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Abstract—Speech emotion recognition is crucial in human-
computer interaction, but extracting and using emotional cues
from audio poses challenges. This paper introduces MFHCA,
a novel method for Speech Emotion Recognition using Multi-
Spatial Fusion and Hierarchical Cooperative Attention on spec-
trograms and raw audio. We employ the Multi-Spatial Fusion
module (MF) to efficiently identify emotion-related spectrogram
regions and integrate Hubert features for higher-level acoustic
information. Our approach also includes a Hierarchical Coop-
erative Attention module (HCA) to merge features from various
auditory levels. We evaluate our method on the IEMOCAP
dataset and achieve 2.6% and 1.87% improvements on the
weighted accuracy and unweighted accuracy, respectively. Exten-
sive experiments demonstrate the effectiveness of the proposed
method.

Index Terms—Speech emotion recognition, multi-spatial fusion,
hierarchical cooperative attention, Hubert features

I. INTRODUCTION

Speech emotion recognition (SER) technology plays a cru-

cial role in intelligent human-machine interaction systems [1],

as it can identify the speaker’s emotional state, thereby enhanc-

ing the naturalness of human-machine interaction. Recently,

some multimodal SER methods [2], [3], [22] have achieved

significantly higher accuracy than speech emotion recognition.

However, the model can only extract information from the

speech signal in specific scenarios, such as voice assistants

and phone customer service. Therefore, we focus on extracting

emotional information from speech signals.

Many SER models can be seen as a combination of deep

feature extractors and classifiers in their structure. In or-

der to attain powerful representational capabilities, numerous

researchers have enhanced network models. Xu et al. [4]

proposed an Attention-based CNN (ACNN) to acquire more

effective features, aiming to enhance the performance of SER.

Liu et al. [5] integrated multi-scale CNN with time-frequency

CNN, concurrently modeling local and global information.

Chen et al. [6] employed a dynamic window transformer to

locate significant regions at different time scales, capturing
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essential information. Chen et al. [7] devised a Deformable

Speech Transformer (DST) that captures multi-granular emo-

tional information through deformable attention windows.

Although these methods have achieved higher performance,

the intricate structures pose challenges for computational re-

sources.

The outstanding performance of speech self-supervised

learning in downstream tasks such as automatic speech recog-

nition (ASR) has opened up new avenues for developing SER.

Xia et al. [10] fine-tuned the Wav2Vec model [11], leveraging

learned features for SER tasks. He et al. [8] designed a SER

method based on the cross-attention transformer that integrates

three acoustic features, one of which is extracted from the

Wav2Vec2 model [9]. Gat I et al. [12] proposed a speaker

feature normalization framework based on self-supervised

feature representation, achieving outstanding performance in

SER.

In this paper, we propose a simple SER method (MFHCA)

based on Multi-Spatial Fusion module (MF) and Hierarchical

Cooperative Attention module (HCA), the MF is primarily

composed of several Global Receptive Field block (GRF).

Unlike [8], [13], which uses many acoustic features for SER,

we only use features from the Hubert model [14] and log

Mel spectrogram. The Hubert model is trained by performing

K-means clustering on MFCC or Hubert features, serving as

the training objective. This approach enables the learning of

rich feature representations. The log Mel spectrogram better

aligns with the auditory characteristics of the human ear. In

MFHCA, we employ the MF to extract features in different

scale spaces along the temporal and frequency directions,

enhancing the model’s focus on emotion-related features.

Subsequently, the two sets of features are cascaded using the

HCA. Finally, a classifier consisting of three fully connected

layers is employed to classify the features, completing the

emotion recognition task.

Our primary contributions can be summarized as follows:

• We propose a new SER network that combines joint self-

supervised features and the log Mel spectrogram. We
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alse design a Hierarchical Cooperative Attention module

(HCA) to integrate the two sets of features interactively.

• We propose a novel spectrum-based lightweight feature

extraction module, denoted as Multi-Spatial Fusion mod-

ule (MF), which captures dependencies and positional

information in different scale spaces, aiding the network

in locating emotional information.

II. PROPOSED METHOD

This section provides an overview of the proposed SER

method. In the following subsections, we provide a detailed

description of MF, GRF, and HCA.

A. Overall Architecture

The overall structure of the end-to-end emotion recognition

method we proposed is illustrated in Fig.1. The method

employs two parallel encoders to extract features from the

log Mel spectrogram and raw audio. Specifically, MF uses

two parallel convolutional layers to capture low-level fea-

tures from the log Mel spectrogram in both temporal and

frequency directions. GRF extracts dependencies and posi-

tional information from the features, enhancing the model’s

ability to learn emotion-related features. In order to save

computational time, we utilize Hubert as a feature extractor

to obtain feature sequences from the audio directly without

fine-tuning Hubert [12]. HCA hierarchically integrates the

two sets of features, and a classifier composed of three fully

connected layers utilizes the concatenated features for emotion

recognition.

B. Multi-Spatial Fusion Module

Fig. 1 illustrates the structure of MF, which is primarily

composed of a parallel convolutional layer, a pooling layer,

and three Global Receptive Field blocks (GRF). We use

processed log Mel spectrogram as input. For the first layer of

the module, we employ two parallel convolutions with kernel

sizes of (10, 2) and (2, 8), respectively, to extract features

in the time and frequency directions. Not all information

in the input features is directly relevant to the SER task.

Accurately localizing emotional information enables a more

comprehensive representation of emotions. To address this

problem, we propose a simple block called GRF, and its

structure is illustrated in Fig. 2.

GRF consists of three parts. Specifically, the first part rep-

resents the input features, denoted by X . Global pooling can

capture spatial information, but compressing and preserving

global spatial information through squeezing may lead to

losing positional information. In the second part, we adopt

encoding in both the temporal and frequency directions as a

replacement for average pooling. We employ global average

pooling(GAP) with kernels (H, 1) and (1,W ) to obtain a set

of encodings with dependency and positional information. The

output for the c-th channel at height h is represented as zc(h),
and the output for the c-th channel at width w is denoted as

zc(w).

zc(h) =
1

W

∑

0<i≤W

xc(h, i), (1)

zc(w) =
1

H

∑

0<j≤H

xc(j, w). (2)

We utilize 1×1 convolutions to interactively pass positional

information between zc(h) and zc(w) to guide the model in

locating regions relevant to emotional information. Addition-

ally, this allows for learning relationships between channels.

f = δ(BN(F ([z(h), z(w)T ]))), (3)

where, [z(h), z(w)T ] represents a cascading operation in

the spatial dimension, F denotes a 1×1 convolution operation,

BN stands for Batch Normalization, δ means the non-linear

activation function swish. Subsequently, we partition feature

f in the spatial dimension into two independent tensors, fh
and fw.

gh = σ(Fh(fh)), (4)

gw = σ(Fw(fw)), (5)

here, Fh and Fw represent 1×1 convolutions, and their role

is to adjust the number of channels in fh and fw to be

consistent with the input X . σ denotes the sigmoid function.

Finally, the outputs of these two parts are used as attention

weights applied to the input X . Ya represents the final output.

Ya(i, j) = x(i, j)⊙ gh(i)⊙ gw(j), (6)

where, ⊙ represents hadamard product.

In the second part, We employ average pooling to perform

downsampling on the input with a rate of r. Assuming the

input is a 3D tensor with a shape of (C,H,W ), the shape

becomes (C,H/r,W/r) after pooling. Equation (7) demon-

strates the computation process.

Yb = X ⊕ Up(F (AvgPoolr(X))), (7)

where AvgPoolr represents average pooling, F is a con-

volutional transformation, and Up is a bilinear interpolation

operator used to restore features from a smaller-scale space to

the original feature space. ⊕ is addition. Yb is the output. The

features are transformed into low-dimensional embeddings

through downsampling. After transformation by convolutional

layers, the low-dimensional embeddings encompass a larger

receptive field, enabling the calibration of the convolutional

layers in Ya. This communication between the convolutional

layers in Ya and Yb expands the receptive field in spatial

positions. Each spatial position can also gather context from

its surroundings, and dependencies between channels can be

learned. Benefiting from this internal information exchange,

GRF can generate more discriminative representations. The

output of GRF is denoted as Y.

Y = X ⊕ Ya ⊕ Yb, (8)

where ⊕ represents addition.
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C. Hubert Module

Hubert is a transformer-based model composed of three

components: a waveform encoder, an Acoustic Unit Discovery

System, and a Bert encoder. The Acoustic Unit Discovery

System is an unsupervised clustering model trained to label

input speech and generate discrete target sequences. The

waveform encoder consists of seven layers of convolutional

networks, extracting low-level features. The Bert encoder

comprises multiple identical Transformer blocks, enabling it

to learn contextualized representations.

Hubert conducts k-means and GMM clustering on MFCC

features to discretize speech signals, creating training targets.

This discretized target sequence derived from MFCC allows

the model to learn more representations, such as vocabulary

information related to speech recognition and features associ-

ated with speakers and emotions. This diversity of information

gives it a distinct advantage in emotion recognition. The

pre-trained HuBERT model excels at capturing richer, multi-

layered speech information, leading to enhanced generalization

performance in speech emotion recognition.

D. Hierarchical Cooperative Attention Module

Research has shown that the hierarchical fusion of different

features is helpful in SER tasks [19]. We employ the Hubert

model as a feature extractor without fine-tuning, and the

learned features contain rich information. In addition to emo-

tion recognition-related information, information is also rele-

vant to other downstream tasks. Considering these aspects, we

designed the HCA module. Spectrogram features are frame-

level, and Hubert features contain contextual information. MF

can pinpoint the location of emotional information. We use

features from MF as guidance for Hubert features, assisting the

network in focusing on emotional information within Hubert

features and jointly hierarchically obtaining more powerful

feature representations. We use fhubert to denote the output

of the hidden layer from Hubert, f ′
hubert to represent the

output of Hubert features after passing through a BiLSTM,

and fspec to denote the spectrogram. We perform the following

computations:

fatt = softmax(fspec ⊗ f ′
hubert), (9)

f ′
att = fhubert ⊗ fatt, (10)



f ′′
att = concat(fspec, f

′
att), (11)

where ⊗ represents Matrix multiplication, we append a BiL-

STM to the end of the Hubert model to obtain a temporal

sequence f ′
hubert containing contextual information. A co-

attention operation is performed between f ′
hubert and fspec

to obtain weights fatt. Then, a second-level operation is

conducted between fatt and fhubert, resulting in f ′
att. At this

stage, the emotional features in f ′
att are enhanced. Finally,

f ′
att is concatenated with fspec to obtain the final feature

representation. The emotion classification is achieved through

a classifier consisting of three fully connected layers.

III. EXPERIMENTS AND DISCUSSION

A. Dataset and Implementation Details

We evaluated our approach on the Interactive Emotional

dyadic Capture database (IEMOCAP) [15], which consists

of 10 actors engaged in 5 dyadic sessions, each featuring a

unique pair of male and female actors. Following the work of

others [16]–[18], we merged happy and excited into a single

category labeled as happy, while also considering neutral,
sad, happy, and angry emotions.

In the preprocessing stage, to facilitate comparison with

baseline methods [13], we also segment the original audio

signal into 3-second-long segments. We apply zero padding

when the audio segment is less than 3 seconds. Spectrograms

are extracted using a Hamming window with a window length

of 40ms and a window shift of 10ms. Each windowed block

is treated as a frame, and a Discrete Fourier Transform (DFT)

of length 800 is applied to transform each frame into the

frequency domain. The first 200 DFT points are used as input

spectrogram features. Hubert features correspond to the output

of the final hidden layer of the Hubert model.

The model optimizer is Adam, the learning rate is set with

1 × 10−5, the training batch size is 32, and early stopping is

configured for 10 epochs, the optimization function is Cross

Entropy Loss. We employed a 10-fold leave-one-speaker-out

cross-validation strategy to assess the model’s performance,

with evaluation metrics being Unweighted Accuracy (UA) and

Weighted Accuracy (WA).

B. Results and Comparison

Table 1 compares our proposed method and the baselines on

WA and UA. We compare our method with these approaches

TABLE I
COMPARISON WITH KNOWN STATE-OF-THE-ART SYSTEMS ON IEMOCAP,

WHERE A AND T DENOTE AUDIO AND TEXT MODALITIES.

Model Modality WA(↑) UA(↑)

HNSD [18] A 70.50 72.50

Co-attention [13] A 71.64 72.70

SMW CAT [8] A 73.80 74.25

E2e ASR [20] A+T 71.70 72.60

Cross-representation [21] A+T 73.00 73.50

MFHCA(ours) A 74.24 74.57

TABLE II
ABLATION STUDY ON THE PROPOSED MODEL.

Models MF HCA WA(↑) UA(↑)

Spec
✗ ✗ 62.13 62.25

✗ 62.21 62.37

Hubert ✗ ✗ 69.99 70.57

Spec+W2V2

✗ ✗ 70.05 71.30

✗ 71.73 72.32

✗ 70.72 72.09

72.00 73.44

Spec+Hubert

✗ ✗ 72.13 72.51

✗ 73.72 74.53

✗ 73.19 73.72

74.24 74.57

TABLE III
THE IMPACT OF QUANTITY AND CHANNEL VARIATION OF GRF ON

PERFORMANCE.

Num Channel WA(↑) UA(↑)

2 16-32 73.76 74.02

3 16-32-48 74.24 74.57

3 16-32-64 73.60 74.49

4 16-32-48-64 73.67 74.03

4 16-32-64-128 72.75 73.78

under two speaker-independent validation strategies. The ex-

perimental results demonstrate that our approach achieves the

best performance. HNSD [18] extracts static and dynamic

features for emotion recognition from the log-Mel filter bank

feature. The model can achieve better performance when

utilizing features from the pre-trained model [20]. In order to

obtain suitable emotion representations, SER systems based on

pre-trained models incorporate multiple speech features using

methods such as co-attention-based approaches [13], cross-

representation learning [21], and cross-attention transform-

ers [8]. Moreover, our model has 54.26% fewer parameters

than the baseline [13] while achieving higher performance.

The experimental results demonstrate the effectiveness and

lightweight of our method.

C. Ablation Study

In Table II, we conducted ablation experiments to demon-

strate the effectiveness of MF and HCA. ”Hubert” denotes

features extracted using Hubert, and ”W2V2” represents fea-

tures extracted using wav2vec2. Specifically, in the experiment

involving two features, the absence of HCA implementa-

tion does not imply the exclusion of fusion methods. To

ensure comparability, we employed baseline fusion methods.

We initially conducted experiments using single features and

found that MF contributes to the extraction of emotional

information in the spectrogram. The pre-trained model used in

the baseline is wav2vec2. For a more intuitive comparison, we

conducted experiments based on Spec and W2V2. The results

indicate that our proposed method performs better in learning

emotional information from features compared to the baseline.

Subsequently, we further validated our method on Spec and



TABLE IV
THE IMPACT OF SAMPLING RATIO r ON PERFORMANCE.

r WA(↑) UA(↑)

1/2 73.82 74.33

1/4 74.24 74.57

1/8 72.22 73.34

1/16 71.12 72.69

(a) Final features w/o HCA (b) Final features w/ HCA

Fig. 3. The t-SNE visualization of feature distribution. (a) and (b) are the
final combined features without and with the proposed HCA.

Hubert, achieving improved recognition accuracy. In Table III,

we employed grid search to investigate the impact of changes

in the number of GRFs and channels on the experimental

results. In Table IV, we similarly studied the influence of

variations in the scaling factor r on the experimental results.

To further validate our approach, we employed t-SNE visu-

alization to depict the feature distributions with and without

HCA in Fig. 3. When HCA was used, the dense areas of

feature distribution were reduced, and classification boundaries

became more distinct.

IV. CONCLUSION

This paper presents MFHCA, a novel SER approach utiliz-

ing MF for spectrogram feature extraction. Our method capi-

talizes on GRF’s advantages to overcome CNN’s limitations in

capturing global information. HCA fosters interaction between

spectral diagrams and Hubert features, jointly harvesting emo-

tional representations from both components. Experimental

results on IEMOCAP substantiate the effectiveness of MF and

HCA in our approach.
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