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CHARACTERIZATION OF ORDER STRUCTURES AVOIDING

THREE-TERM ARITHMETIC PROGRESSIONS

MINORU HIROSE AND SHINGO SAITO

Abstract. It is known that the set of all nonnegative integers may be equipped
with a total order that is chaotic in the sense that there is no monotone three-
term arithmetic progressions. Such chaotic order must be so complicated that
the resulting ordered set cannot be order isomorphic to the set of all nonneg-
ative integers or the set of all integers with the standard order. In this paper,
we completely characterize order structures of chaotic orders on the set of all
nonnegative integers, as well as on the set of all integers and on the set of all
rational numbers.

1. Introduction

It has long been known ([3, 4, 5, 6]) that it is possible to arrange the integers
1, . . . , n (and consequently any finitely many rational numbers) into a sequence
a1, . . . , an without a three-term subsequence forming an arithmetic progression, or
more precisely without i, j, k with 1 ≤ i < j < k ≤ n and aj − ai = ak − aj . In
contrast, Davis, Entringer, Graham, and Simmons [2] proved that it is impossible to
arrange all of the positive integers (or equivalently all of the nonnegative integers)
into a sequence a1, a2, . . . or a two-sided sequence . . . , a−1, a0, a1, . . . without a
three-term subsequence forming an arithmetic progression. On the other hand,
Ardal, Brown, and Jungić [1] proved that there exists a total order � on Q such
that there are no a, b, c ∈ Q with a ≺ b ≺ c and b − a = c − b, which implies that
such total order exists on N (by which we mean the set of all nonnegative integers)
and on Z; it should be noted that although they invoked Kőnig’s infinity lemma to
obtain the total order on Q (and hence the resulting total order is rather abstract),
they also gave an explicit total order on Z (and hence on N).

To summarize these results, we find it convenient to introduce the following
terminology. For a set S of rational numbers and a totally ordered set (X,�), we
say that a bijection f : S → X is chaotic if there are no a, b, c ∈ S with f(a) ≺
f(b) ≺ f(c) and b − a = c − b. Then the results of Davis, Entringer, Graham,
and Simmons say that if S = N and X = N,Z with the standard order, then no
bijection f : S → X is chaotic; the results of Ardal, Brown, and Jungić say that if
S = N,Z,Q, then there exist a countably infinite totally ordered set (X,�) and a
chaotic bijection f : S → X .

This observation leads us to the following natural question: given S = N,Z,Q,
which countably infinite totally ordered sets (X,�) admit a chaotic bijection f : S →
X? Our main theorem completely answers this question. To state our main the-
orem, recall that a point p in a totally ordered set (X,�) is said to be isolated if
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2 MINORU HIROSE AND SHINGO SAITO

it is isolated in the topological space X endowed with the order topology, namely
(assuming that X has at least two elements) if either (i) {x ∈ X | x ≺ x0} = {p}
for some x0 ∈ X , (ii) {x ∈ X | x ≻ x0} = {p} for some x0 ∈ X , or (iii)
{x ∈ X | x0 ≺ x ≺ x1} = {p} for some x0, x1 ∈ X .

Theorem 1.1 (Main Theorem). Let (X,�) be a countably infinite totally ordered

set.

(1) There exists a chaotic bijection f : N → X if and only if X has no isolated

points.

(2) There exists a chaotic bijection f : Z → X if and only if X has no isolated

points.

(3) There exists a chaotic bijection f : Q → X if and only if X has no iso-

lated points and either X does not have a maximum or X does not have a

minimum.

2. Proof of the ‘only if’ parts of our main theorem

This section proves the ‘only if’ parts of our main theorem. Let S ⊂ Q, and
let (X,�) be a countably infinite totally ordered set. The key to the proof is the
observation that for S ∈ {N,Z,Q}, every chaotic map f : S → X has a stronger
property concerning the 2-adic order.

2.1. Chaotic maps and binary maps. We begin by generalizing the definition
of chaotic maps: we say that f : S → X is chaotic if f is injective and there are no
a, b, c ∈ S such that f(a) ≺ f(b) ≺ f(c) and b− a = c− b.

We then define a property that is stronger than being chaotic. Recall that the
2-adic order ord2 r of r ∈ Q× = Q \ {0} is defined as the unique n ∈ Z such that
2−nr can be written as a quotient of odd integers; ord2 0 is defined as ∞. We say
that f : S → X is binary if f is injective and there are no a, b, c ∈ S such that
f(a) ≺ f(b) ≺ f(c) and ord2(b − a) = ord2(c − b). It is obvious that every binary
map f : S → X is chaotic.

Example 2.1. If f : {0, 1, 2, 3, 4, 5, 6, 7}→ X satisfies

f(0) ≺ f(4) ≺ f(2) ≺ f(6) ≺ f(1) ≺ f(5) ≺ f(3) ≺ f(7),

then f is binary. If f : {0, 1, 2, 3} → X satisfies

f(2) ≺ f(3) ≺ f(0) ≺ f(1),

then f is chaotic but not binary.

Proposition 2.2. If S ∈ {N,Z,Q} and there exists a binary bijection f : S → X,

then X has no isolated points.

Proof. Assume that {x ∈ X | f(a) ≺ x ≺ f(b)} = {f(c)} for some a, b, c ∈ S.
Take c′ ∈ S \ {c} with ord2(c

′ − c) > ord2(a − c) and ord2(c
′ − c) > ord2(b − c)

(we can for example take c′ = c + 2n for a sufficiently large n ∈ N). Since f(c)
is the only element of X between f(a) and f(b), it must be the case that either
f(c′) ≺ f(a) ≺ f(c) or f(c) ≺ f(b) ≺ f(c′). Since ord2(a − c′) = ord2(c − a) and
ord2(b− c) = ord2(c

′ − b), the map f cannot be binary, which is a contradiction.
In a similar manner, both assuming that {x ∈ X | x ≻ f(a)} = {f(c)} for some

a, c ∈ S and assuming that {x ∈ X | x ≺ f(a)} = {f(c)} for some a, c ∈ S lead to
a contradiction. �
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Remark 2.3. Proposition 2.2 remains valid for any set S ⊂ Q with the property
that for every a ∈ S, the set {ord2(b − a) | b ∈ S \ {a}} is unbounded from above.

2.2. Chaotic maps are binary if S ∈ {N,Z,Q}. In this subsection, we prove
that if S ∈ {N,Z,Q}, then every chaotic map f : S → X is in fact binary (Propo-
sition 2.6). Note that this is not the case for general S, as the second example in
Example 2.1 shows. We write N+ for the set of all positive integers.

Lemma 2.4. Let f : S → X be chaotic and t ∈ N+ be odd. Suppose that a ∈ Q

and d ∈ Q× are such that a + id ∈ S for all i ∈ N. Then f(a) ≺ f(a + d) if and

only if f(a) ≺ f(a+ td).

Proof. The proof proceeds by induction on t. The lemma is trivial for t = 1.
Suppose that the lemma is true for an odd positive integer t. In order to prove
that the lemma is true for t+2, we only have to prove that f(a) ≺ f(a+d) implies
f(a) ≺ f(a+ (t+ 2)d).

Set b = a+ 2(t+ 2)d ∈ S. Since f is chaotic and f(a) ≺ f(a+ d), we have

f(a) ≺ f(a+ d) ≻ f(a+ 2d) ≺ · · · ≻ f(b) ≺ f(b+ d).

It follows from the inductive hypothesis applied to b and d that f(b) ≺ f(b + td)
(note that b+ id = a+ (2t+ 4 + i)d ∈ S for all i ∈ N).

If f(b + td) ≺ f(b + (t + 2)d), then we have f(b) ≺ f(b + td) ≺ f(b + (t + 2)d),
and so

f(b+ (t+ 2)d) ≻ f(b) ≺ f(b− (t+ 2)d) = f(a+ (t+ 2)d) ≻ f(a),

as required.
If f(b+ td) ≻ f(b+ (t+ 2)d), then we have

f(b+ (t+ 2)d) ≺ f(b+ td) ≻ f(b+ (t− 2)d) ≺ . . .

≺ f(b− (t+ 2)d) = f(a+ (t+ 2)d) ≻ f(a+ td).

Since f(a) ≺ f(a+ td), we may conclude that f(a) ≺ f(a+ (t+ 2)d). �

Lemma 2.5. Let f : S → X be chaotic, s ∈ N be even, and t ∈ N+ be odd. Suppose

that a ∈ Q and d ∈ Q× are such that a+ id ∈ S for all i ∈ N. Then f(a) ≺ f(a+d)
if and only if f(a+ sd) ≺ f(a+ td).

Proof. It suffices to prove that f(a) ≺ f(a+d) implies f(a+ sd) ≺ f(a+ td). Since
f is chaotic, we have

f(a) ≺ f(a+ d) ≻ f(a+ 2d) ≺ f(a+ 3d) ≻ · · · .

If s < t, then Lemma 2.4 and the fact that f(a+ sd) ≺ f((a+ sd) + d) imply that
f(a+ sd) ≺ f((a+ sd) + (t − s)d) = f(a+ td). If t < s, then Lemma 2.4 and the
fact that f(a+ td) ≻ f((a+ td)+ d) imply that f(a+ td) ≻ f((a+ td)+ (s− t)d) =
f(a+ sd). �

Proposition 2.6. If S ∈ {N,Z,Q} and f : S → X is chaotic, then f is binary.

Proof. Suppose that f is not binary. Then there exist a, b, c ∈ S such that f(a) ≺
f(b) ≺ f(c) and ord2(b − a) = ord2(c − b) = n, say. Take the smallest m ∈ N+

such that 2−nm(b − a) and 2−nm(c − b) are both (necessarily odd) integers. Put
d = 2n/m.
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If b = min{a, b, c}, then applying Lemma 2.5 to b and d shows that f(b) ≻
f(a) = f(b + 2−nm(a − b)d) implies f(b) ≻ f(b + d), whereas f(b) ≺ f(c) =
f(b+ 2−nm(c− b)d) implies f(b) ≺ f(b+ d); this is a contradiction.

If a = min{a, b, c}, then applying Lemma 2.5 to a and d shows that f(a) ≺ f(b) =
f(a+2−nm(b−a)d) implies f(a) ≺ f(a+d), whereas f(b) = f(a+2−nm(b−a)d) ≺
f(c) = f(a+ 2−nm(c− a)d) implies f(a+ d) ≺ f(a); this is a contradiction.

If c = min{a, b, c}, then a similar argument leads us to a contradiction. �

Propositions 2.2 and 2.6 show that if S ∈ {N,Z,Q} and there exists a chaotic
bijection f : S → X , then X has no isolated points. We may now complete the
proof of the ‘only if’ parts of our main theorem by noticing the following simple
proposition:

Proposition 2.7. If f : Q → X is a chaotic bijection, then either X does not have

a maximum or X does not have a minimum.

Proof. If X has both a maximum and a minimum, say f(a) and f(b), then setting
c = (a+ b)/2, we have f(b) ≺ f(c) ≺ f(a) and c− b = a− c, a contradiction. �

3. Proof of the ‘if’ parts of our main theorem

This section proves the ‘if’ parts of our main theorem. For S ⊂ Q and r ∈ Q,
we write S + r = {a+ r | a ∈ S}.

3.1. Construction of binary maps from N and Z.

Lemma 3.1. Let S ⊂ Q and r ∈ Q×.

(1) If ord2(a− b) 6= ord2 r for all a, b ∈ S, then S ∩ (S + r) = ∅.
(2) Suppose that ord2(a− b) < ord2 r for all distinct a, b ∈ S. Then for distinct

a, b ∈ S ∪ (S + r), we have ord2(a− b) ≤ ord2 r with equality if and only if

a− b = ±r.
(3) Suppose that ord2(a − b) > ord2 r for all a, b ∈ S. Then for distinct a, b ∈

S ∪ (S + r), we have ord2(a− b) ≥ ord2 r with equality if and only if either

a ∈ S and b ∈ S + r or a ∈ S + r and b ∈ S.

Proof. (1) Obvious.
(2) Let a, b ∈ S ∪ (S + r) be distinct. If either a, b ∈ S or a, b ∈ S + r, then

we obviously have ord2(a − b) < ord2 r. Therefore by symmetry we may
assume that a ∈ S and b ∈ S + r. If a = b − r, then we clearly have
ord2(a− b) = ord2 r; otherwise a and b − r are distinct elements of S and
so ord2(a− (b − r)) < ord2 r, which implies that ord2(a− b) < ord2 r.

(3) Let a, b ∈ S ∪ (S + r) be distinct. If either a, b ∈ S or a, b ∈ S + r, then
we obviously have ord2(a − b) > ord2 r. Therefore by symmetry we may
assume that a ∈ S and b ∈ S + r. Then we have ord2(a− (b− r)) > ord2 r,
which implies that ord2(a− b) = ord2 r. �

In writing the proofs that follow, it is convenient to make the set-theoretical
identification of a map ϕ : A → B with the its graph {(a, b) ∈ A × B | ϕ(a) = b}.
Thus for maps ϕ1 : A1 → B1 and ϕ2 : A2 → B2, the inclusion ϕ1 ⊂ ϕ2 means that
A1 is a subset of A2 and that the restriction of ϕ2 to A1 is ϕ1; the union ϕ1 ∪ ϕ2

represents a map from A1 ∪ A2 to B1 ∪ B2, provided that ϕ1(a) = ϕ2(a) for all
a ∈ A1 ∩ A2.
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Lemma 3.2. Let (X,�) be a totally ordered set without isolated points. Let S ⊂ Q

be finite and r ∈ Q× be such that ord2(a − b) < ord2 r for all distinct a, b ∈ S. If

f : S → X is binary, S̃ = S ∪ (S + r), and x ∈ X \ Im f , then there exists a binary

map f̃ : S̃ → X with f ⊂ f̃ and x ∈ Im f̃ .

Proof. Take the enumeration a1, . . . , am of S so that f(a1) ≺ · · · ≺ f(am). We

define an injection f̃ : S̃ → X with f ⊂ f̃ and x ∈ Im f̃ by inductively defining
f̃(ai+ r) as an element of X such that f(ai−1) ≺ f̃(ai+ r), f̃(ai−1+ r) ≺ f̃(ai+ r),

f̃(ai + r) ≺ f(ai+1), and f̃(ai + r) 6= f(ai) for i = 1, . . . ,m (ignore any condition
in which 0 or m+ 1 appears as a subscript), using the assumption that X has no

isolated points and choosing x as f̃(ai + r) at the earliest opportunity.

It remains to prove that f̃ is binary. For ease of notation, we define an equivalence
relation ∼ on S̃ by setting a ∼ b if and only if a−b ∈ {0,±r}; Lemma 3.1 (2) implies
that this is indeed an equivalence relation because ord2(±2r) = ord2 r+1 > ord2 r.

Note that for a, a′, b, b′ ∈ S̃ with a ∼ a′ 6∼ b ∼ b′, we have f̃(a) ≺ f̃(b) if and only

if f̃(a′) ≺ f̃(b′). Suppose that f̃ is not binary. Then we may find a, b, c ∈ S̃ such

that f̃(a) ≺ f̃(b) ≺ f̃(c) and ord2(b − a) = ord2(c − b) = n, say. Lemma 3.1 (2)
shows that n ≤ ord2 r and moreover that n < ord2 r because a ∼ b ∼ c would
contradict the fact that a, b, c are distinct elements of S̃. Therefore if we choose
a′, b′, c′ ∈ S so that a ∼ a′, b ∼ b′, c ∼ c′, then a ∼ a′ 6∼ b ∼ b′ 6∼ c ∼ c′ and so
f̃(a′) ≺ f̃(b′) ≺ f̃(c′) and ord2(b

′ − a′) = ord2(b − a) = ord2(c− b) = ord2(c
′ − b′);

but this is a contradiction because the restriction of f̃ to S is equal to the binary
map f . Hence we have proved that f̃ is binary. �

Proposition 3.3. If S ∈ {N,Z}, and (X,�) is a countably infinite totally ordered

set without isolated points, then there exists a binary bijection f : S → X.

Proof. Define a sequence r0, r1, · · · ∈ S by

rn =

{

2n if S = N;

(−2)n if S = Z,

and set Sn = {
∑

i∈A ri | A ⊂ {0, . . . , n− 1}} for n ∈ N. Note that for n ∈ N, since

Sn =











[0, 2n − 1] ∩ N if S = N;

[−2(2n − 1)/3, (2n − 1)/3] ∩ Z if S = Z and n is even;

[−2(2n−1 − 1)/3, (2n+1 − 1)/3] ∩ Z if S = Z and n is odd,

we have ord2(a − b) < n = ord2 rn for all distinct a, b ∈ Sn. Fixing a bijection
g : N → X , we shall inductively construct binary maps fn : Sn → X for n ∈ N so
that f0 ⊂ f1 ⊂ · · · .

Define a binary map f0 from S0 = {0} to X by setting f0(0) = g(0). Let n ∈ N,
and suppose that fn : Sn → X has been constructed. Take the smallest k ∈ N with
g(k) /∈ Im fn, and use Lemma 3.2 to construct a binary map fn+1 : Sn+1 → X with
fn ⊂ fn+1 and g(k) ∈ Im fn+1.

Define f =
⋃∞

n=0 fn. Then f is a binary map from
⋃∞

n=0 Sn = S to X . Since
the construction ensures that g(0), . . . , g(k) ∈ Im fk for all k ∈ N, it follows that f
is surjective. �
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3.2. Construction of binary maps from Q. We write Z(2) = {r ∈ Q | ord2 r ≥
0}.

Lemma 3.4. Let n ∈ N and q0, . . . , qn−1 ∈ Z(2) with ord2 qi = i for all i =
0, . . . , n−1. Then for every q ∈ Z(2) there exists a unique subset A of {0, . . . , n−1}
such that ord2(q −

∑

i∈A qi) ≥ n.

Proof. We proceed by induction on n. The lemma is trivial for n = 0 because the
only choice for A is ∅. Suppose that the lemma is true for a nonnegative integer n
and that q0, . . . , qn ∈ Z(2) satisfy ord2 qi = i for all i = 0, . . . , n.

Let q ∈ Z(2) be given. The inductive hypothesis shows that there exists a unique
subset A′ of {0, . . . , n− 1} such that ord2(q −

∑

i∈A′ qi) ≥ n.
We first show the existence of the required subset A of {0, . . . , n}. If ord2(q −

∑

i∈A′ qi) ≥ n + 1, then take A = A′; if ord2(q −
∑

i∈A′ qi) = n, then setting
A = A′ ∪ {n} gives ord2(q −

∑

i∈A qi) ≥ n+ 1 because ord2(α + β) ≥ n+ 1 for all
α, β ∈ Q with ord2 α = ord2 β = n.

What remains to prove is the uniqueness of such A. Suppose that A ⊂ {0, . . . , n}
satisfies ord2(q−

∑

i∈A qi) ≥ n+1. Since q−
∑

i∈A\{n} qi equals either q−
∑

i∈A qi
or q−

∑

i∈A qi + qn, we must have ord2(q−
∑

i∈A\{n} qi) ≥ n because ord2 qn = n.

Therefore it follows from the inductive hypothesis that A \ {n} = A′, which means
that A is either A′ or A′ ∪ {n}. If ord2(q −

∑

i∈A′ qi) ≥ n + 1 and ord2(q −
∑

i∈A′∪{n} qi) ≥ n + 1 were both true, then we would also have ord2 qn ≥ n + 1,

contradicting the assumption that ord2 qn = n. This completes the proof of the
uniqueness of A. �

Lemma 3.5. There exists a sequence q0, q1, . . . ∈ Z(2) with the following properties:

(1) ord2 qn = n for all n ∈ N;

(2) for every q ∈ Z(2) there exists a finite subset A of N such that q =
∑

n∈A qn.

Proof. Fix a bijection h : N → Z(2). For each n ∈ N, when q0, . . . , qn−1 ∈ Z(2) have
been constructed, take the smallest ln ∈ N such that ord2(h(ln) −

∑

i∈A qi) = n
for some A ⊂ {0, . . . , n − 1} (such ln always exists because the condition follows
for example from ord2 h(ln) = n; Lemma 3.4 implies that A is unique), and set
qn = h(ln)−

∑

i∈A qi.
Suppose that (2) is false, and take the smallest l ∈ N for which there is no finite

subset A of N such that h(l) =
∑

i∈A qi. Choose N ∈ N so large that for every
k = 0, . . . , l − 1 there exists Ak ⊂ {0, . . . , N − 1} such that h(k) =

∑

i∈Ak
qi. By

Lemma 3.4, there exists Al ⊂ {0, . . . , N − 1} such that ord2(h(l)−
∑

i∈Al
qi) ≥ N .

Set N ′ = ord2(h(l) −
∑

i∈Al
qi). Since ord2(h(k) −

∑

i∈Ak
qi) = ∞ > N ′ for

k = 0, . . . , l − 1, we must have lN ′ ≥ l. Since l has the property required for lN ′ ,
this means that lN ′ = l, contradicting the choice of l. �

Lemma 3.6. There exists a sequence r0, r1, . . . ∈ Q× such that if we set Sn =
{
∑

i∈A ri | A ⊂ {0, . . . , n− 1}} for n ∈ N, we have the following:

(1)
⋃∞

n=0 Sn = Q;

(2) ord2(a− b) < ord2 rn whenever n ∈ N is even and a, b ∈ Sn are distinct;

(3) ord2(a− b) > ord2 rn whenever n ∈ N is odd and a, b ∈ Sn.
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Proof. Take a sequence q0, q1, . . . ∈ Z(2) as in Lemma 3.5, and define r0, r1, . . . ∈ Q×

by

rn =

{

qn/2 if n is even;

2−(n+1)/2 if n is odd.

To show (1), we observe that every r ∈ Q can be written (in fact uniquely) as
q +

∑

j∈B 2−j with q ∈ Z(2) and a finite set B ⊂ N+.

To show (2), suppose that n = 2m for some m ∈ N+ and that a, b ∈ S2m are
distinct (we may assume that n ≥ 2 because S0 consists of only one element). Since
a− b is a nonzero rational number that can be written as a linear combination of
q0, . . . , qm−1 and 2−1, . . . , 2−m with coefficients in {0,±1}, we have

ord2(a− b) ≤ max{ord2 q0, . . . , ord2 qm−1, ord2 2
−1, . . . , ord2 2

−m}

= m− 1 < m = ord2 rn.

To show (3), suppose that n = 2m + 1 for some m ∈ N and that a, b ∈ S2m+1.
Since a− b can be written as a linear combination of q0, . . . , qm and 2−1, . . . , 2−m

with coefficients in {0,±1}, we have

ord2(a− b) ≥ min{ord2 q0, . . . , ord2 qm, ord2 2
−1, . . . , ord2 2

−m}

= −m > −m− 1 = ord2 rn. �

Lemma 3.7. Let (X,�) be a totally ordered set without a maximum. Let S ⊂ Q be

finite and r ∈ Q× be such that ord2(a− b) > ord2 r for all a, b ∈ S. If f : S → X is

binary and S̃ = S ∪ (S + r), then there exists a binary map f̃ : S̃ → X with f ⊂ f̃ .

Proof. Take the enumeration a1, . . . , am of S so that f(a1) ≺ · · · ≺ f(am). We

define an injection f̃ : S̃ → X with f ⊂ f̃ by inductively defining f̃(ai + r) as

an element of X larger than f(a1), . . . , f(am), f̃(a1 + r), . . . , f̃(ai−1 + r), using the
assumption that X has no maximum.

To prove that f̃ is binary, take any a, b, c ∈ S̃ with f̃(a) ≺ f̃(b) ≺ f̃(c). We have
either (i) a, b, c ∈ S, (ii) a, b ∈ S and c ∈ S + r, (iii) a ∈ S and b, c ∈ S + r, or
(iv) a, b, c ∈ S + r. In cases (i) and (iv), we have ord2(b− a) 6= ord2(c− b) because
f is binary. Lemma 3.1 implies that ord2(b − a) > ord2 r = ord2(c− b) in case (ii)
and that ord2(b − a) = ord2 r < ord2(c− b) in case (iii). �

Proposition 3.8. Let (X,�) be a countably infinite totally ordered set. Suppose

that X has no isolated points and that either X does not have a maximum or X
does not have a minimum. Then there exists a binary bijection f : Q → X.

Proof. By symmetry, we may assume that X does not have a maximum. Take a
sequence r0, r1, . . . ∈ Q× as in Lemma 3.6, and set Sn = {

∑

i∈A ri | A ⊂ {0, . . . , n−
1}} for n ∈ N. Fixing a bijection g : N → X , we shall inductively construct binary
maps fn : Sn → X for n ∈ N so that f0 ⊂ f1 ⊂ · · · .

Define a binary map f0 from S0 = {0} to X by setting f0(0) = g(0). Let n ∈ N,
and suppose that fn : Sn → X has been constructed. If n is even, then take the
smallest k ∈ N with g(k) /∈ Im fn, and use Lemma 3.2 to construct a binary map
fn+1 : Sn+1 → X with fn ⊂ fn+1 and g(k) ∈ Im fn+1. If n is odd, then use
Lemma 3.7 to construct a binary map fn+1 : Sn+1 → X with fn ⊂ fn+1.

Define f =
⋃∞

n=0 fn. Then f is a binary map from
⋃∞

n=0 Sn = Q to X . Since
the construction ensures that g(0), . . . , g(k) ∈ Im f2k+1 for all k ∈ N, it follows that
f is surjective. �
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Propositions 3.3 and 3.8 complete the proof of the ‘if’ parts of our main theorem.
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