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Abstract  

The study of phonon dynamics is pivotal for understanding material properties, yet it faces challenges due 
to the irreversible information loss inherent in powder inelastic neutron scattering spectra and the 
limitations of traditional analysis methods. In this study, we present a machine learning framework designed 
to reveal obscured phonon dynamics from powder spectra. Using a variational autoencoder, we obtain a 
disentangled latent representation of spectra and successfully extract force constants for reconstructing 
phonon dispersions. Notably, our model demonstrates effective applicability to experimental data even 
when trained exclusively on physics-based simulations. The fine-tuning with experimental spectra further 
mitigates issues arising from domain shift. Analysis of latent space underscores the model’s versatility and 
generalizability, affirming its suitability for complex system applications. Furthermore, our framework’s 
two-stage design is promising for developing a universal pre-trained feature extractor. This approach has 
the potential to revolutionize neutron measurements of phonon dynamics, offering researchers a potent tool 
to decipher intricate spectra and gain valuable insights into the intrinsic physics of materials. 

Introduction 

Phonon dynamics is fundamental for many material properties, such as thermal transport, thermal expansion, 
lattice structure, and phase transformations. Phonons have significant power in tailoring material properties 
because of their couplings with electronic and magnetic degrees of freedom1–5. Inelastic neutron scattering 
(INS) is one of the most important tools for phonon measurements6,7. The resulting spectrum, often 
expressed as the dynamical susceptibility 𝜒𝜒′′(𝑸𝑸,𝐸𝐸), represents the intensity of scattered neutrons as a 
function of momentum transfer 𝑸𝑸 and energy transfer 𝐸𝐸. Phonon dispersions throughout the entire Brillouin 
zone are accessible through the scattering between phonons and neutrons. However, four-dimensional 
measurements are rare due to the strict requirements for large and high-quality single-crystal samples, as 
well as the scarcity of neutron beam time. For some materials, it is not practical to synthesize single-crystal 
samples. For some other samples, such as low dimension or nanostructured materials, it is not possible to 
do so. Only two-dimensional measurements in the (|𝑸𝑸|,𝐸𝐸)-space with momentum collapsing into a scalar 
are possible. While this approach is still useful for characterizing materials, it introduces complexities in 
extracting full phonon dynamics. The loss of momentum direction-dependent information makes the 
extraction underdetermined and requires physics-based models. Even with substantial manual efforts in 
model selection, refinement, and validation, such extraction could be unreliable, and thus was rarely 
attempted. A consistent and automated approach is urgently needed to extract full phonon dynamics 
information and gain deeper insights from two-dimensional INS measurements. 

With the development of inelastic neutron scattering instruments and the availability of high-performance 
computing, a data-driven solution to overcome these obstacles is possible.  Modern spectrometers such as 
the Wide Angular-Range Chopper Spectrometer (ARCS)8 at Oak Ridge National Laboratory has a higher 
neutron flux and a wider coverage of momentum, enabling more accurate and comprehensive inelastic 
neutron scattering measurements with better details and less noise than those obtained in the early days of 
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neutron scattering. In addition to advances in instruments, high-performance computing resources have 
greatly improved the ability to process and analyze large amounts of complex data, replacing the laborious 
and inefficient manual analysis process. Although optimization methods appear promising for extracting 
phonon information, the high computational cost of gradient calculations is a significant drawback. Even 
with the adoption of gradient-free optimization methods, limitations persist, as these approaches require 
repeating the process for each new spectral analysis. Additionally, optimizing each spectrum individually 
often leads to overfitting because of the ill-posed nature of this inverse problem, characterized by challenges 
in fitting parameters with minor impacts, and occasionally necessitating the selection of more restricted 
models. Such issues have been noted by previous studies involving force constant fittings from phonon 
dispersions9,10 and density of states11. These overfitting issues associated with optimization complicate 
comparative analysis across multiple spectra.  

One prospective avenue to explore neutron scattering spectra is to employ machine learning techniques12–

21. The integration of machine learning across various scientific disciplines is revolutionizing our approach 
to solving complex challenges, heralding a new era of discovery and innovation. In physical science, 
machine learning's capacity to navigate and interpret complex datasets is unlocking new frontiers, unveiling 
patterns and relationships that elude traditional analytical methodologies, offering innovative solutions to 
longstanding challenges. Such techniques have proven successful in addressing various problems, such as 
extracting magnetic interactions from diffuse neutron scattering15–17 and retrieving structural parameters 
from polarized neutron reflectometry18. However, the scarcity of experimental data and the absence of 
known ground truth for continuous properties pose significant challenges. To tackle these issues, 
researchers resort to physics-based models to generate a substantial volume of labeled data for training their 
machine learning models. These models often encounter performance degradation when applied to 
experimental data due to the domain shift between physics-based simulations and real-world data. 
Therefore, it is imperative to thoroughly investigate this domain adaptation problem and develop effective 
strategies to mitigate its impact20–23. 

Here we present a machine learning-based framework for extracting force constants from two-dimensional 
INS measurements. Our approach employs a two-stage training design. The first stage involves self-
supervised learning to create a feature extractor, encoding complex INS spectra into concise, meaningful 
latent representations that capture essential patterns and correlations. In this stage, a variational 
autoencoder24 is trained using simulated spectra and subsequently fine-tuned with experimental spectra. 
The second stage leverages supervised learning, applying simulated data to train a regressor network 
capable of retrieving force constants from the latent representation. For inference, the experimental spectra 
of polycrystalline aluminum at different temperatures are processed through the feature extractor and 
regressor, and force constants was acquired. To demonstrate the advantages of our approach, we conducted 
a comprehensive comparison between our variational models, deterministic models, and a traditional 
optimization method. This framework is of great help in utilizing the two-dimensional 𝜒𝜒′′(|𝑸𝑸|,𝐸𝐸) data and 
would facilitate the exploration of the phonon dynamics of broader classes of materials efficiently. 
Furthermore, it has the potential to provide insights into a broader domain where researchers rely on 
physics-based simulations to understand experimental data. 

Results and Discussion 

Framework Details 

Our approach to analyzing experimental INS spectra is tailored to navigate the inherent constraints of these 
data, notably their limited availability and the absence of labels. It is impractical to collect a large dataset 
of experimental INS spectra, as each experiment necessitates expert knowledge, experience of operating 
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the instrument, and substantial time and investments. Meanwhile, assigning accurate labels of force 
constants is not only resource-intensive but also unreliable due to the ill-posed nature of this inverse 
problem. Such limitations present significant challenges for the direct implementation of end-to-end 
supervised models, as these methodologies typically require large, labeled datasets. To address this, we 
devised a two-stage framework that effectively harnesses the potential of both simulated and experimental 
spectra, as shown in Fig. 1. 

In the initial phase of our framework, we adopted a self-supervised learning that bypasses the need for 
labeled data to construct a feature extractor. This component transforms the phonon information-rich yet 
unstructured spectra into a lower-dimensional latent space. By capturing the most relevant features while 
eliminating irrelevant information and noise, this process enables a more concise and informative 
representation that could serve as a foundation for subsequent tasks. 

Autoencoder is a powerful deep learning technique with a bottleneck architecture, capable of compressing 
the input into a latent code through an encoder network and then decompressing the code into an output 
matching the dimension of the input through a decoder network. Minimizing the reconstruction error during 
training enables the networks to autonomously learn the optimal compression and decompression of the 
data. In our study, we implemented variational autoencoder, a special form of autoencoders, to transforms 
the input spectrum, comprising thousands of pixels, into a 30-dimensional latent code. Variational 
autoencoders are known for their robust data representation capabilities and are widely used in content 
generation applications. Unlike the traditional autoencoders that directly produce a single latent code, the 
variational autoencoders adopt a probabilistic approach and generate a 30-dimensional distribution to 
sample the latent code. The training process for variational models aims to minimize not only the 
reconstruction error but also the Kullback–Leibler (KL) divergence term, which quantifies the dissimilarity 
between the generated distribution and a prior distribution. This probabilistic approach encourages the 
latent space to exhibit a smoother and more structured representation of the input data. Although 
convolutional neural networks (CNN) are renowned for their effectiveness in various computer vision 
tasks25–30, we employed fully connected (FC) layers as the backbone of networks. In fully connected neural 
network, each node from the previous layer is connected to each node of the current layer. Whereas in 
convolutional neural network, there are convolutional kernels that slide across the preceding layers, 
performing local operations. To assess the impact of incorporating variational components and fully 
connected layers, we conducted an extensive examination and evaluation of various types of autoencoders. 
The models examined in this study include fully connected autoencoder (FCAE), fully connected 
variational autoencoder (FCVAE), convolutional autoencoder (CNNAE), and convolutional variational 
autoencoder (CNNVAE).  

The autoencoders were firstly trained on abundant simulated spectra. Although the simulated spectra may 
not perfectly replicate the complexities of real-world neutron data, they serve as a valuable substitute for 
training purposes, allowing us to establish a robust groundwork based on the physical models. The 
subsequent fine-tuning was carried out using experimental spectra with a reduced learning rate, serving to 
refine the model further to adapted to the nuances present in real-world data. Aluminum was selected as the 
material for framework verification due to its simple structure and extensive prior research. The simulation 
of aluminum spectra was performed with uniform random sampled force constants considering interactions 
up to the next-nearest neighbors. Phonon calculations were performed using Phonopy31, and the 
corresponding spectra were generated using Oclimax32. Upon completion of the training of the autoencoders, 
the encoders are frozen and served as feature extractors, transforming raw spectra into high-quality latent 
representations.  
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With a refined feature extractor in place, the second phase leverages supervised learning to develop a 
regressor that retrieves force constants from the latent representations. This regressor network, consisting 
of fully connected neural layers, undergoes training solely with simulated data. Detailed description of the 
architecture and training specifics for our complete models are outlined in the Methods. 

Model Evaluation 

The evaluation of our final models presents a unique challenge due to the absence of ground-truth labels 
for experimental INS data. To ascertain the accuracy and reliability of our predictive framework, we 
employed two specific metrics. The first metric examines the discrepancy between input spectra and the 
spectra simulated using force constants predicted by the model. The second metric scrutinizes the physical 
plausibility of the temperature dependence in the predicted force constants, serving as a critical indicator 
of the model’s reliability in reflecting underlying material behaviors. For comparison, we also extracted 
force constants using optimization methods. Given that spectra generation is the most time-consuming 
aspect, calculating gradients becomes impractical. Among gradient-free approaches, a direct search method 
called Nelder-Mead optimization33 was selected instead of swarm intelligence methods like particle swarm 
optimization34 owing to its speed and efficiency when provided with appropriate initial guesses. 

The normalized mean square error (NMSE) for models with the feature extractor trained with different 
autoencoders was calculated and averaged across the experimental test set, as shown in Table 1. The 
relatively large values of NMSE for all models stem from various factors, such as irreproducible noise, 
limitations of forward physics-based models, and a reduction in machine learning model performance due 
to domain shift. The NMSE of the optimization method was regarded as an approximate lower limit within 
the constraints of existing experimental noise and physics-based model. Differences from this benchmark 
were calculated to focus only on domain-shift-induced performance degradation. For ablation purposes, we 
also tabulated the results of two alternate training strategies to discern the benefit from fine-tuning. One 
employed only simulated spectra for training the feature extractor, while the other involved extended 
training on the simulation-only feature extractor. This additional training was conducted under identical 
conditions to the fine-tuning but utilized the simulated training set. 

The results elucidate marked disparities in performance among models equipped with different feature 
extractors. Models employing variational feature extractors, FCVAE and CNNVAE, perform similarly to 
the optimization method, whereas models with deterministic feature extractors, FCAE and CNNAE, 
underperform comparatively. Given that all models predict commendable force constants from the 
simulation test set, such divergence underscores their varying capability for applications in the experimental 
domain. Notably, feature extractors constructed with fully connected layers tend to surpass their 
convolutional counterparts. Moreover, fine-tuning with experimental spectra has proven to be effective in 
further enhancing the models' adaptability to the experimental domain for variational models. And this 
improvement is evidently linked to the integration of experimental data, rather than merely extending the 
training on simulated data.  

Comparative analysis of the experimental spectra with those simulated from the predicted force constants 
was conducted by averaging the intensity along the Q-axis, as illustrated in Fig. 2. Two prominent peaks 
are discernible in the Q-averaged spectra, occurring at approximately 20 and 36 meV. With increasing 
temperature, a downward energy shift is observed for both peaks. This temperature-dependent trend is 
successfully captured by both the optimization method and our model that incorporates the FCVAE feature 
extractor. While the CNNVAE model accurately predicts the lower energy peak, it fails to replicate the 
behavior of the higher energy peak. Conversely, models utilizing FCAE and CNNAE feature extractors 
predict a trend for both peaks that is inverse to the one observed experimentally. Complementing this 



4 
 

qualitative assessment, the NMSE values presented in Fig. 3(a) quantitatively substantiate the performance 
of the various models across different temperatures. 

The validity of the predicted force constants was assessed by evaluating their temperature dependence, as 
illustrated in Figs. 3(b)-(f). Given the absence of any phase transition within the examined temperature 
range, the force constants are anticipated to exhibit a monotonic change. Consistent with this expectation 
and aligning with previous literatures10,11, the variational models and the optimization method demonstrate 
a decreasing trend in the dominant force constant as temperature increases. In contrast, deterministic models 
depict an incongruent trend, suggesting a misalignment with physical realities. Regarding other subordinate 
force constants, it is observed that the optimization method does not demonstrate coherent, discernible 
temperature-dependent trends, and the deterministic models produce more variant results, possibly 
indicating their lack of stability and reliability. Conversely, our variational models, particularly the one 
utilizing the FCVAE feature extractor, give results with clear and physically reasonable temperature-
dependent trends, lending credence to their reliability.  

By integrating these two metrics, we have confirmed the effectiveness of our framework and the utilization 
of variational autoencoders with fully connected layers. Our findings suggest that models employing 
variational feature extractors exhibit less performance reduction across various domains compared to those 
employing deterministic feature extractors. Furthermore, performance can be enhanced by fine-tuning with 
target domain data, as enabled by our two-stage framework design. This makes our proposed framework 
valuable both before and after conducting neutron experiments. Models can be trained prior to the 
experiment using only simulated spectra, providing fast and accurate results for ad hoc decision making 
during the experiment. Once all experimental data is collected, the models can be further refined utilizing 
this real-world dataset to provide better results. Additionally, the performance of convolutional neural 
networks appears suboptimal, likely owing to the fact that global information is more crucial in spectral 
analysis than localized patterns that are typically sensitive to convolutional layers, as in the case of computer 
vision. Moreover, our variational models outperform both the optimization method and the deterministic 
models in delivering consistent and reliable predictions, particularly regarding temperature dependence. 
While the optimization method can generate force constants that perfectly mimic the experimental input 
spectra, the values may prove to be physically unrealistic. It is also important to note that the optimization 
process requires repetition for each test example, leading to increased time and resource demands as the 
number of examples grows. On the contrary, our machine learning method demonstrates high efficiency 
once training is completed, which is particularly valuable for real-time decision making during an 
experiment.  

Latent Space Analysis 

The pronounced performance difference between variational and deterministic models on experimental data 
prompted an in-depth investigation of the latent spaces they generate. We focused on autoencoders trained 
solely on simulation spectra, where the number of problem variables is known to be five. Figures 4(a)-(d) 
illustrate the latent codes produced by deterministic feature extractors and the latent distributions generated 
by variational feature extractors for simulation test set. Deterministic models encode input spectra into 30 
active latent dimensions, all spanning similar distribution ranges. Conversely, variational models manifest 
a selective activation of latent dimensions, with only a subset being actively utilized and the remainder 
conforming to the prior normal distribution with a mean of zero and a standard deviation of one.  

This difference in latent space activation was also analyzed by evaluating the sensitivity of decoder-
reconstructed spectra to individual latent dimensions. The initial latent code was obtained from one of the 
test data, and mean values are used for variational models for simplicity. By individually varying each latent 
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dimension while maintaining others constant, we isolated the effect of each dimension on the models' output. 
A variation of 0.5 was applied, yet similar results could be observed as long as the latent code remains 
within a reasonable range. The NMSE between the original and perturbated reconstructed spectra was 
calculated for each dimension and normalized to represent sensitivity. As depicted in Figs. 4(e)-(h), 
reconstructed spectra from deterministic autoencoders exhibited a uniform sensitivity across all latent 
dimensions, while the reconstructed spectra from variational autoencoders demonstrated sensitivity to only 
a few dimensions. Furthermore, Supplementary Figs. S2-S5 show how the reconstructed spectra of different 
autoencoders change when varying each dimension in the latent space, offering a visual representation of 
the effect of individual latent dimensions in the (|𝑸𝑸|,𝐸𝐸)-space. 

Subsequent analysis, visualized in Figs. 4(i)-(l), explores the correlations among latent dimensions. For 
deterministic models, the Pearson correlation matrix reveals a high degree of correlation among several 
dimensions, as indicated by their elevated pairwise correlation coefficients. For variational models, the 
correlation matrix confirms the relative independence of their latent dimensions as the correlations between 
different dimensions are small. This behavior is attributed to the nature of variational models, as they also 
aim to minimize the KL divergence term in the loss. The presence of two dimensions representing identical 
features would introduce redundancy, thereby increasing the loss. As a result, the models tend to utilize a 
single dimension for each feature, ignoring redundant dimensions.  

It is posited that these differences in latent space contribute to the models' divergent performance with 
experimental data. Deterministic models extract highly correlated latent codes that work collectively and 
contribute to the regression of force constants. This approach is effective for the simulation test set, as the 
training is specifically tailored to this type of data. However, when dealing with experimental data, which 
exhibit a domain shift relative to the simulation data, the intrinsic relations between these latent codes can 
be disrupted, hindering their collective functionality, and resulting in poor regression outcomes. In contrast, 
the variational models extract disentangled latent codes, each corresponding to distinct data patterns. This 
characteristic enhances the model's resilience to domain shift. Each latent dimension independently 
captures and represents relevant information, unaffected by the disrupted relationships evident in 
deterministic models, thus serving as a more robust foundation for regression. 

Model Generalizability 

To further highlight the advantages of our variational models, investigations were conducted to assess the 
impact of latent space dimensionality on their performance. Considering that the simulation training data 
was generated by altering five force constants, the selected setting of 30 latent dimensions should be 
sufficiently large. The dimensionality of the latent space was incrementally reduced from 30 to 3 to examine 
the resulting variations. As shown in Table 1, the performance of deterministic models showed marked 
fluctuations with changes in latent space dimensionality, sometimes resulting in exceptionally poor 
outcomes. Notably, aligning the number of latent dimensions closely with, or even reducing them below, 
the count of problem variables did not consistently enhance the performance of these deterministic models. 
On the contrary, variational models demonstrated robustness, maintaining lower NMSE as latent space 
dimensionality varies.  

The resilience of variational models to changes in latent space dimensionality, attributable to their ability 
to extract disentangled representations, not only makes them suited for this specific problem, but also 
signifies their generalizability across various material systems beyond aluminum and at different 
experimental settings without concerns related to overfitting and hyperparameter tuning. This framework 
possesses the capability to discern and activate the requisite latent dimension automatically for each specific 
training dataset, illustrating their utility for tackling increasingly complex problems. Moreover, analysis of 
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active latent dimensions within a dataset may facilitate identifying the correct dimensionality of the problem. 
A practical example would be to determine the number of force constants permitted by a set of experimental 
data with certain signal-to-noise ratios. 

Building on this groundwork, the innovative two-stage framework we introduced holds remarkable 
potential beyond its initial scope, which focuses exclusively on a single task for a certain material. While 
the second stage of our framework is tailored for force constants regression, the first stage fulfills a more 
universal role in spectra understanding. The architecture’s flexibility suggests the feasibility of further 
segregating the training dataset between these stages, enabling the development of a universal pre-trained 
feature extractor during the first stage. This would involve harnessing a diverse and extensive collection of 
unlabeled data from a variety of materials, including both experimental and rich simulated data. Such pre-
trained feature extractor is anticipated to exhibit superior performance in general spectra understanding, 
establishing a robust foundation for downstream tasks. This approach may empower researchers to 
concentrate on refining task-specific models, like force constant regressors, utilizing smaller, targeted 
datasets. The implications of such a development are not limited to regression tasks but extend to 
classification, clustering, or generative tasks, promising new opportunities in materials science research. 

Conclusion 

In summary, we have proposed a VAE-based framework for extracting force constants from experimental 
two-dimensional INS spectra. To the best of our knowledge, this is the first attempt to apply machine 
learning techniques for the comprehensive extraction of phonon dynamics from such spectra. Our 
investigations have highlighted a notable decrease in the performance of models trained on physics-based 
simulations when confronted with real-world data. We have shown that such a domain adaptation problem 
can be effectively addressed by our variational models. This improvement is attributed to the remarkable 
ability of the variational models to construct disentangled representations in the latent space. Moreover, our 
method demonstrates high efficiency in processing multiple test examples and excels at capturing consistent 
and reliable temperature-dependent trends, surpassing the limitations of the traditional optimization method. 
The inherent two-stage nature of our framework also makes it possible to fine-tune the feature extractor 
using experimental data, further reducing the performance degradation introduced by domain shift. The 
extensive analysis presented in this work not only proves the generalizability of our models in more 
complex systems, but also suggests the feasibility of developing a universal pre-trained feature extractor. 
The findings of this study provide valuable insights for future studies that aim to leverage machine learning 
techniques in the interpretation of complex spectra, especially in scenarios where the availability of 
experimental data is limited. 

Methods 

Details of models’ architecture and training 

The architectures of autoencoder and regressor networks are schematically illustrated in Supplementary Fig. S1. The 
function of each layer and the final hyperparameters are discussed below. 

The FC encoder network begins with a masked flatten layer, which flattens the pixels within the kinetic limit into 
4144 neurons. In FCAE, two FC layers would down sample the input into 400 and then 30 neurons (latent code 𝒛𝒛), 
each followed by a tanh activation layer to introduce non-linearity. In FCVAE, the difference is that the second FC 
layer would output 30 normal distributions, represented by 30 mean neurons 𝝁𝝁 and 30 standard deviation neurons 𝝈𝝈. 
The latent code 𝒛𝒛 of variational models will be sampled from 𝑁𝑁(𝝁𝝁,𝝈𝝈) at each time. The FC decoder takes latent codes 
as input, and up sample 𝒛𝒛 into 400 and then 4144 neurons by two FC layers, each followed by a tanh activation layer. 
The masked unflatten layer would turn the result into an image with the same size of the input spectrum. 
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The CNN encoder network begins with a cleaning layer to replace NaN values outside of the kinetic limit into 0s. The 
70 × 101 spectrum is feed into 3 convolutional layers with 32, 64, 128 filters, with kernel size of 3 × 3 and stride of 
2. After the convolutional layers and activation layers, the 128-channel 9 × 13 feature map is flattened and feed into 
two FC layers to down sample into 200 neurons and then 30 latent codes or distributions. The CNN decoder first up 
sample the latent codes into 200 and then 14976 neurons, which can be unflatten into a 128-channel 9 × 13 feature 
map. The feature map is then feed into 3 transposed convolution layers with 64, 32, 1 filter, with kernel size of 3 × 3 
and stride of 2, each followed by an activation layer. After this, the region outside of kinetic limit of the 70 × 101 
image will be replaced by NaN by a masking layer to output the final spectrum. 

The autoencoder networks were trained using batch size of 64 for 2000 epochs. We utilized the stochastic gradient 
descent (SGD) as the optimizer with learning rate of 10 for FCAE and 1 for others and momentum of 0.9. The loss of 
the deterministic models is the mean square error between the input and output spectrum. In variational models, there 
is an additional Kullback–Leibler (KL) divergence loss that quantifies the dissimilarity between the current 
distribution and a prior distribution 𝑁𝑁(𝟎𝟎,𝟏𝟏). The weight of the KL divergence loss is set to 1e-6 after test experiments.  

The regressor network contains 4 FC layers that followed by tanh layers and a final FC layer to output 5 force constants, 
where the first four FC layers transform the latent codes into 100, 1000, 1000, 100 neurons respectfully. The regressor 
was trained using batch size of 64 for 2000 epochs, with SGD optimizer with learning rate of 0.05 and momentum of 
0.9. The loss is defined as the mean square error between the predicted force constants and the ground truth values. 

Most of the training, inference, and optimization tasks were conducted on a single CPU core of an Intel Broadwell 
node, with only the CNN models being processed on a NVIDIA K80 GPU. Training times were approximately 6 
hours for FC autoencoders and 4 hours for regressors, while CNN models required about 4.5 hours and 2.5 hours, 
respectively. Machine learning model inferences took only seconds. For comparison, the Nelder-Mead optimization, 
using reference values from ab initio calculation as the initial guess, took about 1.5 hours per test example.  

Experimental details 

Experimental data were obtained from polycrystalline aluminum samples using the time-of-flight instrument ARCS 
at the Spallation Neutron Source of Oak Ridge National Laboratory35. The aluminum samples were mounted inside a 
low-background electrical resistance vacuum furnace. The measurements were performed with an incident neutron 
energy of 50 meV, at 50, 150, 280, 350, 450, 540 and 640 K. Data reduction and analysis of the ARCS data were 
performed with MANTID36. The data were normalized by the proton current on the spallation target. Bad detector 
pixels were identified and masked, and the data were corrected for detector efficiency using a measurement of a 
vanadium standard. After data reduction, neutron events at different detectors were combined to generate the two-
dimensional dynamical susceptibility 𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒′′ (|𝑸𝑸|,𝐸𝐸). 

Simulations 

Given a set of force constants considering interactions up to the next-nearest neighbors, phonons were calculated using 
Phonopy. Corresponding two-dimensional spectra were then simulated using Oclimax with the same parameters 
employed in the experiment. A dataset of 10,000 simulated spectra was generated using force constants with each 
dimension randomly sampled from 0.5 to 1.5 of the reference value. The preparation of the dataset required 
approximately two days. Considering that we utilized only a single CPU core, reducing the processing time could be 
easily achieved by allocating more resources. The dataset was divided into three subsets: 80% for training, 10% for 
validation, and 10% for testing purposes. 

Data preprocessing 

All the spectra were cropped to 0 - 10 Å and 10 - 45 meV, focusing on the relevant phonon region. Subsequently, they 
were resized to the same resolution. The background was estimated as a function of energy and subtracted from the 
experimental data to eliminate unwanted noise. Finally, mean normalization was applied to each spectrum, ensuring 
a meaningful comparison between the simulated and experimental spectra with varying scan times.  
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Figures and Tables 

Fig. 1. Framework architecture.   
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Fig. 1. Framework architecture. Our two-stage framework integrates self-supervise learning and supervised learning for 
phonon dynamics analysis from INS spectra. In the first stage, an autoencoder is trained to transform the input spectrum into a 
latent code through an encoder network and then reconstruct the spectrum back via a decoder network. Upon completion, the 
encoder is frozen and served as the feature extractor for the subsequent stage. The training utilizes simulated spectra, generated 
from physics-based model with randomly sampled force constants, and is fine-tuned using experimental spectra to adapted to 
real-world data. While deterministic models directly produce a single latent code, variational ones adopt a probabilistic approach 
and generate a distribution to sample the latent code. In the second stage, a regressor network, trained on labeled simulated 
spectra, is used to predict force constants.  
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Fig. 2. Comparison between the experimental spectra and simulated spectra with the model 
predicted force constants at varying temperatures.  

Fig. 2. Comparison between the experimental spectra and simulated spectra with the model predicted force constants at 
varying temperatures. The intensity curves are obtained by averaging over the Q-axis of the spectra at different temperatures 
and offset for ease of comparison. Both the optimization method and our FCVAE model accurately predict the decreasing trend 
of two peaks, whereas the CNNVAE model succeeds only with the lower energy peak, and the FCAE and CNNAE models fail 
for both peaks. The red vertical stripes denote the peak positions in red curves at 50 K, offering a reference for observing peak 
position shifts with temperature. 
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Fig. 3. Comparison of models’ performance on experimental data.    

Fig. 3. Comparison of models’ performance on experimental data. a NMSE of different models and optimization method. 
Dashed lines are guides to the eye. b-f Force constants predicted by different models. For variational models, 10,000 trials were 
performed, with error bars representing the standard deviation of the outcomes. Solid lines are linear fit for results with clear 
temperature dependent trends. 
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Fig. 4. Latent space analysis for models.  

Fig. 4. Latent space analysis for models. a, c Latent codes of simulation test data (blue) and experimental data (red) for FCAE 
and CNNAE. b, d Latent distribution of simulation test data (blue) and experimental data (red) for FCVAE and CNNVAE. The 
circles and error bars represent the mean values and the standard deviations of normal distributions. e-h Sensitivity of decoder-
reconstructed spectra to individual latent dimensions. i-l Pearson correlation matrix between different latent dimensions of 
simulation test set. For variational models, the correlations were calculated using the mean values of each dimension. 
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Table 1. Averaged NMSE between experimental input spectra and the spectra simulated using 
force constants predicted by models.  

  

 Latent space 
dimension 

FCAE FCVAE CNNAE CNNVAE 

Sim-only 30 0.236 (0.046) 0.201 (0.011) 0.277 (0.086) 0.212 (0.021) 
Fine-tuned 30 0.249 (0.059) 0.200 (0.010) 0.274 (0.084) 0.205 (0.015) 
Extended 30 0.256 (0.066) 0.202 (0.011) 0.296 (0.105) 0.211 (0.020) 
Sim-only 25 0.307 (0.117) 0.208 (0.018) 0.242 (0.052) 0.206 (0.016) 

 20 0.223 (0.033) 0.205 (0.014) 0.380 (0.190) 0.213 (0.023) 
 15 0.208 (0.017) 0.206 (0.016) 0.247 (0.057) 0.208 (0.018) 
 10 0.347 (0.157) 0.209 (0.019) 0.231 (0.041) 0.200 (0.009) 
 5 0.370 (0.180) 0.206 (0.016) 0.259 (0.069) 0.211 (0.020) 
 4 0.205 (0.015) 0.207 (0.017) 0.218 (0.027) 0.223 (0.033) 
 3 0.213 (0.022) 0.205 (0.014) 0.242 (0.052) 0.204 (0.014) 

Table 1. Averaged NMSE between experimental input spectra and the spectra simulated using force constants 
predicted by models. The NMSE is calculated for models with the feature extractor trained with different autoencoders, 
each in three training stages: simulated spectra only (sim-only), fine-tuning with experimental spectra (fine-tuned), and 
extended training on simulated spectra (extended). The benchmark NMSE for Nelder-Mead optimization is 0.190. 
Differences from this benchmark are indicated in parentheses for each model.  
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Architecture diagrams of models 

The detailed architectures of autoencoder and regressor network are shown in Fig. S1. The functions of 
each layer and the final hyperparameters are discussed in Methods of the main text. 

 

Effects of individual latent space dimensions on reconstructed spectra 

To better understand the effect of individual latent dimensions, a comprehensive analysis was conducted to 
investigate the change of decoder-reconstructed spectrum when varying each dimension in the latent space. 
The procedure is the same as the sensitivity calculation in main text. Output spectra were reconstructed for 
each variation and compared with the one decoded from original latent code. 

Figures S2-S5 illustrate the changes in reconstructed spectra corresponding to each varied dimension across 
four models. In deterministic models (Figs. S2 and S4), alterations in each dimension lead to similar 
amplitude changes in the output spectra, suggesting a relatively equal contribution from each dimension. 
In contrast, the variational models (Figs. S3 and S5) exhibit pronounced effects from specific dimensions, 
while influences from others are negligible. This suggests that these few dimensions are the main 
contributor in the models. 

Combined with the results reported in the main text, these findings imply different approaches adopted by 
the models and their corresponding outcomes. The deterministic models utilize all dimensions in the latent 
space to represent the input spectra. While this tailored representation works effectively for the simulation 
test set, the cooperation among different dimensions becomes compromised with experimental data. On the 
other hand, variational models rely on a few key dimensions, each representing distinct features of the input 
spectra. Although their performance with training data is marginally inferior, they exhibit robustness and 
superior generalization in handling diverse or shifting domains.  
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Fig. S1  

  

Fig. S1. Architectures of Autoencoder and regressor networks.  
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Fig. S2 

  

Fig. S2. The change of FCAE decoder-reconstructed spectrum induced by variation in each latent dimension. The 
numerical labels represent indices of dimensions in the latent space. 
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Fig. S3 

  

Fig. S3. The change of FCVAE decoder-reconstructed spectrum induced by variation in each latent dimension. 
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Fig. S4 

  

Fig. S4. The change of CNNAE decoder-reconstructed spectrum induced by variation in each latent dimension. 
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Fig. S5 

 

Fig. S5. The change of CNNVAE decoder-reconstructed spectrum induced by variation in each latent dimension. 


