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A NONNEGATIVE WEAK SOLUTION TO THE PHASE FIELD

CRYSTAL MODEL WITH DEGENERATE MOBILITY

TOAI LUONG ∗ AND STEVE WISE †

Abstract. Phase field crystal is a model used to describe the behavior of crystalline materials
at the mesoscale. In this study, we investigate the well-posedness of a phase field crystal equation
subject to a degenerate mobility M(u) that equals zero for u ≤ 0. First, we prove the existence of a
weak solution to a phase field crystal equation with non-degenerate cutoff mobility. Then, assuming
that the initial data u0(x) is positive, we establish the existence of a nonnegative weak solution to the
degenerate case. Such solution is the limit of solutions corresponding to non-degenerate mobilities.
We also verify that such a weak solution satisfies an energy dissipation inequality.

Keywords: phase field crystal; degenerate mobility; weak solution; positive so-
lution; energy inequality

1. Introduction. In this paper, we consider a phase field crystal (PFC) model.
Let u : Ω → [0,∞) be an Ω–periodic unary atom density, where Ω = [0, 2π]d ⊂ R

d,
1 ≤ d ≤ 3. The free energy for the state defined by u is

F(u) =

∫

Ω

[
W (u) + κ

(
1

2
u2 − |∇u|2 + 1

2
|∆u|2

)]
dx, (1.1)

where W : [0,∞) → [W0,∞) is a homogeneous free energy density, W0 > −∞, and
κ > 0 is a parameter. The PFC equation is a conserved gradient flow with respect to
the PFC energy functional F(u) and is written as

ut = ∇ · (M(u)∇ω), in ΩT := Ω× (0, T ), (1.2)

ω = W ′(u) + κ(u+ 2∆u+∆2u), in ΩT , (1.3)

where T > 0 is the final time.
From a mathematical point of view, this equation and its variants have been

analyzed in [14, 19, 12, 13, 4] and references therein. In particular, Miranville studied
the existence and uniqueness of variational solutions for a PFC model with constant
mobility M(u) ≡ 1 and logarithmic (singular) nonlinear terms [14]. Wu and Zhu
theoretically and numerically analyzed the well-posedness of a square PFC model in
the three-dimensional case [19]. The significant difference between our result and
theirs is that we are studying the PFC equation subject to a non-constant mobility
M(u) that is dependent on u.

1.1. Derivation. In this section, we quickly derive the PFC model to motivate
the form that we investigate. See, for example, the nice paper by Archer et al. [1]
for all of the possible modeling choices. The phase field crystal (PFC) model was
introduced in [8, 9] as continuum description of solidification in a unary material.
It was formulated as a mass conservative version of the classical Swift-Hohenberg
equation, but, later, the model was re-derived, via certain reasonable simplifications,
from the dynamical density functional theory (DDFT) [10]. (See [1] for a more in-
depth derivation from the DDFT framework.) In particular, assuming a constant,
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uniform temperature field, one expresses the dimensionless Helmholtz free energy
density via

F (ρ) =

∫

Ω

[
f(ρ) +

κ

2
(ρ− 1)C(ρ− 1)

]
dx,

where Ω is some spatial domain of interest; ρ : Ω → [0,∞) is the number density
field of the unary material in Ω; κ > 0 is a positive dimensionless constant; f is
the homogeneous Helmholtz free energy density; and C is a symmetric, potentially
nonlocal, two-point correlation operator. Here we have taken the state ρ = ρo = 1 as
the dimensionless reference density.

The homogeneous free energy density, f , is often taken to satisfy an “ideal gas”
model:

f(ρ) = ρ ln (ρ)− ρ.

Note that this energy density has a global minimum at the reference state ρ = 1.
Often, one makes a (Taylor) polynomial approximation of the logarithmic term about
the reference density to make the model more tractable. However, the singular nature
of the logarithmic term contributes to the positivity of the solutions, and this is an
important feature in the numerical and PDE analyses. At constant temperature, one
can argue that the dynamics of the model should satisfy a diffusion-dominated mass
conservation equation of the form

∂tρ = −∇ · J, J = −ρ∇µ, (1.4)

where J is the diffusion flux; and µ is the chemical potential:

µ := δρF = log(ρ) + κC(ρ− 1), (1.5)

where we have assumed, for simplicity, that the boundary conditions are periodic.
Observe that

∇ · (ρ∇(log(ρ))) = ∆ρ,

which suggests that the model incorporates standard particle diffusion at leading
order. For this derivation, we will assume that C is a differential operator of the form

C(̺) = γ̺+ 2∆̺+∆2̺,

where γ ∈ R is a dimensionless parameter. This chosen form promotes the formation
of spatially oscillatory density fields and is most commonly used. To sum up, the
chemical potential is modeled as

µ = log(ρ) + κγ(ρ− 1) + κ
(
2∆ρ+∆2ρ

)
. (1.6)

As a consequence of our model assumptions, the total free energy is dissipated as
the system evolves toward equilibrium, and the dissipation rate is

dtF = −
∫

Ω

ρ|∇µ|2 dx ≤ 0.

Of course, is be necessary to justify the property that ρ > 0 (or at least ρ ≥ 0)
point-wise for the model to make sense.

2



As we indicated, it is most typical in the physics literature to use a Taylor polyno-
mial approximation of the logarithmic free energy density, around the dimensionless
reference state ρ = ρo = 1, of the form

ρ ln(ρ)− ρ ≈ −1 +
1

2
(ρ− 1)2 − 1

6
(ρ− 1)3 +

1

12
(ρ− 1)4. (1.7)

This approximation regularizes the singular nature of the ideal gas law, but also it
removes the singular free energy barrier against states that have negative density
regions.

Note that we are keeping the degenerate mobility and approximating the ideal gas
law with a polynomial. Archer et al. [1] have argued that if, on the other hand, one
approximates the degenerate mobility with a positive constant, then one is absolutely
forced to replace the logarithmic potential (the ideal gas law) by the approximating
Taylor polynomial. Otherwise, the model predictions are unphysical.

With the simplifications described above, we have the following PFC model. For
each Ω–periodic state function u : Ω → [0,∞), the free energy is

F(u) =

∫

Ω

[
f0(u) +

κ

2
(u− 1)

(
γ(u− 1) + 2∆(u− 1) + ∆2(u− 1)

)]
dx, (1.8)

where

f0(u) = −1 +
1

2
(u− 1)2 − 1

6
(u− 1)3 +

1

12
(u− 1)4.

The conserved gradient flow describing the evolution of the state function u is

∂tu = −∇ · (u∇ω) ,

ω = f ′
0(u) + κ

(
γ(u− 1) + 2∆u+∆2u

)
,

which matches the form that we introduced earlier, after defining W (u) to be

W (u) = f0(u) +
κγ

2
(u− 1)2 − κ

2
u2.

1.2. Main result. In this paper, we model the mobility M(u) as

M(u) =

{
u, u > 0,

0, u ≤ 0,
(1.9)

which degenerates when u ≤ 0. We assume that the potential W ∈ C2(R) satisfies
the following growth conditions:

b1z
2m − b2 ≤W (z) +

ǫ

2
z2 ≤ b3z

2m + b4, (1.10)

|W ′(z)| ≤ b3|z|2m−1 + b4, (1.11)

b1z
2m−2 − b2 ≤W ′′(z) ≤ b3z

2m−2 + b4, (1.12)

for all z ∈ R, where m > 1 is an integer, 0 < ǫ < κ, and b1, b2, b3, b4 are positive
constants. A simple example of such a potential W is

W (u) =
1

4
(u − 1)4 − ǫ

2
(u− 1)2,

3



where ǫ ∈ R. This satisfies the above growth conditions with m = 2.
Our analysis used a framework similar to [11, 5, 6]. First, we approximate the

degenerate mobility M(u) using a nondegenerate mobility Mθ(u) defined by

Mθ(u) =

{
u, u > θ,

θ, u ≤ θ,
(1.13)

for any θ ∈ (0, 1), and show that the equation (1.2)–(1.3) with the mobility Mθ(u)
has a sufficiently regular weak solution uθ, that is, we prove the following theorem.

Theorem 1.1. Let u0 ∈ H2(Ω). For any given constant T > 0, there exists a
function uθ that satisfies the following conditions:

(i) For any 0 < α < 1/2,

uθ ∈ L2(0, T ;H5(Ω)) ∩ L2(0, T ;C3,α(Ω̄))

∩ C([0, T ];H1(Ω)) ∩ C([0, T ];C0,α(Ω̄)),

(ii) ∂tuθ ∈ L2(0, T ;H−2(Ω)).
(iii) uθ(x, 0) = u0(x), for all x ∈ Ω.
(iv) uθ solves the PFC equation (1.2)–(1.3) in the following weak sense:

∫ T

0

〈∂tuθ, ξ〉H−2(Ω),H2(Ω) dt

= −
∫ T

0

∫

Ω

Mθ(uθ)(W
′′(uθ)∇uθ + κ∇uθ + 2κ∇∆uθ + κ∇∆2uθ) · ∇ξ dxdt,

(1.14)

for all ξ ∈ L2(0, T ;H2(Ω)). In addition, for any t ≥ 0, the following energy
inequality holds:

∫

Ω

W (uθ(x, t)) + κ

(
1

2
|uθ(x, t)|2 − |∇uθ(x, t)|2 +

1

2
|∆uθ(x, t)|2

)
dx

+

∫ t

0

∫

Ω

Mθ(uθ(x, τ))

∣∣∣∣W
′′(uθ(x, τ))∇uθ(x, τ)

+ κ
(
∇uθ(x, τ) + 2∇∆uθ(x, τ) +∇∆2uθ(x, τ)

) ∣∣∣∣
2

dxdτ

≤
∫

Ω

W (u0) + κ

(
1

2
u2
0 − |∇u0|2 +

1

2
|∆u0|2

)
dx. (1.15)

(v) If u0(x) > 0, for all x ∈ Ω, then

ess sup
0≤t≤T

∫

Ω

|(uθ(x, t))− + θ|2 dx ≤ C(θ2 + θ + θ1/2), (1.16)

where (uθ)− = min{uθ, 0}, and C is a generic positive constant that may
depend on d, T,Ω, b1, b2, b3, b4, m,κ, ǫ and u0, but not on θ.

Next, we consider the limit of {uθ} as θ → 0. We show that the limiting function
u of {uθ} exists and is a weak solution to the PFC equation (1.2)–(1.3) with the
mobility M(u) defined by (1.9). Moreover, if the initial data u0(x) is positive in Ω,
using the estimate (1.16) in part (v) of Theorem 1.1, we can show that such weak
solution is nonnegative in ΩT . We will prove the following result.

Theorem 1.2. Assume that u0 ∈ H2(Ω). For any given constant T > 0, there
exists a function u that satisfies the following conditions:

4



(i) For any 0 < α < 1/2,

u ∈ L∞(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩ C([0, T ];C0,α(Ω̄)).

(ii) ∂tu ∈ L2(0, T ;H−2(Ω)).
(iii) u(x, 0) = u0.
(iv) u can be considered as a weak solution for the PFC equation (1.2)–(1.3) in

the following weak sense:
(a) Let P be the set where M(u) is not degenerate, that is,

P := {(x, t) ∈ ΩT : u(x, t) > 0}. (1.17)

There exist a set B ⊂ ΩT with |ΩT \B| = 0 and a function Ψ : ΩT → R
d

satisfying χB∩PM(u)Ψ ∈ L2(0, T ;L2d/(d+2)(Ω;Rd)), where χB∩P is the
characteristic function of B ∩ P , such that

∫ T

0

〈∂tu, ξ〉H−2(Ω),H2(Ω) dt = −
∫

B∩P

M(u)Ψ · ∇ξdxdt, (1.18)

for all ξ ∈ L2(0, T ;H2(Ω)).
(b) Let ∇∆2u be the generalized derivative of u in terms of distributions. If

∇∆2u ∈ Lq(UT ), where UT = U × (0, T ), for some open set U ⊂ Ω and
some q > 1 that may depend on U , then we have

Ψ = W ′′(u)∇u + κ∇u+ 2κ∇∆u+ κ∇∆2u in UT .

(c) For any t ≥ 0, the following energy inequality holds:

W (u(x, t)) + κ

(
1

2
|u(x, t)|2 − |∇u(x, t)|2 + 1

2
|∆u(x, t)|2

)
dx

+

∫

Ωt∩B∩P

M(u(x, τ))|Ψ(x, τ)|2dxdτ

≤
∫

Ω

W (u0) + κ

(
1

2
u2
0 − |∇u0|2 +

1

2
|∆u0|2

)
dx. (1.19)

(v) In addition, if u0(x) > 0, for all x ∈ Ω, then u(x, t) ≥ 0, for a.e. x ∈ Ω and
all t ∈ [0, T ], and u(x, t) is not always zero in ΩT .

1.3. Notation. In this paper, we use C to denote a generic positive constant
that may depend on d, T,Ω, b1, b2, b3, b4, m,κ, ǫ and u0, but nothing else, in particular
not on θ andN . We also use Cθ to denote a generic positive constant that may depend
on d, T,Ω, b1, b2, b3, b4, m,κ, ǫ, u0 and θ, but not on N .

The reamainder of this paper is organized as follows. In Section 2, we prove
Theorem 1.1 using the Galerkin approximation. In Section 3, we prove Theorem 1.2,
which shows the existence of a weak solution to the PFC equation (1.2)–(1.3) with
the degenerate mobility (1.9).

2. Proof of Theorem 1.1: Weak solution for the positive mobility case.

In this section we prove the existence of a weak solution to the PFC equation (1.2)–
(1.3) with the nondegenerate mobility Mθ(u) defined by (1.13).
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2.1. Galerkin approximation. Let {φj : j = 1, 2, ...} be the normalized eigen-
functions in L2(Ω), that is, ‖φj‖L2(Ω) = 1, of the eigenvalue problem:

−∆u = λu in Ω, and u is Ω–periodic.

The eigenfunctions φj are orthogonal with respect to the H2(Ω) and L2(Ω) inner
products. We assume that λ1 = 0, which implies that φ1(x) ≡ (2π)−d/2.

We consider the Galerkin approximation for the PFC equation (1.2)–(1.3):

uN (x, t) =

N∑

j=1

cNj (t)φj(x), ωN (x, t) =

N∑

j=1

dNj (t)φj(x), (2.1)

∫

Ω

∂tu
Nφjdx = −

∫

Ω

Mθ(u
N )∇ωN · ∇φjdx (2.2)

∫

Ω

ωNφjdx =

∫

Ω

(W ′(uN)φj + κuNφj − 2κ∇uN · ∇φj + κ∆uN∆φj)dx (2.3)

uN(x, 0) =

N∑

j=1

(∫

Ω

u0φjdx

)
φj(x). (2.4)

This system is equivalent to the following system of ordinary differential equations for
cN1 , ..., cNN :

∂tc
N
j =−

N∑

k=1

dNk

∫

Ω

Mθ

(
N∑

i=1

cNi φi

)
∇φk · ∇φjdx, (2.5)

dNj =

∫

Ω

W ′

(
N∑

k=1

cNk φk

)
φjdx+ κcNj − 2λjc

N
j + κλ2

jc
N
j , (2.6)

cNj (0) =

∫

Ω

u0φjdx. (2.7)

Because the right hand side of (2.5) depends continuously on cN1 , ..., cNN , according
to the Peano existence theorem [15, 16], the initial value problem (2.5)–(2.7) has a
local solution. Lemma 2.2 gives the uniform bound for cN1 , ..., cNN , therefore, by the
Picard–Lindelöf theorem (see [7], page 12, Theorem 3.1), a global solution for the
initial value problem (2.5)–(2.7) exists.

2.2. A Priori Estimates. We will establish some necessary prior estimates in
this section.

Lemma 2.1. Let uN be a solution of the system (2.2)–(2.4). Then, for any
0 ≤ t ≤ T ,

∫

Ω

uN(x, t)dx =

∫

Ω

uN (x, 0)dx. (2.8)

Proof. Taking j = 1 in (2.2) gives
∫
Ω
∂tu

Ndx = 0. Thus,
∫
Ω
uN(x, t)dx =∫

Ω uN(x, 0)dx, for any 0 ≤ t ≤ T .
Lemma 2.2. Let uN be a solution of the system (2.2)–(2.4), then, for any 0 ≤

t ≤ T ,

‖uN‖L∞(0,T ;H2(Ω)) ≤ C, (2.9)
∫ t

0

∫

Ω

Mθ(u
N (x, τ))|∇ωN (x, τ)|2dxdτ ≤ C. (2.10)

6



Proof. For any 0 ≤ t ≤ T , since

d

dt
F(uN (x, t)) = −

∫

Ω

Mθ(u
N (x, t))|∇ωN (x, t)|2dx,

integrating in time over (0, t), we obtain

∫

Ω

W (uN (x, t)) + κ

(
1

2
|uN(x, t)|2 − |∇uN (x, t)|2 + 1

2
|∆uN(x, t)|2

)
dx

+

∫ t

0

∫

Ω

Mθ(u
N (x, τ))|∇ωN (x, τ)|2dxdτ

=

∫

Ω

W (uN (x, 0)) + κ

(
1

2
|uN(x, 0)|2 − |∇uN(x, 0)|2 + 1

2
|∆uN (x, 0)|2

)
dx. (2.11)

Using the growth condition (1.10) and Sobolev embedding for H2(Ω) in R
d(d =

1, 2, 3), we obtain the bound for the right hand side of (2.11):

∫

Ω

W (uN (x, 0)) + κ

(
1

2
|uN (x, 0)|2 − |∇uN (x, 0)|2 + 1

2
|∆uN (x, 0)|2

)
dx

≤
∫

Ω

(
b3|uN(x, 0)|2m + b4 +

κ− ǫ

2
|uN(x, 0)|2 − κ|∇uN(x, 0)|2 + κ

2
|∆uN (x, 0)|2

)
dx

≤ C
(
‖uN(x, 0)‖2mH2(Ω) + ‖uN(x, 0)‖2H2(Ω) + 1

)
dx

≤ C
(
‖u0‖2mH2(Ω) + ‖u0‖2H2(Ω) + 1

)

≤ C. (2.12)

Now, let us consider the first integral on the left hand side of (2.11). For any
number a > 0, applying the AM–GM inequality (see [3], page 457, Theorem 17), we
obtain

b1|uN |2m + (m− 1)a ≥ m(b1|uN |2mam−1)1/m = mb
1/m
1 a(m−1)/m|uN |2. (2.13)

We choose the number a so that mb
1/m
1 a(m−1)/m = κ/2, that is,

a = a0 :=
( κ

2m

)m/(m−1)

b
1/(m−1)
1 . (2.14)

So, with the choice a = a0, (2.13) implies

∫

Ω

b1|uN |2mdx ≥
∫

Ω

κ

2
|uN |2dx− (m− 1)a0|Ω|. (2.15)

In addition, using integration by parts and Young’s inequality, for any number β > 0,
we obtain

−κ

∫

Ω

|∇uN |2dx = κ

∫

Ω

uN∆uNdx ≥ − κ

2β

∫

Ω

|uN |2dx − κβ

2

∫

Ω

|∆uN |2dx. (2.16)

7



Combining (1.10), (2.15) and (2.16) we obtain

∫

Ω

W (uN ) + κ

(
1

2
|uN |2 − |∇uN |2 + 1

2
|∆uN |2

)
dx

≥
∫

Ω

(
b1|uN |2m − b2 +

κ− ǫ

2
|uN |2 − κ|∇uN |2 + κ

2
|∆uN |2

)
dx

≥
(
κ− ǫ

2
− κ

2β

)∫

Ω

|uN |2dx+
κ

2
(1 − β)

∫

Ω

|∆uN |2dx− (b2 + (m− 1)a0)|Ω|.

(2.17)

We choose the number β so that κ − ǫ
2 − κ

2β > 0 and 1 − β > 0, that is, κ
2κ−ǫ < β

and β < 1. Since 0 < ǫ < κ, then κ
2κ−ǫ < 1, hence, we can always find β0 such that

κ
2κ−ǫ < β0 < 1. Define

γ0 := min

{
κ− ǫ

2
− κ

2β0
,
κ

2
(1 − β0)

}
> 0,

then we have
∫

Ω

W (uN ) + κ

(
1

2
|uN |2 − |∇uN |2 + 1

2
|∆uN |2

)
dx

≥ γ0

(∫

Ω

|uN |2dx+

∫

Ω

|∆uN |2dx
)
− (b2 + (m− 1)a0)|Ω|. (2.18)

Combining (2.11), (2.12) and (2.18) we get

γ0

(∫

Ω

|uN(x, t)|2dx+

∫

Ω

|∆uN (x, t)|2dx
)

+

∫ t

0

∫

Ω

Mθ(u(x, τ))|∇ωN (x, τ)|2dxdτ ≤ C, (2.19)

for a.e. t ∈ [0, T ]. The estimate (2.10) is established.
From (2.19), using integration by parts and Young’s inequality again, we get
∫

Ω

|∇uN |2dx = −
∫

Ω

uN∆uNdx ≤ 1

2

∫

Ω

|uN |2dx+
1

2

∫

Ω

|∆uN |2dx ≤ C. (2.20)

Then we obtain the estimate (2.9) by combining (2.19) and (2.20).

Using the growth conditions (1.10)–(1.12) and Sobolev embedding for H2(Ω) in
R

d (1 ≤ d ≤ 3), we obtain the following corollary.
Corollary 2.1. Let uN be a solution of the system (2.2)–(2.4). Then, we have

‖uN‖L∞(0,T ;C0,α(Ω̄)) ≤ C, for any 0 < α < 1/2, (2.21)

‖Mθ(u
N )‖L∞(0,T ;L∞(Ω)) ≤ C, (2.22)

‖W ′(uN )‖L∞(0,T ;L∞(Ω)) ≤ C, (2.23)

‖W ′′(uN )‖L∞(0,T ;L∞(Ω)) ≤ C. (2.24)

Lemma 2.3. Let uN be a solution of the system (2.2)–(2.4). Then, we have

‖ωN‖L2(0,T ;H1(Ω)) ≤ Cθ. (2.25)
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Proof. Since Mθ(u) ≥ θ, by (2.10) we have

∫ T

0

∫

Ω

|∇ωN |2dxdt ≤ C

θ
, (2.26)

which implies (2.25) by using Poincaré’s inequality.
Lemma 2.4. Let uN be a solution of the system (2.2)–(2.4). Then, we have

‖uN‖L2(0,T ;H5(Ω)) ≤ Cθ. (2.27)

Proof. Since ∆uN =
∑N

j=1 c
N
j (t)∆φj = −∑N

j=1 c
N
j (t)λjφj , then from (2.3) we

get
∫

Ω

ωN∆uN =

∫

Ω

(W ′(uN)∆uN + κuN∆uN − 2κ∇uN · ∇∆uN + κ∆uN∆2uN)dx

=

∫

Ω

(W ′(uN)∆uN − κ|∇uN |2 + 2κ|∆uN |2 − κ|∇∆uN |2)dx. (2.28)

Then, using (2.9), (2.23) and (2.25), we obtain

∫ T

0

∫

Ω

|∇∆uN |2dxdt

=
1

κ

∫ T

0

∫

Ω

(W ′(uN)∆uN − ωN∆uN − κ|∇uN |2 + 2κ|∆uN |2)dxdt

≤ 1

κ
(‖W ′(uN )‖2L2(ΩT ) + ‖ωN‖2L2(0,T ;L2(Ω)) + 2κ)‖∆uN‖2L2(0,T ;L2(Ω))

≤ Cθ. (2.29)

By (2.3), we have

ωN = W ′(uN ) + κuN + 2κ∆uN + κ∆2uN . (2.30)

So by (2.9), (2.23) and (2.25), we obtain

∫ T

0

∫

Ω

|∆2uN |2dxdt

≤ 4

κ2

∫ T

0

∫

Ω

(|W ′(uN )|2 + κ2|uN |2 + 4κ2|∆uN |2 + |ωN |2)dxdt

≤ Cθ. (2.31)

Taking the derivatives with respect to x on both sides of (2.30), we get

∇ωN = W ′′(uN )∇uN + κ∇uN + 2κ∇∆uN + κ∇∆2uN . (2.32)

Then, by (2.9), (2.24), (2.25) and (2.29), we obtain

∫ T

0

∫

Ω

|∇∆2uN |2dxdt

≤ 4

κ2

∫ T

0

∫

Ω

(|∇ωN |2 + |W ′′(uN )|2|∇uN |2 + κ2|∇uN |2 + 4κ2|∇∆uN |2)dxdt

≤ Cθ. (2.33)
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Combining (2.9), (2.29), (2.31) and (2.33), we obtain (2.27).

Lemma 2.5. Let uN be a solution of the system (2.2)–(2.4), then we have

‖∂tuN‖L2(0,T ;H−2(Ω)) ≤ C. (2.34)

Proof. First, the estimate (2.19) implies that ‖
√
Mθ(uN)∇ωN‖L2(0,T ;L2(Ω)) ≤ C.

Then, for any φ ∈ L2(0, T ;H2(Ω)), by (2.2) and the generalized Hölder’s inequality,
we have

∣∣∣∣
∫

Ω

∂tu
Nφdx

∣∣∣∣ =
∣∣∣∣
∫

Ω

Mθ(u
N )∇ωN∇φdx

∣∣∣∣

≤
∥∥∥∥
√
Mθ(uN )

∥∥∥∥
Ld(Ω)

∥∥∥∥
√
Mθ(uN )∇ωN

∥∥∥∥
L2(Ω)

‖∇φ‖L2d/(d−2)(Ω)dt

≤ C

∥∥∥∥
√
Mθ(uN )∇ωN

∥∥∥∥
L2(Ω)

‖∇φ‖L2d/(d−2)(Ω). (2.35)

Since H1(Ω) ⊂⊂ L2d/(d−2)(Ω), by (2.22) and Hölder’s inequality, we have

∣∣∣∣∣

∫ T

0

∫

Ω

∂tu
Nφdxdt

∣∣∣∣∣ ≤ C

∫ T

0

∥∥∥∥
√
Mθ(uN )∇ωN

∥∥∥∥
L2(Ω)

‖∇φ‖L2d/(d−2)(Ω)dt

≤ C

∥∥∥∥
√
Mθ(uN )∇ωN

∥∥∥∥
L2(0,T ;L2(Ω))

‖∇φ‖L2(0,T ;L2d/(d−2)(Ω))

≤ C‖∇φ‖L2(0,T ;H1(Ω))

≤ C‖φ‖L2(0,T ;H2(Ω)). (2.36)

This implies ‖∂tuN‖L2(0,T ;H−2(Ω)) ≤ C.

2.3. Convergence of uN and the existence of a weak solution. In R
d

with 1 ≤ d ≤ 3, we have H2(Ω) ⊂⊂ H1(Ω) ⊂⊂ C0,α(Ω̄) →֒ H−2(Ω) and H5(Ω) ⊂⊂
H l(Ω) ⊂⊂ C3,α(Ω̄) →֒ H−2(Ω), for any integer 1 ≤ l ≤ 4 and any 0 < α < 1/2.
Hence, by the Aubin–Lions lemma (see [2, 18]), we have

{f ∈ L∞(0, T ;H2(Ω)) : ∂tf ∈ L2(0, T ;H−2(Ω))} ⊂⊂ C([0, T ];H1(Ω)),

{f ∈ L∞(0, T ;H2(Ω)) : ∂tf ∈ L2(0, T ;H−2(Ω))} ⊂⊂ C([0, T ];C0,α(Ω̄)),

{f ∈ L2(0, T ;H5(Ω)) : ∂tf ∈ L2(0, T ;H−2(Ω))} ⊂⊂ L2(0, T ;H l(Ω)),

{f ∈ L2(0, T ;H5(Ω)) : ∂tf ∈ L2(0, T ;H−2(Ω))} ⊂⊂ L2(0, T ;C3,α(Ω̄)),

for any integer 1 ≤ l ≤ 4 and any 0 < α < 1/2. Combining with the weak compactness
in L2(0, T ;H5(Ω)) and L2(0, T ;H−2(Ω), by (2.9), (2.27) and (2.34), there exist a
subsequence of {uN} (not relabeled) and a function

uθ ∈ L2(0, T ;H5(Ω)) ∩ L2(0, T ;C3,α(Ω̄)) ∩ C([0, T ];H1(Ω)) ∩C([0, T ];C0,α(Ω̄))
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such that as N → ∞,

uN ⇀ uθ weakly in L2(0, T ;H5(Ω)), (2.37)

∂tu
N ⇀ ∂tuθ weakly in L2(0, T ;H−2(Ω)), (2.38)

uN → uθ strongly in C([0, T ];H1(Ω)), (2.39)

uN → uθ strongly in C([0, T ];C0,α(Ω̄)), (2.40)

uN → uθ strongly in L2(0, T ;H l(Ω)) and a.e. in ΩT , (2.41)

uN → uθ strongly in L2(0, T ;C3,α(Ω̄)), (2.42)

for any 1 ≤ l ≤ 4 and any 0 < α < 1/2. In addition, using (2.9) and (2.34), we have
the following bounds for uθ:

‖uθ‖L∞(0,T ;H2(Ω)) ≤ C, (2.43)

‖∂tuθ‖L2(0,T ;H−2(Ω)) ≤ C. (2.44)

From (2.25), there exist a subsequence of {ωN} (not relabeled) and a function
ωθ ∈ L2(0, T ;H1(Ω)) such that as N → ∞,

ωN ⇀ ωθ weakly in L2(0, T ;H1(Ω)). (2.45)

By (2.39), Mθ(u
N ) → Mθ(uθ) strongly in C([0, T ];Ld(Ω)), hence

Mθ(u
N )∇ωN ⇀ Mθ(uθ)∇ωθ weakly in L2(0, T ;L2d/(d+2)(Ω,Rd)) as N → ∞.

(2.46)

For any γ(t) ∈ L2(0, T ), because γ(t)∇φj ∈ L2(0, T ;L2d/(d−2)(Ω)), multiplying
both sides of (2.2) by γ(t), integrating over the time interval (0, T ), and taking the
limits as N → ∞, by (2.38) and (2.46), we have
∫ T

0

〈∂tuθ, γ(t)φj(x)〉H−2(Ω),H2(Ω) dt = −
∫ T

0

∫

Ω

Mθ(uθ)∇ωθ · γ(t)∇φj(x)dxdt.

(2.47)

For any function ξ ∈ L2(0, T ;H2(Ω)), since its Fourier series
∑∞

j=1 aj(t)φj(x) con-

verges strongly to ξ in L2(0, T ;H2(Ω)), then
∑∞

j=1 aj(t)∇φj(x) converges strongly to

∇ξ in L2(0, T ;L2d/(d−2)(Ω,Rd)). Hence, by (2.47), we have
∫ T

0

〈∂tuθ, ξ〉H−2(Ω),H2(Ω) dt = −
∫ T

0

∫

Ω

Mθ(uθ)∇ωθ · ∇ξdxdt, (2.48)

for all ξ ∈ L2(0, T ;H2(Ω)),.
By (2.40) and (2.23), we have

W ′(uN ) → W ′(uθ) strongly in C([0, T ];Lq(Ω)) as N → ∞, (2.49)

for any 1 ≤ q < ∞. Then, for any γ(t) ∈ L2(0, T ), because γ(t)φj ∈ L2(0, T ;C(Ω)),
multiplying both sides of (2.3) by γ(t), integrating over the time interval (0, T ), and
taking the limits as N → ∞, by (2.37) and (2.49), we obtain

∫ T

0

∫

Ω

ωθγ(t)φjdxdt

=

∫ T

0

∫

Ω

W ′(uθ)γ(t)φj + κuθγ(t)φj − 2κ∇uθ · γ(t)∇φj + κ∆uθγ(t)∆φj dxdt.

(2.50)
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For any function ξ ∈ L2(0, T ;H2(Ω)), since its Fourier series
∑∞

j=1 aj(t)φj(x) con-

verges strongly to ξ in L2(0, T ;H2(Ω)), then
∑∞

j=1 aj(t)∇φj(x) converges strongly to

∇ξ in L2(0, T ;L2d/(d−2)(Ω,Rd)) and
∑∞

j=1 aj(t)∆φj(x) converges strongly to ∆ξ in

L2(0, T ;L2d/(d−2)(Ω)). Hence, by (2.50), we obtain

∫ T

0

∫

Ω

ωθξdxdt =

∫ T

0

∫

Ω

W ′(uθ)ξ + κuθξ − 2κ∇uθ · ∇ξ + κ∆uθ∆ξ dxdt, (2.51)

for all ξ ∈ L2(0, T ;H2(Ω)). Since uθ ∈ L2(0, T ;H5(Ω)), then ωθ ∈ L2(0, T ;H3(Ω)),
hence, from (2.51) we obtain

ωθ = W ′(uθ) + κuθ + 2κ∆uθ + κ∆2uθ a.e. in ΩT , (2.52)

and

∇ωθ = W ′′(uθ)∇uθ + κ∇uθ + 2κ∇∆uθ + κ∇∆2uθ a.e. in ΩT . (2.53)

Combining (2.53) and (2.48) we get (1.14).

For the initial value, by (2.4), we have

uN (x, 0) → u0(x) strongly in L2(Ω) as N → ∞.

Combining with (2.41), we have uθ(x, 0) = u0(x), for a.e. x ∈ Ω.

2.4. Energy inequality. From (2.39), we have
√
Mθ(uN ) →

√
Mθ(uθ) strongly

in C([0, T ];L2(Ω)) as N → ∞. Combining with (2.45), we get

√
Mθ(uN )∇ωN ⇀

√
Mθ(uθ)∇ωθ weakly in L2(0, T ;L1(Ω;Rd)) as N → ∞.

(2.54)

On the other hand, by (2.10), there exist a subsequence of {
√
Mθ(uN)∇ωN} (not

relabeled) and a function Λθ ∈ L2(0, T ;L2(Ω;Rd)) such that

√
Mθ(uN)∇ωN ⇀ Λθ weakly in L2(0, T ;L2(Ω;Rd)) as N → ∞. (2.55)

By the uniqueness of weak limits, we have Λθ =
√
Mθ(uθ)∇ωθ, which implies

√
Mθ(uN )∇ωN ⇀

√
Mθ(uθ)∇ωθ weakly in L2(0, T ;L2(Ω;Rd)) as N → ∞.

(2.56)

Also, by (2.40), we have

W (uN ) → W (uθ) strongly in C([0, T ];Lq(Ω)) as N → ∞, (2.57)

for any 1 ≤ q < ∞.

Because uN and ωN satisfy the energy identity (2.11), using (2.37)–(2.42), (2.56)
and (2.57), and the weak lower semicontinuity of norms, by taking the limits as
N → ∞ in (2.11), we obtain the energy inequality (1.15).
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2.5. Positive initial data. In this section, we assume that the initial data
u0(x) > 0, for all x ∈ Ω. For any 0 < θ < 1, we define the entropy densities
Φ : (0,∞) → [0,∞) and Φθ : R → [0,∞) as

Φ′′(z) =
1

M(z)
, Φ(1) = Φ′(1) = 0,

and

Φ′′
θ (z) =

1

Mθ(z)
, Φθ(1) = Φ′

θ(1) = 0.

Using the definitions of M(u) and Mθ(u) in (1.9) and (1.13), we obtain

Φ(z) = z ln(z)− z + 1 for z > 0, (2.58)

and

Φθ(z) =

{
z ln(z)− z + 1 , z > θ,
1
2θz

2 + (ln(θ)− 1)z + 1− θ
2 , z ≤ θ.

(2.59)

We see that Φθ ∈ C2(R), 0 ≤ Φθ(z) ≤ Φ(z), for all z > 0, and Φθ(z) = Φ(z), for all
z ≥ θ.

Claim 1. For any t ∈ [0, T ],

∫

Ω

Φθ(uθ(x, t))dx −
∫

Ω

Φθ(u0(x))dx = −
∫ t

0

∫

Ω

∇ωθ · ∇uθdxdτ. (2.60)

Proof. For any ǫ > 0, let Φθ,ǫ be the mollification of Φθ. Since Φθ ∈ C2(R), then
Φθ,ǫ → Φθ,Φ

′
θ,ǫ → Φ′

θ and Φ′′
θ,ǫ → Φ′′

θ uniformly on compact subsets of R as ǫ → 0.
We will show that
∫

Ω

Φθ,ǫ(uθ(x, t))dx −
∫

Ω

Φθ,ǫ(u0(x))dx = −
∫ t

0

∫

Ω

Mθ(uθ)Φ
′′
θ,ǫ(uθ)∇ωθ · ∇uθdxdτ.

(2.61)

For any h > 0, define

uθ,h(x, t) :=
1

h

∫ t

t−h

uθ(x, τ)dτ, (2.62)

where we set uθ(x, t) = u0(x) for t ≤ 0. Since H3(Ω) ⊂⊂ H2(Ω) →֒ H−3(Ω), by the
Aubin–Lions lemma,

{f ∈ L2(0, T ;H3(Ω)) : ∂tf ∈ L2(0, T ;H−3(Ω))} ⊂⊂ L2(0, T ;H2(Ω)).

Since uθ ∈ L∞(0, T ;H5(Ω)) and Φ′
θ,ǫ,Φ

′′
θ,ǫ,Φ

′′′
θ,ǫ,Φ

(4)
θ,ǫ are bounded, we have

sup
h>0

‖Φ′
θ,ǫ(uθ,h)‖L2(0,T ;H3(Ω)) ≤ Cθ and ∂tΦ

′
θ,ǫ(uθ,h) ∈ L2(0, T ;H−3(Ω)),

for any h > 0. Hence, there exists a subsequence of {Φ′
θ,ǫ(uθ,h)}h>0 (not relabeled)

such that

Φ′
θ,ǫ(uθ,h) → Φ′

θ,ǫ(uθ) strongly in L2(0, T ;H2(Ω)) as h → 0. (2.63)
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On the other hand, define Jθ := −Mθ(uθ)∇ωθ. Since ωθ ∈ L2(0, T ;H3(Ω)), Jθ ∈
L2(0, T ;H2(Ω;Rd)). Hence, for any ξ ∈ L2(0, T ;H2(Ω)),

∣∣∣〈∂tuθ,h − ∂tuθ, ξ〉(L2(0,T ;H−2(Ω)),L2(0,T ;H2(Ω))

∣∣∣

=
1

h

∣∣∣∣∣

∫ T

0

〈∫ t

t−h

(∂tuθ(τ) − ∂tuθ(t))dτ, ξ

〉

(H−2(Ω),H2(Ω))

dt

∣∣∣∣∣

=
1

h

∣∣∣∣∣

∫ T

0

〈∫ 0

−h

(∂tuθ(t+ s)− ∂tuθ(t))ds, ξ

〉

(H−2(Ω),H2(Ω))

dt

∣∣∣∣∣

≤ 1

h

∫ 0

−h

∣∣∣∣∣

∫ T

0

∫

Ω

∇ξ · (Jθ(t+ s)− Jθ(t))dxdt

∣∣∣∣∣ ds

≤‖ξ‖L2(0,T ;H2(Ω)) sup
−h≤s≤0

‖Jθ(·+ s)− Jθ(·)‖L2(0,T ;H2(Ω)), (2.64)

which implies that

‖∂tuθ,h − ∂tuθ‖L2(0,T ;H−2(Ω)) ≤ sup
−h≤s≤0

‖Jθ(·+ s)− Jθ(·)‖L2(0,T ;H2(Ω)). (2.65)

Since sup−h≤s≤0 ‖Jθ(·+ s)− Jθ(·)‖L2(0,T ;H2(Ω)) → 0 as h → 0, then

∂tuθ,h → ∂tuθ strongly in L2(0, T ;H−2(Ω)) as h → 0. (2.66)

Since Φ′
θ,ǫ(uθ,h) and ∂tuθ,h are both in L2(ΩT ), we have

∫ t

0

〈
∂tuθ,h,Φ

′
θ,ǫ(uθ,h)

〉
(H−2(Ω),H2(Ω))

dτ =

∫ t

0

∫

Ω

Φ′
θ,ǫ(uθ,h)∂tuθ,hdxdτ

=

∫

Ω

∫ t

0

∂tΦθ,ǫ(uθ,h(τ, x))dτdx

=

∫

Ω

Φθ,ǫ(uθ,h(x, t))dx −
∫

Ω

Φθ,ǫ(u0(x))dx,

(2.67)

for a.e. t ∈ [0, T ]. Passing to the limit as h → 0 and combining with (2.63) and (2.66),
we get

∫ t

0

〈
∂tuθ,Φ

′
θ,ǫ(uθ)

〉
(H−2(Ω),H2(Ω))

dτ =

∫

Ω

Φθ,ǫ(uθ(x, t))dx −
∫

Ω

Φθ,ǫ(u0(x))dx.

(2.68)

Since Φ′′
θ,ǫ and Φ′′′

θ,ǫ are bounded, then Φ′
θ,ǫ(uθ) ∈ L2(0, T ;H2(Ω)). So Φ′

θ,ǫ(uθ) is an
admissible test function for the equation (2.48). Hence, for any t ∈ [0, T ],

∫ t

0

〈
∂tuθ,Φ

′
θ,ǫ(uθ)

〉
(H−2(Ω),H2(Ω))

dτ = −
∫ t

0

∫

Ω

Mθ(uθ)∇ωθ · ∇(Φ′
θ,ǫ(uθ))dxdτ

= −
∫ t

0

∫

Ω

Mθ(uθ)Φ
′′
θ,ǫ(uθ)∇ωθ · ∇uθdxdτ.

(2.69)
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Combining (2.68) and (2.69) we get (2.61).

Now, for each t ∈ [0, T ], since uθ ∈ C([0, T ];C3,α(Ω̄)), then uθ(Ω̄, t) := {uθ(x, t) :
x ∈ Ω̄} is a compact subset of R, so Φθ,ǫ → Φθ and Φ′′

θ,ǫ → Φ′′
θ uniformly in uθ(Ω̄, t)

as ǫ → 0, hence, Φθ,ǫ(uθ) → Φθ(uθ) and Φ′′
θ,ǫ(uθ) → Φ′′

θ (uθ) uniformly in Ω̄ as ǫ → 0.

Also, uθ(ΩT ) := {uθ(x, τ) : x ∈ Ω̄, τ ∈ [0, T ]} is a compact subset of R, so Φ′′
θ,ǫ → Φ′′

θ

uniformly in uθ(ΩT ) as ǫ → 0, hence, Φ′′
θ,ǫ(uθ) → Φ′′

θ (uθ) uniformly in ΩT as ǫ → 0.
Using Lemma 2.2, we obtain

‖Mθ(uθ)‖L∞(ΩT ) < ∞ and
∥∥∥
√
Mθ(uθ)∇ωθ

∥∥∥
L2(ΩT )

< ∞. (2.70)

Since uθ ∈ C([0, T ];C3,α(Ω̄)), then ‖∇uθ‖L∞(ΩT ) < ∞. Thus,

∣∣∣∣
∫ t

0

∫

Ω

Mθ(uθ)∇ωθ · ∇uθ

(
Φ′′

θ,ǫ(uθ)− Φ′′
θ (uθ)

)
dxdτ

∣∣∣∣

≤‖Mθ(uθ)‖1/2L∞(ΩT )‖∇uθ‖L∞(ΩT )‖
√
Mθ(uθ)∇ωθ‖L2(ΩT )‖Φ′′

θ,ǫ(uθ)− Φ′′
θ (uθ)‖L2(ΩT )

→ 0 as ǫ → 0. (2.71)

So passing to limits as ǫ → 0 on both sides of (2.61) and using Φ′′
θ (uθ) = 1/Mθ(uθ),

we get (2.60).

Claim 2. Let (uθ)− := min{uθ, 0}, then, for any 0 < θ < 1,

ess sup
0≤t≤T

∫

Ω

|(uθ)− + θ|2dx ≤ C(θ2 + θ + θ1/2). (2.72)

Proof. For any z ≤ 0, we rewrite Φθ(z) as

Φθ(z) =
1

2θ
(z + θ)2 + (ln θ − 2)z + (1 − θ). (2.73)

Since 0 < θ < 1, (2.73) implies

(z + θ)2 ≤ 2θΦθ(z) for all z ≤ 0. (2.74)

Hence, for any t ∈ [0, T ], since Φθ(z) ≥ 0, for all z ∈ R, we have

∫

Ω

|(uθ(x, t))− + θ|2dx ≤ 2θ

∫

Ω

Φθ(uθ(x, t)−)dx

≤ 2θ

(∫

{uθ≤0}

Φθ(uθ(x, t))dx +

∫

{uθ>0}

Φθ(0)dx

)

≤ 2θ

(∫

Ω

Φθ(uθ(x, t))dx +

∫

Ω

Φθ(0)dx

)

≤ 2θ

[∫

Ω

Φθ(uθ(x, t))dx +

(
1− θ

2

)
|Ω|
]

(2.75)

From (2.26) and (2.9), we have ‖∇ωθ‖L2(ΩT ) ≤ C/θ1/2 and ‖∇uθ‖L2(ΩT ) ≤ C.

15



Thus, by (2.60) and Hölder’s inequality, we have

∣∣∣∣
∫

Ω

Φθ(uθ(x, t))dx

∣∣∣∣ ≤
∣∣∣∣
∫

Ω

Φθ(u0)dx

∣∣∣∣+
∣∣∣∣
∫ t

0

∫

Ω

∇ωθ(x, τ) · ∇uθ(x, τ)dxdτ

∣∣∣∣

≤
∫

Ω

Φθ(u0)dx + ‖∇ωθ‖L2(ΩT )‖∇uθ‖L2(ΩT )

≤
∫

Ω

Φ(u0)dx+
C

θ1/2
, (2.76)

for any t ∈ [0, T ]. This inequality and (2.75) implies (2.72).

3. Proof of Theorem 1.2: Weak solutions for the degenerate mobility

case. In this section we prove the existence of a nonnegative weak solution to the
PFC equation (1.2)–(1.3) with the degenerate mobility M(u) defined by (1.9).

3.1. Weak convergence of {uθ} as θ → 0. Fix u0 ∈ H2(Ω) and a sequence of
positive numbers {θi}∞i=1 that monotonically decreases to 0 as i → ∞. For each θi,
according to Theorem 1.1, there exists a function

uθi ∈ L2(0, T ;H5(Ω)) ∩ L2(0, T ;C3,α(Ω̄)) ∩ C([0, T ];H1(Ω)) ∩ C([0, T ];C0,α(Ω̄)),

for any 0 < α < 1/2, whose weak derivative is

∂tuθi ∈ L2(0, T ;H−2(Ω)),

such that, for any ξ ∈ L2(0, T ;H2(Ω)),

∫ T

0

〈∂tuθi , ξ〉H−2(Ω),H2(Ω) dt = −
∫ T

0

∫

Ω

Mθi(uθi)∇ωθi · ∇ξdxdt, (3.1)

ωθi = W ′(uθi) + κuθi + 2κ∇uθi + κ∆uθi , (3.2)

uθi(x, 0) = u0(x), for all x ∈ Ω. (3.3)

For simplicity, we use the notations ui := uθi, ωi := ωθi and Mi := Mθi . By the proofs
of the lemmas in Section 2.2, the bounds on the right hand sides of (2.9), (2.10) and
(2.34) depend only on d, T,Ω, b1, b2, b3, b4,m, κ, ǫ and u0, but not on θ. Therefore,
there exists a constant C > 0 independent on {θi}∞i=1 such that

‖ui‖L∞(0,T ;H2(Ω)) ≤ C, (3.4)

‖∂tui‖L2(0,T ;H−2(Ω)) ≤ C, (3.5)
∥∥∥
√
Mi(ui)∇ωi

∥∥∥
L2(ΩT )

≤ C. (3.6)

By the Aubin–Lions lemma, we have

{f ∈ L∞(0, T ;H2(Ω)) : ∂tf ∈ L2(0, T ;H−2(Ω))} ⊂⊂ C([0, T ];H1(Ω)),

and

{f ∈ L∞(0, T ;H2(Ω)) : ∂tf ∈ L2(0, T ;H−2(Ω))} ⊂⊂ C([0, T ];C0,α(Ω̄)),

for any 0 < α < 1/2. Combining with the weak compactness in L∞(0, T ;H2(Ω)) and
L2(0, T ;H−2(Ω), there exist a subsequence of {ui} (not relabeled) and a function

u ∈ L∞(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩ C([0, T ];C0,α(Ω̄))
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such that as i → ∞,

ui ⇀ u weakly–* in L∞(0, T ;H2(Ω)), (3.7)

∂tui ⇀ ∂tu weakly in L2(0, T ;H−2(Ω)), (3.8)

ui → u strongly in C([0, T ];C0,α(Ω̄)), for any 0 < α < 1/2, (3.9)

ui → u strongly in C([0, T ];H1(Ω)) and a.e. in ΩT . (3.10)

From (3.9) and (3.10), the uniform convergence of Mi → M and
√
Mi →

√
M as

i → ∞, and the General Lebesgue Dominated Convergence Theorem (see [17], page
89, Theorem 19) we have

Mi(ui) → M(u) strongly in C([0, T ];Ld/2(Ω)), (3.11)
√
Mi(ui) →

√
M(u) strongly in C([0, T ];Ld(Ω)), (3.12)

as i → ∞. By (3.6), there exist a subsequence of {
√
Mi(ui)∇ωi} (not relabeled) and

a function Λ ∈ L2(ΩT ;R
d) such that

√
Mi(ui)∇ωi ⇀ Λ weakly in L2(ΩT ;R

d) as i → ∞. (3.13)

Combining with (3.12) we get

Mi(ui)∇ωi ⇀
√
M(u)Λ weakly in L2(0, T ;L2d/(d+2)(Ω;Rd)) as i → ∞. (3.14)

So, taking the limits as i → ∞ in (3.1), we obtain

∫ T

0

〈∂tu, ξ〉H−2(Ω),H2(Ω) dt = −
∫ T

0

∫

Ω

√
M(u)Λ · ∇ξdxdt (3.15)

for all ξ ∈ L2(0, T ;H2(Ω)). For the initial data, from (3.3) and (3.9), we have u(x, 0) =
u0(x), for all x ∈ Ω.

Next, we will show that the function u solves the PFC equation (1.2)–(1.3) in any
open subset of ΩT in which u has sufficient regularity. Moreover, the set in which u
does not have sufficient regularity is contained in the set in which M(u) is degenerate
and another set of Lebesgue measure zero.

3.2. Weak solution to the degenerate PFC equation. Choose a sequence
of positive numbers {δj}∞j=1 that monotonically decreases to 0. For each δj , by (3.10)
and Egorov’s theorem, there exists a subset Bj ⊂ ΩT with |ΩT \Bj| < δj such that

ui → u uniformly in Bj as i → ∞. (3.16)

We may choose Bj ’s so that B1 ⊂ B2 ⊂ ... ⊂ Bj ⊂ Bj+1 ⊂ ... ⊂ ΩT . Let

B :=

∞⋃

j=1

Bj ,

then |ΩT \B| = 0. We also define

Pj := {(x, t) ∈ ΩT : u(x, t) > δj},
17



then P1 ⊂ P2 ⊂ ... ⊂ Pj ⊂ Pj+1 ⊂ ... ⊂ ΩT . Let

P :=

∞⋃

j=1

Pj = {(x, t) ∈ ΩT : u(x, t) > 0}.

For each j, Bj can be split into two parts:

Bj ∩ Pj , where u > δj and ui → u uniformly as i → ∞,

Bj\Pj , where u ≤ δj and ui → u uniformly as i → ∞.

By the choice of Bj and Pj , we have

(B1 ∩ P1) ⊂ (B2 ∩ P2) ⊂ ... ⊂ (Bj ∩ Pj) ⊂ (Bj+1 ∩ Pj+1) ⊂ ... ⊂ (B ∩ P ), (3.17)

and

B ∩ P =
∞⋃

j=1

(Bj ∩ Pj). (3.18)

For any Φ ∈ L2(0, T ;L2d/(d−2)(Ω;Rd)) and for each j, we have
∫

ΩT

Mi(ui)∇ωi · Φdxdt =
∫

ΩT \Bj

Mi(ui)∇ωi · Φdxdt+
∫

Bj∩Pj

Mi(ui)∇ωi · Φdxdt

+

∫

Bj\Pj

Mi(ui)∇ωi · Φdxdt. (3.19)

As i → ∞, by (3.14), the left hand side of (3.19) has the limit

lim
i→∞

∫

ΩT

Mi(ui)∇ωi · Φdxdt =
∫

ΩT

√
M(u)Λ · Φdxdt. (3.20)

For the first term on the right hand side of (3.19), since limj→∞ |ΩT \Bj | = |ΩT \B| =
0, we have

lim
j→∞

lim
i→∞

∫

ΩT \Bj

Mi(ui)∇ωi · Φdxdt = lim
j→∞

∫

ΩT \Bj

√
M(u)Λ · Φdxdt = 0. (3.21)

We now analyze the second term on the right hand side of (3.19). Because ui → u
uniformly in B1 as i → ∞, there exists an integer N1 > 0 such that, for all i ≥ N1,

ui >
δ1
2

in B1 ∩ P1, and ui ≤ 2δ1 in B1\P1.

Then by (3.6), for any i ≥ N1, we have

δ1
2

∫

B1∩P1

|∇ωi|2dxdt ≤
∫

B1∩P1

Mi(ui)|∇ωi|2dxdt

≤
∫

ΩT

Mi(ui)|∇ωi|2dxdt ≤ C, (3.22)

which implies {∇ωi}∞i=N1
is bounded in L2(B1∩P1;R

d). So there exist a subsequence

{∇ω1,k}∞k=1 of {∇ωi}∞i=N1
and a function Ψ1 ∈ L2(B1 ∩ P1;R

d) such that

∇ω1,k ⇀ Ψ1 weakly in L2(B1 ∩ P1;R
d) as k → ∞.
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We also write {u1,k}∞k=1 as the subsequence of {ui}∞i=N1
corresponding to {∇ω1,k}∞k=1.

Using the same process, for each j = 1, 2, ..., we obtain a subsequence {∇ωj,k}∞k=1 of
{∇ωj−1,k}∞k=1 and a function Ψj ∈ L2(Bj ∩ Pj ;R

d) such that

∇ωj,k ⇀ Ψj weakly in L2(Bj ∩ Pj ;R
d) as k → ∞,

and we also write {uj,k}∞k=1 as the subsequence of {uj−1,k}∞k=1 corresponding to
{∇ωj,k}∞k=1. Moreover, for any j, k = 1, 2, ..., we have

uj,k >
δj
2

in Bj ∩ Pj , and uj,k ≤ 2δj in Bj\Pj . (3.23)

Also, by (3.17) and (3.18), Ψj = Ψj−1 a.e. in Bj−1 ∩ Pj−1. Moreover, we can extend

each function Ψj ∈ L2(Bj ∩ Pj ;R
d) to a function Ψ̂j ∈ L2(B ∩ P ;Rd) by defining

Ψ̂j(x, t) =

{
Ψj(x, t) , if (x, t) ∈ Bj ∩ Pj ,

0 , if (x, t) ∈ (B ∩ P )\(Bj ∩ Pj).
.

With this definition, limj→∞ Ψ̂j(x, t) exists for a.e. (x, t) ∈ B ∩ P . Define

Ψ(x, t) := lim
j→∞

Ψ̂j(x, t) for a.e. (x, t) ∈ B ∩ P,

then Ψ(x, t) = Ψj(x, t), for a.e. (x, t) ∈ Bj ∩ Pj and for any j = 1, 2, ....

Using a standard diagonal argument, we can extract a subsequence {∇ωk,Nk
}∞k=1

such that, for each j = 1, 2, ...,

∇ωk,Nk
⇀ Ψ weakly in L2(Bj ∩ Pj ;R

d) as k → ∞. (3.24)

Combining with (3.12), for each j = 1, 2, ..., we have

χBj∩Pj

√
Mk,Nk

(uk,Nk
)∇ωk,Nk

⇀ χBj∩Pj

√
M(u)Ψ weakly in L2(0, T ;L

2d
d+2 (Ω;Rd))

(3.25)

as k → ∞, where χBj∩Pj is the characteristic function of Bj ∩ Pj ⊂ ΩT . Then,

combining with (3.13), we have Λ =
√
M(u)Ψ in every set Bj ∩ Pj , which implies

that

Λ =
√
M(u)Ψ in B ∩ P. (3.26)

Consequently, by (3.14), we have, as k → ∞,

χB∩PMk,Nk
(uk,Nk

)∇ωk,Nk
⇀ χB∩PM(u)Ψ weakly in L2(0, T ;L2d/(d+2)(Ω;Rd)).

(3.27)

For the third term on the right hand side of (3.19), from (3.6) and (3.23), and
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the generalized Hölder’s inequality, we have
∣∣∣∣∣

∫

Bj\Pj

Mk,Nk
(uk,Nk

)∇ωk,Nk
· Φdxdt

∣∣∣∣∣

≤
(

sup
Bj\Pj

√
Mk,Nk

(uk,Nk
)

)∥∥∥∥
√
Mk,Nk

(uk,Nk
)∇ωk,Nk

∥∥∥∥
L2(Bj\Pj)

‖Φ‖L2(Bj\Pj)

≤ max{
√
2δj,

√
θk,Nk

}
∥∥∥∥
√
Mk,Nk

(uk,Nk
)∇ωk,Nk

∥∥∥∥
L2(ΩT )

‖Φ‖L2(0,T ;L2(Ω))

≤ max{
√
2δj,

√
θk,Nk

}
∥∥∥∥
√
Mk,Nk

(uk,Nk
)∇ωk,Nk

∥∥∥∥
L2(ΩT )

‖Φ‖L2(0,T ;L2d/(d−2)(Ω))|Ω|1/d

≤ Cmax{
√
2δj,

√
θk,Nk

}. (3.28)

Since lim
j→∞

δj = 0 and lim
k→∞

θk,Nk
= 0, (3.28) implies that

lim
j→∞

lim
k→∞

∫

Bi\Pj

Mk,Nk
(uk,Nk

)∇ωk,Nk
· Φdxdt = 0 (3.29)

Now, in (3.19), replacing ui with the above subsequence uk,Nk
and taking the

limits first as k → ∞ and then as j → ∞, by (3.20) (3.21), (3.27) and (3.29), we have
∫

ΩT

√
M(u)Λ · Φdxdt = lim

j→∞

∫

Bj∩Pj

M(u)Ψ · Φdxdt

=

∫

B∩P

M(u)Ψ · Φdxdt, (3.30)

for any Φ ∈ L2(0, T ;L2d/(d−2)(Ω;Rd)). Combining this equation with (3.15), we see
that u and Ψ satisfy the weak formulation

∫ T

0

〈∂tu, ξ〉H−2(Ω),H2(Ω) dt = −
∫

B∩P

M(u)Ψ · ∇ξdxdt, (3.31)

for all ξ ∈ L2(0, T ;H2(Ω)).

3.3. The relationship between Ψ and u. From (1.2)–(1.3) and (3.31), we
expect Ψ to be

Ψ = ∇ω = W ′′(u)∇u+ κ∇u+ 2κ∇∆u+ κ∇∆2u,

if the weak solution u has a sufficient regularity. However, given the known regularities
of u, the terms ∇∆u and ∇∆2u are only defined in the sense of distributions and may
not even be functions. Therefore, we need higher regularity conditions on u.

Claim. For any open set U ⊂ Ω such that ∇∆2u ∈ Lq(UT ), for some q > 1 (q
may depend on U), where UT = U × (0, T ), we have

Ψ = W ′′(u)∇u+ κ∇u+ 2κ∇∆u+ κ∇∆2u in UT . (3.32)

Proof. Let U ⊂ Ω be an open set such that ∇∆2u ∈ Lq(UT ), for some q > 1. Let
us consider the limit of

∇ωk,Nk
= W ′′(uk,Nk

)∇uk,Nk
+ κ∇uk,Nk

+ 2κ∇∆uk,Nk
+ κ∇∆2uk,Nk

(3.33)
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as k → ∞. Since ∇∆2u ∈ Lq(UT ) and u ∈ L∞(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩
C([0, T ];C0,α(Ω̄)), for any 0 < α < 1/2, then we have

∆2u ∈ Lq(0, T ;W 1,q(U)), ∇∆u ∈ Lq(0, T ;W 2,q(U)),

∆u ∈ Lq(0, T ;W 3,q(U)) ∩ L∞(0, T ;L2(U)),

∇u ∈ Lq(0, T ;W 4,q(U)) ∩ L∞(0, T ;H1(U)) ∩C([0, T ];L2(U)),

u ∈ Lq(0, T ;W 5,q(U)) ∩ L∞(0, T ;H2(U)) ∩C([0, T ];H1(U)) ∩C([0, T ];C0,α(Ū)),

for any 0 < α < 1/2.
By (3.7), we have, as k → ∞,

∇uk,Nk
⇀ ∇u weakly–* in L∞(0, T ;H1(U)), (3.34)

∇∆uk,Nk
⇀ ∇∆u weakly–* in L∞(0, T ; (H1(U))′), (3.35)

∇∆2uk,Nk
⇀ ∇∆2u weakly–* in L∞(0, T ; (H3(U))′). (3.36)

We see that the bound on the right hand side of (2.24) depends only on d, T,Ω,
b1, b2, b3, b4, m,κ, ǫ and u0, but not on θ. Combining with (3.10), we obtain

W ′′(uk,Nk
) → W ′′(u) strongly in C([0, T ];L2(U)) as k → ∞. (3.37)

Combining with (3.34), we have

W ′′(uk,Nk
)∇uk,Nk

⇀ W ′′(u)∇u weakly–* in L∞(0, T ;L1(U)) as k → ∞. (3.38)

Then, using (3.33), (3.34), (3.35), (3.36) and (3.38), we obtain

∇ωk,Nk
⇀ W ′′(u)∇u+ κ∇u+ 2κ∇∆u+ κ∇∆2u weakly–* in L∞(0, T ; (H3(U))′)

as k → ∞. Combining this with (3.24), by the uniqueness of the weak limit, we get

Ψ = W ′′(u)∇u+ κ∇u+ 2κ∇∆u+ κ∇∆2u in B ∩ P ∩ UT .

Because Ψ is originally defined only in B ∩ P , we may extend it to UT by defining

Ψ := W ′′(u)∇u+ κ∇u+ 2κ∇∆u+ κ∇∆2u in UT \(B ∩ P ).

The claim is established.

Now define the set

A :=
⋃

{UT = U × (0, T ) : U is open in Ω and ∇∆2u ∈ Lq(UT ),

for some q > 1 that may depend on U},

then A is open in ΩT and

Ψ = W ′′(u)∇u+ κ∇u+ 2κ∇∆u+ κ∇∆2u in A.

So Ψ is defined in (B ∩ P ) ∪ A. To extend Ψ to ΩT , notice that

ΩT \((B ∩ P ) ∪ A) ⊂ ΩT \(B ∩ P ) = (ΩT \B) ∪ (ΩT \P ).

Since |ΩT \B| = 0 and M(u) = 0 in ΩT \P , the value of Ψ outside of (B ∩ P ) ∪ A
does not contribute to the integral on the right hand side of (3.31), so we may define
Ψ ≡ 0 in ΩT \((B ∩ P ) ∪A).
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3.4. Energy inequality. By the energy inequality (1.15), for any j, k = 1, 2, ...
and any t ∈ [0, T ], we have
∫

Ω

W (uk,Nk
(x, t)) + κ

(
1

2
|uk,Nk

(x, t)|2 − |∇uk,Nk
(x, t)|2 + 1

2
|∆uk,Nk

(x, t)|2
)
dx

+

∫

Ωt∩Bj∩Pj

Mθ(uk,Nk
(x, τ))|∇ωk,Nk

(x, τ))|2dxdτ

≤
∫

Ω

W (u0) + κ

(
1

2
u2
0 − |∇u0|2 +

1

2
|∆u0|2

)
dx. (3.39)

Using (3.9), (3.10) and (3.25), by taking the limits as k → ∞ first and then j → ∞
in (3.39), we obtain the energy inequality (1.19).

3.5. Nonnegative weak solution with positive initial data. Assume that
the initial data u0(x) > 0, for all x ∈ Ω. By (1.16), there exists a constant C
independent on {θi}∞i=1 such that, for each i = 1, 2, ...,

ess sup
0≤t≤T

∫

Ω

|(ui(x, t))− + θi|2dx ≤ C(θ2i + θi + θ
1/2
i ). (3.40)

Passing to the limits as i → ∞ in (3.40), by the convergence in (3.9) and (3.10), we
get u ≥ 0 a.e. in ΩT . Moreover, since u0 > 0 in Ω, u is not always zero in ΩT owing
to the continuity of u in ΩT . This completes the proof of Theorem 1.2.
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