2404.13499v1 [cs.RO] 21 Apr 2024

arxXiv

Unified Map Handling for Robotic Systems: Enhancing Interoperability
and Efficiency Across Diverse Environments

James R. Heselden!? and Gautham P. Das!3

Abstract— Mapping is a time-consuming process for deploy-
ing robotic systems to new environments. The handling of maps
is also risk-adverse when not managed effectively. We propose
here, a standardised approach to handling such maps in a
manner which focuses on the information contained wherein
such as global location, object positions, topology, and occu-
pancy. As part of this approach, associated management scripts
are able to assist with generation of maps both through direct
and indirect information restructuring, and with template and
procedural generation of missing data. These approaches are
able to, when combined, improve the handling of maps to enable
more efficient deployments and higher interoperability between
platforms. Alongside this, a collection of sample datasets of
fully-mapped environments are included covering areas such
as agriculture, urban roadways, and indoor environments.

I. INTRODUCTION

A map can be described as a diagrammatic representation
of the ontology of a space [1]. This encodes the spatial
arrangement of physical features. There are many forms
this can take such as: grid maps showing occupancy, to
topological maps showing traversability, and world maps
showing explicit object positions. Maps traditionally show
a variety of physical features, however, modern map formats
are used to encode more virtual and meta information.

For robotics systems, maps are a necessity as such systems
are unable to sense and perceive all the information about
a space in real-time. Constructed maps are used here to
represent a subset of information in a manner accessible for
the robot to read and respond to in real-time. Depending on
the purpose of the map, different information can be encoded
and stored. In deployments to a new location, significant time
may be taken to create all the necessary maps to allow it to
function.

Many outdoor services can rely on GNSS-based navi-
gation such as used in [2] and indoor navigation using
topologies-based navigation such as in [3]]. For agricultural
environments, much of the environment can be viewed from
satellite imagery, so generating maps can be a trivial task by
hand. However, for more complex maps, necessary for more
sophisticated activities by precision agricultural machinery,
work must be completed to extract the information necessary
for mapping [4], [5]. In contrast, for indoor environments
such as warehouses, office buildings, and shopping centres,
occupancy mapping is most often completed with SLAM
approaches [6].

*This work was not supported by any organization

ILincoln Institute of Agri-Food Technology, University of Lincoln, UK
2 {jheselden@lincoln.ac.uk}, {0000-0001-6494-4981}
3{gdas@lincoln.ac.uk}, {0000-0001-5351-9533}

Consistency between environmental representation is a ne-
cessity in the management and coordination of robotic fleets.
Guaranteeing maps are both up-to-date and consistent across
robots is key to ensuring interoperability and efficiency in
dynamic environments. Given a map is a representation of
an environment, if the environment is changed with new
static obstacles in place or new routes opened up, all robots
should be aware of these changes, and have a shared common
knowledge. Through the sharing of this knowledge, robots
can be more adaptive to changes, increasing responsiveness
and reducing downtime.

Currently, standard practices for handling maps in single-
robot deployments is often ill-defined. This leads to develop-
ers storing map files within the same file-structure as the rest
of the codebase. In contrast, with larger fleet deployments the
maps are often stored in a centralised database, on dedicated
infrastructure such as an edge-server. In these instances, the
maps are distributed and updated live. When maps are stored
within other code used for running robot-specific tasks, this
can cause problems in consistency as mentioned above.
When spaces are being used by multiple independent robotic
systems, this type of map handling can lead to multiple maps
being updated, with different understandings of the environ-
ment. This can lead to problems such as miscommunication
between robots where locations are registered under different
names, or collisions with obstacles when maps are not up to
date with the latest environmental changes.

The main contributions of this work are the open, flex-
ible standardisation of environment representation; and the
demonstration of how such an approach can both enhance
interoperability and improve deployment efficiency through
enabling pipeline development for automating cascaded
deployments. Additionally, the paper contributes an open
dataset of sample environments in a variety of environment
structures.

The remainder of this document is as follows. Section
details the types of information contained within map
files, and how various commonly-used maps are structured.
Section [l1I] gives an overview of the types of conversion ap-
proaches which have been developed under this work, along
with an introduction into procedural generation approaches.
Section [TV] walks through the template structure used for the
work, and the public datasets being provided. Finally Section
summarises the findings and contributions of this work.

Accepted to the IEEE ICRA Workshop on Field Robotics 2024

II. ENVIRONMENTAL INFORMATION

A. Information Types

In this section, we overview some types of information
available from an environment and the manners in which
this information is stored and used.

1) Location: Location information refers to the location
of the space on a wider scale, in particular, this is the type of
information used to transform the location of a robot through
GNSS and apply them to a location within the space’s metric
positioning.

2) Objects: Objects are the items which exist within
the space, their location, properties and interactions within
the space. This type of information is used to give an
understanding of objects which can be interacted with such
as the location of a door in a room.

3) Occupancy: Occupancy is the information about object
permanence, that being how the world is filled by obstacles
and where those obstacles couple against the potential move-
ments of the robot. The position of walls in a 2d space or
manner in which a table occupies a room and the space in
which the table does not occupy in a 3D space.

4) Topology: The topology of a space detail the con-
nection of regions within the space, how rooms connect to
one another, and how an agent is able to pass through such
regions.

B. Information Encoding

Below are a variety of file types which encode different
types of information, both directly and indirectly. Although
this is not an exhaustive list, most of the variety of informa-
tion required for autonomous robot operations is available
in these. Table [l summarises the types of information stored
in various map types, showing how some information types
can be extracted directly from the files, and how some can
be generated directly from the same files. Notable, is how
often, topology can be extracted indirectly, while in contrast
location cannot be extracted without this information being
supplied.

TABLE 1
INFORMATION STORED WITHIN MAPS FORMATS, INFORMATION
AVAILABLE IN RAW FORM (SHOWN WITH —) AND INDIRECT
INFORMATION AVAILABLE WITHOUT USE OF COMPLEMENTARY FILES
(SHOWN WITH +).

Location Objects Occupancy Topology \ Ref

Datum [1]
OSM Graph [2]
KML/KMZ [2]
OpenRMF [3]
Satellite [4]
Gazebo [5]
Grid Map [6]
Octo Map [7]
NavGraph [8]
TopoMap2 [9]

1) KML File: Keyhole Markup Language (KML) is an in-
ternational standard for use in rendering geographic informa-
tion in an Earth-browser [7]. This file format contains three
levels of detail, Points, Polylines and Polygons. Points are
single locations with just a latitude, longitude and elevation,
while Polylines are a series of coordinates, and Polygons are
Polylines which connect at the end. Zipped KMZ files can
optionally contain, alongside the KML file, complementary
files such as icons, images, overlays, and COLLADA 3D
models for further detailing in rendering information.

2) Datum File: Datum data used for localisation of world
coordinates to global coordinates [8]]. This file is formatted
in YAML. It contains standard properties such as a latitude,
longitude of the centre coordinate in the local coordinate
space exists within the global coordinate frame. Additionally,
it includes a GNSS fence for defining the boundaries of
the region of interest, gmapping map size, mapviz origin
points, and navsat transform points, all for use with standard
ROS systems for utilisation of GNSS-based localisation and
mapping.

3) Satellite Image: Image file captured from a satellite or
drone, or birds-eye view of an outdoor space, or conversely,
a floor plan of an indoor space. Such images can contain
top-down object information and topological data, however
such formats require decoding for extraction.

4) Occupancy Grid: Occupancy file used to manage oc-
cupancy in 2D space, used with the ROS navigation stack [9],
[10]. Information is stored in two files, an image file in PGM
or PNG and a properties file stored as YAML. The image file
shows a grey-scale or binary image in which occupation is
encoded for each cell. In this file, a scale is used to determine
occupancy with white showing free space, and black showing
occupied space. The accompanying properties file is used to
reference (i) the map image file, (ii) the relative position
of the image to the world, (iii) the size which each cell
represents in the real world, (iv) the point on the scale at
which a cell should be regarded as occupied, and (v) the
position on the scale at which a cell should be regarded as
free.

5) Octo Map: Occupancy file used to render occupancy
efficiently in three-dimensional space [1I]]. Information is
stored in binary Octree format which stores space occupation
under a tree where each level of the tree stores the region
subdivided into a 2x2x2 grid in which each sub-division is
either fully empty, fully occupied, or partially occupied con-
taining another sub-tree. Each voxel can optionally encode
RGB colour information. Limiting query-depth can enable
higher performance by reducing the level of detail.

6) Open-Street Map: Open-Street Maps content is used
for a variety of systems in government and commercial
operations [12]. Information is stored in XML. This map
type details geographic data such as buildings, roads, and
city boundaries, including properties such as names, tower
types, speed limits, road surfaces, population estimates, and a
large assortment of properties for different types of markings.
The types of entries are categorised into (i) Nodes which
are single points such as buildings, (ii) Ways which are

Accepted to the IEEE ICRA Workshop on Field Robotics 2024

collections of nodes connected in a sequence, and (iii)
Relations, which are collections of Ways with a shared
relationship.

7) NavGraph: Topological file used for basic detailing of
networks of permissible routes within an environment under
the FawkesRobotics simulator [13]]. Data is stored in YAML
format with information structured in three sections. In (i),
default properties detail the tolerances of how closely the
robot should follow a path. Nodes (ii) define the list of nodes
which each have a position, name, and any special typing
which require special behaviours. Connections (iii) include
a list of node name pairs to show paths between nodes.

8) Topological Map: Topological file used to enable high-
level navigation through environments. Data is stored in
YAML format and detailed in [14]. Information contained
within includes local-space positions of nodes and connec-
tions to neighbouring nodes. Each edge detail restrictions of
which robots are permitted awareness of the edge, and each
node details a boundary and tolerance of which the agent
may use to localise.

9) OpenRMF Map: Simulation world file for use in the
OpenRMF ROS2 Traffic Simulator [I5]. Data is stored in
YAML format and contained information is broken down
into Crowd Sim which details dynamic agents such as robots
and humans to include into the simulations. Under Levels, it
also details: (i) static obstacles on each floor of the building,
such as models, floors, and walls, (ii) interactive objects such
as doors, and (iii) lanes which robots may pass along, and
human lanes for use by humans.

10) Gazebo World: Simulation world file for use in the
Gazebo Simulator [16]. Data is in SDF, an XML-flavour
format specifically designed for simulation definitions. Data
includes: (i) static object positions like walls, shelves, and
tables, (ii) dynamic obstacles such as animals or people,
(iii) intractable objects such as doors and elevators, and
(iv) environmental properties such as lighting, weather, and
gravity.

III. INFORMATION REFORMATTING

A. Applications of Conversions

With understanding the type of information stored within
such map files, we can find approaches to extract this infor-
mation reuse in other formats. For example, by extracting the
path information from an OpenRMF file, we can generate
a topological map. We can further supplement available
information with the use of API calls, i.e. we can request
a satellite image from an API when given a datum fence.
A satellite image can in turn, be used to extract object
information for use in generating a simulation. Allowing
the construction of pipelines for cascading the generation
of environments.

Fig[2] shows the conversion approaches which have been
developed thus far as part of the open-source converters stack
in our environment_common El structured as a ROS2 pack-
age. Each colour details a different converter, with multiple

Ihttps://github.com/LCAS/environment_common

=

F|
™ s
{

E{

(c) Occupancy grid

T —7

(d) Topological map

Fig. 1. Collection of maps rendered using Google Earth using KML.

lines ending in the same colour indicating a combination of
those files to construct the destination file type. Due to the
limited sources of information on location data, the datum
files have been used extensively for localising to the world
space, a necessity for KML generation.

Detailed below, are some of the approaches considered for
extracting information from existing files for then combining
them into new formats.

In its fundamental form, a topology is a collection of
points and a list of how these points connect together. This
information is used to represent the connections in a space
and how a robot can move through the space. This type
of information, as detailed in Tablem can be generated
implicitly through occupancy information. As shown in [17],
this can be done through morphological skeletonisation in
which permissible space in an occupancy grid is repeatedly
thinned to leave only single lines and connecting points.

Occupancy, showing how things within a region reserve
space, can be determined in several ways. In [4], occupancy
is implied through the projection of trees onto an occupancy
grid. While in [5]], occupancy is determined from satellite
image segmentation. For the generation of occupancy maps
from object-based maps, approaches such as have been
developed to slice through simulated worlds at a given height.
In [19], the authors develop an approach to segment satellite
imagery, with effective results in classifying paths and roads.
This type of segmentation could be effective to further extract
topology information with approaches such as in [17].

In the identification of objects, many works have been
developed for effective image segmentation [20]. These,
when combined with effective labelling provided by such
works as YOLOv7 [21]], and deployed on a drone, can be

Accepted to the IEEE ICRA Workshop on Field Robotics 2024

https://github.com/LCAS/environment_common

Fig. 2. Chord Diagram detailing examples of conversions between different
standard map types. Each line indicates a conversion from the black end of
the line to the destination file. Each conversion process is indicated by a
different destination colour with multiple lines being used together.

an efficient way to collect object information from the real
world. Approaches such as YOLOv7 [21] could also be
applied to satellite images to gather this type of information,
albeit in lower quality, from satellite images prior to visiting
the field.

Some information on objects can be obtained from occu-
pancy information, especially when minor context is given
such as what objects could possibly be within a given space.
For instance, if it is known that the deployment is in a
forest, and an occupancy map is offered, then it could be
reasonable to assume obstacles which appear to have a
circular occupancy may in fact be trees, and in an indoor
office, that flat edges to the occupancy could be walls.

B. Types of Procedural Generation

When restructuring environmental data for new purposes,
not all information can be obtained through conversions
of existing files and use of API calls. Some pieces of
information may be missing, as they were never collected
in the first place. To fill in these pieces of missing data,
and to fabricate entire environments from scratch, procedural
generation can be used.

For instance, the conversion of a NavGraph map, to an
Topological Map, there is information about node positions
and connections which is retained, however information on
which navigation approach to use for each connection simply
does not exist. This information could be supplemented by
hand with generation of new files for integration, however
with the use of template data to auto-fill the missing fields,
this can be skipped.

When template data is not enough, and more realistic and
reasonable data must be generated, procedural generation can

be used instead. Detailed below are a few examples of the
types of procedural generation which can be applied to auto-
fill missing data while keeping environments realistic.

1) Wave-Function Collapse: Inspired by quantum theory,
wave-function collapse works by creating and collapsing
states based on compatibility with a template structure. In
practice, a template is provided describing a likely sample
of a full generation, and the system iteratively generates parts
of the environment and destroys parts which are not in the
template sample.

2) Cellular Automata: Approaches in Cellular Automata
work to generate complex patterns from simple rules. Specifi-
cally, they work by simulating rule-based interactions of cells
on a grid where the state of each cell is dependent on the
state changes of neighbouring cells.

3) Gradient Noise: Gradient Noise is often used for gen-
erating texture maps. It works by applying an algorithm over
a grid to construct natural-looking patterns. This approach is
used commonly in the forms of Perlin Noise which uses
a square-grid structure, and Simplex Noise which uses a
triangle-based grid structure.

4) Procedural Modelling: Procedural Modelling is used
for constructing types of models with defined architectural
traits. L-Systems are a well-known approach of this which
is primarily used for procedural generation of plants and
foliage. It works by utilising structural rules about how
individual components relate to one another in order to build
up simulated architectural models. ArcGIS CityEngine by
Esri is another well-known approach which is used for urban
planning and design, which generates city models using GIS
data, or through rule-based generation.

IV. ENVIRONMENT TEMPLATE

The environment _template [| uses a fixed file struc-
ture in which files are categorised into their primary data
category. This ensures proper organisation and a tidier
workspace. At the root of this hierarchy is a source file
named environment.sh. Each file included within the file
structure should also have a standard export included into this
source file. This is to enable flexible file referencing wherein
regardless of the specific file locations within the hierarchy,
users can always identify the file they need through sourcing
the statically positioned source file.

The environment template hierarchy is contained within a
ROS2 package format. This is to enable simple utility, within
ROS2 infrastructure projects, and to enable compatibility
with the map conversion scripts which utilise ROS?2 for tidier
file management and execution. It is important to stress that
the environment template is not dependent on ROS2 for
execution, the template of choice can be downloaded to any
location on the device so long as the source file is referenced
appropriately.

Example datasets of environments have been made public,
created under this template. These are available on the
environment template repository, and are detailed further on

Zhttps://github.com/LCAS/environment_template

Accepted to the IEEE ICRA Workshop on Field Robotics 2024

https://github.com/LCAS/environment_template

the repository wiki. A short breakdown of each is detailed
below:

A. Agricultural Dataset

The agricultural environments dataset is generated over
Riseholme Park Farm (Fig. EI) The dataset, consists of a
collection of fully and partially mapped regions, covering
horticultural fields, pastoral fields, grower plots, research
buildings, parkland, woodlands livestock buildings, along
with connecting roads and footpaths. Further mapping is
ongoing, with new maps being generated alongside new
conversion processes.

(b) Central region of Riseholme Park Farm zoomed in

Fig. 3. Regions included with the agricultural environment dataset,
rendered with Google Earth. Colours of polygons indicate the type of space,
with yellow showing horticultural fields, green indicating pastoral field,
dark green showing forest, orange showing parkland, blue showing office
buildings, cyan showing animal housing, and purple showing grower plots
for specialist crops. White regions indicating connecting paths and roads
across the farm.

B. Urban Roadway Dataset

The urban roadway environments dataset consists of a
collection of environments generated from the open-street
map dataset. It includes a collection of roadway maps from
cities in Asia (Fig. (a)] - e.g. Tokyo, Soeul, Singapore),
Europe (Fig. f(b)| - e.g. London, Madrid, Berlin) and North
America (Fig. ()] - e.g. New York, Los Angeles). Road
network in Ixtapa, converted from OSM to Topological map
format and embedded on Satellite imagery in KML is shown

in Fig.
C. Indoor Dataset

The indoor environment dataset consists of a collection of
indoor environments some converted from existing sources,
and some generated procedurally using wave-function col-
lapse. It includes environments such as offices, warehouses,
airports and hospitals (Fig. [5).

(a) Locations across Asia used (b) Locations across Europe used
for urban roadway environments. for urban roadway environments.

(c) Rendering in KML, of OSM data over Ixtapa converted into a
topological map.

(d) Locations across North America used for urban roadway envi-
ronments.

Fig. 4.
dataset.

Locations across the globe in the Urban Roadway Environment

V. CONCLUSION

Mapping is still a major hurdle for the rapid deployment
of technologies into new environments. This challenge is
multi-fold when considering the long-term deployment of
heterogeneous robotic fleets that may use different map
formats for their navigation planning and execution.

In this work, we have shown the potential benefits that
employing map-handling standards can have for improving
this rapid deployment. Alongside this, we have detailed
the necessity of sharing maps to ensure consistency and
interoperability between robots running different code-bases.
Collating all information related to an environment in one
independent package would also alleviate the challenges of
scattered environment information and updates, especially
in large-scale deployments. We have also highlighted the
potential of environment generation pipelines, with direct
and indirect information extraction, complemented with the
use of API calls and procedural generation for determining
missing data.

However, this work is not complete without wider usage in
the robotics community and identifying much more efficient

Accepted to the IEEE ICRA Workshop on Field Robotics 2024

(b) 15m? space

(a) 10 m?2 space

Fig. 5. Examples warehouse environments generated procedurally using
wave-function collapse. Both examples had been supplied with a 5m?
sample template detailing an example of an how an arrangement of
warehouse shelves and free space may appear on a 2D grid. (a) shows the
result of a 10m? generated regions, and (b) shows the result of a 15 m?
generated region.

ways to ensure interoperability and information completion.
Towards this, we have opened a large dataset of environments
covering agricultural spaces, urban road networks, and ware-
houses, which are highly effective for comparative experi-
mental analysis. We have also open-sourced the standards,
with the intent for this dataset to be expanded further through
community development.

ACKNOWLEDGEMENTS

This work was supported by AgriFoRwArdS CDT, under
the Engineering and Physical Sciences Research Council
[EP/S023917/1]. This work was completed in association
with the Agri-OpenCore project under Innovate UK grant
10041179.

REFERENCES

[1] Oxford English Dictionary, Definition of map — en-
glish dictionary, https : / / www . oed . com /
dictionary/map_nl?tab=meaning_and_
use#38012621} 2023. (visited on 03/16/2024).

[2] Clearpath Robtics, Web Ul Autonomous
Mode - OutdoorNav Software, https / /
clearpathrobotics com / assets /
manuals / outdoornav / archived /0 . 6 .
0/ui_autonomous_mode . html, 2022. (visited
on 08/13/2023).

[3] ANYbotics, Install Inspection Robot - ANYbotics,
https / /] www anybotics com /
install-inspection-robot/#accurate-
navigation, 2023. (visited on 08/13/2023).

[4] D. Katikaridis, V. Moysiadis, N. Tsolakis, et
al., “UAV-supported route planning for UGVs in
semi-deterministic agricultural environments,” Agron.,
vol. 12, no. 8, p. 1937, 2022.

[5] L. C. Santos, A. S. Aguiar, F. N. Santos, A. Valente,
and M. Petry, “Occupancy grid and topological maps
extraction from satellite images for path planning in
agricultural robots,” Rob., vol. 9, no. 4, p. 77, 2020.

[6] S. Macenski and I. Jambrecic, “SLAM Toolbox:
SLAM for the dynamic world,” J. of Open Source
Software, vol. 6, no. 61, p. 2783, 2021.

[7] O. G. Consortium, KML - Open Geospatial Consor-
tium, https : / /www . ogc . org/ standard/
kml/, 2024. (visited on 03/19/2024).

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

T. Moore, navsat_transform_node —
robot_localization 2.3.1 documentation, https :
//docs .ros.org/en/ jade/api/ robot _
localization/html /navsat transform
node.html, 2016. (visited on 03/19/2024).

E. Marder-Eppstein, move_base - ROS Wiki, https:
//wiki.ros.org/move_base, 2023. (visited on
03/19/2024).

ROS Navigation Working Group, Nav2 documenta-
tion, https://navigation.ros.org/, 2024.
(visited on 03/19/2024).

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stach-
niss, and W. Burgard, “OctoMap: An efficient prob-
abilistic 3D mapping framework based on octrees,”
Auton. Rob., vol. 34, pp. 189-206, 2013.
OpenStreetMap-ROS, route_network - ROS wiki,
http://wiki.ros.org/route_ network,
2021. (visited on 08/13/2023).

Fawkes Robotics, fawkesrobotics/fawkes_msgs: ROS
messages for Fawkes integration, https : / /
github . com / fawkesrobotics / fawkes _
msgs, 2018. (visited on 08/13/2023).

Lincoln Centre for Autonomous Systems (LCAS).
“Topological navigation.” (2023), [Online]. Avail-
able: https / / www . github com /
LCAS / topological _navigation| (visited on
02/23/2024).

open-rmf, ROS Package: rmf_traffic_editor, https :
//index.ros.orqg/p/rmf_traffic_editor)
2023. (visited on 08/13/2023).

Open Robotics, Gazebo, https://gazebosim.
org/home} 2024. (visited on 03/19/2024).

L. Santos, F. N. Santos, S. Magalhaes, P. Costa, and R.
Reis, “Path planning approach with the extraction of
topological maps from occupancy grid maps in steep
slope vineyards,” in 2019 IEEE Int. Conf. on Auton.
Rob. Sys. and competitions (ICARSC), 1IEEE, 2019,
pp- 1-7.

M. Kollmitz, gazebo_ros_2Dmap plugin, https://
github . com / marinaKollmitz / gazebo _
ros_2Dmap_plugin, 2023.

N. B. Devi, A. C. Kavida, and R. Murugan, “Fea-
ture extraction and object detection using fast-
convolutional neural network for remote sensing satel-
lite image,” J. Indian Soc. Remote Sens., vol. 50, no. 6,
pp- 961-973, 2022.

A. Kirillov, E. Mintun, N. Ravi, et al, “Segment
anything,” in Proc. IEEE/CVF Int. Conf. on Comput.
Vision, 2023, pp. 4015-4026.

C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao,
“YOLOvV7: Trainable bag-of-freebies sets new state-
of-the-art for real-time object detectors,” in Proc.
IEEE/CVF Conf. on Comput. vision and pattern
Recognit., 2023, pp. 7464-7475.

Accepted to the IEEE ICRA Workshop on Field Robotics 2024

https://www.oed.com/dictionary/map_n1?tab=meaning_and_use#38012621
https://www.oed.com/dictionary/map_n1?tab=meaning_and_use#38012621
https://www.oed.com/dictionary/map_n1?tab=meaning_and_use#38012621
https://clearpathrobotics.com/assets/manuals/outdoornav/archived/0.6.0/ui_autonomous_mode.html
https://clearpathrobotics.com/assets/manuals/outdoornav/archived/0.6.0/ui_autonomous_mode.html
https://clearpathrobotics.com/assets/manuals/outdoornav/archived/0.6.0/ui_autonomous_mode.html
https://clearpathrobotics.com/assets/manuals/outdoornav/archived/0.6.0/ui_autonomous_mode.html
https://www.anybotics.com/install-inspection-robot/#accurate-navigation
https://www.anybotics.com/install-inspection-robot/#accurate-navigation
https://www.anybotics.com/install-inspection-robot/#accurate-navigation
https://www.ogc.org/standard/kml/
https://www.ogc.org/standard/kml/
https://docs.ros.org/en/jade/api/robot_localization/html/navsat_transform_node.html
https://docs.ros.org/en/jade/api/robot_localization/html/navsat_transform_node.html
https://docs.ros.org/en/jade/api/robot_localization/html/navsat_transform_node.html
https://docs.ros.org/en/jade/api/robot_localization/html/navsat_transform_node.html
https://wiki.ros.org/move_base
https://wiki.ros.org/move_base
https://navigation.ros.org/
http://wiki.ros.org/route_network
https://github.com/fawkesrobotics/fawkes_msgs
https://github.com/fawkesrobotics/fawkes_msgs
https://github.com/fawkesrobotics/fawkes_msgs
https://www.github.com/LCAS/topological_navigation
https://www.github.com/LCAS/topological_navigation
https://index.ros.org/p/rmf_traffic_editor
https://index.ros.org/p/rmf_traffic_editor
https://gazebosim.org/home
https://gazebosim.org/home
https://github.com/marinaKollmitz/gazebo_ros_2Dmap_plugin
https://github.com/marinaKollmitz/gazebo_ros_2Dmap_plugin
https://github.com/marinaKollmitz/gazebo_ros_2Dmap_plugin

	Introduction
	Environmental Information
	Information Types
	Location
	Objects
	Occupancy
	Topology

	Information Encoding
	KML File
	Datum File
	Satellite Image
	Occupancy Grid
	Octo Map
	Open-Street Map
	NavGraph
	Topological Map
	OpenRMF Map
	Gazebo World

	Information Reformatting
	Applications of Conversions
	Types of Procedural Generation
	Wave-Function Collapse
	Cellular Automata
	Gradient Noise
	Procedural Modelling

	Environment Template
	Agricultural Dataset
	Urban Roadway Dataset
	Indoor Dataset

	Conclusion

