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Abstract

Many post-processing methods improve forecasts at individual locations but remove their corre-
lation structure, which is crucial for predicting larger-scale events like total precipitation amount
over areas such as river catchments that are relevant for weather warnings and flood predictions.
We propose a method to reintroduce spatial correlation into a post-processed forecast using an R-
vine copula fitted to historical observations. This method works similarly to related approaches
like the Schaake shuffle and ensemble copula coupling, i.e., by rearranging predictions at in-
dividual locations and reintroducing spatial correlation while maintaining the post-processed
marginal distribution. Here, the copula measures how well an arrangement compares with the
historical distribution of precipitation. No close relationship is needed between the post-processed
marginal distributions and the spatial correlation source. This is an advantage compared to
Schaake shuffle and ensemble copula coupling, which rely on a ranking with no ties at each
considered location in their source for spatial correlations. However, weather variables such as
the precipitation amount, whose distribution has an atom at zero, have rankings with ties. To
evaluate the proposed method, it is applied to a precipitation forecast produced by a combination
model with two input forecasts that deliver calibrated marginal distributions but without spatial
correlations. The obtained results indicate that the calibration of the combination model carries
over to the output of the proposed model, i.e., the evaluation of area predictions shows a similar
improvement in forecast quality as the predictions for individual locations. Additionally, the
spatial correlation of the forecast is evaluated with the help of object-based metrics, for which the
proposed model also shows an improvement compared to both input forecasts.
Keywords: precipitation forecast, post-processing, spatial correlation, R-vine Copula

1 Introduction

In operational weather forecasting, forecasters are supported by various forecast models
to issue targeted warnings of potentially hazardous weather phenomena. The longer such
warnings are accurate and reliable, the more time decision-makers in hydrological and
civil protection have to diminish possible harm to life and property. Usually, these warn-
ings rely on nowcasting systems and numerical weather prediction (NWP). Both give valu-
able guidance, however, for different lead times [14, 29]. Thus, both systems represent
different sources of predictability that can be combined to give the best forecast at any
time. The so-called seamless prediction is part of a whole value cycle as described in [29],

ar
X

iv
:2

40
4.

13
48

7v
1 

 [
st

at
.M

E
] 

 2
0 

A
pr

 2
02

4



reaching from information generation toward the outcomes and values. The project Seam-
less Integrated Forecasting System (SINFONY) of Deutscher Wetterdienst (DWD) focuses
on the seamless prediction of precipitation within the short-term range up to 12 h ahead.
As a first step to achieve this combination, both forecasting techniques—nowcasting and
NWP—are enhanced individually such that the gap between both of them is narrowed in
terms of a verification metric. Then, based on the improved forecast systems, developing
and implementing custom combination methods leads to a unique user-oriented forecast,
including the best information for both individual forecasts. Within this project, among
other techniques, we have developed an approach to seamlessly combine 6 h forecasts of
an observation-based precipitation nowcasting scheme and the NWP model ICON-D2.

The main component of the approach mentioned above is a model we proposed in
[27]. It is based on neural networks for combining and post-processing two ensemble
forecasts (briefly called C3-model in the following, where C3 stands for combined, calibrated,
consistent). Forecasts of this model could provide a data basis for customized warnings.
The output of the C3-model consists of calibrated probabilities for the exceedance of a
set of precipitation thresholds at each grid point of a regular horizontal grid, see also [30].
However, a drawback of the model is the loss of spatial correlations of both input ensembles
during the calibration process.

This loss is a well-known problem often discussed in the literature about post-
processing of ensemble forecasts [3, 16, 22, 46]. Several approaches have been developed
to overcome this situation that reintroduces spatial information to post-processed marginal
forecasts. Typically, these approaches are based on the “Schaake shuffle” [8] or on “ensem-
ble copula coupling” [32], where sample values drawn from the post-processed marginal
distributions for individual locations are rearranged into synthetic ensembles according
to the rank correlation of a provided ensemble forecast or a period of past observations.
The resulting synthetic ensemble follows the post-processed marginal distributions while
preserving the spatial correlations of the raw (i.e. unprocessed) data.

To obtain suitable spatial correlations from a specific set of ensemble members, a close
correspondence between the provided ensemble and the post-processed marginal distribu-
tions is required [31], since spatial correlations are usually neither stationary in space nor in
time. Additionally, the ranks are not unambiguous at locations where ensemble members
take the same value, which is common for precipitation forecasts.

The marginal distributions provided by the C3-model [27] are based on combining two,
sometimes vastly different, ensemble forecasts. Thus, no corresponding ensemble forecasts
exist that could be used to transfer its spatial correlation structure.

Therefore, in the present paper, we propose a multivariate stochastic model for gener-
ating synthetic ensemble members based on the idea of the “Schaake shuffle”. However, in
our approach, the spatial correlations are not derived from a given ensemble nor directly
from historical observations but are modelled through an R-vine copula. Vine copulas are
a powerful tool for parametric modelling of multivariate probability distributions [17] and
offer the flexibility to describe their tail behaviour adequately [10]. Thus, the need for
having an ensemble forecast available in advance that follows the post-processed marginal
distributions is circumvented. Furthermore, the spatial correlation structure can be recon-
structed in any area without a readjustment of the model components for the new area
considered. As a result, we offer the possibility to provide forecast information on user-
oriented customized areas, which can be a basis for flexible warnings to end-users. Thus,
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with additional impact data, we can support the transition process of the current opera-
tional warning system towards an impact-oriented one [19, 20, 24]. Finally, we estimate
the distribution of the total precipitation amount within given regions (e.g. river catch-
ments or municipal areas) using synthetic ensemble members drawn from the multivariate
stochastic model.

Vine copulas are recently used in the field of energy meteorology to model the spatial
interrelation of errors in probabilistic forecasts to assess the uncertainties in the power gen-
eration of photovoltaic systems [1, 33], or for the inclusion of spatial dependencies between
multiple wind farms in wind energy scenarios [21, 41]. Another field of application is
within so-called weather generators. Since high-resolution time series of atmospheric vari-
ables are only available for a limited period (e.g. 30 years), it is necessary to extend these
time series when assessing extreme events [42] or designing hydrological applications [7].
In [6], several copula models have been evaluated to reproduce the spatial dependencies of
gauging stations in a river catchment. Furthermore, in [11], a spatial model based on an
R-vine copula has been introduced to predict time series of the daily mean temperature at
unobserved locations, and, in [23], various C-, D-, and R-vine copulas have been examined
to estimate rainfall deficiency structures in an Iranian river basin.

It should be noted that in the meteorological literature, the term “spatial correlation”
sometimes refers to the spatial correlation of forecast uncertainty, which is then called “spa-
tial error correlation”, see, e.g. [12], as opposed to the spatial correlation of the precipitation
amount itself. The reason for this distinction is that the (actually observed) precipitation
amount can be mathematically modelled either as a deterministic quantity or as a random
variable.

The present paper is structured as follows. First, the utilized datasets are introduced
in Section 2. This is followed in Section 3 by a description of the adjustment of the C3-
model by a quantile regression, the generation of synthetic ensemble members, and the
prediction of the total precipitation amount in a given area. Then, Section 4 discusses the
proposed model’s implementation details. Afterwards, the validation results are presented
in Section 5. Finally, conclusions are drawn in Section 6.

2 Data

For adding spatial correlations to the C3-model forecasts, we use the same dataset as in
[27]. That set consists of, on the one hand, precipitation extrapolations of STEPS-DWD,
a nowcasting scheme. On the other hand, forecasts of an experimental version of ICON-
D2 are used, a high-resolution short-term NWP model. Both systems provide ensemble
forecasts. In order to keep the present paper largely self-contained, we provide a brief
description of the dataset, which covers three time periods from the years 2016, 2019 and
2020 (05/26/2016 - 06/26/2016, 06/01/2019 - 06/23/2019, 06/03/2020 - 07/16/2020).

2.1 STEPS-DWD

STEPS-DWD has been developed within SINFONY as an adaption of STEPS (Short-Term
Ensemble Prediction System), see [5, 13, 35, 36], where DWD’s radar network provides
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radar reflectivities based on which precipitation rates are estimated by a hydrometeor-
dependent Z-R relation optimised for the radar stations utilised by DWD [38].

For the present study, STEPS-DWD is configured to consist of a cascade of first-order
autoregressive processes on twelve spatial scales and to apply a new localisation approach
[25, 26] for the estimation of the autoregressive parameters on each individual scale. The
spatially correlated noise field is estimated globally but is imprinted only in regions with
precipitation due to the localised autoregressive parameters.

We use further 30-member STEPS-DWD extrapolations that are generated every
30 minutes running 6 h ahead on a 1 × 1 km2 grid with a temporal resolution of 5 min-
utes. For our purposes, all 5-minute forecasts within a given hour are aggregated into one
hourly forecast. In the same way, radar observations are aggregated to obtain the ground
truth for the C3-model and the estimated precipitation amounts for validating the synthetic
rainfall fields.

2.2 ICON-D2-EPS

Furthermore, we use forecasts of an experimental version of ICON-D2-EPS [47] that runs
in limited area mode (LAM) with a horizontal grid spacing of ∆x ≈ 2.2 km. The domain
of the 20-members ensemble is centred on Central Europe. In addition to conventional
observation data and MODE-S aircraft measurements, radar reflectivities and radial winds
of the 3D volume scans are assimilated by DWD’s kilometre-scale ensemble data assimila-
tion system KENDA. It implements a localised ensemble transform Kalman filter [4, 34].
Only the first 20 members serve as initial conditions for the forecasts, while 40 members
are used for the assimilation. ICON-EU ensemble forecasts (larger trans-European domain,
grid spacing 6.5 km, parameterised deep convection) provide lateral and upper boundary
conditions. The operational conventional one-moment cloud microphysics scheme is used.

Our experimental setting of ICON-D2-EPS generates hourly forecasts running 12 h
ahead. The native ICON output is provided on an irregular triangular grid. Hence,
forecasts of both—STEPS-DWD and ICON-D2-EPS—as well as the observations are in-
terpolated onto a common regular 2.2× 2.2 km2 grid that was established for the former
operational NWP model COSMO-D2.

3 Methods

The modelling approach proposed in this paper consists of several parts. First, a ma-
chine learning model called the C3 model is used to predict calibrated quantiles of the
precipitation amount distribution for each location under consideration. However, these
pointwise predictions do not take spatial correlation into account. Therefore, in the next
step, an R-vine copula is fitted to precipitation observation data for modelling the multi-
variate precipitation distribution at multiple locations. Finally, the copula model is used
with a hill-climbing algorithm to order the predicted quantiles at each considered location
into synthetic ensemble members. This step is conceptually similar to Schaake shuffle and
ensemble copula coupling in that spatial correlation is imposed on samples of marginal dis-
tributions by rearranging the samples. However, for rearranging the predicted precipitation
values, the fitted copula serves as a measure of how well a given arrangement compares
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with the observed distribution of precipitation in the historical data, where no close re-
lationship is required between the post-processed marginal distributions and the spatial
correlation source. This is an advantage in comparison to Schaake shuffle and ensemble
copula coupling, which rely on the existence of a ranking with no ties at each considered
location in their source for spatial correlations. The ensemble members obtained by our
modelling approach exhibit not only the calibrated marginal distributions predicted by
the C3 model but also the spatial correlation provided by the copula model. We refer to
Section 4 below regarding various implementation aspects.

3.1 Quantile regression

Recall that the output of the C3-model, as proposed in [27] and [30], consists of probabil-
ities for the exceedance of an appropriately selected family of thresholds. For reliable fit-
ting of probability densities to these datasets of exceedance probabilities, a relatively large
number of thresholds would be required to cover the entire spectrum of possible precipi-
tation amounts. In addition, picking a suitable family of parametric densities is not trivial
to model the distribution predicted by the C3-model. Thus, we switch from considering
threshold exceedance probabilities to a quantile regression approach to limit the number
of necessary data points generated by the C3-model. For this, we replace the softmax layer
of the C3-model with a dense layer with a linear activation function and replace the “cate-
gorical cross-entropy” loss function with “pinball” loss functions, see [39] for details. This
allows us to predict a set of evenly spaced quantiles on the [0, 1]-interval. By sampling
values directly from this set of quantiles, we obtain data which can be seen as realizations
of the precipitation amount distribution predicted by the C3-model without the necessity
to fit a suitable probability density function.

3.2 Sampling of predicted precipitation amounts for single locations

For some integer, m > 1, let V = {v1, . . . , vm} ⊂ R2 denote a set of locations, for each loca-
tion vi of which the C3-model produces a calibrated distribution of precipitation amounts,
as described above. For some sample size N > 0 and for each i = 1, . . . , m, we draw N
sample values x1

i , . . . , xN
i > 0 for a specified hour t > tc from a certain random variable Xi,

whose probability distribution describes the predicted precipitation amount at location vi.
Here and in the following, tc ∈ R refers to the present point in time dividing the datasets
into past and future, i.e., the data available for training and validation, respectively. Note
that these values are independently sampled for each individual location, i.e., the ran-
dom vector (X1, . . . , Xm) has independent components because the C3-model predicts the
univariate (marginal) distributions of precipitation amounts without taking spatial corre-
lations into account. The sample values x1

i , . . . , xN
i are used later on as building blocks

for the construction of synthetic ensemble members, which follow the distribution of some
m-dimensional random vector (X′1, . . . , X′m) that describes the precipitation amounts pre-
dicted at locations v1, . . . , vm ∈ V for the same hour t, i.e., the (univariate) distributions
of X′i and Xi coincide for each i = 1, . . . , m, where the spatial correlations observed in
historical precipitation data are taken into consideration in (X′1, . . . , X′m).
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3.3 Modeling spatial dependencies by measured precipitation amounts

This section explains how copula models can capture spatial dependencies based on mea-
sured precipitation amounts. In particular, we use Sklar’s fundamental theorem of copula
theory, see [17], which states that the cumulative distribution function of a multivariate
probability distribution can be decomposed into several distinct functions. They consist
of univariate (marginal) cumulative distribution functions and a so-called copula which
models the underlying correlation structure. While many different copula families are
used to model different multivariate correlation structures, most are restricted to the two-
dimensional case. Thus, so-called vine copulas have been developed to use copula models
for higher dimensions. These are based on a graph structure of two-dimensional copulas
to construct m-dimensional copulas for some integer m > 2. For further details regarding
the construction of vine copulas, we refer to [17].

In the present paper, we are interested in the multivariate distribution of m-dimensional
vectors of precipitation amounts. For technical reasons, however, the implementation ex-
plained in Section 4 below only allows for continuous or discrete distributions but not for
mixtures of both distribution types. Since the distribution of precipitation amounts has an
atom at 0 mm, it is a mixture distribution, which necessitates that we consider discretized
marginal distributions instead. However, the method presented in this paper can also be
applied to meteorological quantities with continuous distributions, such as temperature.
Therefore, the continuous and the discrete cases will be discussed in the following.

To determine the joint distribution of (historical) precipitation amounts at a set of lo-
cations v1, . . . , vm ∈ V modelled by an m-dimensional random vector (Y1, . . . , Ym), we use
historical datasets (y1,t1 , . . . , ym,t1), . . . , (y1,tk , . . . , ym,tk), which are considered as realizations
of (Y1, . . . , Ym) being available from measurements of precipitation amounts for certain
past times t1, . . . , tk ≤ tc. Moreover, we use Sklar’s representation formula [17] for the joint
cumulative distribution function G : Rm → [0, 1] of (Y1, . . . , Ym), which states that

G(y1, . . . , ym) = C(G1(y1), . . . , Gm(ym)) for all y1, . . . , ym ∈ R, (1)

where Gi : R → [0, 1] denotes the univariate cumulative distribution function of Yi for
i = 1, . . . , m, and C : [0, 1]m → [0, 1] is an m-variate copula, i.e., C : [0, 1]m → [0, 1] is the
restriction of the m-variate cumulative distribution function of an m-dimensional random
vector to the cube [0, 1]m such that its components are uniformly distributed on the unit
interval [0, 1] for each i = 1, . . . , m. Thus, to determine G, it is sufficient to determine the
univariate distribution functions G1, . . . , Gm and the copula C, where we assume that C is
an R-vine copula.

Note that Sklar’s representation formula given in Equation (1) can be specified, if the
joint distribution of (Y1, . . . , Ym) is (purely) continuous or discrete. In the discrete case, it
is sufficient to determine the values of the copula C : [0, 1]m → [0, 1] for the joint support
RU1 × . . .× RUm ⊂ [0, 1]m of the vector (U1, . . . , Um) of transformed random variables Ui =
Gi(Yi), i = 1, . . . , m, instead of considering the values of C for the entire cube [0, 1]m, where
RUi denotes the support of Ui for i = 1, . . . , m.

In this paper, we are mainly interested in the joint probability density (or, in the discrete
case, the probability mass function) g : Rm → [0, ∞) of (Y1, . . . , Ym), instead of determin-
ing the joint cumulative distribution function G : Rm → [0, 1] of (Y1, . . . , Ym). Then, the
following representation formulas for g can be derived from Equation (1), see [17]: In the
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continuous case, the density g of (Y1, . . . , Yn) is given by

g(y1, . . . , ym) = c(G1(y1), . . . , Gm(ym))
m

∏
i=1

gi(yi) for all y1, . . . , ym ∈ R, (2)

where gi : R → [0, ∞) denotes the density of Yi for i = 1, . . . , m, and c : [0, 1]m → [0, ∞) is
the density of C. In the discrete case,

the probability mass function g : Rm → [0, 1] of (Y1, . . . , Ym) is given by

g(y1, . . . , ym) = c(G1(y1), . . . , Gm(ym)) for all y1 ∈ RY1 , . . . , ym ∈ RYm , (3)

where RYi denotes the support of Yi for i = 1, . . . , m. Here, c : RU1 × . . .× RUm → [0, ∞)
is the probability mass function of the transformed random vector (U1, . . . , Um) which is
given by

c(u1, . . . , um) = ∑
j1∈{0,1}

. . . ∑
jm∈{0,1}

(−1)j1+...+jm C(u(j1)
1 , . . . , u(jm)

m ) (4)

for all (u1, . . . , um) ∈ RU1 × . . . × RUm , where u(0)
i = ui and u(1)

i = limx↑G−1
i (ui)

Gi(x) for
i = 1, . . . , m.

Thus, in order to obtain g for a dataset (y1,t1 , . . . , ym,t1), . . . , (y1,tk , . . . , ym,tk) ∈ Rm, we
first determine the univariate cumulative distribution functions G1, . . . , Gm : R → [0, 1]
for each location in v1, . . . , vm ∈ V. Then, in a second step, an R-vine copula C
(or its density resp. probability mass function c) is fitted to the transformed dataset
(u1,t1 , . . . , um,t1), . . . , (u1,tk , . . . , um,tk) ∈ [0, 1]m. For a more detailed description regarding
the fitting procedure of R-vine copulas to data, we refer to [17], see also [1].

3.4 Generation of synthetic ensemble members

From now on, we assume that all random variables, i.e., X1, . . . , Xm, Y1, . . . , Ym, and
X′1, . . . , X′m, as well as the transformed random variables U1, . . . , Um, considered in the
following, have discrete distributions.

We show how the samples (x1
i , . . . , xN

i ) for i = 1, . . . , m, which have been independently
drawn from the components of the random vector (X1, . . . , Xm) as stated above, can be
rearranged into N synthetic ensemble members (x(j)

1 , . . . , x(j)
m ) for j ∈ {1, . . . , N}, such

that these ensemble members can be considered as realizations of some m-dimensional
random vector (X′1, . . . , X′m), whose univariate marginal distributions coincide with those of
(X1, . . . , Xm) and, in addition, which exhibits the spatial correlations observed in historical
precipitation data.

For this purpose, i.e., to rearrange the samples {(x1
i , . . . , xN

i ), i = 1, . . . , m} into N syn-

thetic ensemble members {(x(j)
1 , . . . , x(j)

m ), j = 1, . . . , N}, we determine a permutation σi :

{1, . . . , N} → {1, . . . , N} for each i = 1, . . . , m with (x
σ−1

i (1)
i , . . . , x

σ−1
i (N)

i ) = (x(1)i , . . . , x(N)
i )

such that the sample of ensemble members {(x(j)
1 , . . . , x(j)

m ), j = 1, . . . , N} exhibits the spa-
tial correlation of precipitation amounts modeled by the copula C : RU1 × . . .×RUM → [0, 1]
introduced above. For this, we define the likelihood L(σ) for a set of permutations
σ = {σi, i = 1, . . . , m} as

L(σ) =
N

∏
j=1

g(x(j)
1 , . . . , x(j)

m ) , (5)
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where g : RY1 × . . .× RYm → [0, 1] is the probability mass function of the discrete random
vector (Y1, . . . , Ym) fitted to historical precipitation data.

Thus, a set of permutations σ, which maximizes the likelihood L(σ), rearranges the sam-
ples {(x1

i , . . . , xN
i ), i = 1, . . . , m} into N synthetic ensemble members {(x(j)

1 , . . . , x(j)
m ), j =

1, . . . , N} such that they match the spatial correlation of precipitation amounts in the best
possible way.

3.5 Predicting the total precipitation amount in a given area

Recall that the i-th component Xi of the random vector (X1, . . . , Xm) introduced above
has the same (univariate) distribution as the i-th component X′i of (X′1, . . . , X′m) for each
i ∈ {1, . . . , m}. However, in addition to this, the joint distribution of the random vector
(X′1, . . . , X′m) obtained by maximizing the likelihood L(σ) given in Equation (5), also cap-
tures the spatial correlation of precipitation amounts. Thus, for any subset S ⊂ {1, . . . , m},
the random sum ∑i∈S X′i can be considered as an appropriate prediction model for the
total precipitation amount in an area which is represented by the set {vi, i ∈ S} ⊂ V of
locations. In particular, the probability P(∑i∈S X′i ≥ z) that the total precipitation amount
∑i∈S X′i exceeds a certain (critical) threshold z > 0 can be estimated by the relative fre-

quency #{j : 1 ≤ j ≤ N, ∑vi∈S x(j)
i > z}/N, where # denotes cardinality.

4 Implementation of the copula-based model

We now discuss some implementation details of the copula-based model introduced in
Section 3. First, we explain for which areas the proposed model generates synthetic en-
sembles, which are validated in Section 5 below. Next, the procedure for fitting an R-vine
copula to historical data is explained in detail. Then, a hill-climbing algorithm is presented
for optimizing the likelihood function L(σ) introduced in Section 3. Finally, we discuss the
validation scheme utilized for evaluating the results stated in Section 5.

Note that so far in this paper, the term "location" has been used because, in general,
the model introduced in Section 3 does not assume that the underlying data is given on a
regular grid, i.e., the set V = {v1, . . . , vm} ⊂ R2 introduced in Section 3 can be arbitrarily
shaped. However, in our case, the data described in Section 2 is arranged on a regular
grid, and, therefore, we will refer to grid points (or grid boxes) in the following instead of
calling them locations. Moreover, instead of considering one single set V of grid points, in
the following, we apply the copula-based model introduced in Section 3 to several sets of
grid points simultaneously, i.e., we assume that the historical observations of precipitation
amounts are statistically invariant in space and time. This means, in particular, that we
fit one single R-vine copula to multiple precipitation observations from across the entire
considered period and from non-overlapping subsets of some sampling window W ⊂ R2,
respectively.

4.1 Areas, where synthetic ensembles are generated

In order to evaluate the copula-based model proposed in the present paper, it is applied
to the combined forecast produced by the C3-model, which receives forecasts of STEPS-
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DWD and ICON-D2-EPS as input and predicts calibrated marginal distributions for all
considered grid points without taking spatial correlations into account. This combined
forecast is available for a sampling window W ⊂ R2, consisting of 350× 450 grid points
and a rectangular subset of the regular COSMO-D2 grid, enclosing Germany and parts of
neighbouring countries.

However, due to computational complexity, applying the copula-based model to the
whole sampling window W in a single step is impossible. So instead, for each hour
t available in the dataset, which belongs to the time intervals listed in the introduc-
tion of Section 2, we successively choose nt > 1 non-overlapping quadratic subsets
Vt

1 , Vt
2 , . . . , Vt

nt
⊂ W, consisting of 9× 9 grid points each and being positioned at random

within W, until no further non-overlapping 9× 9 subset can be found in W.

4.2 Fitting R-vine copulas to historical observations

For a given hour tc representing the “current time”, we fit an R-vine copula to the his-
torical observations made within the areas Vt

1 , Vt
2 , . . . , Vt

nt
⊂ W and for the k past hours

t ∈ {t1, . . . , tk} introduced in Section 3 with t ≤ tc, i.e., the R-vine copula is fitted to
the vector data of precipitation amounts observed within the sets of 9× 9 grid points de-
scribed above, without taking local peculiarities into account. In other words, since the
areas Vt

1 , Vt
2 , . . . , Vt

nt
are selected at random from all parts of the sampling window W, the

fitted R-vine copula does not model local correlations which might be specific to a partic-
ular 9× 9 area. This has the advantage that rare events, which might occur only at a few
grid points within the entire dataset, do not influence how spatial correlation is modelled
globally in W.

Note that the dataset on which the R-vine copula is fitted consists of observations for
different past hours t ∈ {t1, . . . , tk} and different 9× 9 areas Vt

1 , . . . , Vt
nt
⊂ W. However,

for fitting the copula, this dataset is considered as realizations of one single random vector
(Y1, . . . , Ym) for one single (abstract) 9× 9 area V = {v1, . . . , vm}with m = 81, as introduced
in Section 3. Therefore, in the following, V = {v1, . . . , vm} does not refer to one specific
area within W, but to an unspecified quadratic set of m = 81 grid points and their relative
positions to each other for which the random vector (Y1, . . . , Ym) is defined.

To fit the R-vine copula, the library pyvinecopulib [43] is used, where pyvinecopulib
requires that the univariate (marginal) distributions of Yi for i ∈ {1, . . . , m} fitted to the
historical precipitation data are either continuous or discrete. Thus, since the distribution of
precipitation amounts has an atom at 0 mm, we consider a discretized marginal distribution
for each i ∈ {1, . . . , m}, represented by its cumulative distribution function Gi : RYi → [0, 1].
Next, using Gi, we transform the precipitation amount yi observed at vi ∈ V to obtain
ui = Gi(yi) ∈ [0, 1].

The R-vine copula is now fitted to the vectors (u1, . . . , um) of transformed precipitation
amounts, where the fact is used that an R-vine copula is built by a set of bivariate copulas.
Thus, in the fitting process, pyvinecopulib determines the most suitable copula family for
each of these bivariate copulas with the help of statistical tests. For the results derived in
this paper, the bivariate copulas are chosen from all available parametric copula families
provided by pyvinecopulib. However, to reduce computational costs, we truncate the
R-vine copula considering only five trees within the vine structure, i.e., for each of the
m = 81 arguments of the R-vine copula, the correlation structure with five other suitably
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chosen arguments is considered. For more details regarding truncated vine copulas and
vine copulas in general, we refer to [17].

4.3 Generating samples of predicted precipitation amounts

In the following, we describe how to generate a sample (x1
i , . . . , xN

i ) of predicted precipita-
tion amounts for an hour t > tc and for each of the m = 81 grid points of each 9× 9 area
Vt

1 , . . . , Vt
nt
⊂W, where i ∈ {1, . . . , m}.

As described in Section 3, the C3-model has been modified to generate quantiles
of the predicted distributions of precipitation amounts for each grid point in W. For
our purpose, the C3-model has been trained to generate vectors q = (q1, . . . , q100) of
100 α-quantiles, where the values of α are evenly spaced between 0.0001 and 0.9999.
Then, for each grid point in Vt

1 ∪ . . . ∪ Vt
nt

, we select N = 20 values at random among
the components of the corresponding vector q = (q1, . . . , q100). To ensure that these
values are spread out across the entire support of the predicted precipitation distribu-
tion, the components of q = (q1, . . . , q100) are divided into N = 20 consecutive groups
(q1, . . . , q5), (q6, . . . , q10), . . . , (q91, . . . , q95), (q96, . . . , q100), each consisting of five quantiles
from which one quantile is selected at random. Note that this procedure is similar to
the stratified sampling approach discussed in [15]. In the following, the matrix of the N
quantiles drawn from q for each of the m = 81 grid points within a given 9× 9 area will be
denoted by x = (xj

i , i ∈ {1, . . . , m}, j ∈ {1, . . . , N}) ∈ Rm×N.

4.4 Hill climbing algorithm for ensemble generation

To find a set of permutations σ = {σi, i = 1, . . . , m} that maximizes the likelihood L(σ)
introduced in Equation (5), a hill climbing algorithm [37] is applied. This algorithm starts
with a set of random permutations σ = {σi, i = 1, . . . , m}, i.e., for each grid point i ∈
{1, . . . , m} the quantiles in (x1

i , . . . , xN
i ) are rearranged at random. These arrangements are

iteratively changed such that the value of the evaluation function L(σ) increases with each
step, where the algorithm is structured as follows, see also Algorithm 1 below :

1. The inputs of the algorithm are the matrix x = (xj
i , i ∈ {1, . . . , m}, j ∈ {1, . . . , N}) ∈

Rm×N, which contains N predictions for each of the m grid points, and the m-variate
density function g : RY → [0, ∞) introduced in Section 3.

2. As already mentioned above, the algorithm starts with a set of random permuta-
tions σ = {σi, i = 1, . . . , m}, i.e., there is no (spatial) correlation between the rows
(x1

i , . . . , xN
i ) of x after applying the set σ of random permutations.

3. Iterate over each synthetic ensemble member (xj
1, . . . , xj

m) for j ∈ {1, . . . , N}: (a) Find
k ∈ {j, . . . , N} such that g(xj

1, . . . , xk
p, . . . , xj

m) is maximized for each grid point p ∈
{1, . . . , m}. If k ̸= j switch xj

p and xk
p in order to improve g(xj). (b) Repeat step (a)

until no values in x have been switched.
4. Return x. Note that at this step of the algorithm, the variable x contains the ordered

values that were referred to as {(x(j)
1 , . . . , x(j)

m ), j = 1, . . . , N}.

The idea of reordering samples drawn from marginal distributions in order to obtain
realistic ensemble members is also used in the approaches of the Schaake shuffle [8] and
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Algorithm 1 Synthetic Ensemble Optimization with Hill Climbing

1: procedure Hill_Climbing(x, g) ▷ x ∈ Rm×N contains N predictions for m grid points
2: ▷ g is the density function fitted in Section 3
3: for j ∈ {1, . . . , N} do ▷ Iterate over all synthetic ensemble members
4: repeat
5: c← False
6: for p ∈ {1, . . . , m} do ▷ Iterate over all grid points (in random order)
7: k← arg maxk∈{j,...,N} g(xj

1, . . . , xk
p, . . . , xj

m) ▷ Find best prediction for p

8: if k > j then ▷ true, if switching xk
p with xj

p improves g(xj)

9: xj
p ↔ xk

p ▷ Predictions in members j and k switch places
10: c← True ▷ c = True indicates that a change has been made to x
11: end if
12: end for
13: until ¬c ▷ Stop if no improvement has been made for any grid point in xj

14: end for
15: return x ▷ x contains the ordered values referred to as {(x(j)

1 , . . . , x(j)
m ), j = 1, . . . , N}

16: end procedure

ensemble copula coupling [45]. However, in those approaches, the permutations for each
grid point are provided either by a given set of ensemble members or directly by a set of
historical observations. In contrast, the approach considered in the present paper is based
on a fitted copula model.

For the results stated in this paper, N is chosen to be 20; however, the last member is
omitted since the number of values from which the algorithm can choose at a grid point
decreases as j ∈ {1, . . . , N} increases, the quality of the synthetic members, therefore,
decreases for higher values of j. The decrease in quality is depicted in Figure 1, where it is
shown that this effect mainly affects the last member j = N.

4.5 Validation scheme

The copula model proposed in this paper is validated with the help of a rolling-origin
scheme [2]. In this scheme, the available dataset is split by the “current time” tc, into a
“past” and a “future”. Throughout the validation, the "current time" tc is incrementally
shifted from the start to the end of the dataset in chronological order. In each step, the
model is updated on the ”past” data while the “future” data is used to validate model
predictions. This approach is especially suitable for datasets with a time axis and also
because it closely simulates operational conditions.

Furthermore, in each step, the model is applied to randomly chosen, non-overlapping
areas of size 9× 9, as described at the beginning of this section. Each application results
in 19 synthetic ensemble members. Based on these synthetic ensemble members, the prob-
ability is estimated that the total precipitation amount within the area exceeds a given
threshold. The resulting validation scores are discussed in the following section.
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Figure 1: Relative quality of all synthetic ensemble members (x(i)1 , . . . , x(i)m ) evaluated in the dataset (∼ 50000
in total) compared to the first member (x(1)1 , . . . , x(1)m ) within the same 9× 9 area for the lead time +3 h. The
relative quality is expressed by the distribution of the quotient log(g(x(i)1 , . . . , x(i)m ))/log(g(x(1)1 , . . . , x(1)m ))

for i = 2, . . . , 20 with 90% winsorization. Note that the distributions of the relative qualities looks essentially
the same for other lead times.

5 Validation of synthetic rainfall fields

We want to assess how well the copula-based technique proposed in this paper models
realistic spatial dependencies and to which extent the original requirements of a consis-
tent and calibrated combination forecast are retained. For this, we compare the synthetic
rainfall fields with two extreme cases of spatial correlation. A minimum of spatial corre-
lation is realized by randomly arranging the x-values at each grid point, which have been
drawn from the C3-model as described in Section 4. On the other hand, the maximum
possible spatial correlation is achieved by sorting these sample values by size, i.e., the first
synthetic ensemble member contains the largest values for each grid point, the second
ensemble member the second largest ones, etc. However, since the random arrangement
reveals very poor results for all considered metrics, we only discuss the results of the com-
parative validation against the sorted arrangement. In the following, forecasts, for which
the spatial dependencies are restored by the model proposed in this paper, are referred
to as “COPULA”, whereas the sorted scenario is named “COPULA sorted”. Furthermore,
the sorting arrangement is also made for both input forecasts named “STEPS sorted” and
“ICON sorted”. Note that while we append "sorted" to each of the three model names
for consistency, the “COPULA sorted” forecast consists only of the sorted predictions of
the C3-model and does not require the application of a copula model or the hill climbing
algorithm.

For the evaluation of the core requirements, we first computed traditional metrics such
as bias, Brier skill score and reliability for approximately 50000 (sub-) regions V ⊂ W that
we have been drawn at random for each considered hour within our three months period
and for all lead times, see Section 2. Thus, the dataset consists of 1761 forecast hours
for each lead time, where the average number of evaluated sub-regions per forecast hour is
equal to 28, 4. These traditional metrics mentioned above have been computed for threshold
exceedance probabilities to get easily interpretable information about the systematic model
error (bias), the forecast quality regarding both model and forecast error (Brier skill score),
and the conditional frequency bias (reliability).

Moreover, to get a better insight into the spatial structure of the synthetic rainfall fields
and their realistic appearance, we identified objects as sets of connected grid points, in
which precipitation occurs, by a standard segmentation method using 4-connectivity and,
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furthermore, evaluated the parameters of a fitted exponential variogram model. Based
on the identified objects, we computed their number, overall area, scaled volume, and
weighted centre distance. Note that the latter two metrics were initially introduced in [44].
In addition, we assessed the model performance by the aggregation metrics D0 and D1,
which were introduced in [40]. For a discussion of these object-based metrics, see also [28].
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Figure 2: Observed precipitation amounts (obs) and realizations of 1 h forecasts of the four considered models
(ICON, STEPS, COPULA, and the sorted predictions of the C3-model) for a randomly chosen subset of 9×9
grid points. The colour scale is given in millimetres. Precipitation amounts above the right-hand end of the
colour scale are shown in black.

5.1 Visual Inspection

Figure 2 depicts an exemplary observation (obs) at the top for a randomly chosen sub-
region V ⊂W and forecast hour, together with the ensemble members of the NWP forecast
(ICON) and the precipitation nowcasting (STEPS). Note that ICON provides 20 ensemble
members, while STEPS has 30. The synthetic ensemble members resulting from the copula
model (COPULA) with restored spatial dependencies are illustrated as a fourth category.
At the bottom, the randomly drawn and sorted marginal forecasts (COPULA sorted) are
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depicted. As discussed in the previous section and illustrated in Figure 1, the quality of
the last synthetic ensemble member generated by the hill climbing algorithm differs vastly
from previous iterations and is thus omitted. Therefore, COPULA shows only 19 ensemble
members. For each ensemble, the members are depicted in Figure 2 in ascending order of
the total amount of precipitation within the considered area.

It can be seen that each ensemble forecast exhibits different spatial correlation patterns.
ICON ensemble members appear relatively smooth, while the ensemble members of STEPS
show a high level of variation between neighbouring grid points. This is because the effec-
tive resolution of ICON is lower than the resolution of the considered grid, while the native
grid of STEPS has an even higher resolution, as discussed in Section 2. When considering
the ensemble members of COPULA, we see that the proposed model reintroduced spatial
features, i.e., values at neighbouring grid points are more similar compared to grid points
further apart. When comparing the COPULA ensemble and its sorted version, we see that
the sorted version is much smoother since it is the arrangement with the highest possi-
ble correlation between grid points. Note that the precipitation amounts for the ensemble
members generated by COPULA and its sorted version are provided by the C3-model and
differ only in their arrangement to synthetic ensemble members.

5.2 Traditional metrics

The results depicted in Figure 3 for bias (left), Brier skill score (centre), and reliability
(right) for thresholds from 0.62 mm up to 3.7 mm are shown for STEPS (orange), STEPS
sorted (red), ICON (blue), ICON sorted (cyan), COPULA (green), and COPULA sorted
(light green). For lower thresholds (0.62 mm and 1.23 mm), the systematic error of area
probabilities based on COPULA is decreased compared to the sorted arrangement of C3

samples. Nevertheless, for both thresholds, COPULA and COPULA sorted are systemati-
cally overestimating the exceedance probabilities.

However, the forecast quality in terms of the Brier skill score depicted in the centre col-
umn of Figure 3 indicates no loss compared to the input models, albeit improvements over
ICON are unremarkable for lower thresholds at later lead times. The reliability depicted
in the right column of Figure 3 reveals that the copula model has an improved relative
frequency bias compared to the input models except for a lead time of 1 h for the lower
thresholds.

Comparing these results for area probabilities with those from the grid point perspec-
tive in [27], it can be seen that there is no large decline in the results based on a traditional
forecast verification. That indicates that our core requirements of a calibrated and consis-
tent combination are still fulfilled and that the calibration of marginal distributions also
improves the prediction of area probabilities.
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Figure 3: Bias, Brier skill score and reliability for threshold exceedance probabilities predicted by the models
STEPS (orange), STEPS sorted (red), ICON (blue), ICON sorted (cyan), COPULA (green) and Copula sorted
(light green).

To further demonstrate the ensemble calibration of area probabilities, Figure 4 depicts
reliability diagrams for every forecast lead time for a threshold of 2.47 mm. These diagrams
allow for a more detailed insight into the reliability as the scores depicted in Figure 3.
Here, the curves for COPULA are close to the leading diagonal, indicating that the calibra-
tion performed by the C3-model (see [27]) also improves the calibration of area forecasts.
Furthermore, the occurrence of probabilities close to 1 decreases with increasing forecast
uncertainty, i.e., for increasing thresholds and longer lead times. This decrease is indicated
by an increasing truncation of the curves. Compared with this, the input forecasts of ICON
and STEPS reveal a lead-time invariant and increasing overforecast, respectively.
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Figure 4: Reliability (top) and frequency diagrams (bottom) for threshold exceedance probabilities (2.47 mm)
predicted by the models STEPS (orange), STEPS sorted (red), ICON (blue), ICON sorted (cyan), COPULA
(green) and COPULA sorted (light green).

We want to assess not only the forecast quality of exceedance probabilities in terms of
bias, Brier skill score, and reliability, but also the statistical behavior of predicted precipita-
tion amounts. For this, probability integral transform (PIT) diagrams [9] for areal precipi-
tation amounts predicted by the four models STEPS, ICON, COPULA, as well as COPULA
sorted for different lead times are depicted in Figure 5. In such diagrams, the horizontal
axes are defined as the normalized value ranges of the forecasts, whereas the numbers of
bins are equal to the ensemble sizes. The actually occurred precipitation amounts are sorted
into the respective ensemble member’s bin with an equal or higher rainfall amount fore-
cast. Thus, events in the first (last) bin represent observed rainfall amounts below (above)
the forecast value range.

Note that each bin of a PIT diagram corresponds to an interval between two ensemble
members for a given metric. In cases where the considered metric is identical for two or
more ensemble members, the corresponding intervals have length zero and observations
with the same metric cannot be unambiguously assigned to one bin. When considering
metrics like precipitation amounts, this is a common occurrence due to the atom in the
distribution at 0 mm. To mend this, we use the approach presented in Equation (1) in [9],
where such observations are randomly assigned to one of the bins in question.

For both raw input ensemble forecasts, many observed precipitation amounts are in the
first and last bin, respectively, revealing an underdispersive behaviour, i.e., the ensemble
does not cover the whole range of observations. The overestimation at the lower percentile
might be induced by non-precipitation cases but also by an overforecast of the precipitation
amount, the latter, especially for ICON forecasts. However, it should be noted that this
result may be sensitive to the QPE that we have used as observation. On the other hand,
STEPS shows deficiencies with higher precipitation amounts. This may be induced by the
cascade of autoregressive processes that reduces the maxima of intensity and cannot cover
the range of growth/decay processes of precipitation.

With precipitation sums based on synthetic rainfall fields generated by COPULA, we
can at least cover the observed range of values at the upper bound. However, many cases
with less precipitation are not covered. For this, also non-precipitation cases may play a
role. Since at least a few values drawn from the upper tail of the probability distributions
predicted by the C3-model are always positive, the total precipitation amount within syn-
thetic ensemble members is often positive and not zero. This could be underpinned by the
sorted arrangement depicted in the right column of Figure 5. In these diagrams, no out-
liers are visible at both bounds due to a larger range of predicted area precipitation sums
compared to COPULA. However, the frequency of larger precipitation amounts is higher in
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the sorted arrangement, since most of the observed rainfall is below the median. Thus, the
sorted arrangement achieves the best PIT diagrams compared to the other three models.

ICON STEPS COPULA COPULA sorted

+1 h

+3 h

+6 h

Figure 5: Probability integral transform (PIT) diagrams for area precipitation amounts predicted by the four
models STEPS, ICON, COPULA as well as COPULA sorted for lead times of +1 h (top), +3 h (centre), and
+6 h (bottom). Here, the values of 0 and 1 along the horizontal axes correspond to the lowest and highest
values, respectively, predicted by the corresponding ensemble forecast, whereas the binned events indicate
whether the observed precipitation amounts are below or equal to the rainfall amount of the respective ensemble
member. Thus, events in the first (last) bin represent observed precipitation amounts below (above) the lowest
(highest) forecast value.

5.3 Object-based metrics and estimated variogram models

To highlight the benefits of the restoration of spatial dependencies and to compare the
resulting precipitation structures in each ensemble member with that of the radar observa-
tion, we consider PIT diagrams of various object-based metrics in Figure 6. As an object,
we define a contiguous area in the sense of a 4-connectivity where grid points exceed an
hourly precipitation sum of 0.1 mm. The metrics consist of the total area of all objects and
their number. Further, we consider two metrics of the SAL-index (Structure, Amplitude,
Location; [44]). First, the scaled volume provides information about the average shape
of identified objects. It is given by the precipitation mass of an object normalized by its
maximum and additionally weighted with this mass. Here, the precipitation mass of an
object is defined as the sum of the rainfall amount at each associated grid point. Second,
the weighted centre distance describes the average distance between single objects and the
total centre of mass and provides information about the aggregation of precipitation. The
averaging is also based on the precipitation mass to favour larger objects. In addition, we
assess D0 and D1, which are components of SCAI (Simple Convective Aggregation Index;
[40]). The metrics D0 and D1 represent the geometric and arithmetic mean of the distances
for all possible pairs of objects.

The evaluation results for the four models, ICON, STEPS, COPULA and COPULA
sorted, are divided into two groups. First, we consider results based on the whole dataset,
depicted in the four left columns of Figure 6. Second, instances without any observed
precipitation are removed for the four right columns. This implies that at least at one
grid point within the 9× 9 sub-region V ⊂ W, the observed hourly rainfall sum must be
≥ 0.1 mm. ICON and STEPS reveal a tendency to underestimate the respective values in all
metrics since there is a peak of observations in the last bin. This peak is even more distinct
for the precipitation subset, indicating many cases in which no precipitation is forecast or
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observed. The peak may be induced by cases where no precipitation is forecast at all. One
should be aware that we statistically evaluated sub-regions with an edge length of ≈ 20 km
so that errors in location (e.g. spatial shifts in forecast precipitation) strongly influence the
depicted results. In some cases, ICON and STEPS overestimate the area, whereby STEPS
further overestimates the weighted centre distance. This may be attributable to situations
where only one smaller object is identified in the observation. Since precipitation fields
in ICON are smoother, one can assume that, in general, the number of objects is smaller.
Therefore, if only one object is detected, the centre of masses is “equal to itself”, and the
weighted centre distance is zero.
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Figure 6: PIT diagrams as in Figure 5 but for various object-based metrics. Top-down are the area and
the number of objects, scaled volume and weighted centre distance of SAL, D0 and D1 of SCAI. Results are
shown for STEPS, ICON, COPULA and COPULA sorted for +1 h lead time. Results for other lead times
are omitted since they are essentially identical. The four columns on the left-hand side show the results for the
whole dataset, while the four columns on the right-hand side are restricted to instances where precipitation
was observed within the considered 9× 9 sub-region V ⊂W.

The forecasts of COPULA sorted also show an underestimation of the metrics. How-
ever, at least a few ensemble members are above the observed values since the frequency
in bins of the upper percentiles is also increased. Furthermore, at least the maximum value
of the COPULA sorted ensemble forecast seems to reproduce the observed values since the
maximum peak is in the second last bin. Compared to the raw drawn values, the forecasts
of COPULA reveal a nearly uniform distribution for the whole dataset. For the precipi-
tation subset, the distribution of observed values is still skewed. However, the frequency
begins to increase at lower percentiles. This indicates that the forecasts of Copula exhibit
a more realistic representation of spatial structures in terms of such a set of object-based
metrics.

As an additional technique to assess the spatial structure of synthetic rainfall fields, we
fit an exponential variogram model (e.g. [18]) and compare the estimated fitting parame-
ters. These parameters, namely, nugget, sill, and effective range, are shown in Figure 7 for
lead times of +1 h, +3 h, and +6 h. Again, we consider the whole dataset (four columns
on the left-hand side) and the precipitation subset (four columns on the right-hand side).
Nugget describes the portion of non-spatial variance, whereas sill represents the limit of
the variogram. The effective range is the distance where 95 % of the sill is exceeded. The
forecasts of ICON and STEPS reveal an underdispersive behaviour in all three metrics for
the whole dataset, whereas, for the precipitation subset, only an underestimation is visi-
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ble. As for the set of object-based metrics, many cases are removed in which precipitation
is neither observed nor forecast. However, in cases where precipitation is forecast in all
forecast members but not observed, the ensemble members show higher variability than
the object-based metrics. This may explain the number of observations in the first bin. Dif-
ferences with increasing lead times are merely visible for the results of the whole dataset.
However, all three metrics decrease with increasing lead time for ICON and STEPS for the
precipitation subset.
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Figure 7: PIT diagrams as in Figure 5 and Figure 6 but for various variogram parameters of an exponential
variogram model, which are the nugget, effective range, and sill. Results are shown for STEPS, ICON,
COPULA and COPULA sorted for the lead times of +1 h, +3 h, and +6 h. The four columns on the left
show the results for the whole dataset, while the four columns on the right are restricted to instances where
precipitation was observed within the considered 9× 9 sub-region V.

COPULA sorted shows a nearly uniformly distributed histogram for lower percentiles;
however, it underestimates all three metrics for many cases in the whole dataset. This peak
is more distinct in the precipitation subset. In addition, observed nugget values are centred
around the median. It could also be seen that nugget and effective range decrease with in-
creasing lead time. Compared to this, COPULA shows (for the whole dataset) most of the
observed values at lower percentiles, with only a few events in the last bins. For the pre-
cipitation subset, these peaks are shifted toward upper percentiles. Furthermore, all values
decrease with increasing lead times. While with respect to the traditional scores considered
above, COPULA sorted showed a similar validation behavior compared to COPULA, the
results presented in Figure 7 indicate that the forecasts of COPULA exhibit a more realistic
spatial correlation.

6 Conclusion

Many post-processing techniques for weather forecasts apply statistical corrections to a
forecast for each individual location considered, i.e., the spatial correlation between loca-
tions contained in the input forecast is lost, and the post-processed output contains only
marginal distributions. This necessitates the development of models to reintroduce spatial
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correlation into such post-processed forecasts, as the spatial correlation between locations
is required to make predictions for larger areas like, e.g., the amount of rainfall within a
river basin.

In this paper, we propose and apply such a model to the output of a neural network
that combines two input forecasts and outputs calibrated marginal distributions. The pro-
posed model uses an R-vine copula fitted to historical precipitation observations to model
the joint distribution of precipitation amounts at adjacent locations. Similar to existing ap-
proaches such as the Schaake shuffle [8] and ensemble copula coupling [32], the predicted
precipitation amounts for each location are iteratively arranged into synthetic ensemble
members. The density of the fitted copula is used to determine how well a synthetic en-
semble member compares to the joint distribution of historical precipitation amounts. The
output of the proposed model is a synthetic ensemble forecast with the same calibrated
marginal distribution as the input forecast and, in addition, exhibits realistic spatial corre-
lation patterns.

Methods discussed in the literature, such as the Schaake shuffle and ensemble copula
coupling, derive their spatial information directly from a suitably selected set of historical
observations or an ensemble forecast. However, this requires a close relationship between
the source of spatial correlation and the post-processed forecast to obtain realistic results.
The model proposed in the present paper does not require such a close relationship and
can be applied in cases, such as the combination model, where the marginal output distri-
butions differ significantly from each input ensemble forecast, such that neither of them is
a suitable source of spatial information. In addition, inferring spatial correlations from a
set of historical observations or another ensemble forecast requires a ranking without ties
of the predicted events for each location, which is not always given for weather variables
such as precipitation, whose probability distribution has an atom at 0mm. Deriving spatial
correlations from a joint probability distribution avoids this problem.

In order to evaluate the performance of the proposed model, we considered several
validation metrics such as bias, Brier skill score and reliability diagrams for precipitation
amounts within sub-regions of 9× 9 grid points. The obtained results were compared to
both input forecasts and an additional arrangement of precipitation values with maximum
spatial correlation. As a result, it could be shown that the calibration of the marginal
distributions by the previously applied combination model carries over to the area predic-
tions of the proposed copula model, which shows a clear improvement in forecast quality
compared to both input forecasts.

Furthermore, the spatial correlation is directly evaluated using object-based metrics
such as the number of connected area components, distance metrics between precipitation
clusters and variogram parameters. These metrics indicate that the output of the proposed
copula model has the most realistic precipitation patterns compared to all other forecast
models considered in this paper.

The present paper evaluates the performance of the copula model for areas consisting
of 9 × 9 grid points. In order to apply the model to more general cases, such as river
catchments, the model requires some modifications, which will be investigated in a forth-
coming study. Such a modification could be the extension of the R-vine copula model to
higher dimensions, in order to include more grid points. This, however, would lead to an
increased algorithmic complexity and might not directly be feasible, depending on the size
of the area. To take this into account, another modification could be the adaption of the
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hill climbing algorithm such that the existing copula for 9× 9 areas is used to determine
the permutation of values at a given grid point, i.e., for determining a permutations σi only
the local neighbourhood is considered. Besides considering more general areas, includ-
ing additional information into the R-vine copula fitting procedure would be interesting,
like, e.g., the local orography or the distinction of convective and stratiform precipitation
patterns, which could further improve the reconstruction of spatial correlation.
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