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Abstract. Regression is typically treated as a curve-fitting process where
the goal is to fit a prediction function to data. With the help of condi-
tional generative adversarial networks, we propose to solve this age-old
problem differently; we aim to learn a prediction function whose outputs,
when paired with the corresponding inputs, are indistinguishable from
feature-label pairs in the training dataset. We show that this approach
to regression makes fewer assumptions on the distribution of the data
we are fitting to and, therefore, has better representation capabilities.
We draw parallels with generalized linear models in statistics and show
how our proposal extends them to neural networks. We demonstrate the
superiority of this new approach to standard regression with experiments
on multiple synthetic and publicly available real-world datasets, finding
encouraging results, especially with real-world heavy-tailed regression
datasets. To make our work more reproducible, we release our source
code3.
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distribution, regression, neural network

1 Introduction

Generative Adversarial Networks [5] (GANs) revolutionized how we generate
realistic artificial images. Their success is owed to the fact that compared to other
methods, they can more effectively represent intractable distributions such as
images. This is because instead of using hand-designed closed-form loss functions
to optimize the image generator, they use an adversarial discriminator to train
the generator to produce realistic images. It stands to reason that this idea can
potentially be applied to better represent probability distributions in general,
not just that of images. This line of reasoning is exemplified by recent advances
in reinforcement learning that capitalize on the generative adversarial framework
to learn a behavior policy that is hard to specify [6] [8].

We study the application of conditional GANs (CGAN) on the problem of
regression with tabular data. CGANs offer an alternative approach to the train-
ing of neural networks for regression tasks. Instead of directly regressing on the

3 Link to our code: https://github.com/deddyjobson/regressGAN

http://arxiv.org/abs/2404.13500v1
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target variable with a loss function like MSE, we instead train two models simul-
taneously, one to make predictions given only the input covariates and another
to decide whether or not the predictions are distinguishable from the ground
truth labels, again given the input covariates.

The following are our contributions:

– We show that using GANs for regression will require fewer assumptions on
the distribution of data (Section 3).

– We perform experiments to demonstrate the superiority of regression with
GANs against other regression methods (Section 4).

– We also empirically demonstrate that training GANs for the case of regres-
sion with tabular data requires fewer tricks than with image data (Section
6).

2 Background

2.1 Generative Adversarial Networks

GANs are an unsupervised method used to learn a generative model of a proba-
bility distribution. Conditional GANs [12] (CGANs) were developed as a GAN-
based method to generate images conditioned on the input labels. Mirza et al.
used CGANs in their seminal publication to generate realistic images of numbers
from the MNIST dataset based on their ground truth labels.

2.2 Generalized Linear Models

In regression, the objective is to maximize the likelihood of the data fitting
the model. The simplest form of regression is linear regression, which assumes
that the distribution of the regression residuals follows a normal distribution. To
account for violations of the assumption of normal residuals, statisticians use the
link function to extend the representation ability of linear models. This results
in generalized linear models [13].

For different industrial applications, specific link functions have been pro-
posed. For example, to model customer revenue in e-commerce, assuming the
residuals to follow heavy-tailed distributions like zero-inflated log-normal distri-
bution [19], Tweedie distribution [20], etc. have been applied with success. While
the above methods succeed in their respective domains, none of the likelihood
functions used can be generally applied to all regression problems. To be able
to do that effectively, we need a likelihood function that can itself adapt to new
domains.

3 Our Method

We propose using CGANs to solve the regression problem. CGANs take a differ-
ent approach to regression. Instead of maximizing the likelihood of the generated
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predictions belonging to the true underlying distribution of the target variable,
the goal is to generate predictions as indistinguishable from the ground truths as
possible. The benefit of this approach is that, unlike with generalized linear mod-
els, we do not need to formulate the likelihood function explicitly; with enough
data, the likelihood function, too, is learned by the CGAN. This has been proved
by Goodfellow et al., and we use the notation and derivation from their paper
[5] for our theoretical argument. More specifically, consider Proposition 1 and
Equation 2 from their paper. The optimal discriminator for a fixed generator is

D∗

G(x) =
pdata(x)

pdata(x) + pg(x)
(1)

Also, from Equation 6 in Theorem 1, we see that given the optimal discriminator,
the generator would optimize the Jensen Shannon divergence between the output
distribution of the generator and that of the true distribution.

C(G) = −log(4) + 2JSD(pdata||pg) (2)

We see from the above equation that as long as the neural networks used in
the GAN have sufficient representation capacity, we can directly optimize the
Jensen Shannon Divergence between the prediction (pg(x)) and true distribu-
tions (pdata(x)) without explicitly defining the true distribution.

In this paper, we use a CGAN to represent the distribution of the target
variable (Y ) conditioned on the dependent variables (x). Since we use the CGAN
for regression, we shall refer to our approach as the RegressGAN method.

4 Experiments

In order to assess the capability of CGANs for regression, we compare their
performance against baseline algorithms on several datasets.

4.1 Datasets

We perform experiments on three synthetic datasets and three real-world datasets.
Two real-world datasets are publicly available, while the third dataset is propri-
etary.

We adopt the notation commonly used in statistics. We index each data point
with i. The values of the independent/predictor variables for each data point i
are represented by the vector xi and the dependent, response, or target variable
by yi. Finally, we represent the predictions made by any model for each data
point by ŷi and the residuals (errors) of predictions by ǫi.

For all synthetic datasets, we take 100,000 random samples of data and split
the data into the train (60%), validation (20%), and test (20%).
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Synthetic-Normal We synthesize a linear dataset with Gaussian noise in the
following way:

β ∼ MVN

(

0,
1

10
I25

)

(3)

yi = xiβ + ǫi (4)

ǫi ∼ N (0, 1) (5)

Synthetic-Heteroscedastic Following the work of Aggarwal et al. [1], we syn-
thesize a dataset with Gaussian noise in the following way:

xi ∼ N (0, 1) (6)

zi ∼ N (1, 1) (7)

hi = (0.001 + 0.5|xi|)× zi (8)

yi = xi + hi (9)

Synthetic-Classification We synthesize a dataset with a binary target variable
in the following way:

β ∼ MVN

(

0,
1

2
I25

)

(10)

pi = Sigmoid(xiβ) (11)

yi ∼ Bernoulli(pi) (12)

Synthetic-Tweedie The last synthetic dataset we use involves modeling the
target variable with a distribution following the Tweedie distribution [3].

β ∼ MVN

(

0,
1

10
I25

)

(13)

µi = exiβ (14)

yi ∼ Tweedie(µi, 1.5, 1) (15)

Car Insurance The first real dataset we use is the French Motor Third-Party
Liability Claims dataset [14]. The dataset contains car insurance claims made
over a year. We sampled 100k data points, from which we sampled 20k each for
validation and test sets. We observe the data to have a heavy tail, as is usually
the case with insurance claim data [11]. The dataset is, therefore, appropriate
for testing the representative capability of regressGAN.

Health Insurance The next real-world dataset we use is the US Health Insur-
ance dataset4. There are 1338 records in total. We again split 20% of the data

4 https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset



Generalized Regression with Conditional GANs 5

for each of the validation and test sets. Furthermore, we use one hot encoding
on the categorical features to get 8 independent variables in total, which we will
use to predict the same target as before: the amount of expense claimed.

E-commerce Lastly, we also perform experiments on the user logs provided by
an online C2C marketplace where individuals can buy or sell items. We sample
100k users for our experiments. We use each user’s historical data to create 12
features to forecast the future revenue generated by each user. Here, too, we get
a zero-inflated heavy-tailed distribution for the target variable.

4.2 Models

We compare in total three models for our experiments:

– RegressGAN: This is our proposed method in which we use a conditional
GAN for regression, which we described earlier.

– FNN-MSE: For our regression baseline, we use a feed-forward network
(FNN) of the same architecture and other hyperparameters as the generator
(without the noise input) with the Mean-Squared Error (MSE) loss function.

– GP: The final baseline we compare our method with is Gaussian Process
Regression [18]. We use a Python implementation from scikit-learn [17] with
the RBF kernel.

5 Results

To evaluate the performance of regressGAN, we measured the MAE of predic-
tions on the test dataset since it is commonly used for evaluation when the
response variable is heavy-tailed like in most of our experiments [10, 4].

MAE =
1

N

N
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

(16)

We first discuss the results obtained on the synthetic datasets in Table 1.
Surprisingly, the regressGAN approach performs best in all but one dataset,
even for the ”Normal” dataset. We suspect this to be the case because while
other models are prone to overfitting, the generator in regressGAN has the more
difficult task of estimating the whole conditional distribution, making it more
resilient to overfitting. For the heteroscedastic dataset, our results disagree with
those of Aggarwal et al. in that the MSE model performs better. Perhaps it is
because the underlying signal is very simple (being linear).

We next discuss the results obtained from the real-world datasets tabulated
in Table 2. Unlike in the case of the synthetic datasets, the improvement in per-
formance from regressGAN is considerable. For all datasets, we find RegressGAN
to perform best among all algorithms. We suspect that the zero-inflation and
high skewness of the target distributions made it difficult for the other algorithms
to represent the complex distribution while respecting their strict assumptions
efficiently.
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Table 1. MAE of predictions on synthetic datasets (lower the better). Best results are
highlighted in bold.

DATASET FNN-MSE GP RegressGAN (ours)

Normal 0.818 0.844 0.818
Heteroscedastic 0.329 0.851 0.350
Classification 0.262 0.364 0.262

Tweedie 0.835 2.909 0.805

Table 2. MAE of predictions on real datasets. Best results are highlighted in bold.

Dataset FNN-MSE GP RegressGAN (ours)

Car Insurance 0.358 0.420 0.261
Health Insurance 0.223 0.637 0.178

E-commerce 0.067 0.093 0.059

6 Ablation study on tricks used to speed up GAN

training

We investigate tricks commonly used to help traditional GANs converge and see
if we could do without them for RegressGAN. The authors who proposed GANs
[5] made changes to the objective function of the GAN to help it converge.
Specifically, rather than minimizing the log probability of correct predictions
by the discriminator, they maximize the log probability of incorrect predictions
by the discriminator. While this subtle trick was necessary in the context of
image data to help GAN training, we them unnecessary with tabular data. Our
experiments found no significant difference in convergence rate or in the final
MAE by forgoing the training trick. This result is encouraging because they
may make RegressGANs easier to deploy in production systems.

7 Related Work

Ours is not the first work to study the application of GANs for regression,
though existing work is limited. Aggarwal et al. [1] considered the application of
GANs to small regression problems where the distribution of the noise variable
could not be explicitly modeled. We replicate their experiments on a synthetic
heteroscedastic dataset that claims that feed-forward neural networks perform
better. Oskarsson et al. [16] used CGANs for probabilistic regression. Rather
than just learning a point estimate for each data point, the author used CGANs
to estimate distributions. This work was mostly restricted to comparing different
CGAN algorithms against each other.
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Hudson et al. [7] employ CGANs to regress towards action distributions in
reinforcement learning that have multiple modes. In their framework, the actions
are generated conditioned on the state that the agent find itself in.

A key difference between the above works and ours is in the real-world
datasets chosen for the experiments; all our datasets have heavy-tailed response
variables, specifically where we see the superior performance of CGANs. To our
knowledge, our work is the first to discover real-world evidence of the superiority
of CGANs for heavy-tailed regression.

8 Limitations

In this paper, we demonstrate the superiority of the GAN formulation over
other loss functions, such as the MSE loss function for neural networks. However,
gradient-boosted machines (GBMs) are currently the state-of-the-art method for
tabular data. While neural network architectures have been proposed to surpass
them, none have gained widespread adoption [2] so far. Our method complements
these attempts to create better neural networks for tabular data. When neural
networks finally surpass GBMs over tabular data, our method can be applied to
set neural networks further apart from traditional methods.

Furthermore, recent research with extreme value theory has suggested that
GANs cannot generate heavy-tailed distributions [15, 9]. This runs counter to
what we have empirically observed with insurance datasets. Perhaps while Re-
gressGAN can represent a wide variety of conditional distributions better than
neural regression models, there are some distributions that it cannot represent
well.

9 Conclusion

In this paper, we highlight the representation capabilities of CGANs for regres-
sion tasks and show that they are superior to standard neural networks trained
with the MSE loss function. They prove to be a flexible generalization of re-
gression for neural networks in the same way generalized linear models are a
flexible generalization of ordinary linear regression. While Oriol et al. [15] prove
theoretically that GANs cannot represent some heavy-tailed distributions, we
show that GANs can better represent heavy-tailed distributions in practice than
traditional methods. Together with our discovery of the relative ease of training
GANs for tabular data, our results suggest that CGANs have the potential to
be used in even more novel applications in science and industry in the years to
come, especially when handling data of unknown distribution.
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