = Tk+1 ◦ Pk on D(Pk)

Each endomorphism Tk has an adjoint T ∗
k . If each T ∗

k preserves the domain D(P ∗
k ), then we call T ∗ =

(T ∗
0 , T

∗
1 , ..., T

∗
n) the adjoint endomorphism of the dual complex.

The commutation condition (condition 2) ensures that the endomorphisms will induce a map on the
kernel of the Dirac-type operators that preserves the grading.

Definition 3.15. An endomorphism TP of a Hilbert complex of the form P = (L2(X ;F ),D(P ), P ) on

a stratified pseudomanifold X̂ is a geometric endomorphism if there is a smooth self map f : X → X
and smooth bundle morphisms ϕ : f∗F → F such that

TP
f S = ϕ(f∗S) (3.22)

for sections S ∈ L2(X ;F ).

The notation we use is standard but hides the fact that the definition of the geometric endomorphism
involves F, f∗F . In the setting of Kähler circle actions studied in this article we have a family of self
maps fθ labelled by θ ∈ S1, and we will use the notation TP

θ := TP
fθ
, or simply Tθ when the complex P

is clear by context.

Definition 3.16. Given an isometric Kähler Hamiltonian circle action generated by a Kähler Hamiltonian
wedge vector field V , which generates a family of geometric endomorphisms Tθ on a Dolbeault complex
P = (L2(X ;F ),D(P ), P ), and if the operator cl(V ) preserves the domain of the Dirac-type operator
D(P + P ∗) given by (3.4), then we say that each Tθ is a geometric endomorphism of the complex.

We show that the condition is satisfied by geometric endomorphisms for the domains studied in
Proposition 3.13.

Proposition 3.17. In the same setting as Proposition 3.13 for the global twisted Dolbeault complex
Pα(X) = (L2Ω0,·(X ;E),Dα(P ), P = ∂E), the endomorphisms Tθ are geometric endomorphisms of the
complex.

Proof. In [Jay23, §4], we showed that certain self-maps, including the group actions studied in this paper
induce endomorphisms on the Dolbeault complex with the VAPS domain. It is easy to see that the proof
of [Jay23, Proposition 4.9] generalizes to the case of the Dα(P ) domains that we study in this article.

Next we show that (V 1,0)∗∧ and ιV 0,1 preserve the domains Dα(P ) and Dα(P
∗) respectively for any

α, which implies that cl(V ) preserves the domains Dα(D) = Dα(P ) ∩ D1−α(P
∗).

Recall from the definition of the algebraic domain of exponent α for PX in (3.11), that it is the graph
closure of ραXL2(X ;F ) ∩ Dmax(PX) where F = Λ∗((wT ∗X)0,1)⊗ E.
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Since dh is a smooth wedge form that is L∞ bounded, the wedge product (V 1,0)∗∧s is in ραXL2(X ;F )
for s ∈ ραXL2(X ;F ). Moreover since (V 1,0)∗ = ∂h (see equation 4.1) it is ∂ closed. Thus the Leibniz rule
shows that (V 1,0)∗ ∧ s ∈ Dmax(PX) for s ∈ Dmax(PX).

We now consider the graph closure of Dmax(P ) ∩ ραXL2Ω(X ;E). If there is a sequence {un} where
{Pun} is L2-Cauchy, then so is {Pεun} where Pε = (P + ε

√
−2(V 1,0)∗∧) since (V 1,0)∗∧ is a bounded

operator on L2(X ;F ), showing that Dα(P ) is preserved by (V 1,0)∗.
A variation of this argument replacing P with P ∗ and (V 1,0)∗∧ with ιV 0,1 shows that ιV 0,1 preserves

the domain Dα(P
∗) for any P . This proves the result.

We observe that f−1
θ = f−θ. We denote the endomorphism induced on the adjoint complex by f−1

θ

as T ⋆
θ , which is (TP

θ )∗ and we shall study this in more detail in the next subsection.

3.4 Hodge star and Serre duality

For the de Rham complexes the adjoint complex can be defined via the Hodge star operator which
introduces a duality. In the case of the Dolbeault complex, the Hodge star operator intertwines a complex
with its Serre dual complex which is different from the adjoint complex.

We begin by studying the de Rham complex briefly. Given Aα(X) = (L2Ωk, (Dα)(d), d), it is easy
to see that the adjoint complex is (Aα)

∗(X) = (L2Ωn−k,D1−α(δ), δ) where δ := ⋆−1d⋆, where ⋆ is the
Hodge star operator which takes sections in L2Ωk to L2Ωn−k. Moreover the domain for the Dirac type
operator D = d+ δ for the de Rham complex with domain Dα(d) is given by Dα(d) ∩D1−α(δ), which is
also the domain for the Dirac type operator for the complex (Aα)

∗(X). From this it is easy to see that
the ⋆ operator intertwines the complexes. The corresponding duality is called Poincaré duality.

The duality corresponding to the isomorphism of complexes for twisted Dolbeault complexes given
by the Hodge star operator is commonly referred to as Serre duality. Let E be a holomorphic vector
bundle over a resolved complex pseudomanifold X2n, equipped with a Hermitian metric and a compatible
connection. The Hermitian metric gives a conjugate-linear isomorphism E ∼= E∗ between E and its
dual bundle. This induces a duality of forms valued in E and E∗ and when F = Λp,0X ⊗ E (where
Λp,qX := Λp(

w
T ∗X)1,0 ⊗ Λq(

w
T ∗X)0,1)

⋆E : Ωp,q(X ;E) → Ωn−p,n−q(X ;E∗). (3.23)

The canonical bundle on the regular part X̂reg of the pseudomanifold X̂ with a complex structure is
KX = Λn,0X , which is a Hermitian line bundle. This is the dualizing sheaf in the smooth setting and
Λn,n−qX⊗E is isomorphic to Λ0,n−qX⊗KX⊗E. For general singular spaces the algebraic dualizing sheaf
becomes more complicated (see Part III, Section 7 of [Har77]). For smooth sections that are compactly

supported on X̂reg, we can write the adjoint operator of ∂E as

∂
∗
F = (−1)q ⋆−1

F ◦∂KX⊗F⋆ ◦ ⋆F (3.24)

and the Laplace type operator is ∆F = ∂F ∂
∗
F + ∂

∗
F∂F .

Consider the complex Pα(X) = (L2Ω0,·(X ;F ),Dα(∂F ), ∂F ) where F = Λp,0X ⊗E. Then the adjoint
complex is

(Pα)
∗(X) = (L2Ω0,n−·(X ;F ),D1−α(∂

∗
F ), ∂

∗
F ). (3.25)

The Serre dual of the adjoint complex (Pα)
∗(X) is defined to be

((Pα)
∗)SD(X) = (L2Ω0,·(X ;F ∗ ⊗K),D1−α(∂F∗⊗K), ∂F∗⊗K) (3.26)

where F ∗ ⊗K = Λn−p,0 ⊗E∗. The isomorphism of these two complexes can be easily deduced from the
identity (3.24). The Serre dual of the complex Pα(X) is defined to be

(Pα)SD(X) = (L2Ω0,n−·(X ;F ∗ ⊗K),Dα(∂
∗
F∗⊗K), ∂

∗
F∗⊗K) (3.27)

and it is easy to see that Serre duality commutes with adjoints, that is the adjoint of the Serre dual
of a complex is the Serre dual of the adjoint of a complex.

One can similarly define the Serre dual of local complexes. That is, given a local complex Pα,B(Ua) =
(L2Ω0,·(Ua;E),Dα,B(PUa

), P ) where P = ∂F of Pα above corresponding to a fixed point of a Kähler
circle action corresponding to a geometric endomorphism Tθ, we have the Serre dual

(Pα,B)SD(Ua) = (L2Ω0,n−·(Ua;F
∗ ⊗K),Dα,−B(QUa

), Q) (3.28)

where Q = ∂
∗
F∗⊗K .
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Remark 3.18. Since the product complex in Definition 3.10 depends on the decomposition of the tangent
cone into the stable and unstable cones, it depends on the choice of geometric endomorphisms Tθ. Given a
circle action, here we denote by −B the choice of domains (and therefore complexes) corresponding to the

geometric endomorphism T−θ := T
(Pα)SD(Ua)
−θ for (Pα)SD(Ua). We denote the geometric endomorphisms

on (Pα)SD(Ua) and (Pα)(Ua) by Tθ, with some abuse of notation.

The choices of domains as clarified in the remark above can be explained as follows. By the defini-
tion of adjoints, we see that for sections u, v ∈ L2(Ua;F ), the geometric endomorphisms on P(Ua) =
(L2(Ua;F ),Dα,B(PUa

), PUa
) for P = ∂F and the adjoint complex satisfy

〈TP
θ u, v〉L2(Ua;F ) = 〈u, (TP

θ )∗v〉L2(Ua;F ). (3.29)

We see that for sections u =
∑

i uiei, v =
∑

i viei of L2(Ua;F ), where {ei} form a local orthonormal
frame for F , ∫

Ua

〈f∗
θ u, v〉E =

∑

i,j

∫

Ua

f∗
θ uj ∧ ⋆vjh

E
ij , (3.30)

where hE
ij = hE(ei, ej) is the Hermitian metric on E. Since we demand that the group action lifts to one

that preserves the Hermitian metric on E, we have that

∫

Ua

f∗
θ ui ∧ ⋆vjh

E
ij =

∫

Ua

(f−θ)
∗(f∗

θ ui ∧ ⋆vj)h
E
ij =

∫

Ua

ui ∧ (f−θ)
∗(⋆vi)h

E
ij (3.31)

where f∗
θ indicates the pullback on forms. Thus we have

〈TP
θ u, v〉L2(Ua;F ) = 〈u, (TP

θ )∗v〉L2(Ua;F ) = 〈(⋆u), TPSD

−θ (⋆v)〉L2(Ua;F∗⊗K) (3.32)

where
TPSD

−θ = (⋆)−1 ◦ (TP
θ )∗ ◦ ⋆ (3.33)

where we use the fact that ⋆ commutes with (f−θ)
∗ and the geometric endomorphisms we study for Kähler

isometries, where T SD
θ is the geometric endomorphism on the Serre dual complex for the self maps fθ.

Thus the stable cone for TP
θ at a fixed point a is the unstable cone for TP

−θ and TPSD

−θ .
This also shows why the choice of domain when restricting to a fundamental neighbourhood of a

fixed point that was clarified in Remark 3.18 is the correct one if we want to relate traces of geometric
endomorphisms on the cohomology of the complex and the cohomology of the Serre dual complex. Again
we will simply denote these geometric endomorphisms as Tθ, T−θ when the complexes are clear by context.
We will study geometric endomorphisms for Witten deformed complexes in Subsection 4.2.1.

In [Jay23] we mostly worked with the case of α = 1−α = 0.5 where much of this is simpler. We refer
the reader to the explicitly worked out example in [Jay23, §7.1.2] for an illustration of the minimal and
maximal domains for the example of the cusp curve where the Dolbeault-Dirac operator is not essentially
self-adjoint.

3.5 Polynomial Lefschetz supertraces

After constructing the holomorphic Witten instanton complex for the Kähler Hamiltonian actions that we
study the Morse inequalities follow from the application of results proven in [Jay23] for abstract Hilbert
complexes which we review here.

Definition 3.19. Let X be a pseudomanifold with an Fredholm complex P = (H,D(P ), P ) with an
endomorphism T , we define the associated Lefschetz polynomial to be

L(P , T )(b) :=
n∑

k=0

bktr(Tk|Hk(P)) ∈ C[b] (3.34)

and the associated Lefschetz number to be

L(P , T ) := L(P , T )(−1)

= Tr(T |H+(DP))− Tr(T |H−(DP))
(3.35)

where Tk|Hk(P) : Hk(P) → Hk(P) is the map induced by the endomorphism T on the k-th degree

cohomology group Hk(P) and T |H±(DP) is the map induced on the cohomology of the associated Dirac
complex DP .
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Definition 3.20. Let P = (H,D(P ), P ) be a wedge elliptic complex where the associated Laplace-type
operators in each degree have discrete spectrum and trace class heat kernels. Let T be an endomorphism
of the complex. For all t ∈ R+, we define the polynomial Lefschetz heat supertrace as

L(P , T )(b, t) = L(P(X), T )(b, t) :=
n∑

k=0

Tr(bkTke
−t∆k) (3.36)

and we call L(P , T )(−1, t) the Lefschetz heat supertrace associated to the complex. Here, we use the
notation L(P(X), T )(b, t) when the complex P = P(X) is associated to a pseudomanifold X .

The following is Theorem 3.14 of [Jay23].

Theorem 3.21. Let P = (H,D(P ), P ) be a Hilbert complex where the associated Laplace-type operators
in each degree have discrete spectrum and trace class heat kernels. Let T be an endomorphism of the
complex. For all t ∈ R+

L(P , T )(b, t) = L(P , T )(b) + (1 + b)

n−1∑

k=0

bkSk(t) (3.37)

where
Sk(t) =

∑

λi∈Spec(∆k)

e−tλi〈Tkvλi
, vλi

〉 (3.38)

where {vλi
}i∈N are an orthonormal basis of co-exact eigensections of ∆k. In particular

L(P , T ) = L(P , T )(−1, t), (3.39)

and the Lefschetz heat supertrace is independent of t.

In [Jay23] we used the result above to prove the strong form of the de Rham Morse inequalities once
the Witten instanton complex was constructed and it will play a similar role in proving the holomorphic
Morse inequalities. The following is Proposition 3.16 of [Jay23].

Proposition 3.22 (Duality). Let P = (H,D(P ), P ) be an elliptic complex of maximal non-trivial degree
n and let T be an endomorphism. Let P∗ be the dual complex and let T ∗ denote the endomorphism
induced on the dual complex. Then

bnL(P∗, T ∗)(b−1, t) = L(P , T )(b, t). (3.40)

In particular, we have the equality

L(P , T ) = (−1)nL(P∗, T ∗). (3.41)

The following result summarizes the main dualities we use in this article, and is a generalization of
Proposition 7.5 of [Jay23] where it was proven for the VAPS domain.

Proposition 3.23. Let X̂ be a stratified pseudomanifold of dimension 2n with a wedge metric and com-
plex structure and let E be a Hermitian bundle. Let Pα(X) = (L2Ω0,·

α (X ;E),Dα(P ), P ) be a transversally
Fredholm complex where P = ∂E, so that (Pα)

∗(X) is the adjoint complex and (Pα)SD(X) is the Serre
dual complex, as defined in Subsection 3.4. Let Tθ be a geometric endomorphism on P(X) corresponding
to a Kähler circle action with isolated fixed points, including one at a with a fundamental neighbourhood
Ua ⊂ X, where we denote the geometric endomorphisms on each complex by Tθ by abuse of notation.
Then we have that

L(Pµ
α(X), Tθ)(b, t) = bnL((Pµ

α)
∗(X), T ∗

θ )(b
−1, t) = bnL((Pµ

α)SD(X), T−θ)(b
−1, t). (3.42)

Similarly for local complexes as defined in Subsection 3.4, we have

L(Pµ
α,B(Ua), Tθ)(b, t) = bnL((Pµ

α,B)
∗(X), T ∗

θ )(b
−1, t) = bnL((Pµ

α,B)SD(X), T−θ)(b
−1, t) (3.43)

where each choice of domain B corresponds to the geometric endomorphism appearing in L (see Remark
3.18).

Proof. The proofs are similar for both the global and local complexes. The first equality in each follows
from Proposition 3.22.

The second equality follows from the discussion in Subsection 3.4 which shows the isomorphism
between adjoint complexes and the Serre dual complexes, together with the computations in equations
(3.31), (3.32), (3.33) which clarify the relationship between the adjoint endomorphism and the geometric
endomorphism on the Serre dual complex.
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Remark 3.24 (Convergence of the generating series). We defined the traces of endomorphisms Ts,θ in
equation (1.3) where the endomorphisms do not necessarily arise as geometric endomorphisms on X. We
showed in Remark 2.14 that the action can always be extended locally to be a C∗ action on the tangent
cone

We showed how to define renormalized traces for geometric endomorphisms on the tangent cone when
the series do not converge in [Jay23, §5.2.5], where we showed that for C∗ actions, the renormalization
is not needed for s = |λ| < 1 where λ is the C∗ action and that the power series converges.

4 Witten deformation for the Dolbeault complex

In this section we introduce the Witten deformed local and global Dolbeault complexes. Given a stratified
pseudomanifold X̂ equipped with a wedge metric and a stratified Kähler Hamiltonian Morse function
h on the resolution X , and given a Hermitian bundle E on X equipped with a compatible connection
we can construct a twisted Dolbeault complex Pα(X) = (H = L2Ω0,·(X ;E),Dα(P ), P = ∂), where we
denote ∂E by ∂ to simplify the notation. We define the Witten deformed operators

Pε = ∂̄ε := e−εh∂̄eεh = ∂̄ +
√
−2ε(V 1,0)∗∧, ∂̄∗

ε = eεh∂̄∗e−εh = ∂̄∗ −
√
−2ειV 0,1 (4.1)

and their sum defines the corresponding deformation of the SpinC Dirac operator up to a constant factor
of

√
2. In the first subsection we study identities for the operators, which we will use to prove estimates

for localizing eigensections, as well as proving the spectral gap result in Proposition 4.6 for Witten
deformation on tangent cones in the second subsection.

4.1 Bochner identities, localization and model operators

Here we follow the notation introduced in Subsection 2.4.2 following that of [WZ98, §3], and refer the
reader to that article for more details. Recall that LV = {ιV ,∇E} is the Lie derivative of E valued
anti-holomorphic forms along V , where the fibers of E over different points on the orbits of points are
related by the lifted circle action, and that we denote by

√
−1LV the infinitesimal generator of the S1

action on L2(X ;F ) = L2Ω0,·(X ;E).

Proposition 4.1 (Operator identities). In the setting above we have the identities

D =
√
2
(
∂̄ + ∂̄∗) , (4.2)

Dε := D +
√
−1εcl(V ) =

√
2(∂̄ε + ∂̄∗

ε ), (4.3)

and
∆ε := (D +

√
−1εcl(V ))2 = D2 + ε2|V |2 + εK (4.4)

where

K :=
1

2

√
−1

2n∑

i=1

cl (ei) cl (∇eiV ) +
√
−1 tr∇ · V

∣∣
wT 0,1X

− 2
√
−1(LV ) (4.5)

where ∇(·) is the divergence operator on vector fields on Xreg which extends uniquely to an operator on
wedge vector fields.

Proof. These identities are proven in the smooth setting in Lemma 3.1 of [WZ98] by straightforward
computations which we simply replicate in the singular setting (adjusting for the difference in our sign
convention as described in Remark 2.15), where one uses the definitions of the Dirac operators in terms
of the wedge Clifford algebra. Equation (4.2) follows from equation (2.19), and equation (4.3) follows
from

∂̄ε = ∂̄ +
1

2
√
2

2n∑

i=1

cl
(
ei −

√
−1Jei

)
(−∇E

eih), ∂̄∗
ε = ∂̄∗ − 1

2
√
2

2n∑

i=1

cl
(
ei +

√
−1Jei

)
(−∇E

eih), (4.6)

and the fact that and that J gradh = V . To show equation (4.4), first note that

(
D +

√
−1εcl(V )

)2
= (D)

2
+

√
−1ε {D, cl(V )} + ε2|V |2 (4.7)

and that

{D, cl(V )} =

2n∑

i=1

(
{cl (ei) , cl(V )}∇E

ei + cl (ei) cl
(
∇E

eiV
))

= −2∇E
V +

2n∑

i=1

cl (ei) cl
(
∇E

eiV
)

(4.8)
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from which the identity in expression (4.5) can be obtained by arguments given in the proof of Lemma
3.1 of [WZ98] on Xreg, where we note that the multiplier operator notated by rV in that article is given
by LV − LV .

A more detailed coordinate computation of this identity for smooth manifolds is given in Proposition
2.6 [MW97] (see also equation 2.23 of that article) in different notation, and avoiding the Clifford algebra.
This identity extends from Xreg to X since the individual terms extend.

Understanding the Bochner type identity given in equation 4.4 is crucial for localization. The biggest
difference between the de Rham case that we studied in [Jay23] vs the Dolbeault complex is that there

are first order terms in D2
ε −D2 for D =

√
2(∂ + ∂

∗
) as witnessed by the Bochner-type identity above.

In the introduction of [MW97], it is shown that if we denote the Witten deformed Laplacian for the de
Rham Laplacian as ∆ε,dR, then

D2
ε =

1

2
∆ε,dR −

√
−1εLV (4.9)

in our notation. In fact this observation was made in equation (15) of [Wit84]. We observe that |V |2wTX =
|dh|2wT∗X by the Hamiltonian condition, similar to the smooth case. We refer to the introduction and
section 2 of [MW97] for detailed explanations of these facts in the smooth setting. The same formal
computations go through in our singular setting as well.

The key observation is that when restricted to the equivariant Hilbert spaces Hµ for fixed eigenvalues
µ of

√
−1LV , the first order operator

√
−1LV is a bounded operator. We can use this to prove the

proposition below for equivariant subcomplexes given by Definition 3.12.

Proposition 4.2. Let X be the resolution of a stratified pseudomanifold of dimension 2n with a Kähler
wedge metric and a stratified Kähler Hamiltonian Morse function h corresponding to an isometric S1

action generated infinitesimally by a wedge vector field V , where the metric is locally conformally totally
geodesic at fundamental neighbourhoods of critical points of h. Let E be a Hermitian vector bundle on

X, to which the action lifts, yielding a geometric endomorphism T
Pα(X)
θ = Tθ on the Dolbeault complex

Pα,ε(X) introduced above, which we assume is Fredholm, and where local complexes induced at isolated
critical points are transversally Fredholm.

Given an equivariant subcomplex of the Dolbeault complex Pµ
α(P ) and the Witten deformed subcomplex

Pµ
α,ε(P ) for an eigenvalue µ of

√
−1LV , then the domains satisfy Dµ

α(P ) = Dµ
α(Pε), and Dµ

α(D) =
Dµ

α(Dε). Restricted to any neighbourhood of a fixed point Ua, we have Dµ
α,B(PU ) = Dµ

α,B((PU )ε), and

Dµ
α,B(DU ) = Dµ

α,B((DU )ε). Moreover for any ε ∈ R, given s ∈ Dµ
α(D

2), we have

||Dεs||2L2(X;F ) = 〈[D2 + εK + ε2|dh|2]s, s〉L2(X;F ). (4.10)

where F = Λ∗(
w
(T ∗X)0,1 ⊗ E) and K is the bounded operator on Hµ given by (4.5).

Proof. We begin by expanding the left hand side of equation (4.10) to get

||Dεs||2L2(X;F ) = 〈Dεs,Dεs〉L2(X;F )

= 〈Ds,Ds〉L2(X;F ) + 2ε〈Ds,
√
−1cl(V )s〉L2(X;F ) + ε2〈

√
−1cl(V )s,

√
−1cl(V )s〉L2(X;F )

= 〈[D2 + ε2|V |2]s, s〉L2(X;F ) + ε[〈Ds,
√
−1cl(V )s〉L2(X;F ) + 〈

√
−1cl(V )s,Ds〉L2(X;F )]

(4.11)

where we have used the self-adjointess of D. We have that

〈Ds,
√
−1cl(V )s〉L2(X;F ) + 〈

√
−1cl(V )s,Ds〉L2(X;F )

= 〈s, [D
√
−1cl(V ) +

√
−1cl(V )D]s〉L2(X;F ) +

∫

∂X

〈icl(dρX)s,
√
−1cl(V )s〉Fdvol∂X (4.12)

where the integral on ∂X vanishes since
√
−1cl(V )s ∈ Dµ(D) by assumption (see Definition 3.16). When

we restrict to fundamental neighbourhoods Ua of fixed points, the complexes have domains obtained by
restriction as introduced in Subsection 3.2.1. Since the global complexes have the same domains for the
deformed and undeformed complexes, so do the local complexes.

We see that K := [D
√
−1cl(V )+

√
−1cl(V )D] =

√
−1 {D, cl(V )} is the operator given by (4.5), where

all the terms on the right hand side of that expression are bounded operators on on Hµ for any fixed µ.
This proves the theorem.

Remark 4.3. Proposition 6.22 of [Jay23] can be considered to be an analog of this proposition in the de
Rham case, and in Remark 6.23 of that article we discuss how for Witt spaces one can consider Morse
functions for which the gradient flow is not stratum preserving.
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Proposition 4.4. In the same setting as Proposition 4.2, there exist constants C > 0, ε0 > 0 such that
for any section s ∈ Dµ

α(D) with supp(s) ⊂ (X \ ∪a∈crit(h)Ua) and ε ≥ ε0, one has

||Dεs||L2(X;F ) ≥ C
√
ε||s||L2(X;F ). (4.13)

Proof. Let C1 be the minimum value of ||dh|| on X \∪a∈crit(h)Ua. Using the Bochner type formula (4.10),
it is easy to see that there exists a finite constant K1 such that, for all s ∈ Dµ

α(D
2),

||Dεs||2L2(X;F ) = 〈Dεs,Dεs〉L2(X;F ) ≥ (ε2C2
1 − ε|K1|)||s||2L2(X;F ). (4.14)

For any C > 0 we may, by taking ε sufficiently large, bound the right hand side by εC2||s||2L2(X;F ).

Finally as the inequality holds for all s ∈ Dµ
α(D

2) it holds by density on the closure of Dµ
α(D

2) in the
graph norm of Dµ

α(D).

The harmonic sections of the model operator on the tangent cone of a fixed point can be understood
using computations with separation of variables. We studied this for the undeformed complex with
boundary conditions in [Jay23, §5.2.4], and explained how a similar computation works for the Witten
deformed Laplace type operator in the de Rham case in Proposition 6.26 of that article, which is a
Fredholm complex. We prove the analog for the Dolbeault complexes we study in Proposition 4.6 below.
We begin with a definition to capture the settings for which we need these results.

Definition 4.5. Given the infinite tangent cone Z+ = [0,∞) × Z of a critical point a of a stratified
Kähler Hamiltonian Morse function h on X , we can find a product decomposition Z+ = Vs × Vu, and
we can extend the Morse function from the truncated tangent cone Ua to this space as r2s − r2u using the
stable and unstable radii introduced in Definition 2.13. For any t > 0, we define U t

a,s := {rs ≤ t} ⊆ Vs,
U t
a,u := {ru ≤ t} ⊆ Vu, and U t

a := U t
a,s×U t

a,u. In particular Ua = U1
a . Given a complex Pα(X), we define

the complex Pα,B(U
t
a) similarly to how we defined it for the case where t = 1, and all the constructions

we did for t = 1 can be replicated for general t. We denote the infinite tangent cone U∞
a .

This is an analog of Definition 6.25 of [Jay23], where we studied the de Rham complex. There we did
not care about weights in the notion of stratified Morse functions since the metric could be perturbed
(see Remark 6.21 of [Jay23]).

We observe that while the local complexes Pα,B,ε(U
t
a) are only defined for t ∈ [0,∞) for ε ≥ 0, when

we restrict to ε > 0 they are defined for t = ∞ as well, and the cohomology groups of all these complexes
are isomorphic as discussed above. In the case of t = ∞, the key is that factors of e−ε(r2n) appear in the
local cohomology (where r2n = r2s + r2u, the normalized radius in Definition 2.13), giving sufficient decay
at infinity for the harmonic forms to be L2 bounded on the infinite tangent cone.

Proposition 4.6 (Model spectral gap). In the setting of this subsection, consider the complex Pµ
α,B,ε(U

t
√
ε

a )
for some fixed t ∈ [0,∞], where we assume the complex is transversally Fredholm for ε = 0. Let
∆a,ε = (Da

ε )
2 be the Laplace-type operator on Ua for ε > 0. If the positive eigenvalues of the Laplace type

operator can be written as {λ2
i }i∈N for ∆a,1, then the positive eigenvalues for ∆a,ε are {ελ2

i }i∈N.

In the case of t = ∞, we note that Pµ
α,B,ε(U

t
√
ε

a ) = Pµ
α,B,ε(U

t
a).

Proof. This statement follows similarly to the case of the de Rham case that we proved in Proposition
6.26 of [Jay23], after restricting to the equivariant Hilbert complexes, since the Laplace type operators are
related by equation (4.9). The spectral theory for ε = 0, t < ∞ is covered in Proposition 5.33 of [Jay23],
without restricting to equivariant sub complexes.

4.2 Deformed Hilbert complexes

Given a resolved stratified pseudomanifold X equipped with a wedge Kähler metric and a stratified
Kähler Hamiltonian Morse function h, and given a Hermitian bundle E with a connection to which
the Hamiltonian action lifts as a linear action, we have the Dolbeault complexes Pα(X) = (H · =
L2Ω0,·(X ;E),Dα(P ), P ) where P = ∂).

We saw in Proposition 4.2 that there is an equivalence of domains for the Witten deformed and
undeformed operators on the equivariant complexes.

Multiplication by eεh is a homeomorphism Hq
µ = L2

µΩ
0,q(X ;E) → Hq

µ that takes a section in the
domain of any closed extension Dµ

α(P ) = Dµ
α(Pε) to another section in the same space and conjugates P

and Pε. We define the Witten deformed complex Pα,ε = (Hq,Dα(P ) = Dα(Pε), Pε), and equivariant
complexes are notated Pµ

α,ε since Pε, P
∗
ε commute with

√
−1LV . Multiplication by e−εh induces an
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isomorphism between the cohomology of Pµ
α,ε(X) and Pµ

α(X) = Pµ
α,0(X). This can be summarized using

the commutative diagram

... Hq
µ Hq+1

µ ...

... Hq
µ Hq+1

µ ...

P P P

PεPε Pε

e−εh e−εh

where the domains Dµ
α(P ) and Dµ

α(Pε) can be canonically identified as described above.
Given an isolated fixed point a with a fundamental neighbourhood of the tangent cone Ua, we have

the local complex Pµ
α,B(Ua) = (L2

µ(Ua;F ),Dµ
α,B(PUa

), P ) as given by Definition 3.10. Our discussion

above extends to local complexes and deformed local complexes, allowing us to define Pµ
α,B,ε(Ua) =

(L2
µ(Ua;E),Dµ

α,B(PUa
), Pε). There is a commutative diagram for the local deformed and undeformed

complexes as in the global case.

4.2.1 Geometric endomorphisms for Witten deformed complexes.

At the end of Subsection 6.5.1 of [Jay23], we introduced Witten deformed geometric endomorphisms
corresponding to geometric endomorphisms, for the case of the de Rham complex. Here we discuss the
case for the Dolbeault complex when the geometric endomorphism Tθ corresponds to a Kähler isometric
circle action.

Given a geometric endomorphism Tθ of P , we define Witten deformed geometric endomorphism
on Pε on X to be Tθ,ε = e−εhTθe

εh, and the corresponding adjoint endomorphism T ∗
θ,ε = eεhT ∗

θ e
−εh,

where Tθ = Tθ,0 is the geometric endomorphism on the un deformed complex P . A key observation here
is that the geometric endomorphisms Tθ commute with multiplication by h, and therefore by e−εh, and
so the geometric endomorphism for the Witten deformed and undeformed complexes are identical. This
is because pulling back by the family of self-maps corresponding to the geometric endomorphisms Tθ

preserves the corresponding Kähler Hamiltonian h.
Thus our discussion in Subsection 3.3 for the adjoint endomorphism applies even to the Witten

deformed case.

5 Main technical results

In the first subsection we study how the Witten deformed Dolbeault-Dirac operators on fundamental
neighbourhoods of critical points of Kähler Hamiltonian Morse functions where the wedge metric is
locally conformally totally geodesic, is well approximated by the Dirac operator on the tangent cone at
the critical point as ε goes to ∞. This is used to prove key estimates for the global Dirac operator as ε
limits to ∞, and construct the holomorphic Witten instanton complex in the next subsection, the main
result of this article. The Morse inequalities are drawn as corollaries of this in the third subsection.
While we study wedge metrics that are locally conformally totally geodesic, we will prove
some of the technical estimates for locally conformally asymptotically δ1 wedge metrics
which are asymptotically δ wedge Kähler metrics on spaces X, for some δ1 ≥ 1 and δ > 0
tracking some of the effects of these chosen constants.

5.1 Polynomial expansion of operators

Following Definition 4.5, let U t
a = [0, t)x × Z be a fundamental neighbourhood of a critical point a of

h. We denote Ua := U t
a for t = 1. Freezing the coefficients of the metric tensor of the link Z at the

singularity, we can restrict the metric induced on the tangent cone TaX to the cone Ua, equipping it with
a product type wedge metric ga,pt, and it is clear that this can be identified with the truncated tangent
cone at a. We study two spinC Dirac operators on Ua, the first being DX restricted to Ua which we
will continue to denote as DX . The second is the model operator Da, which is the composition of
the connection and the Clifford action for Ua with the product type metric. Due to our assumptions on
the metrics, we have that

DX = Da + (x)δW (5.1)

for asymptotically δ Kähler wedge metrics whereW is a first order wedge differential operator, as discussed
in Subsection 2.2. However our local conditions imply that up to certain identifications of the complexes,
we can write DX = Da+(x)δ1W for W a first order wedge differential operator where δ1 ≥ 1 (as opposed
to δ > 0).
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The product type wedge metric gives rise to the volume form dvola,pt on Ua, and we have the associated
space of L2 bounded sections L2

a := L2(Ua;F ), the sections of which can be identified with those in the
space L2

X(Ua;F ) defined for the restriction of the Kähler metric gw on X to Ua since they are quasi-
isometric. We define the stratified smooth function k(x, z) on Ua by

dvolX = k(x, z)dvolpt (5.2)

which also relates the inner products 〈·, ·〉L2
a
and 〈·, ·〉L2

X
(Ua;F ).

Remark 5.1. In the smooth setting k is the Jacobian corresponding to the determinant of the exponential
map, properties of which appear in many technical computations of the proof in the smooth setting (see
for instance the proof of Proposition 3.2 [MW97]). This factor is important in computations that relate
the Kähler geometry of the local complex to the global complex, and the Hamiltonian vector field on the
truncated tangent cone to that of the fundamental neighbourhood. This continues to be the case in the
singular setting, since we have an isometric embedding of L2(Ua;F ) into L2

X(Ua;F ), conjugating the
group actions as well as the Dirac operators as we shall see below.

Our assumptions on the asymptotics of the metric in subsection 2.5 show that k(0, z) = 1, and that
C1 ≤ k ≤ C2 for some positive constants C1, C2. While Da is formally self-adjoint with respect to the
〈·, ·〉L2

a
inner product on Ua, D

X in general is not. However we observe that k1/2DXk−1/2 is formally self
adjoint with respect to L2

a.
For a metric gw on a fundamental neighbourhood that is locally asymptotically δ1 = 1/2 wedge we

can write gw = gw,pt + s where
s ∈ x2δ1C∞(Ua;S

2(wT ∗X))) (5.3)

restricted to Ua similar to equation (2.10) for the global metric. We can write the volume forms in local
coordinates as

√
det(gw) = dV olx and

√
det(gw,pt) = dV olpt. Since (gw)

−1(gw,pt + s) = Id+ (gw)
−1(s)

we can expand the formula for the determinant of Id + (gw)
−1(s) and take the square root to see that

k = 1 +O(xδ).
We consider the operators obtained by freezing coefficients of the operators DX and k1/2DXk−1/2 at

β−1(a) (where β is the blow down map from Ua to Ûa). The Leibniz rule yields

k1/2DXk−1/2 = DX − 1

2k
[DX , k] (5.4)

and since DX has terms with ∇F
∂x
, the second term is a zeroth order operator of order O(xδ1−1). This

shows that the operator obtained by freezing coefficients at β−1(a) coincide for δ1 > 1 with Da (for both
DX and k1/2DXk−1/2), and coincide up to a bounded zero-th order operator for δ1 = 1.

We need to compare certain deformed operators as ε varies. To that end we introduce the following
notation. For ε > 1, let Qε be an operator

Qε =

2n∑

j=1

bj(ε, x, z)∇F
ej + c(ε, x, z) (5.5)

where bj(ε, x, z), c(ε, x, z) are endomorphisms of F which depend continuously on (x, z), and the ej vectors
form an orthonormal frame for the wedge tangent bundle. Assume that

Dα(Qε) ⊆ Dα. (5.6)

Assume there exist constants C > 0 and m1 > 0,m2 ≥ 0 such that for any ε ≥ 1, (x, z) ∈ U
t
√
ε

a for x > 0
on U tε

a ,
|bj(ε, x, z)| ≤ C|x|m1 ; 1 ≤ j ≤ dim(X),

|c(ε, x, z)| ≤ C|x|m2
(5.7)

We will then use the notation
Qε = O(|x|m1∂ + |x|m2) (5.8)

following the notation introduced in equation (8.55) of [BL91]. We define the following scaling operator.

Definition 5.2 (Scaling operator). Let ε > 0. If u ∈ L2(U t
a;F ), let Sεu ∈ L2(U

t
√
ε

a ;F ) be given by

Sεu(x, z) := u(x/
√
ε, z) (5.9)

where (x, z) ∈ U
t
√
ε

a which we identify with a neighbourhood of the resolved tangent cone TaX , and
observe that F can be trivialized along rays with fixed values z to define the rescaling.
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Lemma 5.3. In the setting of the discussion above for an asymptotically δ wedge metric on X that
restricts to a locally conformally asymptotically δ1 wedge Kähler metric on a fundamental neighbourhood
Ua with δ1 ≥ 1, we have that as ε → ∞

Sεk
1/2DXk−1/2S−1

ε =
√
εDa + ε(1−δ1)/2Err′ (5.10)

where Err′ = O(|x|δ1∂ + |x|δ1−1). Moreover, we have that for the Hamiltonian vector field V , in the
notation of Definition 2.12

Sεk
1/2εcl(V )k−1/2S−1

ε = ε1/2cl(Ṽ ) + ε(1−δ)/2O(|x|1+δ). (5.11)

Then there exists Err = O(|x|δ1∂ + |x|δ1−1 + |x|1+δ) and f = (1− δ)/2 such that

Sεk
1/2DX

ε k−1/2S−1
ε =

√
εDa

1 + εfErr (5.12)

where
√
εDa

1 = Da
ε .

Proof. Throughout the proof we will use the facts that the conjugation by scaling sends the multiplier
operator x to ε−1/2x, and the operator ∇F

W acting on smooth sections of F on Ua to ε1/2∇F
W for W for

a frame for wT ∗X on Ua, chosen in the neighbourhood similar to the frame used in (2.18). In particular
this shows that

√
εDa

1 = Da
ε = SεD

aS−1
ε on smooth sections, which also holds for sections in L2(Ua;F )

by Proposition 4.6.
We first observe that if the metric is locally product type, then it is isometric to the resolved truncated

tangent cone and the operators DX and Da can be identified and Err′ = 0 for all ε. If the metric is
locally conformally product type (see Subsection 2.22), then the operators DX and Da on Ua, the local
complexes and their eigensections can be identified, and thus again Err′ = 0 and we get (5.10).

If the metric is locally conformally asymptotically δ1 for δ1 ≥ 1, we can show that Err′ = O(|x|δ1∂ +
|x|δ1−1) as follows. Conjugating the left hand side of equation (5.4) by the scaling operator yields

Sεk
1/2DXk−1/2S−1

ε u(x, z) = Sε((D
Xu)(x

√
ε, z))− 1

2k(x/
√
ε, z)

(
[DX , k]

)(
x/

√
ε, z
)
u(x, z) (5.13)

and the discussion below equation (5.4) shows that the second term is of order ε(1−δ1)/2O(xδ1−1). More-
over a similar argument shows that k1/2(xδ1W )k−1/2 = O(xδ1∂ + x2δ1−1) which after conjugation by
Sε is of order ε(1−2δ1)/2O(xδ1−1). Recall that the truncated tangent cone is simply the fundamental
neighbourhood Ua with the product-type metric obtained by freezing coefficients on the link β−1(a), and
that we can write DX = Da + xδW where Da is the model operator on the tangent cone and W a first
order wedge operator, where Da and DX are both operators on the space of smooth sections of Ua as a
resolution of a Thom-Mather stratified pseudomanifold with boundary. Thus the first term on the right
hand side of (5.13) is SεD

aS−1
ε up to an operator in ε(1−2δ1)/2O(xδ1−1).

The definition of the Hamiltonian vector field on the tangent cone (see Definition 2.12) shows that

V − Ṽ = x1+δW1 for a smooth wedge vector field W1. The operator cl(V ) = cl(Ṽ ) + x1+δcl(W1) is a

zeroth order operator and since Ṽ vanishes to first order in x, equation (5.11) follows. Equation (5.12)
follows from the preceding statements and equation (4.3).

Remark 5.4. For locally conformally asymptotically δ1 wedge metrics that are asymptotically δ wedge
metrics, the observations in Remark 2.21 can be used to show that if the conformal factor is radial, that
we can take Err = O(|x|δ1∂ + |x|δ1−1 + |x|1+δ1 ) in (5.12), and we can take f = (1 − δ1)/2 satisfying
f ≤ 0 for δ1 ≥ 0.

We observe that since DX = Da +xδW for a first order wedge differential operator W , the difference
between k1/2DXk−1/2 and k1/2Dak−1/2 is given by k1/2(xδW )k−1/2 = O(x2δ−1). This suggests that
using the null space of k1/2Dak−1/2 after freezing coefficients, as opposed to that of Da could be used
as better candidates for the local cohomology of the deformed complex. While we do not investigate
these approaches in this initial article, these considerations were part of the motivation for developing
the estimation scheme in this section that culminates with the construction of the holomorphic Witten
instanton complex.

Remark 5.5. In the smooth setting the analog of this Proposition follows from Theorem 8.18 in [BL91].
There the result is proven for non-isolated fixed point sets of group actions. The Kähler property of a
smooth metric on a smooth manifold can be used to show metrics are asymptotically δ = 1 wedge metrics
as opposed to δ = 1/2 which is the case for general smooth metrics, and having Taylor expansions of the
metric in coordinate charts where power series expansions are in integers is crucially used in the proof
of this result (see Proposition 3.14 of [Voi07]), no longer the case for general wedge metrics as seen in
subsection 2.5 for the cusp curve.
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Theorem 8.18 in [BL91] is more technical in a different way since one has to keep track of the tangential
and normal directions of the fixed point sets and scale the operators appropriately. The authors of [WZ98]
note in the proof of Proposition 3.3 of that article, that the proof simplifies considerably when the fixed
point sets are zeros of Killing vector fields, which is certainly the case for any isolated fixed point where
things are even simpler. Hence our result can be viewed as a generalization of the localization result
in [BL91] for isolated fixed points on stratified spaces with asymptotically δ wedge metrics.

5.2 The holomorphic Witten instanton complex

In this section we prove estimates and results which hold for complexes with algebraic domains of exponent
α for any fixed α ∈ [0, 1], and thus will not indicate the α explicitly in the notation for the complexes.

We define Pµ
B(U

t0
a ) = (Hµ,Dµ

B(P ), P ) where Hµ = L2
µΩ

0,q(U t0
a ;E) with the product type metric (see

Remark 3.9).
Given t0 ∈ (0,∞], choose χa,t0 : Rs → [0, t0] to be a function in C∞(R) such that χa,t0(s) = 1 when

s < t0/2, and χa,t0(s) = 0 when s > 3t0/4. At each critical point a, we define t := r2n =
∑ |γj |r2j

where the functions rj are the functions in Definition 2.11 corresponding to each critical point a. We
observe that the functions χa,t0(t) are invariant with respect to the operator

√
−1LṼ on each Ua, since

the functions t are. Given a harmonic form ωa ∈ H(Pµ
B(U

t0
a )), we define ωa,ε := ωae

−tε ∈ H(Pµ
B,ε(U

t0
a ))

which are in the null space of Da
ε (see Subsection 4.2). We define

αa,t0,ε := ‖χa,t0(t)ωa,ε‖L2(Ua,z)
, ηa,t0,ε :=

χa,t0(t)ωa,ε

αa,t0,ε
, (5.14)

and

W ′(Pµ
B,ε(U

t0
a )) :=

{
ηa,t0,ε =

χa,t0(t)ωa,ε

αa,t0,ε
: ωa,ε ∈ H(Pµ

B,ε(U
t0
a ))

}
(5.15)

where the forms ηa,t0,ε each have unit L2 norm and are supported on U t0
a . In the case where t0 = 1 we

drop the subscript t0 = 1 and denote the corresponding forms αa,ε, ηa,ε, and the cutoff function χa.

Remark 5.6. It suffices to prove most estimates in neighbourhoods U t0
a for some t0 that is smaller than

1/|µ| for eigenvalues µ 6= 0 for the operator
√
−1LV (so as to control the ε

√
−1LV term appearing in ∆ε).

In the smooth setting this is handled in [BL91] by taking smaller cutoffs (see equation (9.2) of [BL91]).
Here we will prove the relevant statements for t0 = 1 instead of arbitrary finite truncated tangent cones
to keep the notation manageable. The arguments are similar for the general case.

We can extend the forms defined above from the fundamental neighbourhood Ua to X by 0 away
from their supports. We have the Witten deformed Dirac type operator Dε, whose square is the Witten
deformed Laplace type operator ∆ε.

Let G̃ε,µ be the vector space generated by the set
{
W ′(Pµ

B,ε(Ua)) : a ∈ Cr(h)
}

corresponding to all

the harmonic sections ωa,ε as above; G̃ε,µ is a subspace of L2
µΩ

0,·(Ua;E) since each ηa,ε has finite length
and compact support.

We define Gε,µ = {k−1/2s|s ∈ G̃ε,µ}, the elements of which are elements of L2
µΩ

0,·(X ;E) as can be
seen from the definition of k in (5.2). Moreover these sections are equivariant with respect to the Kähler
Hamiltonian vector field corresponding to the Kähler metric on the neighbourhood (as opposed to that
on the tangent cone).

Since Gε,µ is finite dimensional (in particular closed), there exists an orthogonal splitting

L2Ω0,·
µ (X ;E) = Gε,µ ⊕G⊥

ε,µ. (5.16)

where G⊥
ε,µ is the orthogonal complement of Gε,µ in L2Ω0,·

µ (X ;E). Denote by Πε,µ,Π
⊥
ε,µ the orthogonal

projection maps from L2Ω0,·
µ (X ;E) to Gε,µ, G

⊥
ε,µ respectively. We split the deformed Witten operator

DX by the projections as follows.

Dε,µ,1 = Πε,µD
X
ε Πε,µ, Dε,µ,2 = Πε,µD

X
ε Π⊥

ε,µ, Dε,µ,3 = Π⊥
ε,µD

X
ε Πε,µ, Dε,µ,4 = Π⊥

ε,µD
X
ε Π⊥

ε,µ. (5.17)

In the following proposition and its proof, the norms and inner products for the L2 forms with the product
type metrics on Ua are denoted L2

a (or L2
a(Ua;F )), while those for the metric on X are denoted by L2

X

(or L2
X(X ;F )).

Proposition 5.7. In the setting described above, for locally conformally totally geodesic wedge metrics
that are asymptotically δ wedge metrics for some δ > 0, with f = (1 − δ)/2, (f < 1/2) we have the
following estimates.
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1. There exist constants ε0 > 0, I0 > 0 such that for any ε > ε0 and for any s ∈ Dµ(Dε),

||Dε,µ,1s||L2
X
≤ I0ε

f‖s‖L2
X
.

2. There exist constants ε1 > 0, I1 > 0 such that for any s ∈ G⊥
ε,µ ∩ Dµ(Dε), s

′ ∈ Gε,µ, and ε > ε1,

‖Dε,µ,2s‖L2
X
≤ I1ε

f‖s‖L2
X

‖Dε,µ,3s
′‖L2

X

≤ I1ε
f ‖s′‖L2

X

3. There exist constants ε2 > 0, I2 > 0 and C > 0 such that for any s ∈ G⊥
ε,µ ∩ Dµ(Dε) and ε > ε2,

‖Dε,µs‖L2
X
≥ I2

√
ε‖s‖L2

X

Remark 5.8. This is the analog of Proposition 6.29 of [Jay23], where we worked out the details for the
case of the de Rham operator in detail. There we followed the proof strategy of Zhang in Chapters 4 and
5 of [Zha01] in the smooth setting, described in the outline part of the proof in [Jay23]. There are two
new ingredients in this proof for the case of the Dolbeault complex, the restriction to equivariant Hilbert
complexes and the use of the expansion of the operator in Lemma 5.3.

Proof. We follow the same strategic steps as in the proof of Proposition 6.29 of [Jay23], even though

the technicalities are slightly more involved. We pick an orthonormal basis Ŵε,µ,a for the vector space
generated by the forms in Gε,µ.

proof of 1: For any s ∈ L2Ω0,q
µ (X ;E) = Hµ the projection Πε,µs can be written

Πε,µs =
∑

a∈Cr(h)

∑

η∈Ŵε,µ,a

〈η, s〉L2
X
η (5.18)

where each η can be written as a linear combination of forms k−1/2ηa,ε with ηa,ε as defined in equation
(5.14). Since we want to estimate the first of the four operators in the decomposition given in (5.17), we
show that

||Πε,µD
X
ε k−1/2ηa,ε||L2

X
≤ Cεf (5.19)

for some C > 0 and ε large enough using the following argument.
Since Da

ε = Da + εcl(V ), observe that for a smooth function v we have

Da
ε (vωa,ε) = Da(vωa,ε)+ εcl(V a)(vωa,ε) = cl(dv)ωa,ε + v

(
(Daωa,ε)+ εcl(V a)(ωa,ε)

)
= cl(dv)ωa,ε (5.20)

since Da
εωa,ε = 0. Since supp(dχa(t)) ⊆ {1/2 ≤ t ≤ 3/4} (recall that χa = χa,t0=1), each Da

εηa,ε is
compactly supported in {1/2 ≤ t ≤ 3/4}. Then for ε large enough

〈Da
εηa,ε, ηa,ε〉L2 = 〈cl(dχa(t))ωa,ε/αa,ε, ηa,ε〉L2

a
≤ e−C0ε (5.21)

for some large enough positive constant C0 since cl(dχa(t))ωa,ε/αa,ε is supported away from t ≤ 1/2 and
ωa,ε = ωae

−tε.
By Lemma 5.3 we have k1/2DX

ε,µk
−1/2 = Da

ε,µ + εfErr on Ua where Err is an operator as in the
statement of that lemma. Since Gµ,ε is a finite dimensional subspace with each element in Dµ(Dε), we

see that 〈Err(η, η〉L2
X

can be bounded by a constant uniform in ε for large ε, for each η ∈ Ŵε,µ,a for fixed
µ. Thus we have the inequality

〈
DX

ε ηa,ε, ηa,ε
〉
L2

X

= 〈cl(dχa(t))ωa,ε/αa,ε, ηa,ε〉L2
X
≤ C̃0ε

f . (5.22)

Since each η has unit norm, the Cauchy Schwartz inequality shows that | 〈η, s〉L2 | ≤ ||s||. Since the

forms η in the basis Ŵε,µ,a for a given critical point a are orthogonal and since the supports of the forms

in Ŵε,µ,a for different critical points have no intersection, using equation (5.18) we see that

||Πε,µD
X
ε Πε,µs|| ≤ I1ε

f ||s|| (5.23)

for large enough ε in order to compensate for the finite sum of terms as well as ensuring (5.21).
proof of 2: While DX is not formally self-adjoint with respect to the L2

a inner product on each Ua,
the operator Da is. Thus, while Dε,µ,2 and Dε,µ,3 are not formal adjoints, Da

ε,µ,2 = Πε,µD
a
εΠ

⊥
ε,µ, D

a
ε,µ,3 =

Π⊥
ε,µD

a
εΠε,µ are formally adjoint. Lemma 5.3 shows that

k1/2Dε,µ,2k
−1/2 = Da

ε,µ,2 + εfErr, k1/2Dε,µ,3k
−1/2 = Da

ε,µ,3 + εfErr. (5.24)
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Thus it suffices to prove the first estimate of the two, which we now do. Since each ηa,ε has support in
Ua, so does η = k−1/2ηa,ε. One deduces that for any s ∈ G⊥

ε,µ ∩ Dµ(Dε),

DX
ε,µ2s = Πε,µD

X
ε,µΠ

⊥
ε,µs = Πε,µD

X
ε,µs

=
∑

a∈Cr(h)

∑

η∈Ŵε,µ,a

〈
η,DX

ε,µs
〉
L2

X

η =
∑

a∈Cr(h)

∑

η∈Ŵε,µ,a

〈
DX

ε,µη, s
〉
L2

X

η

=
∑

a∈Cr(h)

∑

η∈Ŵε,µ,a

η

(∫

Ua

〈
Da

ε,µk
1/2η, s

〉
F
dvUa

+ εf 〈Err(η), s〉L2
a

)
.

The terms 〈Err(η), s〉L2
a
can be bounded as in the proof of the first numbered statement above. Since

each η can be written as a linear combination of forms k−1/2ηa,ε as defined in equation (5.15), the other
terms can be controlled by controlling the integral over Ua with integrand

〈
Da

ε,µηa,ε, s
〉
F
. This can be

expanded as 〈
Da

ε,µ

χa(t)ωae
−tε

αa,ε
, s

〉

L2

=

〈
cl(dχa(t))ωae

−tε

αa,ε
, s

〉

L2

(5.25)

restricted to each Ua, where we have used the argument in (5.20). We know that dχa is only supported
on the set {1/2 ≤ t ≤ 3/4} in each Ua, we see that the desired inequality follows from arguments similar
to those in the proof of Step 1.

proof of 3:
This is proven in three steps:

1. Assume supp(s) ⊂ ⋃a∈Cr(h) U
1/2
a .

2. Assume supp(s) ⊂ X\⋃a∈Cr(h) U
1/4
a .

3. General Case.

Step 1: Since s ∈ G⊥
ε,µ, and since χa = χa,1 is identically 1 on U

1/2
a , we see that 〈s, k−1/2ωa,ε〉L2

X
= 0

for forms ωa,ε ∈ H(Pµ
B,ε(Ua)) at critical points a of h. Then Proposition 4.6, implies that

∥∥∥Da
εk

1/2s
∥∥∥
2

L2
a

≥ ε
∥∥∥k1/2s

∥∥∥
2

L2
a

(5.26)

since we have projected away from the 0 eigenvalues of the model harmonic oscillator and the other
eigenvalues of ∆ε grow of order ε. Then Lemma 5.3 together with the fact that the norms for L2

a, L
2
X are

comparable can be used to show that

∥∥DX
ε s
∥∥
L2

X

≥
∥∥∥Da

εk
1/2s

∥∥∥
L2

X

− εfC ‖s‖L2
X
≥ √

ε ‖s‖L2
X
− εfC ‖s‖L2

X
(5.27)

for some constant C. Since f < 1/2, we see that there exists large enough ε1 > 0, C1 > 0 such that for
any ε ≥ ε1 ∥∥DX

ε s
∥∥
L2

X

≥ C1ε
1/2‖s‖L2

X
, (5.28)

proving step 1.

Step 2: Since supp(s) ⊂ X\⋃a∈Cr(h)U
1/4
a , one can proceed as in the proof of Proposition 4.4 to find

constants ε2 > 0 and C2 > 0, such that for any ε ≥ ε2,

∥∥DX
ε s
∥∥
L2

X

≥ C2

√
ε‖s‖L2

X
,

proving step 2.
Step 3: Let χ̃ ∈ C∞

Φ (X) be defined such that restricted to each Ua for critical points a, χ̃(t) = χa(t),
and that χ̃|X\⋃

a∈Cr(h) Ua
= 0. For any s ∈ G⊥

ε,µ ∩ Dµ(Dε) we see that χ̃s ∈ G⊥
ε,µ ∩ Dµ(Dε). Then the

results of steps 1 and 2 shows that there exists C9 > 0 such that for any ε ≥ ε0 + ε1 + ε2,

∥∥DX
ε,µs

∥∥ ≥ 1

2

(∥∥(1− χ̃)DX
ε,µs

∥∥+
∥∥χ̃DX

ε,µs
∥∥) = 1

2

(∥∥DX
ε,µ((1 − χ̃)s) + [DX , χ̃]s

∥∥+
∥∥DX

ε,µ(χ̃s) + [χ̃, DX ]s
∥∥)

≥ √
ε (C2‖(1− χ̃)s‖ + C1‖χ̃s‖0)− C3‖s‖ ≥ C10

√
ε‖s‖0 − C3‖s‖,

where the norms are for L2
X for some C3 and C10 = min {C1, C2/2}, which completes the proof of the

proposition.
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For any c > 0, denote by Gε,µ,c the direct sum of the eigenspaces of DX
ε with eigenvalues lying in

[−c, c] which are also eigenspaces for
√
−1LV for the eigenvalue µ, which is a finite dimensional subspace

of L2
µΩ

0,q(X ;E). Let Πε,µ,c be the orthogonal projection from L2Ω0,q(X ;E) to Gε,µ,c. The following is
an analog of Lemma 6.31 of [Jay23], itself a generalization of Lemma 5.8 of [Zha01]. We define f+ to be
a real constant that satisfies f < f+ < 1/2.

Lemma 5.9. There exist C1 > 0, ε3 > 0 such that for any ε > ε3, and any σ ∈ Gε,µ,

‖Πε,µ,κσ − σ‖ ≤ C1ε
f‖σ‖ (5.29)

where κ = εf
+

.

Proof. Let δ = {λ ∈ C : |λ| = κ} be the counter-clockwise oriented circle. By Proposition 5.7, one
deduces that for any λ ∈ δ, ε ≥ ε0 + ε1 + ε2 and s ∈ Dµ(DX

ε ), there exists positive constants I1, I2, I3
such that

∥∥(λ−DX
ε

)
s
∥∥ ≥ 1

2

∥∥λΠε,µs−DX
ε,µ,1Πε,µs−DX

ε,µ,2Πε,µs
∥∥+ 1

2

∥∥λΠ⊥
ε,µs−DX

ε,µ,3Π
⊥
ε,µs−DX

ε,µ,4Π
⊥
ε,µs

∥∥

≥ 1

2

((
κ− (I1 + I2)ε

f
)
‖Πε,µs‖+

(
I3
√
ε− κ− I2ε

f
) ∥∥Π⊥

ε s
∥∥) .

(5.30)
This shows that there exist ε4 > ε0 + ε1 + ε2 and C2 > 0 such that for any ε ≥ ε4 and s ∈ Dµ((DX

ε )2),
∥∥(λ−DX

ε

)
s
∥∥ ≥ C2‖s‖. (5.31)

Thus, for any ε ≥ ε4 and λ ∈ δ,

λ−DX
ε : Dµ(DX

ε ) → L2Ω0,q
µ (X ;E) (5.32)

is invertible and the resolvent
(
λ−DX

ε

)−1
is well-defined. By the spectral theorem one has

Πε,µ,κσ − σ =
1

2π
√
−1

∫

δ

((
λ−DX

ε

)−1 − λ−1
)
σdλ. (5.33)

Now one verifies directly that for any σ ∈ Gε,µ

((
λ−DX

ε

)−1 − λ−1
)
σ = λ−1

(
λ−DX

ε

)−1
(DX

ε,µ,1 +DX
ε,µ,3)σ. (5.34)

From Proposition 5.7 and (5.31), one then deduces that for any ε ≥ ε4 and σ ∈ Gε,µ,

∥∥∥
(
λ−DX

ε

)−1
(DX

ε,µ,1 +DX
ε,µ,3)σ

∥∥∥ ≤ C−1
2

∥∥(DX
ε,µ,1 +DX

ε,µ,3)σ
∥∥ ≤ (I1 + I3)ε

f

C2
‖σ‖ (5.35)

From (5.33)-(5.35), we get the estimate in the statement of the lemma, finishing the proof.

In Remark 5.9 of [Zha01], Zhang explains that one can work out an analog of the proof with real
coefficients, whereas the proof above implicitly uses the fact that we work in the category of complex
coefficients. The following is a generalization of Proposition 6.32 of [Jay23], itself a generalization of
Proposition 5.5 of [Zha01].

Proposition 5.10. There exists ε0 > 0 such that when ε > ε0, the number of eigenvalues in [0, εf
+

] of

∆
(q)
ε , the Laplace-type operator acting on forms of degree q of the complex Pµ

ε (X), is equal to

∑

a∈Cr(h)

dimHq(Pµ
B,ε(Ua)). (5.36)

Proof. By applying Lemma 5.9 to the elements of k1/2ηa,ε ∈
{
W ′(Pµ

B,ε(Ua)) : a ∈ Cr(h)
}
, one sees easily

that for any κ = εf
+

when ε is large enough, the elements of the set {Πε,µ,κηa,ε : ηa,ε ∈ ∪a∈Cr(h)Ŵa,ε,µ},
where Ŵa,ε,µ is the basis chosen in the proof of Proposition 5.7, are linearly independent. Thus, there
exists ε5 > 0 such that when ε ≥ ε5,

dimGε,κ ≥ dimGε. (5.37)

If dimGε,µ,κ > dimGε,µ, then there should exist a nonzero element s ∈ Gε,µ,κ such that s is perpendicular
to Πε,µ,κGε,µ. That is, 〈s,Πε,µ,κηa,ε〉L2(X;E) = 0 for any ηa,ε as above. Thus, there exists a constant

C4 > 0 such that ∥∥Π⊥
ε,µs

∥∥ ≥ C4‖s‖. (5.38)
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Using this and Proposition 5.7 one sees that when ε > 0 is large enough,

CC4

√
ε‖s‖ ≤

∥∥DX
ε Π⊥

ε,µs
∥∥ =

∥∥DX
ε s−DX

ε Πε,µs
∥∥ =

∥∥DX
ε s−DX

ε,1s−DX
ε,3s
∥∥

≤
∥∥DX

ε s
∥∥+

∥∥DX
ε,1s
∥∥+

∥∥DX
ε,3s
∥∥ ≤

∥∥DX
ε s
∥∥+ Iεf‖s‖

(5.39)

for some constants C, I, from which one gets

∥∥DX
ε s
∥∥ ≥ CC4

√
ε‖s‖ − Iεf‖s‖. (5.40)

Since f < 1/2, when ε > 0 is large enough this contradicts the assumption that s is a nonzero element in
Gε,µ,κ. Thus, one has

dimGε,µ,κ = dimGε,µ =
∑

a∈Cr(h)

dimHq(Pµ
B,ε(Ua)) (5.41)

proving the result.

The following is Theorem 1.2 and describes what is known as the holomorphic Witten instanton
complex, or the small eigenvalue complex of the Witten deformed Laplacian, encoding information about
the local cohomology at the critical points.

Theorem 5.11 (holomorphic Witten instanton complex). For any integer 0 ≤ q ≤ n, let F
[0,κ]
ε,µ,q ⊂

L2
µΩ

0,q(X ;E) denote the vector space generated by the eigenspaces of ∆ε,q associated with eigenvalues in

[0, κ]. For f = (1− δ)/2 let κ = εf
+

for f+ satisfying f < f+ < 1/2. Then there exists ε0 > 0 such that

when ε > ε0 F
[0,κ]
ε,µ,q has the same dimension as

∑

a∈Cr(h)

dimHq(Pµ
B,ε(Ua)), (5.42)

and form a finite dimensional subcomplex of Pµ
ε (X) :

(
F[0,κ]
ε,µ,q, Pε

)
: 0 −→ F

[0,κ]
ε,µ,0

Pε−→ F
[0,κ]
ε,µ,1

Pε−→ · · · Pε−→ F[0,κ]
ε,µ,n −→ 0. (5.43)

Proof. This follows from Proposition 5.10 once one shows that the small eigenvalue eigensections form a
complex. Since

Pε∆ε = ∆εPε = PεP
∗
ε Pε and P ∗

ε ∆ε = ∆εP
∗
ε = P ∗

ε PεP
∗
ε

one sees that Pε (resp. P ∗
ε ) maps each F

[0,κ]
ε,µ,q to F

[0,κ]
ε,µ,q+1 (resp. F

[0,κ]
ε,µ,q−1 ). The Kodaira decomposition

of Pε(X) restricts to this finite dimensional complex
(
F
[0,κ]
ε,µ,q, Pε

)
.

5.3 Morse inequalities

In this subsection we prove the holomorphic Morse inequalities using the instanton complex. The following
is Theorem 1.3.

Theorem 5.12 (Strong form of the holomorphic Morse inequalities). In the same setting as in the
previous subsection with Pα(X) = (L2Ω0,·(X ;E),Dα(P ), P = ∂E) which we assume is Fredholm and
where local complexes induced at isolated critical points are transversally Fredholm, we have

( ∑

a∈Crit(h)

n∑

q=0

bqdim(Hq(Pµ
α,B(Ua))

)
=

n∑

q=0

bqdim(Hq(Pµ
α(X))) + (1 + b)

n−1∑

q=0

Qµ
q b

q (5.44)

where Qµ
q are non-negative integers. Equivalently we have a power series

( ∑

a∈Crit(h)

n∑

q=0

bqTr(Ts,θ|Hq(Pα,B(Ua)))
)
=

n∑

q=0

bqTr(Ts,θ|Hq(Pα(X))) + (1 + b)
n−1∑

q=0

Qqb
q (5.45)

where the Qq are power series in the variable λ = seiθ converging for |λ| = s < 1. The coefficients of this
series are non-negative integers.
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Proof. We first prove the statement in (5.44). We apply equation (3.37) of Theorem 3.21 with the
endomorphism T = Id to the complex (5.43) for the fixed value of µ. Since this is a finite dimensional
(equivariant) Hilbert complex, we can take t to 0 to see that the left hand side is exactly the expression

( ∑

a∈Crit(h)

n∑

q=0

bq dim(Hq(Pµ
α,B,ε(Ua))

)
(5.46)

and the right hand side is of the form

n∑

q=0

bq dim(Hq(Pµ
α,ε(X))) + (1 + b)

n−1∑

q=0

Qqb
q (5.47)

where Qq are non-negative integers. Indeed the Qq are the dimensions of the co-exact smaller eigenvalue
eigensections of the deformed Laplace-type operator, as is clear from the statement of Theorem 3.21.
Since the cohomology groups of the Witten deformed and the undeformed complexes have the same
dimensions for both the local and global complexes we obtain equation (5.44).

Equation (5.45) can be obtained by multiplying each term in equation (5.44) by µ where µ = λr for
some power of r and taking sums over all µ as defined in equation (1.3). The convergence of the power
series for s < 1 follows from results in [Jay23] which we discussed in see Remark 3.24. This proves the
result.

The following is Theorem 1.4.

Theorem 5.13 (Dual equivariant holomorphic Morse inequalities). In the same setting as Theorem 5.12,
let (Pα)SD(X) be the Serre dual complex

(Pα)SD(X) := Rα(X) = (L2Ωn,n−·(X ;E∗),Dα(∂
∗
E∗⊗K), ∂

∗
E∗⊗K) (5.48)

and let T
Rα(X)
θ be the geometric endomorphism induced on this complex corresponding to the Kähler

action, and we denote it as Tθ with some abuse of notation. Then we have that

bn
( ∑

a∈Crit(h)

n∑

q=0

b−qTr(Ts,−θ|Hq(Rα,B(Ua)))
)
= bn

n∑

q=0

b−qTr(Ts,−θ|Hq(Rα(X))) + (1 + b)

n−1∑

q=0

Q̃qb
q (5.49)

where the B subscript denotes a choice of domain for the local complex corresponding to the Kähler
hamiltonian −h (corresponding to T−θ) where the Q̃q are power series in the variable λ = seiθ which
converge for s = |λ| > 1. The coefficients of this series are non-negative integers. Moreover

n∑

q=0

bqTr(T1,θ|Hq(Pα(X))) = bn
n∑

q=0

b−qTr(T1,−θ|Hq(Rα(X))). (5.50)

Proof. This is a straightforward corollary of the Morse inequalities and the dualities in Proposition 3.23.
The equality (5.50) holds due to Serre duality.

6 Applications: Examples and generalizations

In this section we discuss some applications of the holomorphic Morse inequalities. We begin by studying
some examples, including explicit verifications of conjectural holomorphic Morse inequalities correspond-
ing to the algebraic Lefschetz-Riemann-Roch formulas of [BFQ79]. We then discuss Poincaré Hodge
polynomials, Hirzebruch χy invariants, signature and other equivariant invariants.

6.1 Examples

In [Jay23, §7.3], we studied the holomorphic Lefschetz fixed point theorem for many natural examples of
algebraic toric varieties with wedge metrics and Kähler Hamiltonian actions of algebraic tori. Here we
study the holomorphic Morse inequalities in some of those cases.

In the smooth setting, the Dirac type operators being essentially self-adjoint, we recover the equiv-
ariant holomorphic Morse inequalities of Witten for smooth Kähler manifolds actions given in equation
(20) of [Wit84]. The contribution at isolated fixed points a in the smooth setting can be written as (see
equation (21) of [Wit84])

bnaEa(θ)
∏

γa
j >0

1

1− eiγ
a
j θ

∏

γa
j <0

ei|γ
a
j |θ

1− ei|γ
a
j |θ

(6.1)
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Here na is the number of negative γa
j , and is called the Morse index at the zero a of V (this is twice the

Morse index for the Kähler moment map considered as a classical Morse function). Here Ea(θ) is the
trace of the induced action of Tθ on the vector space Ea given by the restriction of the bundle E to a.

This formula is derived by Witten by studying what happens on polydisk fundamental neighbourhoods
of isolated smooth fixed points. The γa

j are precisely the weights for the Kähler action at the fixed point
given in definition (2.12). Each product for a fixed positive weight γa

j is the trace of the endomorphism

Tθ over the Hardy space of L2 bounded holomorphic functions on the disk factor where the group action
is a rotation with weight γa

j . On the other hand, the factor for γa
j < 0 is derived in the discussion leading

up to equation (27) of [Wit84], as the trace over the basis of L2 integrable anti-holomorphic one forms
on the disc which are in the local cohomology of the dual complex. This is similar to the computations
in Example 1.6.

We now study the Morse inequalities corresponding to the example of the singular quadric in Subsec-
tion 7.3.3 of [Jay23], for the minimal domain.

Example 6.1. Consider M̂ , the zero set of the polynomial G(W,X, Y, Z) = Z2−XY in CP
3, which has

an isolated singularity at [W : X : Y : Z] = [1 : 0 : 0 : 0]. This has an action of the complex torus (C∗)2

given by
(λ, µ) · [W : X : Y : Z] = [W : λ2X : µ2Y : λµZ]. (6.2)

A simple computation shows that this action, for generic values of λ and µ, will fix three points. The
singular point is fixed, as are a1 = [0 : 1 : 0 : 0] and a2 = [0 : 0 : 1 : 0].

Let us consider the inequality corresponding to p = 0. We can consider the case of the circle action
where λ = eiγ1θ and µ = eiγ2θ with γ1 > γ2 > 0. Then the singular fixed point contributes 1+λµ

(1−λ2)(1−µ2) to

the local Lefschetz polynomial. Here µ/λ, 1/µ2 and 1/λ2 have negative exponents (up to the factor of i),

and therefore the contributions to the polynomial are b2(λ/µ)(λ2)
(1−λ/µ)(1−λ2) at a1 and bµ2

(1−λ/µ)(1−µ2) at a2. Here

b is the formal variable in the polynomial.

The contribution to the dual inequalities from the singular fixed point is

b2
(1 + λµ)λ−2µ−2

(1− λ−2)(1 − µ−2)
= b2

(1 + 1/λµ)λ−1µ−1

(1− λ−2)(1 − µ−2)
(6.3)

where the series expansion of the latter in powers of λ−1, µ−1 is easily seen to be the Morse polynomial at
the singular critical point for the Serre dual complex with Hilbert space L2Ωn,n−q(X ;C). The following
argument shows that the global cohomology vanishes for q > 0. The sum of the local Morse polynomials
for the complexes at the critical points is given by

1 + λµ

(1− λ2)(1− µ2)
+

bµ2

(1 − λ/µ)(1− µ2)
+

b2(λ/µ)(λ2)

(1− λ/µ)(1 − λ2)
, (6.4)

and those for the dual complex is given by

b2
(1 + λµ)λ−2µ−2

(1 − λ−2)(1 − µ−2)
+

bµ/λ

(1− λ/µ)(1− µ2)
+

1

(1 − λ/µ)(1− λ2)
. (6.5)

The Morse polynomial in (6.4) can be expanded as a series in λ, µ where there are no non-negative powers
of λ, µ for each b, and it is easy to see that there is only one constant term 1.

The dual Morse polynomial in (6.5) has a series expansion in non-positive powers of λ, µ for each b,
and again it is clear that the only constant term 1. Thus taking the common terms in each polynomial we
get only 1, which is the classical Morse polynomial discussed in the introduction. Since there are no (1+b)
terms in this classical Morse polynomial, the Morse lacunary principle (see Theorem 3.39 of [BH04]) can
be invoked to show that the classical Morse polynomial is equal to the Poincaré polynomial.

Remark 6.2 (Related results and choices of formulation). In [Jay23, §7.3], we studied the holomorphic
Lefschetz numbers for p = 1, 2, as well as the case of the spin-Dirac complex. The detailed computations
in that article can be used to easily compute the holomorphic Morse inequalities corresponding to those
Lefschetz numbers.

Furthermore, we saw that the holomorphic Lefschetz numbers in this setting matched with the Baum-
Fulton-Quart versions in [BFQ79,Bau82], and thus these holomorphic Morse inequalities are a general-
ization of those results as well.

For p = 1, we saw that the local cohomology groups are not free modules over the holomorphic func-
tions. Thus we cannot simply multiply the local Morse polynomial for the untwisted complex by Ea(θ) as
in the smooth case.
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We copy from [Jay23] our description of the Hamiltonian Morse functions corresponding to the (C∗)2

action on M̂ . Consider the (C∗)3 toric action on CP
3 corresponding to the (S1)3 action given by

(θ1, θ2, θ3) · [w : x : y : z] → [w : eiθ1x : eiθ2y : eiθ3z]. This corresponds to the symplectic moment
map

[w : x : y : z] → [H1, H2, H3] =

[
|x|2
|ρ|2 ,

|y|2
|ρ|2 ,

|z|2
|ρ|2

]
(6.6)

where |ρ|2 = |w|2+ |x|2+ |y|2+ |z|2. Consider the Hamiltonian function F1 = H2
3 −H2H1, and let us write

λ2 = eiθ1 , µ2 = eiθ2 and α = eiθ3/(λµ) = ei(θ3−(θ1+θ2)/2) = eiθ4 . We see that F−1
1 (0) = {|z|2 − |xy| = 0},

which is the space given by the points satisfying (z2α2−xy) = 0, for all α,w, x, y, z with |α| = 1 satisfying
z2α2−xy = 0. Quotienting the vanishing set of z2−xy = 0 by the circle action corresponding to eiθ4 , we
get the symplectic reduction of F−1

1 (0), which is precisely the space M̂ and the Kähler action we studied
is the restriction of the residual effective action on the reduced space.

6.2 Conjectural Morse inequalities for other cohomology theories

In [Jay23, §7.3.6] we showed that for non-normal toric varities, the Baum-Fulton-Quart Lefschetz-
Riemann-Roch formulas do not match those in L2 cohomology. The holomorphic Morse inequalities
we proved in this article are for L2 cohomology. In [Wit84], he explains how to go from the Lefschetz-
Riemann-Roch theorem on smooth complex manifolds to conjectural Morse inequalities, which we know
hold on Kähler manifolds. We can follow the same idea to come up with conjectural Morse inequalities
for the [BFQ79] complexes and Hilbert complexes in [Lot19,Rup18].

We first discuss features of the Morse inequalities we study here, in more abstract language. Given a
Z graded co-chain complex on a space X and a Morse function h, a conjectural abstract Morse inequality
is roughly of the form

∑

a∈crit(h)

local (equivariant) Morse polynomials(b)− (equivariant) Poincaré polynomial(b)

= (1 + b)Error polynomial(b)

where the Poincaré polynomial is
∑

k b
k dimHk(X) whereHk(X) is the cohomology group of the complex.

The equivariant Poincaré polynomial is
∑

k b
kTrTθH

k(X) where Tθ is the endomorphism on the complex
corresponding to a compatible circle action. The local equivariant Morse polynomial at a critical point
a of h is the equivariant Poincaré polynomial for the local cohomology group,

∑
k b

kTrTθH
k(Ua), where

Hk(Ua) are local cohomology groups which depend on the Morse function at the critical point.
There are two main features of a useful Morse inequality.

1. The formula for b = −1 must give the corresponding Lefschetz fixed point theorem.

2. The error terms must have a positivity property.

The second feature is what allows the Morse inequality to be more useful than simply the Lefschetz fixed
point theorem, allowing for the use of tools like the lacunary principle.

Our conjecture is that this setup works for the complexes studied in [BFQ79] and
[Lot19,Rup18], with the correct choices of local cohomology groups for the complex.

It is clear that the conjectural Morse inequality is completely determined by the local Morse poly-
nomials. Given the setup in [BFQ79, Bau82], the Poincaré polynomial is defined. What remains is to
determine the local Morse polynomial when the Kähler action is Hamiltonian. We assume we can de-
compose a neighbourhood of the critical point a of the singular variety into a product Ua,s ×Ua,u, where
the factors are attracting and expanding factors as we have studied. We can simply take the local coho-
mology of the complex for the attracting factor Ua,s. For instance in the case of the structure sheaf for
a complete intersection variety, this is simply the local ring used in [BFQ79]. For the expanding factor,
we need to use the local cohomology of the dual complex (for instance for the structure sheaf, this is
just the complex for the canonical bundle), with a new shifted grading defined by [·] 7→ n − [·] for a
variety of complex dimension n. The Künneth formula then gives us a cohomology group for Ua, and the
equivariant Poincaré polynomial (series) for this group is the local Morse polynomial. We can renormalize
the traces following ideas in [Bau82] and [Jay23] to define the equivariant local Morse polynomials.

We have verified that the holomorphic Morse inequalities hold for equivariant holomorphic sheaves
studied in [BFQ79,Bau82] in examples. We provide two here.

Example 6.3. Consider the example of Z4 −X3Y = 0 in CP
3 with coordinates [W : X : Y : Z], which

admits the algebraic torus action (λ, µ) · [W : X : Y : Z] = [W : λ4X : µ4Y : λ3µZ]. We compute the
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equivariant index for the untwisted Dolbeault complex P = (Ω0,q(X), ∂). There are three fixed points at
a1 = [1 : 0 : 0 : 0], a2 = [0 : 1 : 0 : 0] and a3 = [0 : 0 : 1 : 0], where a2 is a smooth fixed point while a1 and
a3 are singular. The singular set is [W : 0 : Y : 0].

This space can be obtained as the compactification of the affine cone over the singular algebraic curve
Z4−X3Y = 0 in CP

2. Thus the point a1 is a stratum of depth 2 within the singular set. We studied this
example in some detail in [Jay23, §7.3.6]. In particular we showed that the Baum-Fulton-Quart Lefschetz
Riemann-Roch number in [BFQ79, §3.3], obtained by summing up the local Lefschetz numbers for a1, a2
and a3 in order is

1 + (λ3µ) + (λ3µ)2 + (λ3µ)3

(1− λ4)(1 − µ4)
+

1

(1− 1/λ4)(1 − µ/λ)
+

1 + (λ3/µ3) + (λ3/µ3)2 + (λ3/µ3)3

(1− 1/µ4)(1− λ4/µ4)
= 1 +

λ5

µ
.

(6.7)
We explained there that the second term on the right hand side was the trace of the geometric endomor-
phism on a global section in degree 2 of the complex. We now consider the holomorphic Morse inequalities
for the circle action corresponding to s = 1 where λ = seiγ1θ, µ = seiγ2θ with γ1 > 0, γ2 > 0, γ2 − γ1 > 0.
Here we shall write it as Laurent series are convergent for s < 1, as defined in (1.3). The contribution
from a1 is the same as that for the Lefschetz-Riemann-Roch formula, those for a2 and a3 are

bλ4

(1− λ4)

1

(1− µ/λ)
, (1 + (λ3/µ3) + (λ3/µ3)2 + (λ3/µ3)3)

bµ4

(1− µ4)

bµ4/λ4

(1− µ4/λ4)
. (6.8)

It is easy to see that the only terms in the series with eicθ for c ≤ 0 are given by 1 from the series
expansion of a1, and b2(λ3/µ3)3µ4µ4/λ4 = b2λ5/µ from the series corresponding to a3.

Similarly if we take γ1 < 0, γ2 < 0, γ2 − γ1 < 0 and write the contributions in terms of formal sums
where the Laurent series are convergent for s > 1, we see that the contribution from a3 is the same as
that for the Lefschetz-Riemann-Roch formula, and those for a1 and a2 are

(1 + (λ3µ) + (λ3µ)2 + (λ3µ)3)
b/λ4

(1− 1/λ4)

b/µ4

(1− 1/µ4)
,

1

(1− λ−4)

bλ/µ

(1− λ/µ)
. (6.9)

The only terms in the series with eicθ for c > 0 are given by 1 from the series expansion of a3, and
b2(λ3µ)3µ−4/λ−4 = b2λ5/µ from the series corresponding to a1.

Thus the classical Morse polynomial is given by 1+b2λ5/µ, which by the lacunary principle is equal to
the Poincaré polynomial which we can verify explicitly by computing traces over the global cohomology
groups as in [Jay23, §7.3.6] and we see that the conjectural holomorphic Morse inequalities hold for this
example.

We explained in [Jay23, §7.3.6] that the section in degree 2 of the complex is the complex conjugate
of the trivializing section of the canonical sheaf. Indeed the Lefschetz-Riemann-Roch formula for the
complex twisted by the square root of the canonical sheaf gives the same formula as equation (6.7) up
to an overall factor of

√
µ/λ5 multiplying all terms. Indeed this shows that there may exist global

cohomology for the complex in the Baum-Fulton-MacPherson-Quart sense, even when there are Kähler
Hamiltonian S1 actions on the space. We contrast this with the rigidity result in the smooth setting in
Subsection 7.1. In the smooth case where K3 surfaces are the only Kähler manifolds of real dimension 4
with vanishing first Chern class, there are no Kähler circle actions.

Let us consider the simpler example of the cusp curve which we studied in Example 7.33 of [Jay23].
This is a space with a non-normal singularity. We compute the L2 and Baum-Fulton-MacPherson holo-
morphic Lefschetz numbers for a toric action in that article. In [Lot19] Lott constructs a Hilbert complex
based on a complex in [Rup18, Corollary 1.2] which has the same Todd class as the Baum-Fulton-
MacPherson Todd class. Thus the local and global holomorphic Lefschetz numbers for this analytic
complex would be the same as those given in [BFQ79]. However the conjectural holomorphic Morse
inequalities for the analytic complex on spaces is in general different from the conjectural ones for the
Baum-Fulton-MacPherson theory.

Example 6.4 (Cusp singularity in CP
2). Consider the cusp curve given by ZY 2−X3 = 0 in CP

2, where
we have the C∗ action (λ) · [X : Y : Z] = [λ2X : λ3Y : Z]. We consider the associated family of geometric
endomorphisms on the Dolbeault complex for the trivial bundle. The action has one smooth fixed point
at [0 : 1 : 0]. If we consider the case where |λ| < 1, then the local Morse polynomial at the smooth fixed
point is given by b

∑∞
k=1 λ

k. The other fixed point is at the singularity [0 : 0 : 1].

We observed in [Jay23] that the local ring at the singular point is the module with basis 1, t2, t3, t4, ...
where t = Y/X . Thus the local Morse polynomial corresponding to [BFQ79] is given by 1+λ2(

∑∞
k=0 λ

k) =
1/(1− λ)− λ.

45



The complex given in equation (1.2) of [Lot19] for the cusp curve we study here, has local cohomology
at the singularity given by the holomorphic functions in degree 0, which is the Hilbert space completion of
C[t], and has local cohomology in degree 1 generated by t of Lott, where t is the element in the skyscraper
sheaf given by O∫/OX , where O∫ is the sheaf of germs of weakly holomorphic functions while OX is the
structure sheaf). Thus the local Morse polynomial is given by

∑∞
k=0 λ

k + bλ = 1/(1− λ) + bλ.
Now it is easy to observe that the classical Morse polynomials for both complexes are equal, given

by 1 + bλ. We explained in [Jay23] how there is a section in the degree 1 global singular cohomology
group for these complexes (of [Lot19] and of [BFQ79]), which is not L2 bounded and thus not appearing
in the L2 cohomology. This example shows that the local Morse inequalities for these complexes can be
different, even while the classical Morse polynomials are the same.

Remark 6.5. While there is a cup product for singular cohomology on singular spaces, the failure of
Poincaré duality also means one has to be more careful when trying to define dual inequalities. Aside
from this, the fact that certain classes correspond to sections that are not integrable means that the
cup products may not be straightforwadly interpretted as integrals, important when it comes to physical
applications similar to those we study in Subsection 7.2 (see Remark 7.12).

As discussed in Subsection 1.3, there are counterexamples to the holomorphic Morse inequalities when
the action is not associated to a Bialynicki-Birula decomposition (see Remark 4.2 [Wu99]), whereas the
theorem has been proven when such a decomposition exists on smooth complex manifolds in [Wu03].

6.3 Poincaré Hodge polynomials

In [Wu99], the equivariant Poincaré Hodge polynomials are studied in the smooth case, which are some-
times also called E functions (see, e.g., [Lib18]). These admit natural extensions to Hilbert complexes
associated to singular spaces that we study in this article. We will denote the Dolbeault complexes
pPα = (L2Ωp,·(X ;E),Dα(P ), P ) where PE = ∂Λp,0⊗E , and we define the correspondingPoincaré Hodge
polynomial to be

χy,b(Pα) :=

n∑

p=0

yp
n∑

q=0

bq dimHq(pPα) (6.10)

where we abuse notation to denote the Dolbeault complexes for all p with fixed α in the left hand side of
the above equality. Given a circle action as we study in this article, we define the equivariant Poincaré
Hodge polynomial for the Dolbeault complex to be

χy,b(Pα, Tθ) :=

n∑

p=0

yp
n∑

q=0

bqTrTθ|Hq(pPα) (6.11)

for global complexes as well as local complexes pPα(U) = (L2Ωp,·(U ;E),Dα(PU ), PU ). These satisfy the
following duality

Proposition 6.6. Let X be a resolved stratified pseudomanifold with a Kähler wedge metric, and let Tθ

be a geometric endomorphism corresponding to an isometric Kähler Hamiltonian circle action on pPα =
(L2Ωp,·(X ;E),Dα(PE), PE) where PE = ∂Λp,0⊗E. We denote the Serre dual complexes as (pRα)

∗ =
(L2Ωp,n−·(X ;E∗),Dα(P

∗
E∗), P ∗

E∗) where PE∗ = ∂Λp,0⊗E∗. We have (pPα)SD = (n−pRα)
∗. Then

χy,b(Pα, Tθ) = χy−1,b−n(Rα, T−θ)(by)
n (6.12)

and for fixed points a of Tθ,

χy,b(Pα,B(Ua), Tθ) = χy−1,b−1(Rα,B(Ua), T−θ)(by)
n. (6.13)

where the choice of domain B corresponds to the geometric endomorphism on the fundamental neighbour-
hoods Ua (see Remark 3.18), which are duals for Tθ and T−θ.

Proof. The proof follows from Proposition 3.23 and following the definitions of the invariants on both
sides, noticing that there are sums over all p.

It is immediate from Theorem 1.3 that there are Morse inequalities for the Poincaré Hodge polynomi-
als. For y = b, and Dmin(∂) = Dα=1(∂) we recover the de Rham Morse inequalities given in Theorem
1.5 of [Jay23] (which hold more generally than for the Kähler Hamiltonian group actions that we study
in this article) and when y = −1 = b, we recover the Lefschetz fixed point theorem for the de Rham
setting in that article.
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Remark 6.7. Given a twisted Dolbeault complex pPα = (L2Ωp,·(X ;E),Dα(PE), PE) where PE = ∂Λp,0⊗E,
we can express the cohomology groups as the quotients (kerPE/imPE). We note that PE is simply the
projection of dE onto the Ωp,·(E) forms which can be define using the complex structure, and can be
defined independent of the metric. Thus when α = 1, the cohomology groups of the Dolbeault complex are
completely determined by the minimal domain for PE.

In the case where E is a flat bundle, we have the twisted de Rham complex

Q = (L2Ωk(X ;E)),Dmin(dE), dE), (6.14)

and the cohomology of this complex inherits the Hodge bi-grading given by the Kähler structure and we
denote the cohomology groups in bi-degree (p, q) as Hp,q(Q).

The cohomology of the Dolbeault complex with the minimal domain does not vary for different Her-
mitian wedge metrics, and we can find a Hermitian wedge metric for which the Dolbeault-Dirac operator
satisfies the geometric Witt condition. Since the Laplace-type operators for the de Rham and Dolbeault
complexes on a Kähler space differ by a constant factor, this shows that the global cohomology groups
satisfy Hq(pPα=1) = Hp,q(Q) for the global complex. In particular, since the de Rham complex is globally
Fredholm, so is the Dolbeault complex.

We define the equivariant Hirzebruch χy invariant for a given Dolbeault complex as in the
discussion above by

χy(Pα, Tθ) := χy,−1(Pα, Tθ). (6.15)

While the χy,b polynomials can be studied in the Kähler setting, the Hirzebruch χy invariants are of
more general interest on spaces with complex, and even almost complex structures. In [Jay23, §7.2.7],
we studied the case when b = −1, for arbitrary y where we restricted ourselves to the setting where the
VAPS domain corresponded to the minimal domain for P since the main results were proven for that
domain. In order to simplify the exposition we will now restrict ourselves to the case E = C

for the rest of this section. Versions of the following results hold for twisted complexes as well, and twisted
signatures are of wide interest in the study of elliptic genera and the Witten genus (see, e.g., [HBJ92].

While it is possible to study versions of the Poincaré Hodge polynomials and related invariants for gen-
eral domains, the case of the minimal domain for ∂ is the case of most interest due to the correspondence
of the cohomology of the Dolbeault and de Rham complexes highlighted in Remark 6.7.

It is a simple corollary of Proposition 6.6 that the χy=1 invariants vanish unless n is even. This
generalizes a well known property of the Hirzebruch signature invariant in the smooth setting. The
following is a more general property of the equivariant χ1 invariants.

Remark 6.8 (Self duality of χy invariant under Serre duality). In the setting of Proposition 6.6, for
E = Cn, we have that the χy invariant is self dual under Serre duality, in the sense that χy(Pα, Tθ) =
χy−1(Pα, T−θ)(−yn) and χy(Pα,B(Ua), Tθ) = χy−1(Pα,B(Ua), T−θ)(−y)n in the notation of Proposition
6.6. The cases of y = ±1 motivate the name self duality under Serre duality for this property.

We state the following results, referring to [Jay23, §7.2.7] for more details where it was studied in the
case where the cohomology of the VAPS domain matches that of the minimal domain.

Theorem 6.9 (Lefschetz Hodge index theorem). In the same setting as that of Proposition 6.6, where
E = C, the local equivariant signature at the fixed point a is given by χ1(P1,B(Ua), Tθ), and the global
equivariant signature by χ1(P1,B(X), Tθ).

Remark 6.10 (Some connections to instanton computations). In [Jay23, 7.2.8], we systematically
explore how the χy invariant can be used to compute equivariant indices of self-dual and anti-self-
dual complexes, with applications to computations that arise in physics. There we studied how cer-
tain relationships of instanton partition functions arising in equivariant Yang-Mills theories such as
in [Pes12,FQWZ20a,FQWZ20b] are related to those of χy invariants.

7 Applications: Rigidity and more formulas

The phenomenon that the index of operators restricted to equivariant Hilbert complexes vanishes for all
µ 6= 0 is usually called rigidity. The equivariant indices of the signature and spin Dirac operators are
self-dual under Serre duality as we explained in the previous section, and are rigid in the smooth setting
when there are group actions (see, e.g. [BT89]).

Remark 7.1. Self duality under Serre duality shows that if one has a global Lefschetz number that has
an expansion as

∑
j mjλ

j, where λ = seiθ, then mj = m−j, and the global Lefschetz number is symmetric

under the transformation λ 7→ λ−1.
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7.1 Rigidity of L2 de Rham cohomology

The de Rham complex and its cohomology has many deformation invariance properties which is useful
in seeing the rigidity of equivariant indices which can be expressed as linear combinations of traces
of geometric endomorphisms over de Rham cohomology groups. The includes the equivariant Euler
characteristic, signature, self-dual and anti-self-dual complexes.

We begin with a proposition which gives a correspondence between the local de Rham cohomology
and the cohomology of the equivariant subcomplex with µ = 0 with respect to a local action. Here we
briefly summarize the local de Rham cohomology for fundamental neighbourhoods of critical points on
Witt spaces, appearing in Theorem 1.5 of [Jay23] referring to subsections 5.2.3 and 6.5.1 of that article
for more details.

Given a fundamental neighbourhood Ua of a critical point of a stratified Morse function as in Definition
2.12, we can define de Rham complexes on the attracting factor Ua,s to be (L2Ωk(Ua,s),DN (dε), dε)
where dUa,s,ε is the Witten deformed de Rham operator acting on sections in Ua and DN (dε) is the
maximal domain for the de Rham operator (this is defined differently for general operators in [Jay23]
but is equal to the maximal domain due to the Witt condition which implies that the Dirac operator
corresponding to the de Rham operator is essentially self-adjoint). On the expanding factor we have
(L2Ωm−k(Ua,u),DN (d∗ε), dε) where m is the dimension of Ua,u. We consider the product complex on the
neighbourhood Ua, denoting it as QB(U) = (L2Ωk

B(U)),DB(dε), dε).

Proposition 7.2. Let Ua = U be a tangent cone of a critical point, equipped with a local Kähler Hamil-
tonian Morse function. Then the local de Rham cohomology group QB(U) = (L2Ωk

B(U)),DB(d), d) (as
discussed above for ε = 0). The cohomology groups of this complex inherit the Hodge bi-grading as dis-
cussed in Remark 6.7. Consider also the local Dolbeault complexes pPα,B(U) = (L2Ωp,·(X ;C),Dα(P ), P )
where P = ∂Λp,0 . Then we have that

Hq(pPµ=0
α,B (U)) = Hp,q(QB(U)) (7.1)

for all α ∈ [0, 1] in each bi-degree (p, q), where pPµ=0
1,B (U) is the local equivariant sub-complex with eigen-

value µ = 0 with respect to the operator
√
−1LV where V is the Hamiltonian vector field on the tangent

cone.

Proof. We first prove this in the case of a cone U = Cx(Z) where the Hamiltonian Morse function is x2

(attracting factor) where V is the Reeb vector field on the Sasaki structure that extends to the action of
the cone as in Definition 2.12.

The de Rham cohomology of a cone Hp,q(QB(C(Z))) was computed in Lemma 6.16 of [Jay23] where
the harmonic representatives φ were shown to be given by the pullback under πZ : C(Z) → Z = {x = 1}
of the harmonic representatives of the cohomology of Z, of degree k ≤ [ l−1

2 ] where l is the dimension of
the link Z. In particular that ∂xφ = 0 (short for ∇∂x

φ = 0). We observed in the proof of Proposition 7.1
of [Jay23] that these harmonic representatives, when restricted to the link Z are in the basic cohomology
corresponding to the Reeb foliation, and in particular LV φ = 0.

Now consider elements in Hq(pPµ=0
α,B (U)). The condition that µ = 0 is equivalent to LV u = 0. Any

element in the Dolbeault complex can be written as the sum of a tangential form and a normal form
using the decompostion

Ω0,q(C(Z)) = Ω0,q(Z)⊕ (dx−
√
−1xJ(dx)) ∧ Ω0,q−1(Z) (7.2)

and the analyticity of the harmonic sections together with the boundary conditions corresponding to the
choice of domain imply that the elements u ∈ Hq(pPµ=0

α,B (U)) are tangential on the attracting factor.
In particular ιV u = 0 for u in the local cohomology group. Then LV u = ιV du = ∂V u = 0. Since
such u are also in the null space of the Dolbeault-Dirac operator, (∂x + i 1x∂V )u = 0 which implies that
∂xu = 0 as well. The analysis for the harmonic sections of the Laplace-type operator in Proposition 5.33
of [Jay23] using separation of variables shows that if ∆u = 0 and ∂xu = 0, then ∆Zu = 0 where ∆Z is
the Hodge Laplacian on Z (since the metric is Kähler). These are precisely the elements in the null space
of Hp,q(QB(C(Z))) once integrability on the cone is taken into account. This proves the result for the
case of C(Z) which is an attracting factor.

The case when the critical point has an expanding fundamental neighbourhood follows from duality
since the cohomology groups of the attracting and expanding factors are related by Poincaré duality for
the de Rham complex, and Serre duality for the Dolbeault complex, both of which are realized by the
Hodge star operator. For the case of general tangent cones as in Definition 2.12, the result follows from
the Künneth formula.
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Remark 7.3. The above result strengthens Proposition 7.1 of [Jay23] where we showed that the harmonic
representatives of the local de Rham cohomology are harmonic representatives of the local Dolbeault co-
homology for a Kähler cone.

Moreover we observe that this local rigidity can be applied to Hamiltonian’s corresponding to isometric
circle actions on stratified pseudomanifolds with wedge metrics and wedge symplectic structures where the
Hamiltonian action is locally a Kähler action in a fundamental neighbourhoods of each critical point, with
a local normal form in Definition 2.12, and this allows one to prove the rigidity of L2 cohomology for
such actions using ideas in the theorem stated below.

Theorem 7.4. Let X be a resolved stratified pseudomanifold with a wedge Kähler metric and a Kähler
Hamiltonian morse function h. Then the Witten deformed de Rham complex in Theorem 6.33 of [Jay23]
is isomorphic as a Hilbert complex to the direct sum over p of the Witten deformed complexes given
in Theorem 1.2 for the equivariant Dolbeault complexes pPµ=0

α = (L2Ωp,·
µ=0(X ;C),Dµ=0

α (P ), P ) where

P = ∂Λp,0 for any α. In particular the Witten deformed de Rham complex inherits the Hodge bi-grading.

Remark 7.5. In [Jay23] we studied the Witten deformed de Rham complexes for stratified Morse func-
tions given by Definition 2.11, which does not seem to capture the Kähler Hamiltonian Morse functions
in Definition 2.12 at first glance.

We observed in Remark 6.21 of [Jay23] that we can perturb a metric within a quasi-isometry class in a
neighbourhood of the critical points of h and arrange that it is product type in fundamental neighbourhoods
of the critical points. Similarly, given a product decomposition as in equation (2.25) of the tangent cone
equipped with a local Kähler Hamiltonian Morse function, where the weights are not necessarily ±1, we
can rescale the metrics on the factors Crj (Zj) to see that the Kähler Hamiltonian function is indeed a
Morse function in the sense of Definition 2.11 with respect to a deformed Kähler metric on the tangent
cone. This shows how we have a de Rham Witten instanton complex for Kähler Hamiltonian Morse
functions.

Proof. The direct sum over p of the Witten deformed Dolbeault subcomplexes in the statement of the the-
orem have graded vector spaces in each bi-degree (p, q) which are isomorphic to ⊕a∈crit(h)Hq(pPµ=0

α,B (Ua)).
Recall that the Witten deformed complexes and the undeformed complexes are quasi-isomorphic at the
local and global levels (see Subsection 4.2). There is a similar isomorphism between the Witten de-
formed de Rham complexes and the (undeformed) de Rham complexes (see [Jay23, §6.5] at the local
and global levels. Since we assume that X has a Kähler structure it is easy to see that the de Rham
operator d = ∂ + ∂ respects the Kähler structure and the Hodge bi-grading. Moreover since the Morse
function is Kähler Hamiltonian, the Witten deformed de Rham operator respects the Kähler structure
and the Hodge bigrading as well. Moreover we observe that the Witten deformed de Rham operator is
the conjugation of d = ∂ + ∂ by eεh, the operator for the Witten instanton subcomplexes (direct sums
for the Dolbeault case) which respects the Hodge decomposition. The local cohomology groups for the
undeformed complexes are isomorphic by Proposition 7.2 and this proves the result.

This result allows us to prove rigidity, as well as formulate Morse inequalities for many invariants in
terms of local de Rham cohomology groups. The following is Theorem 1.10, restated to aid the reader.

Theorem 7.6. In the same setting as Theorem 7.4, for E = C, α = 1 the global equivariant Poincaré
Hodge polynomials are rigid. Moreover we have that

χy,b(Pµ=0
α (X), Tθ) = χy,b(Q(X)) :=

n∑

p,q=0

ypbq dimHp,q(Q(X)) (7.3)

and for fundamental neighbourhoods Ua of critical points,

χy,b(Pµ=0
α,B (Ua), Tθ) = χy,b(QB(Ua), Tθ)) :=

n∑

p,q=0

ypbq dimHp,q(QB(Ua)) (7.4)

for any α, and these satisfy de Rham type Poincaré Hodge inequalities

∑

a∈crit(h)

χy,b(QB(Ua), Tθ)) =
∑

a∈crit(h)

χy,b(QB(Ua), Id)) = χy,b(Q(X)) + (1 + b)

n−1∑

q=0

Rqb
q (7.5)

where Rq are non-negative integers.
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Proof. The rigidity for E = C, α = 1 follows from Theorem 7.4, the definition of the global Poincaré
Hodge polynomial, and the fact that for α = 1 the global cohomology for the Dolbeault and de Rham
complexes are isomorphic as fleshed out in Remark 6.7.

Equations (7.3) and (7.4) follow from the definition of the Poincaré Hodge polynomials and Theorem
7.4.

The de Rham type Poincaré Hodge inequalities follow from the holomorphic Morse inequalities, re-
stricted to µ = 0.

Corollary 7.7. In the setting of Theorem 7.6, given the de Rham type Poincaré Hodge inequalities,
we recover the de Rham Morse inequalities in [Jay23] for y = −1. We get de Rham type signature
Morse inequalities for y = +1. In both cases we get formulas for the indices (Euler characteristic and
Signature) when we set b = −1.

Proof. These follow from the fact that χ−1 and χ1 give the Euler characteristic and the signature invariant,
as discussed in Subsection 6.3 and Theorem 7.6.

We refer to section 7.2.9 of [Jay23] for conditions where the Morse function is perfect. Then the error
polynomials vanish.

Remark 7.8 (Generalizations). The above corollary generalizes equation (42) of [Wit82] in our singular
Kähler setting. We observe that for general actions there needs to be a sign accounting for the co-
orientation of the normal fibers to the critical points (see also [Jan18, §2]) which is accounted for by the
local Hodge (p, q) degree in our setting.

Remark 7.9 (Related versions and History). The ideas used in the proof of Theorem 7.6 can be used to
construct de Rham type Morse inequalities for some other complexes that can be expressed using L2 hodge
numbers hp,q, when there is a Kähler Hamiltonian Morse function, including the self-dual and anti-self
dual complexes, where the indices are given by 1/2(χ−1±χ1) (see [Jay23, §7.2.8] for more details). When
there are Kähler isometric group actions, one can still derive the formulas corresponding to b = −1 for
the equivariant indices.

In [Wit82, §3] Witten discusses how the formula above for the de Rham type signature Morse in-
equalities for b = −1 can be derived using a deformation when given a Killing vector field with isolated
zeros, even on manifolds without Kähler structures. This can be done in the singular setting as well
using the methods we have developed in this article. In chapter 4 of [Zha01] Zhang derives the case for
y = −1, b = −1 for arbitrary vector fields with isolated zeros, the Poincaré Hopf theorem, which is also
sketched by Witten in [Wit82, §3]. Implicit in Proposition 4.10 of [Zha01] is a Z2 graded Witten instanton
complex for the de Rham complex.

Example 7.10 (de Rham type Poincaré Hodge polynomial of a conifold). We build on the example we
studied in [Jay23, §7.3.4]. Consider the quadric Y1Y4 − Y2Y3 = 0 in CP

4 with coordinates [W : Y1 : Y2 :
Y3 : Y4]. The zero set of this polynomial is a conifold which we shall call X. This space has a (C∗)3

algebraic toric action, (λ, µ, γ) · [W : Y1 : Y2 : Y3 : Y4] = [W : λY1 : µγY2 : µ−1λY3 : γY4]. It is easy
to verify that generically there are 5 fixed points on X, given by [1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0],
[0 : 0 : 1 : 0 : 0], [0 : 0 : 0 : 1 : 0], [0 : 0 : 0 : 0 : 1]. The last four fixed points are smooth and the first is
singular.

The arguments in [Jay23] shows that if we pick γ = seiθ, µ = γ2 and λ = γ4, where s < 1, the action
on the chart W = 1 corresponds to a Hamiltonian function where the singular fixed point is attracting.
The fundamental neighbourhood is a cone over a link S2×S3, and this contributes an element in the local
cohomology of bi-degree (1, 1), and an element in degree 0 of bi-degree (0, 0).

The smooth fixed points each have a one dimensional local cohomology group with elements in bi-
degrees (1, 1) at [0 : 0 : 0 : 0 : 1], (2, 2) at [0 : 0 : 0 : 1 : 0] and at [0 : 0 : 1 : 0 : 0], and (3, 3) at
[0 : 1 : 0 : 0 : 0]. It is easy to see that the Poincaré Hodge polynomial is 1 + 2by + 2b2y2 + b3y3. In
particular the signature is 0 (given by setting b = −1, y = +1 for this 6 dimensional space.

7.2 NUT charge and signature

In [GH79], Gibbons and Hawking study the Euler characteristic and signature, and their equivariant
versions on 4 dimensional blackhole spacetimes, in particular using equivariant computations at nuts
(isolated fixed points) and bolts (2 dimensional fixed point sets) when there are Killing vector fields to
give formulas for gravitational action functionals and entropy. More generally on d dimensional spaces
with time-like Killing vector fields, the fixed point sets give rise to entropy (these are the obstructions
to foliating the spacetimes with constant imaginary time) which include blackhole event horizons. The
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d − 2 dimensional fixed point sets are also called bolts in [Hun98], and their NUT charge is computed,
along with contributions from other important geometric objects.

The topic is of great interest in mathematics and physics with many singular spaces arising naturally
in its study. The smooth manifolds in [GH79] are obtained by compactifying them in Kruskal coordi-
nates, with careful choices of coordinates in order to obtain a smooth manifold, and other choices of
compactification lead to stratified pseudomanifolds where angles at singularities correspond to black hole
temperatures (see page 1 of [dA23]).

More recent work in [AAD+23] uses techniques and results in [Jan18] which crucially use rigidity.
Any extension of the study of gravitational instantons with conic singularities (e.g., [BG23]) will no
doubt require equivariant signature theorem‘s’, with the correct choice of cohomology necessary to ob-
tain equivariant computations for the corresponding choices of domains for operators involved, and for
corresponding choices of integrals. Fixed point computations at nuts and bolts with more general local-
ization computations are now studied widely on smooth manifolds and orbifolds in physics (see [GGS24]
where they are used in studying supergravity theories), and extending these to more singular spaces leads
to many interesting questions.

In this subsection we will show how some formulas for NUT charges and the signature given in [GH79]
can be generalized to stratified pseudomanifolds with wedge Kähler metrics with Kähler Hamiltonian
Morse functions, with plausible generalizations to spaces with local complex and almost complex struc-
tures near fixed points of a Killing vector field preserving the relevant structures using work in [Jay23, §7],
and beyond that using eta invariant based formulae for the equivariant signature on spaces with wedge
metrics. We study it using the Dolbeault complex with the minimal domain (α = 1). For geometric Witt
spaces, the signature operator is essentially self-adjoint.

We begin with equation (4.9) of [GH79], which is derived for S1
2θ actions on gravitational instantons

where there is an imaginary time-like Killing vector field. The weights of the action at fixed points encode
the surface gravity of black holes. This is simply the formula for the equivariant signature of an oriented
4 manifold with a Killing vector field V , with nut and bolt fixed points. For such a space with only nuts,
we have that the signature can be written as

∑

a∈zeroes(V )

τ3(pa, qa) = τ (7.6)

where τ3(pa, qa) = 1/3(paq
−1
a +qap

−1
a ), where pa, qa are relatively prime integers such that κ−1

1 κ2 = qa/pa
for weights κ1, κ2 of the local Hamiltonian corresponding to the circle action at the isolated fixed points.
We use the notation τ3 since this is the third local quantity which we can define, that can be added up
at fixed points. We note that this technique works only because the equivariant signature is
rigid.

These weights are also the surface gravities (see equations (3.7), (3.8) of [GH79]). From now on we will
make the simplifying assumption that the weights at the fixed points are κ1 = pa and κ2 = qa. Equation
(7.6) is derived by taking the Atiyah-Bott-Lefschetz fixed point formula for the equivariant Signature,
expanding it in powers of θ, and using rigidity to write the global equivariant signature as the sum of the
coefficients of the θ0 terms in the expansion at each fixed point. Equation (4.8) of [GH79] is derived by
equating the coefficients of the θ−2 terms in the expansion, and for isolated fixed points yields

∑

a∈Zeroes(V )

N(pa, qa) = 0 (7.7)

where for smooth fixed points a, the contribution is given by N(p, q) = −(pq)−1. The quantity N(p, q)
gives the NUT charge of the fixed points up to a constant, derived in [GH79, §5] We note that there
are different conventions of overall constants chosen for the NUT charge (compare equations (5.9) and
(5.10) of [GH79] with the formulas in Proposition 4.5 of [AAD+23]), with more factors appearing when
studying entropy and action to account for this.

Remark 7.11 (The issue of orientation). While equation (4.8) of [GH79] is derived correctly using the
Atiyah-Bott-Lefschetz fixed point theorem, the subsequent derivation of the NUT charge of nuts and bolts
in section 5 of that article lead to equations (5.9) and (5.10) of that article, where the co-orientation
of the bolts is not accounted for in equation (5.10). This leads to a sign error in equation (6.9) of that
article, reappearing in equation (6.14).

The co-orientation is correctly accounted for in the proof of Proposition 4.5 of [AAD+23]. We refer the
reader to [Rot16] and [Wit82, §4] for discussions on similar issues with picking orientations in Morse-Bott
inequalities and equivariant de Rham type signature theorems (see also Remark 7.8).

We emphasize the importance of these signs in physical interpretations of the computed quantities
which have lead to deep philosophical questions in versions of the theory (see [dA23, §3] for details and
references).
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Equation (6.14) in [GH79] is followed by the remark that the entropy computation has contributions
from the NUT charges of both nuts and bolts, which cannot be attributed to individual nuts and bolts
due to a translational freedom, but makes sense since the total value is invariant since the “total sum
of the NUT charges is zero for a compact manifold”. However the contributions in equations (6.9),
(6.14) of that article only vanish once the sign error discussed in the above remark is fixed. Moreover,
the coordinate computations in both [GH79] and [AAD+23] show that the Nut charge is actually the
evaluation of a characteristic polynomial of the curvature, which vanishes globally.

That the right hand side of equation 7.7 (the total NUT charge) vanishes can be deduced as a conse-
quence of observation that the series expansion in θ of the global equivariant signature τ(θ) cannot have
powers θk for k < 0 since it is a smooth function in θ, including at θ = 0 where τ(0) is an integer. This
is weaker than rigidity and maybe useful for deriving similar results in cohomology theories
(such as for singular cohomology, using the formulas of [BFQ79]) where the equivariant
index is not rigid. This vanishing is also related to an observation by Bott (see page 244 of [Bot67]) of a
vanishing phenomenon for a modification of the Bott-residue formula for certain equivariant polynomials
in curvature, which he observes holds for the L polynomials. We refer to related formulas in Theorem
3.2, Theorem 3.3, Corollary 3.4, Lemma 3.5 of [Jan18], and results in [AAD+23, §3.2] which are derived
as consequences of rigidity.

We now extend formulas (7.6) and (7.7) for the two four dimensional spaces that we discussed earlier
in this section and discuss some features.

For the singular fixed point a3 of the action on the algebraic surface in Example 6.1, we can set
λ2 = eip(2θ) and µ2 = eiq(2θ) to expand the local equivariant χ1 invariant given in Example 7.2.8 of [Jay23]
to obtain N(p, q) = −1

2 (pq)−1, and τ3(p, q) =
1
2 (

1
3 (pq

−1 + qp−1)). We observe that these differ from the
corresponding quantities in the smooth setting by a factor of 1/2, consistent with the fact that the
singularity is an orbifold singularity with local covering degree 2.

For the singular fixed point a3 of the action on the algebraic surface in Example 6.3, we can set
λ/µ = eip(2θ) and 1/µ4 = eiq(2θ) to expand the local equivariant χ1 invariant given in [Jay23, §7.3.6] to
obtain N(p, q) = −(pq)−1, and τ3(p, q) = (13 (pq

−1 + qp−1)) similar to the smooth setting. The tangent
cone at the singularity is given by a product of a smooth disc and a cone over a T 3,4 knot with angle
6π. The reason the formula is similar to that in the smooth setting is because we pick the equivariant
χ1 invariant corresponding to Dolbeault complex with the minimal domain (α = 1) to get the correct
expansion.

For the singular fixed point a1 which is a non-orbifold singularity, we can set λ4 = eip(2θ) and
mu4 = eiq(2θ), to expand the local equivariant χ1 invariant to obtain N(p, q) = −3(pq)−1 and τ3(p, q) =
1/2− (1/4)(pq−1 + qp−1).

Remark 7.12 (Formulas for other cohomology theories). It is easy to observe that if one chooses other
cohomology theories, the formulas may change for general singular spaces, and it is not clear how to define
an analog of τ3 without rigidity. If there is a Hilbert complex of the type we study, corresponding to a self-
adjoint extension of the Dolbeault complex on Xreg, then the choice of domain will dictate these changes
and will be related to the propogators corresponding to the Dirac-type operator. For theories such as those
for which we discussed conjectural holomorphic Morse inequalities in Subsection 6.2, considerations such
as those discussed in Remark 6.5 apply.

7.3 Spin-Dirac complex and fractional powers of canonical bundles

It is well known that a spin structure on a smooth space X with a complex structure corresponds to a
square root of the canonical bundle K when it exists. That is we have a line bundle L on X such that
L⊗2 = K, and a spin Dirac operator

D =
√
2(∂L + ∂

∗
L) :

⊕

q even

(Ω0,q(X ;L)) →
⊕

q odd

(Ω0,q(X ;L)), (7.8)

(see for instance Theorem 2.2 of [Hit74], Section 3.4 of [Fri00]). We denote the associated elliptic com-
plexes as S = (L2Ω0,q(X ;L),Dα(P ), P ) where P = ∂L.

Remark 7.13 (Self duality of spin complex). It is easy to see that the complex S is a self dual complex
under Serre duality since L−1 ⊗ L⊗2 = L.

In the smooth setting, a square root of the canonical bundle K only exists when the first Chern class
is even. Hirzebruch studied generalizations of this when C1(X) = 0 mod (N), considering the Dolbeault
cohomology of the complex twisted by a complex line bundle L⊗k such that L⊗N = K, for integers
0 < k < N (see [Hir88]), relating it to elliptic genera of level N (c.f. [Des16])
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The following result is an analog of Proposition 2.1 of [AH70], which allows one to drop the assumption
that the action lifts to the bundles that we used in the proof of the Morse inequalities for the bundles
that we consider here.

Proposition 7.14. Let X2n be a resolution of a compact pseudomanifold, equipped with a Kähler wedge
metric on which a compact connected Lie group G acts effectively, preserving the Kähler structure. Let L
be a choice of line bundle such that L⊗N = K, where N > 1 is an integer. Then there exists canonically
a Lie group G1 and a homomorphism H : G1 → G, which is either the identity or a covering such that
G1 acts on L inducing via H the given action of G on X.

Proof. We follow the proof of Proposition 2.1 of [AH70], adapting it to the singular Kähler setting. The
Kähler wedge metric on X induces a canonical Hermitian metric on Q, by which we denote the principal
tangential U(n) bundle of X (i.e., the unitary frame bundle on X).

This is defined by the canonical Riemannian connection (Chern-connection) on Q, together with the
invariant metric on U(n).

The determinant map is a submersion from U(n) to U(1), and the invariant metric on U(n) induces

an invariant metric on U(1) by the pushforward of the determinant map. We denote by Q̃ the principal
U(1) bundle which is the determinant bundle of Q. This then has a natural metric induced by the one
on Q.

If the holomorphic wedge tangent bundle is the bundle associated to Q with representation r : U(n) →
Rn ⊗C, then the canonical bundle is the line bundle associated to Q̃ given by the representation det(r) :
U(1) → C.

The bundle L, when it exists, corresponds to a choice of N -th root, s : x 7→ x1/N from U(1) to an N
fold covering of U(1), which is diffeomorphic to U(1) = S1. This yields a further principal U(1) bundle
Q1 which yields the associated line bundle L via the representation s ◦ det(r) : U(1) → C.

Remark 7.15. In the case where N = 2, this choice of squareroot corresponds precisely to the choice of
a spin structure (see the proof of Theorem 2.2 of [Hit74], and that of Proposition 2.1 of [AH70]).

There is a canonical metric on Q1 as well. The map s has an inverse s−1 : x → xN which is a
covering map which we can use to pullback the invariant metric on U(1) in Q̃ to Q1. Any g ∈ G induces

diffeomorphisms gQ : Q → Q and gQ̃ : Q̃ → Q̃, and gQ1 : Q1 → Q1. These are isometries since the

metrics on Q, Q̃,Q1 are canonically associated to the metric on X .
For any element of the Lie algebra L(G), the corresponding infinitesimal isometry is a vector field on

Q̃ which preserves the strata on the base X , which commutes with the action of L(U(1)) = R. Lifting
this vector field to Q1, we obtain an infinitesimal isometry of Q1, which commutes with the action of R
which is the Lie algebra of the Lie groups U(1) on both Q̃ and Q1. Thus we have an infinitesimal action

of L(G) on Q1 commuting with U(1). Exponentiating gives an action of G̃, the universal cover of G, on

Q1 commuting with U(1). Let G1 be the image of G̃ that acts on Q1 modulo the stabilizer. We have a
homomorphism H : G1 → G and the kernel is of order d such that d divides N .

The following result (restated as Theorem 1.11 in the introduction) is a strengthening of vanishing of
index results, including those in [AH70], [Des16, §6], in the case where the group actions are isometric
Kähler Hamiltonian. In the case when N = 2 and k = 1, this corresponds to the vanishing of harmonic
spinors.

Theorem 7.16. Let X be a smooth Kähler manifold with a Hermitian line bundle L such that L⊗N =
KX, where N > 1 is an integer. Let E = Lk, where 0 < k < N is an integer. We consider the complex
P = (L2Ω0,q(X ;L),Dα(P ), P ) where P = ∂E.

If there is a Kähler action of a compact connected Lie group G with isolated fixed points (with at least
one fixed point), then the cohomology of the Dolbeault complex twisted by the bundle E vanishes in all
degrees. In particular the twisted Dirac operator is invertible.

Proof. We use the holomorphic Morse inequalities for the action. By Proposition 7.14 above, there will
always be a lift of the action to L, and thus to E. By Remark 1.8, it suffices to prove this for a circle
action with isolated fixed points.

We see that for a fixed point of the action a with fundamental neighbourhood Ua, the local Morse
polynomial is given by equation (6.1), which reduces to

bna

∏

γa
j >0

eiγ
a
j θ(k/N)

1− eiγ
a
j θ

∏

γa
j <0

ei(N−k)|γa
j |θ/N

1− ei|γ
a
j |θ

(7.9)
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and the local Morse polynomial of the dual complex is given by

bn−na

∏

γa
j >0

e−i(N−k)|γa
j |θ(k/N)

1− e−i|γa
j |θ

∏

γa
j <0

e−iγa
j θ/N

1− e−iγa
j θ

. (7.10)

This is because the trace, Ea(θ) is the trace of the action over the appropriate roots of the section of the
canonical bundle dz1 ∧ dz2 ∧ ... ∧ dzn, for the complex and the dual complex.

We use λj := eiγ
a
j θ for brevity. Now the result is a consequence of the fact that the corresponding

classical Morse polynomial is 0. This follows from the observation that the Laurent expansions of the
contributions at fixed points for Im(θ) > 0 have only terms eicθ with c > 0, while the expansions with
Im(θ) < 0 have only terms with c < 0.

This implies that the cohomology must vanish identically in all degrees, and the Dirac-type operator
is invertible.

The result of [AH70], that the Â genus vanishes on spin manifolds with circle actions, holds even
for spaces such as tori which have circle actions which are not Hamiltonian. It is well known that the
2 torus has 4 spin structures, one of which corresponds to the trivial bundle which has non-vanishing
cohomology, even though the index of the spin Dirac operator vanishes. This is a space which does not
admit positive curvature metrics. On the other hand given Fano manifolds that admit positive curvature
metrics, the Lichnerowicz estimates show that harmonic spinors vanish. The distinction between group
actions having fixed points vs those that don’t is akin to the difference between positive curvature and
flat metrics.

Remark 7.17 (Generalization for complex manifolds with Bialynicki-Birula decompositions). It is easy
to see that this holds even when the action is not Kähler, albeit under the assumption that there exists a
Bialynicki-Birula decomposition where the Morse inequalities will hold by [Wu03].

Most of the corollaries in [AH70] have analogs for Kähler Hamiltonian actions that we study here.
This is interesting since one can find such bundles for any smooth Kähler manifold, even when the first
Chern class is not even. We provide a sample of such a corollary for demonstration.

Corollary 7.18. If X is a Kähler manifold with harmonic spinors, or with cohomology in the Dolbeault
complex twisted by a bundle Kk/N for integers N > k > 1, then it does not admit any Kähler actions of
compact connected Lie groups, with isolated fixed points and at least one fixed point. In particular, if there
are compact Kähler Lie group actions on a Kähler manifold admitting spinors, the L2 Euler characteristic
is zero, or there are non-isolated fixed points.

Proof. Under the assumptions, if there were a compact Kähler Lie group action with isolated fixed points,
it would contradict the Theorem above. If it does admit a Lie group action and there are no fixed points,
then by the L2 de Rham Lefschetz fixed point theorem, the Euler characteristic is 0.

The main result of [AH70] does not assume that the fixed points are isolated. More can be said for
the case of non-isolated fixed points in the smooth setting using the results in [WZ98], which we leave to
the interested reader.

In Example 7.29 of [Jay23], we computed that the Spin Lefschetz number for the singular quadric
(the normal variety which is a complete intersection hypersurface in CP

3 that we studied in Example
6.1) is 0. It is easy to use the Morse inequalities of this article to see that there are no harmonic spinors
in that example. We will next prove a result which generalizes this observation.

We observed in [Jay23, §7.2.3] that for normal algebraic varieties with vanishing higher local co-
homology of fundamental neighbourhoods of fixed points with the choice of domain for the complex
corresponding to an attracting fixed point, the local cohomology of the minimal domain of the ∂ operator
is in one to one correspondence with the local ring, using it to match the local and global Lefschetz
numbers in the L2 and [BFQ79] settings in Proposition 7.8 of that article.

We also studied how the local cohomology of the Spin Dirac complexes of complete intersection hy-
persurfaces with canonical singularities admit a presentation as a module over the holomorphic functions
generated by a square root of the Poincaré residue, (see [Web05, Theorem 1.1] c.f. [Jay23, §7.3.3]). Since
the Baum-Fulton-MacPherson theory matches the L2 theory for such normal varieties, the dual local
cohomology also matches, and the canonical bundle has the same local trivializing harmonic sections
given by the Poincaré residue.

Given the vanishing set X of a polynomial G in Cn, the Poincaré residue is

ω = ResCn|X
dz1 ∧ dz2 ∧ ... ∧ dzn

G
=

dz2 ∧ ... ∧ dzn
∂G/∂z1

=
dz1 ∧ dz3 ∧ ... ∧ dzn

∂G/∂z2
= ... (7.11)
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and we refer to [Rei, LY13] for more details (see also [Jay23, §7.3.3]). In this setting we can generalize
Theorem 7.16.

Theorem 7.19 (Vanishing of harmonic spinors). Let X2n−2 be a complete intersection complex hyper-
surface in CP

n with a Kähler Tn−1 action with isolated fixed points, that descends from a torus action on
CP

n. We assume that X is the vanishing set of a single degree d polynomial f in CP
n, a normal algebraic

variety with canonical singularities, has local cohomology at fixed points concentrated in a single degree,
and n+1− d ≥ 2. Then we have that the index of the spin Dirac operator for the domain corresponding
to D1(∂) vanishes. If in addition the torus action is Kähler Hamiltonian on X with isolated singularities,
then the spin Dirac operator is invertible for the domain corresponding to D1(∂).

The assumption that the local cohomology at fixed points is concentrated in a single degree, is
equivalent to saying that the local cohomology for the Dolbeault complex corresponding to the trivial
bundle and α = 1 for attracting fixed points corresponds to the holomorphic functions on the fundamental
neighbourhood.

In the smooth setting, the condition (n + 1 − d) > 0 corresponds to Fano manifolds which admit
positive curvature metrics, in which case the result follows from the Lichnerowicz formula.

Proof. We can write any torus action on CP
n as

[Z0 : Z1 : ... : Zn] 7→ [Z0 : eiθ1Z1 : ... : eiθnZn]. (7.12)

by taking the compactification of Cn with complex coordinates zk = Zk/Z0 where the torus action can
be diagonalized to act by zk → eiθkzk. The assumption that there are only canonical singularities implies
that the canonical bundle has a local trivializing harmonic section generated by Poincaré residues on
each chart (see [Web05, Theorem 1.1]). Say that the polynomial f has a monomial term Zc0

0 Zc1
1 ...Zcn

n

for cj ∈ N ∪ {0}.
Since the torus action has fixed points only on the origins of the charts Zk = 1 which lie on the

vanishing set of the polynomial, we need to study the local cohomology groups of the twisted Dolbeault
complex at these points. The squareroot of the canonical bundle is locally trivial, and is trivialized by a
squareoot of the section s2k given by the Poincaré residue. The trace of Tθ over these local cohomology
groups then factors into the trace over the local section sk and the trace over the local holomorphic
function for attracting factors, and we can compute over the expanding factors using duality arguments.

With the form of the monomial that we assumed, the Poincaré residue over the chart Zk = 1 is given
by s2k = ResCn|Xη where

η =
dZ0 ∧ dZ1 ∧ ...dZk−1 ∧ dZk+1 ∧ ... ∧ dZn

Zc0
0 Zc1

1 ...Z
ck−1

k−1 Zck
k Z

ck+1

k+1 ...Zcn
n

Zd−n
k , (7.13)

the trace of the action over which is given by eiκ where

κ =

n∑

j=1

θj(1− cj) + θk(−1 + d− n) (7.14)

since the trace over the Poincaré residue is the same as that over the form η on Cn by the action.
If f has only one monomial, then such a hypersurface is smooth and the result follows from Theorem

7.16. Thus we can assume that there are at least two distinct monomials in f , at least one of which
therefore has some cv ≥ 2 for some v ∈ {0, ..., n}. Since

∑n
j=0 cj = d, and n+ 1 − d ≥ 2 the pigeonhole

principle shows that there are at least two numbers l such that cl = 0. Let us pick one such l. We see
that on charts Zk = 1 for k 6= l, the trace of the geometric endomorphism Tg for g ∈ G corresponding to
the action over the local section s2k contributes a factor eimθl where m = 1− cl = 1 > 0. The trace over
s2l contributes a factor eimθl where m = 1− cl − 1 + d− n = d− n < 0 when n+ 1− d > 1.

On the chart where Zl = 1, the local holomorphic functions are power series in products of Zk/Zl

for k 6= l, which shows that the trace of the action over the local holomorphic functions only contribute
factors eimθl where m ≤ 0. For the local cohomology of the twisted complex S, from our observations for
the Poincaré residue, and for the section given by its square root, we see that there are only factors eimθl

where m > 0 where we use the self-duality under Serre duality property and the fact that the local Morse
polynomial is computed in the local cohomology groups corresponding to which the traces converge as
power series in the variable λl = seimθl for s < 1.

On all other charts, we see by our discussion and arguments similar to that above, that the traces over
sections in the local cohomology groups of the twisted complex contribute factors eimθl where m > 0.

Since there are at least two numbers l for which cl vanish, the positivity/negativity of exponents of
powers of eiθl discussed above hold for two values of l between 0 and n. The space X is a hypersurface
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there is only a Tn−1 action. Since we have two numbers l with the required positivity properties, we see
that there the restricted torus action on X still has at least one variable λl = eiθl which has the required
positivity properties.

Since the local Morse polynomials only have positive powers of λ, self-duality under Serre duality shows
us that the dual local Morse polynomials only have negative powers of λ appearing in the expansion (and
that series converges for s > 1). Thus the classical Morse polynomial is identically 0. This proves the
result when the action is a Kähler Hamiltonian with isolated fixed points.

When one only has a complex action, we only have the Lefschetz fixed point theorem. We saw
in [Jay23, §7.2.3] that under our assumptions we can sum the formal series and write the Lefschetz
number as a rational function in the torus variables λj (without renormalization for algebraic torus
actions). Thus the local Lefschetz numbers are rational functions in the variable λl, and by the Lefschetz
fixed point theorem the global Lefschetz number is a rational function in λl as well. For Fredholm
complexes, the global Lefschetz numbers can only have poles at 0 or ∞ by the finiteness of the index.
However all the local Lefschetz numbers vanish at λl = 0, and they even vanish at ∞ by the self-duality
under Serre duality (see Remark 7.1). This shows that the global Lefschetz number is a rational function
that vanishes at λl = 0 and λl = ∞, implying it is identically 0. This proves the theorem.
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