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Abstract

Truck platooning, a linking technology of trucks on the highway, has gained enormous
attention in recent years due to its benefits in energy and operation cost savings. However,
most existing studies on truck platooning limit their focus on particular scenarios that each
truck can serve only one customer demand and is thus with a specified origin-destination
pair, so only routing and time schedules are taken into account. Nevertheless, in real-world
logistics, each truck may need to serve multiple customers located at different places, and
the operator managing a fleet of trucks thus has to determine not only the routing and time
schedules of each truck but also the set of customers allocated to each truck and their sequence
to visit. This is well known as a capacitated vehicle routing problem with time windows
(CVRPTW), and considering the application of truck platooning in such a problem entails
new modeling frameworks and tailored solution algorithms. In light of this, this study makes
the first attempt to optimize the truck platooning plan for a road-network CVRPTW in a
way to minimize the total operation cost, including vehicles’ fixed dispatch cost and energy
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cost, while fulfilling all delivery demands within their time window constraints. Specifically,
the operation plan will dictate the number of trucks to be dispatched, the set of customers,
and the routing and time schedules for each truck. In addition, the modeling framework is
constructed based on a road network instead of a traditional customer node graph to better
resemble and facilitate the platooning operation. A 3-stage algorithm embedded with a "route-
then-schedule" scheme, dynamic programming, and modified insertion heuristic, is developed
to solve the proposed model in a timely manner. Numerical experiments are conducted to
validate the proposed modeling framework, demonstrate the performance of the proposed
solution algorithm, and quantify the benefit brought by the truck platooning technology.

Keywords: Truck platooning; Vehicle routing problem; Route then schedule; Dynamic pro-
gramming; Modified insertion heuristic

1 Introduction

In the era of advanced logistics and delivery systems, truck platooning, a concept that leverages
advancements in vehicle automation and wireless communication, has emerged as a solution
to revolutionize cargo delivery operations. Specifically, integrated with modern logistics, truck
platooning is expected to yield significant benefits, including enhanced capacity utilization by
closer headways (Chen et al., 2016, 2017), reduced operational costs (Csiszar and Földes, 2018;
Haas and Friedrich, 2021), relieved drivers’ driving fatigue (Larsen et al., 2019; Sun and Yin,
2021a,b; Janssen et al., 2015), and a more stable and effective supply chain (Gazran et al., 2022),
thereby bringing substantial socioeconomic welfare and expenditure savings in logistics services.
Specifically, the reduction in total logistics is reported to be 1% to 2% (Marzano et al., 2022),
which is remarkable considering the huge volume of logistics. In addition, with the platoon-
ing function, the energy saving can be as high as more than 8% (Sun et al., 2021; Sivanandham
and Gajanand, 2022; Forbes, 2019), though it may vary from type of vehicle, load, and platoon
size. Given the great promises held by truck platooning, companies such as Daimler AG, Volvo,
DAF, TuSimple, Honda, and Peleton have already been aggressively testing this technology. For
instance, TuSimple and Waymoe have, respectively, demonstrated their driverless platooning
products, called TuSimple Connect and Waymo Via (TuSimple, 2022; Waymo, 2022). PATH, a pi-
oneer in truck platooning and collaborated with Volve Group, presented the practical operation
of truck platooning at the Port of Los Angeles, and on interstate highway I-66 in the northern
Virginia suburbs of Washington DC in 2017 (Berkeley, 2017). European Automobile Manufac-
turer’s Association also provided a blueprint describing how to achieve multi-brand platooning
before 2025.

In addition to the industry, many scholars have been studying the truck platooning opera-
tion, and we will first review them to identify the research gaps that motivate this study. Given
that forming a platoon entails trucks arriving at the same location at the same time, both routing
and time scheduling plans matter. Regarding the routing plan, Larsson et al. (2015) formulated a
graph routing problem based on truck platooning but ignored the constraints of delivery dead-
lines to reduce the problem’s complexity. Two constructive heuristics and a local search algorithm
are proposed to optimize each truck’s route for forming platoons in a way to minimize the system
cost. Based on a similar logic, Larson et al. (2013) further optimized the velocity of vehicles to
maximize fuel savings by platooning, and derived a hub-based heuristic to simplify the solving
process. Among the studies concerning the time schedule, Boysen et al. (2018) optimized trucks’
departure times to form platoons based on a simple scenario in that all trucks adopt an identical
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path. Therefore, the optimal solution to minimize operation cost can be found in a timely man-
ner, and they further explored that tight time windows and limited platoon size may weaken the
platooning benefit. van de Hoef (2018) studied a similar problem but allowed speed controls for
the rear vehicle, and they proposed a local improvement heuristic to tackle large-scale instances.
As an extension to van de Hoef (2018), van de Hoef et al. (2017) constructed a stochastic dynamic
programming model to quantify the influence of time uncertainty. Zhang et al. (2017) is another
study that considers platooning with time uncertainties, and they discovered that platooning is
only preferable when the travel time interval of two vehicles is within a particular threshold and
that the uncertainty of travel time further reduces this threshold.

In order to facilitate the truck platooning in a network, nevertheless, it is necessary to jointly
consider the routing and time scheduling plans of each truck. In this regard, Larson et al.
(2016) constructed a mixed integer program to optimize the routing and time scheduling plans
of trucks, and applied a model decomposition approach to seize the exact solution. In addition, a
preprocessing process was developed to eliminate unnecessary paths and thus reduce the prob-
lem size. Luo et al. (2018) extended the above study by considering the adjustment of trucks’
speeds. Xu et al. (2022) considered mandatory breaks of drivers during travel of a platooning
problem to capture the real-world scenario better, and a partial mixed integer program approach
integrated with the iterated neighborhood search method was developed to solve the problem
efficiently. Luo and Larson (2022) innovatively invented a "route-then-schedule" iterative process
to sequentially solve the routing problem and time scheduling problem separately, thus reducing
the problem complexity during each solving process. They also provided analytical proof that
such an iterative process will converge to a suboptimal solution with their designed feedback
link cost modification mechanism. Recently, Zhao and Leus (2023) resorted to the above "route-
then-schedule" solution framework to solve a truck routing problem considering that leading
trucks also have fuel savings and trucks are not allowed to wait during the trip. Instead of set-
ting time consistency constraints to record schedules of trucks, Abdolmaleki et al. (2021) set up
a time-expanded network to schedule the travel itineraries of trucks to form platoons for saving
energy, and the problem was formulated as a multicommodity flow problem. Approximation
algorithms together with dynamic programming were then proposed to seize a decent solution.

For the aforementioned studies on truck platooning, each truck is assumed to serve only
one predetermined customer demand, and thus it has only one origin and destination which
are both predetermined as well. Nevertheless, in the real-world logistics or delivery service,
each truck is capable of serving multiple customers along its itinerary. In addition, the set of
customers to be served by each truck and their sequence to receive service are yet to be decided.
In this study, we make the first attempt to optimize the truck platooning plan for the real-
world delivery problem. Particularly, without loss of generality, we assume that there are given
customers located at different places on the network. Each customer has a specific demand and
a required time window to be served, and each truck has a maximum capacity of goods to carry.
Acting as a central coordinator or a carrier company, our goal is to optimize the truck platooning
plan in a road network to serve all the customer demands in a way that minimizes the total
cost, including the dispatch cost and energy cost. Specifically, the plan will dictate not only the
routing and time schedules of each truck but also the set of customers allocated to each truck
and their sequence to serve. Unlike traditional vehicle routing problems (VRPs), the problem
considered in this study is modeled on the road network instead of the customer node graph so
as to delineate the platoon formation and disassembling. In addition, as the weight of a truck will
change during its trip and affect the energy saving brought by the truck platooning, its impact
on the energy consumption rate is considered explicitly. Therefore, this study essentially focuses
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on the planning of truck platooning for a road-network capacitated vehicle routing problem with
time windows (RNCVRPTW).

Below a toy example is presented to demonstrate the impact of truck platooning on the
delivery problem. The network, shown in Figure 1, is composed of 5 vertices, with 1 depot at
node O, 2 colored customer nodes which are B and D, and 2 intermediate nodes which are A
and C. The link travel times are provided along their corresponding links, and for simplicity,
we assume that the fuel consumption rate with respect to time is 1, and the demand in each
customer node is exactly equal to the truck capacity. As a result, two trucks are needed to fulfill
the demands. In this example, we omit time windows for simplicity, and the energy-saving
ratio for the following trucks in a platoon is chosen as 10%, as Forbes (2019) and Bishop (2020)
reported. We also assume that a full-load truck consumes 20% more fuel than an empty truck, as
indicated by Franzese and Davidson (2011), International (2022), and Wang et al. (2015a). Without
loss of generality, we set the fuel consumption rate as 1 per unit travel time for an empty truck,
so the one for a full-load truck is 1.2. Given the above setting, the optimal routes of dispatched
trucks with and without the support of platooning technologies are visually presented in Figure
2. As shown in Figure 2a, under the no-platoon case, two trucks are dispatched to serve two
customers, respectively, yielding a total energy cost of

(6.1× 1.2 + 6.1× 1)× 2 = 26.84

where 6.1 × 1.2 represents the fuel consumption on (O, B) or (O, D) when the truck is fully-
loaded, and 6.1× 1 represents the one on (B, O) or (D, O) when the truck is empty.

In Figure 2b, as the platooning feature is enabled, two trucks will platoon together on the
common roads (O, A) and (A, O) to save energy. Accordingly, the total fuel cost considering
platooning is:

4× (1 + 1− 10%)× (1 + 1.2) + 2.2× (1 + 1.2)× 2 = 26.4

where (1 + 1 − 10%) appeared in the first term takes the platoon savings on link (O, A) and

(A, O) into consideration. Therefore, the platooning induces a
26.84− 26.4

26.84
= 1.64% in the

energy cost. Such a simple instance illustrates that, if platooning is allowed in the truck delivery
operation, the itineraries of trucks may be altered to induce additional cost savings. In addition,
as highlighted by Bhoopalam et al. (2018), the impulse of getting platoon savings can alter not
only trucks’ routes and schedules but also the set of customers to be served by each truck and
their sequence to receive services.

In this study, a mixed integer programming (MIP) framework is first developed to model
the operation of truck platooning for RNCVRPTW. Given that the problem is NP-hard and road-
network-based (Yao et al., 2021; Ben Ticha et al., 2019), a 3-stage algorithm integrating the "route-
then-schedule" scheme (Luo and Larson, 2022), dynamic programming, and modified insertion
heuristic, is developed to solve the proposed model in a timely manner with high accuracy. The
extant body of literature reveals that certain local container drayage problems bear a resemblance
to the issues addressed in our research. Specifically, these drayage problems delved into the
delivery and relocation of containers, optimizing the routing of trucks to meet all demands
while minimizing costs. A subset of these studies, as referenced in Wang and Zhang (2019) and
Wang et al. (2022a,b), allowed for a single truck to transport two or more containers during its
journey. Their problem contexts were analogous to ours in serving multiple customer demands
during one trip as each container can be conceptualized as a distinct demand. However, they
did not consider time-window constraints and assumed the same demand sizes for different
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Figure 1: Toy network

(a) Without platooning (b) With platooning

Figure 2: Optimal trajectories with or without platooning
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customers. In addition, these studies related to multi-trailer drayage problems did not take the
platooning feature into consideration, marking a big difference in the operation planning. There
also exist several other drayage studies that discuss the operation planning under the truck
platooning context, such as You et al. (2020), Xue et al. (2021), and Yan et al. (2023). Nevertheless,
these studies assumed that one truck can carry only one container or customer demand, so the
operation planning of container deliveries was not fully investigated. In a nutshell, though the
above container-drayage studies share some similarities with ours, their methodologies cannot be
applied to our problem which optimizes not only the itineraries of trucks but also the allocations
of customers to each truck and their sequence to serve.

Our contribution is three-fold: 1) This is the first study to optimize the planning of truck
platooning for a road-network capacitated vehicle routing problem. It is a complicated problem
because we not only take into account the road network and the potential for platooning but also
the fact that there are no predetermined paths for the trucks and predetermined assignments of
which customers each truck will serve. 2) We not only consider the vehicle dispatch cost and fuel
consumption on the road to comprehensively depict the operational costs of a carrier company
but also account for the impact of truck weight. The impact extends beyond just an increase in
the rate of fuel consumption; it’s also crucial to emphasize that, as energy savings are calculated
on a percentage basis, the magnitude of platoon savings becomes significantly greater with an
increase in weight. This provides a more accurate representation of fuel costs in the context of
transportation problems. 3) We propose a novel iterative solution algorithm that combines the
"route-then-schedule" scheme, dynamic programming, and modified insertion heuristic, in a way
that practical large-scale problems can be solved efficiently and accurately.

The remainder of this paper is organized as follows. The problem is mathematically formu-
lated in Section 2. A novel iterative solution algorithm is developed in Section 3. In Section 4,
numerical experiments are conducted to demonstrate the performance of our proposed model-
ing framework and solution algorithm, as well as the influence of several key parameters on the
system cost. Lastly, Section 5 concludes the paper.

2 Problem Formulation

2.1 Problem setting

In this study, delivery demands are located at a subset of nodes in the road network, and each
demand is required to be delivered during the required time window, composed of the earliest
arrival time and the latest departure time. In addition, each demand may have a different demand
size, but the size is assumed to not exceed the capacity of each truck, and each demand cannot
be served by multiple trucks to reduce the model complexity.

We denote the set of all nodes as N, and it is composed of two parts, the depot D, and the
set of all road-network nodes R. In this paper, only one depot is considered and we fix its index
as 0. Each truck dispatched by the carrier company must depart from the depot and return to it
after serving all the demands, and each truck can only be dispatched once. The latter assumption
can be relaxed by treating a truck with multiple dispatched orders as multiple trucks, and doing
so imposes no changes on the modeling framework proposed in this paper. For the network
nodes, they can be further divided into two categories, the customer nodes (defined by C), and
the other intermediate nodes that can be served for platoon formation and disintegration. For
each customer node, ∀i ∈ C, its demand information includes the size of demand, qi, and the
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time window, indicating the earliest arrival time, TEA
i , and latest departure time, TLD

i . The set of
all arcs is denoted as A, so our road network graph can be represented as G = (N, A). Without
loss of generality, we assume that all trucks travel at the same speed, and we define a set K for
all trucks, whose size can be chosen as the same size as C to ensure the problem’s feasibility.

As mentioned before, to precisely capture the fuel consumption of trucks during their trips,
we have to take the influence of the weight of trucks into consideration. Wang et al. (2015b)
provided a substantial indication that the increase in fuel consumption rate is linearly correlated
with the load of trucks. Let γ denote the empty static weight of each truck; α define the cor-
responding fuel consumption per unit weight of an empty truck; and η be the increased fuel
consumption due to one unit of additional load filled in. According to reports and studies on
truck fuel consumptions (Franzese and Davidson, 2011; International, 2022; Wang et al., 2015a),
the fuel consumption rate at a full-load state, which equals the truck capacity Q, can be 15%-25%
larger than the basic rate. Due to the aerodynamic benefit, the following trucks in a platoon
can save energy, and we define the cost-saving rate by β, which may vary from 0.05 to 0.15 in
previous studies (Larson et al., 2016). There are restrictions on the platoon size (William N et al.,
2022) in real-world operations due to many factors such as safety concerns and the capability of
communication technologies, and we denote the maximum platoon size by L.

2.2 Mathematical formulation of the RCVRPTW-TP model

Before presenting the overall model, the notations, including parameters and decision variables,
frequently used in the mathematical model are provided in Table 1.
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Table 1: List of Notations

Notation Definition

Sets
C Set of customer nodes, C = {1, 2, 3, . . . , c}
D Depot, D = {0}
R Set of road-network nodes, C ⊂ R
N Set of all nodes, N = R ∪ D
A Set of all arcs
G The entire graph of the road network, G = (N, A)
K Set of trucks
Rk The set of edges along the route adopted by truck k ∈ K
Ki,j Set of trucks taking the edge (i, j) ∈ ∪k∈KRk

Parameters
L Maximum platoon size

ti,j Time to travel arc (i, j) ∈ A
TEA

i Earliest arrival time for customer node i, i ∈ C
TLD

i Latest departure time for customer node i, i ∈ C
qi Demand at customer node i, i ∈ C, and qi = 0 for i /∈ C
Q Truck capacity
γ Static weight of a truck
α Base fuel consumption rate for a unit of travel time (for an empty truck)
η Marginal fuel consumption coefficient for a unit of additional weight (unit cargo weight)
β The platoon saving factor
c1 Vehicle fixed dispatch cost per truck
c2 Weight coefficient to balance two kinds of costs

Variables
xi,j,k Binary variables to indicate whether truck k travels on edge (i, j)
gi,k Binary variables to indicate if customer node i is served by truck k.
li,j,k Binary variable: 1 if truck k is the leading vehicle of a platoon on edge (i, j); and 0,

otherwise.
fi,j,k1,k2 Binary variable: 1 if truck k1 is the leading vehicle and k2 is in the same platoon on

edge (i, j); and 0, otherwise.
yi,k Volume of truck k at vertex i
si,k The time for truck k arrives at node i
wi,k The time for truck k waits at node i
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2.2.1 Objective function

min z =c1
∑
i∈D

∑
j∈N,(i,j)∈A

∑
k∈K

xi,j,k + c2
∑
i∈N

∑
j∈N,(i,j)∈A

α

γ
ti,j

[∑
k∈K

li,j,k · (ηyi,k + γ)

+ (1− β)(
∑
k1∈K

∑
k2∈K:k2 ̸=k1

fi,j,k1,k2 · (ηyi,k2 + γ))

]
(1)

where xi,j,k is a binary variable to specify whether a truck k will traverse edge (i, j); li,j,k tells if
truck k is a leading vehicle of a platoon on an edge (i, j); yi,k is the volume carried by truck k
when it arrives at node i; and fi,j,k1,k2 represents whether truck k2 is following a leading truck k1
in the same platoon on edge (i, j). Obviously, any truck can only act as either a leading truck or
a following truck at any time, and there is only one leading truck for any platoon.

The above objective function minimizes the total operation cost of the carrier company, in-
cluding vehicles’ dispatch cost and energy costs. Specifically, the first term is the vehicles’ dis-
patch cost, in which

∑
i∈D

∑
j∈N

∑
k∈K xi,j,k indicates the number of trucks that depart from the

depot, and c1 is the unit truck dispatch cost. The second term is the energy consumption cost,
and it is proportional to the on-road travel time ti,j for any specific edge (i, j). Specifically, for
a leading truck k in a platoon that travels on edge (i, j), its energy consumption is calculated as
α

γ

∑
k∈K li,j,k · (ηyi,k + γ). On the other hand, for a following truck k2 in a platoon, it can enjoy

the platooning benefit, so a platoon saving factor, 1− β, will be applied to obtain its actual fuel

consumption, which is
α

γ
(1− β)ti,j(

∑
k1∈K

∑
k2∈K:k2 ̸=k1

fi,j,k1,k2 · (ηyi,k2 + γ)). To be mentioned, the

factor c2 is used to balance the dispatch cost and energy consumption costs in objective value.

2.2.2 Flow conservation constraints

∑
i∈N,(i,j)∈A

xi,j,k =
∑

h∈N,(j,h)∈A

xj,h,k ≤ 1, ∀j ∈ N, k ∈ K, (2)

∑
k∈K

gi,k = 1 ∀i ∈ C, (3)∑
i∈N,(i,j)∈A

xi,j,k ≥ gj,k ∀j ∈ C, k ∈ K, (4)

where gi,k indicates if customer node i is served by truck k.

Constraints (2)-(4) construct trucks’ routes and ensure that all customers are served. Con-
straints (2) guarantee that the inflow of trucks should be equal to the outflow of trucks at any
node, and each truck can only be dispatched at most once. Constraints (3) and (4) ensure that
each customer node is served by exactly one truck that visits the node.

2.2.3 Volume constraints

y0,k =
∑
i∈C

gi,k · qi ∀k ∈ K, (5)
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y0,k ≤ Q ∀k ∈ K, (6)
yi,k − qj · gj,k + M(1− xi,j,k) ≥ yj,k ∀k ∈ K, (i, j) ∈ A, j ∈ C, (7)

where Q is the maximum capacity, and qj is the customer demand at node j. M is a sufficiently
large number.

Constraints (5)-(7) honor the volume consistency of each truck along its itinerary. Specifically,
constraints (5) record the cargo of each truck that needs to carry before it departs from the depot,
which is fixed at node 0 in our model. Constraints (6) demonstrate that the initial load of each
truck should never exceed its capacity. In addition, we only consider deliveries but not pickups
in our problem, so the load at all following nodes will be not greater than the initial load, thereby
not exceeding the capacity. Constraints (7) specify the volume changes of each truck along its
route. When it finishes delivery at a customer node, the volume of the truck will drop by the
amount which is equal to the customer demand qj; otherwise, the volume will remain the same.

2.2.4 Platoon constraints

xi,j,k = li,j,k +
∑

k1∈K,k1 ̸=k

fi,j,k1,k ∀(i, j) ∈ A, k ∈ K, (8)

∑
k2∈K:k2 ̸=k1

fi,j,k1,k2 ≤ (L− 1)× li,j,k1 ∀(i, j) ∈ A, k1 ∈ K, (9)

−M(1− fi,j,k1,k2) ≤ si,k1 + wi,k1 − si,k2 − wi,k2 ∀(i, j) ∈ A, k1, k2 ∈ K, k1 ̸= k2,(10)

si,k1 + wi,k1 − si,k2 − wi,k2 ≤ M(1− fi,j,k1,k2) ∀(i, j) ∈ A, k1 ̸= k2 ∈ K,(11)

si,k + ti,j + wi,k −M(1− xi,j,k) ≤ sj,k ∀(i, j) ∈ A, j /∈ D, k ∈ K,(12)

where L is the maximum platoon size; si,k denotes the time that truck k arrives at node i; and wi,k
records the time that truck k waits at node i. Therefore, si,k + wi,k can be used to indicate the time
that truck k departs from node i.

Constraints (8)-(12) honor the platooning consistency among trucks on the road. Constraints
(8) illustrate that each truck can only act as a following vehicle or a leading vehicle at the same
time. Constraints (9) specify that the length of any platoon should never exceed the size limit.
Constraints (10) and (11) ensure that for two trucks in the same platoon, they should enter the
edge (i, j) at the same time. Constraints (12) act as time consistency constraints for each truck
during its trip.

2.2.5 Time window constraints

TEA
i · gi,k ≤ si,k ∀i ∈ C, k ∈ K, (13)

si,k + wi,k ≤ TLD
i · gi,k ∀i ∈ C, k ∈ K, (14)

Constraints (13) and (14) guarantee that each customer node should be served during its
allowed time window, i.e., between its earliest arrival time and latest departure time.
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2.2.6 Integrity constraints

yi,k ≥ 0 ∀i ∈ N, k ∈ K, (15)
xi,j,k ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K, (16)

li,j,k ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K, (17)

fi,j,k1,k2 ∈ {0, 1} ∀(i, j) ∈ A, k1, k2 ∈ K, k1 ̸= k2 (18)

si,k ≥ 0 ∀i ∈ N, k ∈ K, (19)
wi,k ≥ 0 ∀i ∈ N, k ∈ K, (20)
gi,k ∈ {0, 1} ∀i ∈ C, k ∈ K, (21)

Constraints (15) - (21) specify the ranges of all decision variables.

2.2.7 Overall model

Therefore, the road-network capacitated vehicle routing problem considering truck platooning
(RCVRPTW-TP) is summarized as follows:

Minimize

Obj = c1
∑
i∈D

∑
j∈N

∑
k∈K

xi,j,k + c2
∑
i∈N

∑
j∈N,j ̸=i

α

γ
ti,j

[∑
k∈K

li,j,k · (ηyi,k + γ)

+ (1− β)(
∑
k1∈K

∑
k2∈K:k2 ̸=k1

fi,j,k1,k2 · (ηyi,k2 + γ))

]
s.t. (2)− (21)

However, the mathematical program above is a mixed integer nonlinear program because
li,j,k · (ηyi,k + γ) and

∑
k1∈K

∑
k2∈K:k2 ̸=k1

fi,j,k1,k2 · (ηyi,k2 + γ) in our objective function are nonlinear.

To linearize them, we introduce variables v(l)i,j,k and v( f )
i,j,k and the following constraints (24)-(29).

Specifically, constraints (22) and (23) define the range of variables v(l)i,j,k and v( f )
i,j,k. Constraints (24)-

(26) together ensure that v(l)i,j,k = li,j,k · (ηyi,k + γ) under all circumstances. Similarly, constraints

(27)-(29) ensure that v( f )
i,j,k =

∑
k1∈K

∑
k2∈K:k2 ̸=k1

fi,j,k1,k2 · (ηyi,k2 + γ) for all cases.

v(l)i,j,k ≥ 0 ∀(i, j) ∈ A, k ∈ K, (22)

v( f )
i,j,k ≥ 0 ∀(i, j) ∈ A, k ∈ K, (23)

v(l)i,j,k ≤ (ηQ + γ)li,j,k ∀(i, j) ∈ A, k ∈ K, (24)

v(l)i,j,k ≤ ηyi,k + γ ∀(i, j) ∈ A, k ∈ K, (25)

v(l)i,j,k ≥ ηyi,k + γ− (ηQ + γ)(1− li,j,k) ∀(i, j) ∈ A, k ∈ K, (26)

v( f )
i,j,k ≤ (ηQ + γ)

∑
k1 :k1 ̸=k

fi,j,k1,k ∀(i, j) ∈ A, k ∈ K, (27)
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v( f )
i,j,k ≤ ηyi,k + γ ∀(i, j) ∈ A, k ∈ K, (28)

v( f )
i,j,k ≥ ηyi,k + γ− (ηQ + γ)(1−

∑
k1 :k1 ̸=k

fi,j,k1,k) ∀(i, j) ∈ A, k ∈ K, (29)

Accordingly, the RCVRPTW-TP model can be reformulated into a mixed-integer linear pro-
gram (MILP):

RCVRPTW-TP-R

Minimize

Obj = c1
∑
i∈D

∑
j∈N

∑
k∈K

xi,j,k + c2
∑
i∈N

∑
j∈N,j ̸=i

α

γ
ti,j[

∑
k∈K

v(l)i,j,k + (1− β)
∑
k∈K

v( f )
i,j,k]

s.t. (2)− (29)

3 Solution Methodology

In this section, we propose a 3-stage solution algorithm to solve the established RCVRPTW-TP-
R, which includes the grouping approach, the route construction heuristic, and the scheduling
approach. The method is inspired by the "route-then-schedule" scheme introduced by Luo and
Larson (2022). However, in Luo and Larson (2022), each truck is assumed to serve only one
pre-determined customer node, so its origin-destination pair is unique and pre-determined. By
contrast, in our problem, a truck can serve multiple customer nodes; the sequence to serve
these customers is yet to be determined; and the route of each truck cannot be decided until
their customers’ assignment and visiting sequence are given. Therefore, our problem is much
more complicated and thus more challenging to solve than the one in Luo and Larson (2022).
Given this, our solution approach anticipates simplifying the problem by first determining the
customers to serve for each truck, second routing each truck, and last assigning trucks with
suitable schedules.

3.1 Grouping approach

In the first stage, we propose a Knapsack dynamic programming approach to divide customer
nodes into several groups, such that the customer nodes in the same group will be served by the
same truck as long as it has sufficient capacity. To fasten the grouping process, we first conduct
a time-window check to identify the customers that are time-window feasible to avoid infeasible
grouping. Particularly, the time-window feasibility is defined below:

Definition 1. Given two customer nodes i and j, and that their earliest arrival times and latest departure
times are TEA

i , TEA
j and TLD

i , TLD
j , respectively, we claim that they are the least time-window feasible if

the following inequality holds:

max(TLD
j − TEA

i , TLD
i − TEA

j ) ≥ ti,j

where ti,j stands for the shortest path travel time between customer node i and j under the road network.
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The intuition behind this definition is that if the shortest path travel time between two cus-
tomer nodes is larger than the allowed time window range, then these two customer nodes
definitely cannot be served by the same truck. By applying the time-window check defined in
Definition 1, we can sift out some pairs of customer nodes that obviously cannot be allocated to
the same truck, thus reducing the solution space.

The detailed process is given in Algorithm 1.

Algorithm 1 Grouping Customers Based on Time-Window Feasibility

Input: Customers
Output: Grouped customers based on time-window feasibility

1: Initialize GroupList← ∅
2: Initialize AssignedCustomers← ∅
3: while AssignedCustomers size is less than the number of customers do
4: Initialize NewGroup← ∅
5: Add the first unassigned customer to NewGroup
6: Add this customer to AssignedCustomers
7: repeat
8: AddFlag← false
9: for each unassigned customer i in Customers do

10: if i is time-window feasible with all customers in NewGroup then
11: Add i to NewGroup
12: Add i to AssignedCustomers
13: AddFlag← true
14: Break
15: end if
16: end for
17: until AddFlag is false
18: Add NewGroup to GroupList
19: end while
20: return GroupList

Specifically, the process of Algorithm 1 can be explained as follows.

[1] Create an empty list, and put the first customer that has not been assigned to this list.

[2] Iteratively add non-assigned customers to the list if the non-assigned customers are time-
window feasible to all existing customers in the list.

[3] Repeat step 2 until no more customers can be added

[4] Repeat steps 1-3 until all customers are assigned to a specific list.

The time complexity of Algorithm 1 is O(n2), where n denotes the number of customer
nodes. By checking the time-window feasibility, the customers from different groups in the
GroupList cannot be served by the same truck, and thus we can consider each group one by one.
Therefore, the next step of grouping is to iteratively dispatch trucks to serve the customers of each
group, and this process can be parallelly computed as the decision process of different groups
will not interfere with each other. The grouping procedure is essentially a Knapsack problem
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that can be solved by the dynamic programming approach, so we elaborate on its corresponding
Knapsack capacity, item weight, cost, and value function. Specifically, the value function is
originally designed by us to better fit our problem structure.

Knapsack capacity: each truck will be viewed as a Knapsack, so it corresponds to the truck
capacity.

Item weight: we want to categorize customer nodes into trucks with fixed capacity, so it
corresponds to the customer demand size.

Cost: the shortest travel time from each customer node to the depot.

Value function: Denote F as the value function of the dynamic programming approach,
F(i, q̂) as the value function stage at customer node i and capacity level q̂, where i is ordered
from 1 to the last item in the group, and 0 ≤ q̂ ≤ Q, where Q is the truck capacity. If i > 1 and
qi ≤ q̂, then the value of retro-back stage is

F(i, q̂) = max {F(i− 1, q̂), F(i− 1, q̂− qi) + (tmax + 1− ti−1,i)}

where tmax corresponds to the maximum value of all shortest paths of all pairs of nodes, and
ti,i−1 denotes the shortest path travel time between customer node i and i− 1, obtained by Floyd-
Warshall algorithm with time complexity of O(n3). The retro-back updating equation illustrates
that the function value of the current stage takes the greater value of two cases: the value of the
previous stage with the same capacity when the current customer is not assigned or the value
of the previous stage when the current customer is assigned plus the shortest path travel time
between these two consecutive nodes. If qi > q̂, then it means that the current node cannot be
added to the truck, i.e.,

F(i, q̂) = F(i− 1, q̂)

and we have the initial stages for the value function, when the capacity is 0 or when there is no
customer not assigned.

F(0, q̂) = F(i, 0) = 0

Additionally, since we may dispatch multiple trucks to serve customer demands, the prob-
lem is equivalent to a multi-Knapsack problem. Therefore, we iteratively put customers into
different trucks, and each truck will take the customers that maximize the value function while
neglecting the influences of trucks considered later, so our approach is an essentially greedy ap-
proach. As a result, the order of customer nodes matters and will influence the solution quality,
and thus we introduce perturbation and adjustment processes in Subsection 3.3 to weaken such
an influence. Algorithm 2 provides the pseudocode for solving the above dynamic programming
problem with time complexity of O(n3Q).

Algorithm 2 Dynamic Programming for Grouping and Truck Dispatch

Input: Dist, Customers in GroupList, Trucks
Output: Customer assignment for each truck

1: Initialize CustomerAssignment[v]← ∅ for each v ∈ Trucks
2: Initialize ServedCustomers← ∅
3: while ServedCustomers size is less than the number of customers do
4: for each v ∈ Trucks do
5: Initialize F[i, q̂]← 0 for all unserved customers i, 0 ≤ q̂ ≤ Q.
6: for each unserved customer i in Customers, ordered from 1 to n do
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7: for q̂ = 0 to Q do
8: if qi ≤ q̂ then
9: F[i, q̂]← max(F[i− 1, q̂], F[i− 1, q̂− qi] + (tmax + 1− ti−1,i))

10: else
11: F[i, q̂]← F[i− 1, q̂]
12: end if
13: end for
14: end for
15: OptimalGroup← backtracking from F[n, Q] to form a group of customers.
16: if all customers in OptimalGroup can be served by truck v then
17: CustomerAssignment[v]← OptimalGroup
18: Add customers in OptimalGroup to ServedCustomers
19: end if
20: end for
21: end while
22: return CustomerAssignment

where the input Dist refers to an adjacency matrix that records the shortest path travel times
between any two nodes of the network. Input Trucks are empty lists that customers will be
allocated to, and each customer can be allocated to at most one truck.

3.2 Route construction heuristic

In this subsection, we will construct routes for each dispatched truck by a modified insertion
heuristic to minimize energy consumption individually. By intuition, each truck will tend to
serve the customer node that is nearest to the depot and has the most demand first, and thus the
truck can travel the remaining itinerary with a minimum weight, thereby saving more energy.
However, in most cases, the customer node that is nearest to the depot may not have the most
demand. Therefore, to take these two factors into consideration simultaneously, we propose a
product, which is (ηQ + γ− ηqi)t0,i for any customer node i, to estimate their importance. The
customer node with a smaller product value will be considered more important, and it will
be served first to reduce the total traveling cost. The modified insertion heuristic proposed in
this paper stems from such an idea, and detailed procedures of the heuristic are provided in
Algorithm 3,. In the algorithm, ph represents the remaining load on the truck after departing
from node h.

Algorithm 3 Modified Insertion Heuristic for Route Construction

Input: Customers for each truck, Q, qi, ti,j, η, γ
Output: Constructed routes for each truck

1: for each Truck do
2: Initialize subTour← ∅
3: Select i in current truck with smallest (ηQ + γ− ηqi)t0,i, generate subTour = (0− i− 0)
4: while there are unvisited nodes in the current truck do
5: Select r not in subTour with smallest (ηQ + γ− ηqr − η

∑
i∈subTour qi)tsub,r

6: Find (j, h) in subTour where tj,r(ηph + ηqr +γ)+ tr,h(ηph +γ)− tj,h(ηph +γ) is smallest
7: Insert r into subTour between j and h
8: end while

15



9: Add subTour to the routes of the current Truck
10: end for
11: return Constructed routes for each truck

The algorithm’s time complexity is O(n3), and it can be explained as follows:

[1] Pick a customer node i that will be served by the current truck and with the smallest value
of (ηQ + γ− ηqi)t0,i, to generate a subtour (0− i− 0).

[2] Pick any customer node r not in the current subtour and with the smallest value of (ηQ +
γ− ηqr − η

∑
i∈sub qi)tsub,r, where

∑
i∈sub qi indicates the total customer demand served by

the current subtour, and tsub,r represents the minimum value of the shortest travel time
from node r to any customer node or depot in the current subtour.

[3] Insert the node r into the current subtour, find a road segment (j, h) such that tj,r(ηph +
ηqr + γ) + tr,h(ηph + γ)− tj,h(ηph + γ) is the smallest. Since ph represents the remaining
load after leaving node h, the whole expression basically calculates the increase in energy
consumption in the road segment between node j and h when customer node r is inserted
between them. To be mentioned, ph can be easily calculated based on the current subtour.

[4] Iteratively repeat steps 2 and 3 until all customer nodes of the current truck are added to
the subtour.

To be mentioned, η, the marginal fuel consumption coefficient, is used in our calculation to
precisely capture the influences of weight on fuel consumption. In addition, in the first step, we
pick (ηQ + γ− ηqi)t0,i to consider the weight and distance simultaneously. Supposing that the
truck departs from the depot with a full load, taking the smallest value of (ηQ + γ− ηqi)t0,i will
encourage the truck to first serve the customer node i that both has a small distance to the depot,
t0,i, and large demand ηqi. Accordingly, our heuristic will most likely put the most influential
customer node in the first place of the subtour. In the following steps, we use a similar idea to
iteratively add each customer node into the subtour and finally construct a complete round trip
for each dispatched truck.

3.3 Scheduling approach

As we mentioned above, we omit time-window constraints to maximize platoon formations and
minimize truck detours by allowing nearby customer nodes in the same group. The solution
obtained from the first two stages can act as an upper bound to the RCVRPTW-TP-R problem if
it is feasible for the scheduling problem, and it maximizes savings and benefits. However, some
customer nodes may be time-infeasible given the truck delivery routes provided by the previous
two stages. Therefore, we need to correct them in this stage and output a feasible solution for
the overall model.

The way to correct time-infeasible customer nodes is based on the “route-then-schedule"
concept from Luo and Larson (2022). Our group approach and route construction heuristic can be
seen as a way to solve the routing problem in the “route-then-schedule" loop. For the scheduling
part, we construct a scheduling problem that maximizes platoon fuel savings. The scheduling
problem is a pruned version of the original problem as it only investigates the constructed routes
instead of the whole network, and the customers to be served for each truck are pre-determined
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and cannot be changed. Therefore, the solution space of the scheduling problem is restricted to a
small-scale problem and can be solved fast. The detailed formulation of the scheduling problem
is provided as follows:

min
∑

(i,j)∈∪kRk

α

γ
ti,j

 ∑
k∈Ki,j

(
v(l)i,j,k + (1− β)v( f )

i,j,k

)
s.t. ∑
k2∈Ki,j :k2 ̸=k

fi,j,k,k2 ≤ (L− 1)× li,j,k ∀(i, j) ∈ Rk, k ∈ K,

∑
k2∈Ki,j :k2 ̸=k

fi,j,k2,k + li,j,k ≤ 1 ∀(i, j) ∈ Rk, k ∈ K,

−M(1− fi,j,k1,k2) ≤ si,k1 + wi,k1 − si,k2 − wi,k2 ∀(i, j) ∈ ∪k∈KRk, k1 ̸= k2 ∈ Ki,j,

si,k1 + wi,k1 − si,k2 − wi,k2 ≤ M(1− fi,j,k1,k2) ∀(i, j) ∈ ∪k∈KRk, k1 ̸= k2 ∈ Ki,j,

si,k + ti,j + wi,k −M(1− xi,j,k) ≤ sj,k ∀(i, j) ∈ Rk, k ∈ K,

TEA
i × gi,k ≤ si,k ∀i ∈ C, k ∈ K,

si,k + wi,k ≤ TLD
i × gi,k ∀i ∈ C, k ∈ K,

v(l)i,j,k ≤ (ηQ + γ)li,j,k ∀(i, j) ∈ ∪k∈KRk, k ∈ K,

v(l)i,j,k ≤ ηyi,k + γ ∀(i, j) ∈ ∪k∈KRk, k ∈ K,

v(l)i,j,k ≥ ηyi,k + γ− (ηQ + γ)(1− li,j,k) ∀(i, j) ∈ ∪k∈KRk, k ∈ K,

v( f )
i,j,k ≤ (ηQ + γ)

∑
k1 :k1 ̸=k

fi,j,k1,k ∀(i, j) ∈ ∪k∈KRk, k ∈ K,

v( f )
i,j,k ≤ ηyi,k + γ ∀(i, j) ∈ ∪k∈KRk, k ∈ K,

v( f )
i,j,k ≥ ηyi,k + γ− (ηQ + γ)(1−

∑
k1:k1 ̸=k

fi,j,k1,k) ∀(i, j) ∈ ∪k∈KRk, k ∈ K,

li,j,k ∈ {0, 1} ∀i, j ∈ N, k ∈ K,

fi,j,k1,k2 ∈ {0, 1} ∀(i, j) ∈ ∪k∈KRk, k1, k2 ∈ K, k1 ̸= k2,

si,k ≥ 0 ∀i ∈ N, k ∈ K,
wi,k ≥ 0 ∀i ∈ N, k ∈ K,

v(l)i,j,k ≥ 0 ∀(i, j) ∈ ∪k∈KRk, k ∈ K,

v( f )
i,j,k ≥ 0 ∀(i, j) ∈ ∪k∈KRk, k ∈ K,

Particularly, the decision variables defined in the original problem, i.e., RCVRPTW-TP-R,
including xi,j,k, yi,k and gi,k, will not be viewed as variables in this sub-problem. Instead, they
will be treated as parameters, and their values can be determined (xi,j,k = 1 if (i, j) ∈ Rk, and
Ki,j collects all the trucks that travel on link (i, j)) based on the route assignment of trucks, which
are already decided in the previous two stages, before solving the scheduling problem in each
iteration. It can be further witnessed that the scheduling problem uses a partial objective function,
which is the second term of the objective function in RCVRPTW-TP-R, as the number of trucks
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to be dispatched has already been decided and we only care about maximizing the platooning
benefit. The other constraints that need to be considered are platoon constraints (8)-(12), time
window constraints (13) and (14), integrity constraints (15)-(21), and constraints (22)-(29) that
used to linearize nonlinear terms. In addition, constraints considered in the scheduling problem
only consider edges (i, j) that are covered by the route assignment obtained in the previous two
stages, denoted as the union of all traveled routes, ∪k∈KRk.

However, the scheduling problem may appear to be infeasible because we have omitted
time constraints, and the least time-window infeasibility check declared in Definition 1, though
eliminating many obvious infeasible grouping selections, may be insufficient in the instances
with rather strict time windows for some customers. Therefore, in this case, we will return to
the grouping stage and shuffle the order of all customer nodes, and then re-generate the truck
assignments and reconstruct the route of each truck.

On the other hand, when the scheduling problem is feasible, then the optimal solution
obtained from the scheduling problem acts as a feasible solution to the original problem and
also provides an upper bound. In this case, adjustment procedures will be applied to improve
the current solution. Therefore, the overall procedures of our iterative solution algorithm can be
represented as a diagram that is shown in Figure 3.

Figure 3: Iterative process of algorithm
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To be mentioned, we denote the routing problem at iteration n as RP(n), and the scheduling
problem at iteration n as SP(n), and the termination criterion is met when the time limit occurs
or the current truck routes’ of the solution has not changed for many iterations. A detailed
explanation of link cost adjustment is provided below.

Modified link cost

In Figure 3, we modify the link costs in the feedback loop when the scheduling problem is
feasible, and the modified link costs will act as an input to the route construction stage of the
routing problem in the next iteration. Accordingly, the route construction stage will generate
routes for each truck based on the network with modified link costs. Therefore, we define the
link cost of truck k that inputs to the routing problem at iteration n as t(n)i,j,k, ∀(i, j) ∈ A, k ∈ K,

and define the traversed routes of trucks at iteration n as ∪k∈KR
(n)
k . Assuming that the SP(n) is

feasible at iteration n, then the presumed link traveling cost (in time) for assigning a truck k1 ∈ K
to an edge (i, j) ∈ A at iteration (n + 1) during the route construction stage will be updated
based on the following schemes (Luo and Larson, 2022):

t(n+1)
i,j,k1

=


tplatoon
i,j

(∣∣∣P (n)
i,j,k1

∣∣∣)∣∣∣P (n)
i,j,k1

∣∣∣ if (i, j) ∈ R(n)
k1

,

(1− β) ti,j if (i, j) ∈ ∪k∈KR
(n)
k \R

(n)
k1

,
ti,j otherwise,

(30)

where
∣∣∣P (n)

i,j,k1

∣∣∣ denotes the number of trucks in the same platoon with truck k1 on edge (i, j) at

iteration n, so it equals to 1 if truck k1 is traveling alone. The term tplatoon
i,j

(∣∣∣P (n)
i,j,k1

∣∣∣) represents
the traveling cost of the whole platoon, while the load of each truck is assumed to be 0 during
calculation.

The intuition of the updating criterion in (30) can be explained as follows. In the first case,
the truck is traveling the link that was traversed by it in the previous iteration, so we assume that
it will incur the platoon-averaged traveling cost. In the second case, when the truck is traveling
on an edge that was not explored by it in the previous iteration, but this edge was traversed
by another truck before, then the adjusted link cost (1− β) ti,j aims to reflect that the truck can
travel as a following truck on this edge. The third case shows that if the truck traverses the edge
that was not explored by any truck, then we directly use the original link traveling cost. By such
a link cost modification scheme, we can encourage trucks to explore different routes and form a
platoon in the next iteration.

4 Numerical Experiments

In this section, experiments based on a virtual small network and a real-world road network, the
Yangtze River Delta network, will be conducted to examine the performance of our proposed
model and solution algorithm. All experiments were programmed by Java with Intellij interface
and were executed on a PC with 6-core 12-thread Intel(R) i7-8700k 3.7GHz CPU and 32 GB
3000MHz RAM. To be mentioned, the termination criterion is met when the time limit (3600s)
occurs or the current truck routes’ of the solution has not changed for many iterations (we chose
10).
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The default parameter settings are provided in Table 2. According to the real-world data
(Indeed.com, 2023), the average base salary for truck drivers in the United States per day is $271,
so we set c1 = 271. Additionally, the energy consumption rate, α, given that electric trucks are not
prevalent yet, we adopt the fuel consumption rate of trucks for current experiments. As indicated
by Webfleet (2020), the fuel consumption rate of a truck is 33 liters per 100 kilometers for a Class
8 truck, and the average traveling speed of trucks in the U.S. on highways is 55 mph, so the fuel
consumption rate is calculated as 29.2 liters per hour. Therefore, the fuel consumption rate is
calculated as 29.2× 1.05 = 30.7 dollar per hour, based on the average gasoline price per liter in
the U.S. in 2022. Furthermore, the weight of a Class 8 truck’s tractor ranges from 8 tons to 10
tons, and the maximum weight limit of a Class 8 truck on U.S. highways is 80,000 pounds, which
is equivalent to 36.2 tons. On the other hand, the maximum weight limit on China highways is
31 tons including truckload. Therefore, to simplify the calculation, we take 10 tons as the static
weight of trucks, γ, and the maximum capacity, Q, to be 20 so that the maximum possible gross
vehicle weight will not exceed 30 tons. In addition, according to reports and studies on truck
fuel consumptions (Franzese and Davidson, 2011; International, 2022; Wang et al., 2015a), the
fuel consumption rate at a full-load state, which equals the truck capacity Q, can be 15%-25%
larger than the basic rate, so we choose 20% in our experiments. Accordingly, it is equivalent to

saying that the term
ηy + γ

γ
should be 1.2 when the load is full, i.e., y = Q = 20. Therefore, the

marginal fuel consumption coefficient, η, can be calculated as
1.2× γ− γ

y
=

1.2× 10− 10
20

= 0.1

per every additional unit of load (unit in ton). Lastly, as You et al. (2020) suggested, the platoon
saving ratio of the following vehicles in a platoon may vary from 0.05 to 0.15, so we set β = 0.1
for the base cases, and the maximum platoon size, L, is selected to be 4 to enable higher platoon
potential.

Table 2: Parameter Setting

Parameter Description Value
c1 Vehicles’ dispatch cost per truck $271
c2 Weight coefficient to balance two kinds of costs 1
α Base fuel consumption rate respect to unit time (truck static weight) $30.7/hr
γ Static weight of trucks 10 (tons)
Q Maximum truck capacity 20 (tons)
β Platoon’s fuel cost savings ratio 0.1
L Maximum platoon size 4
η Marginal fuel consumption coefficient for a unit of additional weight 0.1

4.1 A small scale experiment

In this subsection, we manually design a small test case with 8 customer demands on a 4 by 4
grid network. The network size is refined to ensure that an exact solution can be obtained by
commercial solvers, such as CPLEX, in a timely manner. The test case is solved by our provided
model when the platooning is enabled and also solved when the platooning is prohibited, re-
flecting the traditional delivery service. The latter scenario can be simply accomplished by our
model when the platoon size limit is set to 1. Results comparison between these two scenarios
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will be presented in the remainder of this subsection to demonstrate the benefits of utilizing
truck platooning technology in a capacitated delivery service.

Figure 4: A small scale network

The test network is shown in Figure 4, and it is a 4 by 4 grid network with identical edges.
Each edge has a length of 3, representing that it takes 3 hours for a truck to travel from one node
to an adjacent node. We separate different kinds of nodes by distinct shapes: square nodes are
customer nodes; solid round nodes are road network nodes, and the only circle node represents
the central depot. The label of each node is located at the top right corner of each one, such as
node 0 as the central depot. For each customer node, the size of the customer demand (in tons) is
written within the brackets. To maximize the platoon potential and operation difference between
the two scenarios, we make the service time window of each customer node large enough ([0,36])
so that it can improve the solution results.

Table 3 illustrates the operation cost for both scenarios. We can witness that, when pla-
tooning is prohibited, referring to the traditional delivery service, the total operation cost is a
bit higher than the scenario when platooning is allowed. In this test case, the dispatch cost for
both scenarios is the same, indicating that the numbers of dispatched drivers are the same for
both scenarios. Therefore, the difference in operation cost all comes from the energy savings by

platooning. The total savings in percentage can be therefore calculated:
1375.8− 1362.3

1375.8
= 0.98%.

The amount of savings is not quite significant in this case because platoons with only two trucks
are formed, and customer nodes are scattered so that platooning links are limited. In real in-
stances, larger platoons can be formed, and there exist more common paths among different
truck routes, resulting in more significant platoon savings. Furthermore, even such a marginal
percentage increase can translate into substantial cost savings for the trucking industry, consid-
ering its considerable operational expenses in practice.

We further discuss the impact of platooning on operation plans, and visually present the
operation plans under two scenarios in Figure 5. When platooning is not allowed, then the
original problem is equivalent to a multiple-vehicle routing problem since the order to serve
customers and the route to serve customers for each truck will no longer be influenced by other
trucks’ routes. The resulting operation plan under this scenario is provided in Figure 5b, and the
routes of different trucks are drawn with different colors and line formats. We further record the
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load of each truck along its traveling route. It can be seen that two trucks are required to fulfill
the total demand. On the other hand, the operation plan when platooning is allowed is shown in
Figure 5a. Two trucks are also required under this scenario, and the truck that takes the red solid
line has exactly the same route as the other scenario. However, the other truck is traveling on an
order: 0-6-2-1-5-4-8-12-13-9-0 under the platooning scenario, which is exactly reversed as 0-9-13-
12-8-4-5-1-2-6-0 under the no-platooning scenario, in order to form a platoon on links (0,6), (13,9),
and (9,0). Additionally, the truck with a higher load is acting as the following truck on the link
(0,6) to maximize platoon savings, reflecting that the truck weight does influence the platooning
formations. Furthermore, the truck that travels on the blue dashed line visits customer node 12
ahead of customer node 2 when platooning is prohibited because the delivery of heavier loads
first can induce more energy savings. However, this truck visits customer node 2 first under
the platooning case in order to form a platoon with the other truck, saying that platooning does
influence the order to serve customer nodes and the routes adopted by trucks.

Table 3: Comparison of operation cost between the without platooning scenario and platooning
scenario

Cost type Without platooning With platooning

Total operation cost 1375.8 1362.3
Dispatch cost 542 542
Energy consumption cost 833.8 820.3

(a) Maximum platoon size is 4 (b) Platooning is prohibited

Figure 5: Operation plans with and without platooning

4.2 Experiments on the Yangtze River Delta network

In this subsection, we provide a numerical experiment on a real-world transportation network,
the Yangtze River Delta network. It is located in the central east area of China, an economic
center where logistics play an essential role. The network consists of 38 nodes or cities, and
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the whole network is presented in Figure 6 with distances between nodes labeled. The units of
labeled distances are in kilometers, so we manually transform them into time by dividing an
average truck speed on highways, which is 88.5km per hour as also mentioned before.

Figure 6: Yangtze River Delta network (Li et al., 2022)

For the test case design, we set node 1, Nanjing, as our depot, and randomly chose some
other nodes in the network as customer nodes with their customer demands randomly assigned,
varying from 1 to 10 tons. Time windows are also randomly generated, and we set the latest
departure times of each customer to be at least 20 (representing 20 hours) larger than its earliest
arrival time to enable more platoon potential. In addition, we also ensured that the latest depar-
ture time of each customer node is larger than or equal to the shortest travel time between the
depot and the customer node to guarantee the problem’s feasibility. We tested our results on test
cases of various sizes, each with a different number of customer nodes, ranging from 5 to 20.
Each test case will be executed by both CPLEX and our proposed algorithm, and we set a large
time limit, which is 10,800 seconds, for CPLEX to output a high-quality solution while not wast-
ing too much time. The running time and result comparisons between CPLEX and our proposed
algorithm are presented in Table 4. In addition, for relatively small test cases, with the number
of customer nodes ranging from 5 to 10, 5 instances were randomly generated for each case to
provide a more thorough and even comparison between CPLEX and heuristic’s performances.
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Table 4: Solution results

Instance Result

Number of
customer nodes

Execution count CPLEX solution
CPLEX’s

CPU time
Heuristic solution

Heuristics’s
CPU time

Gap platooning benefit

5 1 1,271 10,302s 1,271 4.1s 0 3.5
2 1,672 9,610s 1,672 7.3s 0 6.6
3 1,678 9,885s 1,678 5.6s 0 0
4 1,461 10,152s 1,461 6.9s 0 0
5 1,534 10,800s 1,534 6.8s 0 8.0

6 1 1,575 10,800s 1,582 10.4s 0.44% 0
2 1,823 10,800s 1,819 12.7s -0.22% 6.8
3 1,826 10,800s 1,839 7.4s 0.71% 7.7
4 1,672 10,800s 1,672 8.4s 0 0
5 1,845 10,800s 1,845 7.6s 0 0

7 1 1,928 10,800s 1,882 23.2s -2.39% 10.1
2 2,025 10,800s 2,011 22.7s -0.69% 8.6
3 1,839 10,800s 1,833 19.8s -0.33% 6.9
4 2,244 10,800s 2,098 25.3s -6.5% 9.9
5 2,541 10,800s 2,369 18.6s -6.77% 0

8 1 3,234 10,800s 3,055 30.7s -2.87% 0
2 2,539 10,800s 2,535 33.4s -0.16% 21.5
3 3,247 10,800s 3,085 56.1s -4.99% 8.6
4 2,560 10,800s 2,535 47.3s -0.98% 0
5 2,828 10,800s 2,693 57.5s -4.77% 7.1

9 1 3,532 10,800s 3,403 39.4s -3.65% 13.5
2 2,402 10,800s 2,249 43.9s -6.37% 0
3 3,821 10,800s 3,522 73.8s -7.83% 23.3
4 N/A 10,800s 2,682 59.5s N/A 0
5 N/A 10,800s 2,838 62.1s N/A 33

10 1 N/A 10,800s 2,654 68.1s N/A 11.7
2 N/A 10,800s 2,845 61.1s N/A 18.8
3 2,960 10,800s 2,858 55.2s -3.45% 14.7
4 N/A 10,800s 3,104 70.5s N/A 6.8
5 3,145 10,800s 2,990 53.4s -4.93% 0

15 1 N/A 10,800s 4,128 112.3s N/A 34.7
20 1 N/A 10,800s 5,196 142.1s N/A 86.5
25 1 N/A 10,800s 6,083 154s N/A 113.9

Gap: the relative gap between CPLEX and heuristic results, and calculated by
Objheuristic −ObjCPLEX

ObjCPLEX
.
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As we can see in Table 4, CPLEX always outputs the optimal solution in the cases in which
the number of customer nodes equals 5, but an optimal solution cannot be guaranteed when
the problem size grows larger. For instance, in the cases in which the number of customer
nodes equals 6, our algorithm outperforms CPLEX by 0.22%. In addition, when the problem size
becomes large enough, such as the cases in which the number of customer nodes equals 9 and 10,
CPLEX even fails to find a feasible solution within the time limit. Therefore, we did not perform
multiple executions with CPLEX for even larger cases, when the number of customer nodes was
15, 20, or 25, because CPLEX could hardly solve the problem in a timely manner. Conversely,
our proposed heuristic algorithm can yield solutions for all cases within 200 seconds, though an
increase in solving time as the number of customer nodes scales can be witnessed. Although
the number of all possible sequence orders of customers increases factorially as the number of
customers scales, our solution algorithm manages the growth in solving time partially due to the
time-window feasibility check. On the other hand, our proposed solution algorithm performs
extremely well in small instances with 5 and 6 customer nodes, resulting in 0 and below 1%
gaps with the CPLEX optimal solution, respectively. Furthermore, it outperforms CPLEX for the
cases with 7 and 8 customers with more than 5% in several executions. Generally speaking, the
benefits of our algorithm over CPLEX in producing a high-quality solution become increasingly
significant as the problem becomes more complicated.

We also provide a glance at the platooning benefit under each case. The platooning benefit
is measured by the operation cost difference between the platooning case and the case without
platooning. Therefore, we obtain the platooning benefit by running each case twice, once with
the platoon size limit of 4, and once with the platoon size limit of 1 to represent the no-platoon
case, and then calculate the cost differences between the two cases. We can expect that the main
difference comes from the energy savings from the trailing trucks, and the other part due to
improved dispatching strategy enhanced by truck platooning technology. In addition, due to
the randomness of generated customer nodes, trucks may not platoon together in their optimal
trajectories, and thus we can see 0 platooning benefit in some cases. Though the platooning
benefit varies from case to case, we can still witness a rise in the platooning benefit as the problem
size scales. For instance, the platooning benefit does not exceed 10 for the case of 5 customer
nodes, and reaches a peak of 21.5 and 33 when the number of customer nodes gets to 8 and 9,
respectively. The increase in platooning benefit is more notable when the problem size exceeds
15.

4.3 Sensitivity Analysis

In this subsection, sensitivity analyses are conducted to quantitatively represent the impact of key
parameters, including the fuel consumption rate, vehicle dispatch cost, and platoon size limit,
on the results. All the experiments are designed on the Yangtze River Delta network, and the
results are obtained from our proposed algorithm because CPLEX fails to provide even a feasible
solution when the number of customer nodes exceeds 10.

In addition, to set up the experiments for sensitivity analyses, we constructed 5 different
test scenarios, each with different customer demands and time windows, and problem feasibility
always held during scenario design. Furthermore, each scenario has 4 cases, each with a different
number of customer nodes, i.e., 5, 10, 15, and 20. We also ensured that the case with more
customer nodes must include the customer nodes of the smaller case. For instance, the 20-
customer case must include the 15 customers in the 15-customer case, and the 15-customer case
must include the 10 customers in the 10-customer case, and so on. By doing so, the platooning
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benefit is comparable across cases of different sizes because the larger case always contains the
customer demands of the smaller case. Accordingly, it became possible for us to investigate if
platooning benefit is correlated with problem sizes. In addition, test cases will be identical in
terms of demand information for each experiment by fixing the random seed. To sum up, we
calculated the average results across the 5 test scenarios for each case with specific parameter
settings and problem sizes to reduce the influence of randomness on our solution results.

4.3.1 Fuel consumption rate

In our previous experiments, we fixed the base fuel consumption rate, α, at 30.7 by assuming
that all trucks considered are typical Class 8 trucks. However, the fuel consumption rate may
vary for different kinds of trucks, different weathers, and road conditions. We also anticipate
witnessing a drop in energy consumption rate in dollars when electric trucks become more
prevalent. Therefore, in this subsection, we capture the influence of fuel consumption rate on the
system performance and platooning benefit. We chose 20, 25, 30, 35, and 40 as our tested levels
for the fuel consumption rate, while other parameters remained the same across all test cases.
Just as we illustrated before, for each test case with a specific fuel consumption rate and problem
size, we took the average of 5 scenarios. The results in operation cost and platooning benefit are
therefore obtained and visually presented in Figure 7.

(a) Operation cost (b) Platooning benefit in percentage

Figure 7: Influence of fuel consumption rate on operation cost and platooning benefit

We can observe the relationship between the fuel consumption rate and the operation cost
from Figure 7a. The curves of the first three cases (5, 10, and 15 customer nodes) show that
the operation cost is positively linearly related to the fuel consumption rate. In the meanwhile,
for the curves of platooning benefit shown in Figure 7b, some turbulence happens when the
fuel consumption rate is at 30 for the 20-customer case and at 35 for the 10-customer case, but
an overall linear relationship can still be observed between the platooning benefit and the fuel
consumption rates. In addition, the increasing trend tends to decline as the fuel consumption rate
rises for most cases. For instance, the increase in platooning benefit when the fuel consumption
rate rises from 35 to 40 is smaller than the increase when the rate rises from 20 to 25. The shares
of platooning benefit are capped at a certain threshold that is lower than 1.8% in this example.
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Explaining that the percentages are calculated by the platooning benefit divided by the total
operation cost. The 1.8% platooning benefit in percentage may sound minimal, but the number is
still significant considering the large value of the operation cost. In addition, we set the platoon
saving ratio to be 10%, and thus the percentage of platooning benefit can at most be 7.5% when
dispatch cost is omitted. The 7.5% can only be obtained when each truck travels exactly the same
route under the platooning and the non-platoon case, and trucks form a maximum-size platoon,
which is selected as 4, on every link. Therefore, 1.8% appears to be a reasonable number for
the platooning benefit in real instances, and platooning benefit can still play an essential role in
energy savings and carbon emission reduction.

4.3.2 Unit vehicle dispatch cost

In the previous experiments, we used 271 dollars per truck to represent the fixed unit vehicle
dispatch cost, and the value is selected based on the average salary of a truck driver in the
United States. However, as the salary level varies across different countries and even different
companies, the unit vehicle dispatch cost will also be different in different places. Therefore, in
this subsection, we want to capture the influences of the unit vehicle dispatch cost on operation
cost and platooning benefit.

We chose the costs from five different levels, which are 171, 221, 271, 321, and 371, to cover
the salary levels of most cases. We used the same test cases as the previous experiment based
on the Yangtze River Delta network, but the difference was that we modified the parameter c1
instead of α this time, and we fixed α as the default setting, which was 30.7. We tested the same
case on different c1 values to make their results comparable. The results of operation cost and
platooning benefit are visually shown in Figure 8. We also tabulate the number of dispatched
trucks in Table 5.

(a) Operation cost (b) Platooning benefit in percentage

Figure 8: Influence of unit vehicle dispatch cost on operation cost and platooning benefit

According to Figure 8, we can observe the increase in unit dispatch cost greatly enlarges
the total operation cost. For instance, as the unit vehicle dispatch cost increases from 171 to 571,
the total operation cost of the 20-customer case rises from 4k to 6.5k, which is a more than 50%
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Table 5: Average number of dispatched trucks under different cases

Number of customer nodes c1 = 171 c1 = 271 c1 = 371 c1 = 471 c1 = 571

5 2 2 2 2 2
10 3.2 3.2 3.2 3.2 3.2
15 4.2 4.2 4.2 4.2 3.8
20 6.6 6.6 5.6 5.6 5.6

increase. Combining with the results tabulated in Table 5, we can use simple math to further

calculate that the total dispatch cost when c1 = 571 occupies approximately 5.6× 571
6393

= 50.0%
of the total operation cost, telling that the dispatch cost occupies a huge portion of the total
operation cost to some extent. In addition, as the average number of dispatched trucks remains
the same for the 5-customer and 10-customer cases, we can claim that the increment in the total
operation cost mainly comes from the increase in vehicle dispatch cost. Such a phenomenon
possibly tells that the dispatching and routing strategy of trucks have not altered when the
changes in unit dispatch cost are not significant and the customer demand size is limited. The
reasons for such a phenomenon include that the central coordinator is nearly impossible to use
fewer trucks to serve all the demands and that the savings from dispatching fewer trucks cannot
compensate for the detours. However, the number of dispatched trucks does decrease when
the dispatch cost increases from 471 to 571 for the 15-customer case, and from 271 to 371 for
the 20-customer case. Visually speaking, a non-smooth disturbance can be witnessed at the
transitions from c1 = 271 to c1 = 371, and c1 = 471 to c1 = 571, for the 20 and 15-customer cases,
respectively, which reflects the alternation in dispatching strategy to maintain the platooning
benefit. This implies that when the dispatch cost is too high, the central coordinator will tend to
alter its dispatching strategy, such as using fewer drivers with more detours to save money. We
can also witness that the relationship between the operation cost and the unit dispatch cost is
positively linear, and the slope becomes steeper as the problem size scales. Though fewer trucks
are dispatched, and more platooning benefit is generated, we can still witness an approximately
linear increase in the total operation cost possibly because of the resulting detours by using fewer
trucks. Last but not least, the results shown in Figure 8b do provide us a glance that the platoon
savings in percentage can be more noteworthy for some cases, exceeding 1.8% for the case of 15
and when the dispatch cost is 171,

4.3.3 Platoon size limit

In the previous experiments, we set the platoon size limit, L, to be 4 as recommended by
William N et al. (2022). In this subsection, we aim to investigate how will the planning strat-
egy alter when different platoon sizes are applied. Therefore, we test 4 cases with 5 different
platoon size limits, which are choosing from [1, 2, 3, 4, 5]. To be mentioned, when the platoon size
limit equals 1, then it is equivalent to saying that no platoon formation is allowed. Therefore,
such a case can represent the scenario without the platooning feature. All the results are visually
presented in Figure 9.

The results coincide with our expectations as the platooning benefit is none for all cases when
the platoon size limit is set to 1, which indicates the scenario without platooning. Based on the
curves shown in Figure 9b, the platooning benefit is non-decreasing as the platoon size increases.
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(a) Operation cost (b) platooning benefit

Figure 9: Influence of platoon size limit on operation cost and platooning benefit

As Figure 9b illustrates, 2-truck platoons are formed for the 5-customer case as the platooning
benefit occurs at the "L = 2" node and remains the same for the rest of the curve. 3-truck platoons
are formed for the other cases as the platooning benefit step-wisely increases from L = 1 to L = 2,
and from L = 2 to L = 3, and the platooning benefit stagnates after the platoon size reaches 3. To
summarize, the platoon size limit does affect the platooning formations and benefits, but it does
not necessarily mean that the savings will definitely increase as the platoon size limit elevates
because we can witness that the savings remain unchanged as the platoon size limit exceeds 3 in
our experiments. Such a phenomenon infers that there exists a soft upper limit for the platoon
savings and the longest platoon that can be formed, no matter how large the platoon size limit,
especially when the demand size is not large. However, allowing longer platoons will generally
bring savings in the operation cost for carriers, and the savings will possibly be more significant
when the demand size scales because more trucks will be dispatched and more platoons may be
formed.

4.3.4 Truck capacity

Assuming that we were dealing with typical 30-ton trucks (fully loaded) in real instances, similar
to Class 8 trucks in the U.S., we fixed the truck’s static weight at 10 and its capacity at 20.
However, different types of trucks are used in different logistics service companies, and thus
the truck capacity may vary among various scenarios. Therefore, in this subsection, we aim
to check the impact of truck capacity on system performance and platooning benefit. Without
loss of generality, we selected 10, 15, and 20 to be the three different capacity levels. Fixing the
other parameters, the results in operation cost and platooning benefit under these three different
capacity levels are visually presented in Figure 10.

According to Figure 10a, the operation cost exponentially rises as the truck capacity shrinks,
as the differences between the results under Q = 10 and Q = 15 are more remarkable than
the differences between the results under Q = 15 and Q = 20. Such exponential growth is
universally true for all cases, and it is more significant for larger cases. One possible explanation
for such a phenomenon is that the percent decrease in capacity is non-linear, 25% from Q = 20
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to Q = 15, and 33% from Q = 15 to Q = 10. Another possible explanation is that the size
of customer demands is randomly chosen within the range from 1 to 10, so setting the truck
capacity to 10 may require significantly more trucks to fulfill the same amount of demands .
Such an explanation can be further proved by the average number of dispatched trucks which
is tabulated in Table 6: the number of dispatched trucks increases drastically as the capacity
diminishes, except for the case of 5 customer nodes, possibly because two trucks, even with
capacity of 10, are enough to serve all the 5 customer nodes in our generated cases as the problem
size is small.

(a) Operation cost (b) platooning benefit in percentage

(c) Absolute platooning benefit

Figure 10: Influence of truck capacity on operation cost and platooning benefit

Evaluating the impact of truck capacity on platooning benefit, we may anticipate the platoon-
ing benefit to decrease as truck capacity enlarges because of fewer trucks dispatched, resulting
in less platooning potential. According to Figure 10b, the curves of 5, 10, and 20-customer cases
coincide with our expectation, but the curve of the 15-customer case behaves differently. In this
case, the platooning benefit in percentage increases as the truck capacity enlarges. To better un-
derstand the cause of this abnormal increase, we further visually present the absolute values of
average platooning benefit in Figure 10c, and it is shown that the absolute values of platooning
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Table 6: Average number of dispatched trucks with different capacities

Number of customer nodes Q = 10 Q = 15 Q = 20

5 2 2 2
10 7 4.8 3.2
15 9.2 7.2 4.2
20 12.6 9.4 6.6

benefit do strictly decrease as truck capacity enlarges. Therefore, we can infer that the abnormal
increase in the platooning benefit is due to the huge difference in dispatched trucks. Since the
number of dispatched trucks decreases from 7.2 to 4.2 when the capacity enlarges from 15 to 20,

which is approximately a
7.2− 4.2

7.2
= 41.7% decrease, such a huge change in dispatched trucks

resulted in much more savings in dispatch cost and the total operation cost, thus underscoring
the percentage of platooning benefit even if slight drop in absolute value has been witnessed.

4.3.5 Platoon saving ratio

The platoon saving ratio is often chosen from the range of 0.05 to 0.15 in most truck platooning
studies, and 0.1 is the most frequently used one. We also realize that the platoon saving factor
may vary under different road circumstances and truck categories, and it can be further elevated
by closer headways between trucks due to the advancement of connected vehicles. Therefore, it
is worth investigating the impact of the platoon saving ratio on operation cost and platooning
benefit. We set up four platoon saving levels, which are 0.05, 0.1, 0.15, and 0.2 in the experiments.
The results of these four cases are visually presented in Figure 11.

(a) Operation cost (b) platooning benefit

Figure 11: Influence of platoon saving ratio on operation cost and platooning benefit

Given the curves shown in Figure 11a, the influence of the platoon saving ratio on the total
operation cost is relatively marginal because its increase does not yield a significant decline in
the operation cost. However, while the platoon saving ratio increases, it drastically levels up the
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proportion of platooning benefit, as shown in Figure 11b. For instance, the platooning benefit in
percentage nearly doubles as the platoon saving ratio doubles. Furthermore, given the curves in
Figure 11b, we witness that the relation between the platooning benefit and the platooning saving
ratio is approximately linear. Based on these findings, we can infer that the marginal decrease
in total operation cost is mainly contributed by the additional platooning benefit, because, based
on calculation, the marginal decrease in total operation cost is roughly the same as the increase
in platooning benefit.

4.3.6 Time window tolerance

In previous sections, we set the time window size between the latest departure time and the
earliest arrival of each customer node to be at least 20, representing 20 hours. We can ensure the
problem’s feasibility with such a setup while maintaining a decent amount of platoon potential.
In this subsection, we plan to alter the time window sizes to investigate their impact on platoon
potential, which is reflected by the resulting value of the platooning benefit. We set a total of
three levels, which are 15, 20, and 25. Therefore, during the time window generation of each
customer, the latest departure time will be at least 15, 20, or 25 larger than its earliest arrival
time. As a result, the additional time of 15, 20, and 25 can be understood as the time to travel
with other customer demands together or the time to form platoons. Hence, we define this kind
of additional time as time window tolerance in our experiments (because they are not the least
necessary time to maintain problem feasibility). With different time window tolerances and other
parameters fixed, the obtained results in operation cost and platooning benefit are provided in
Figure 12.

(a) Operation cost (b) platooning benefit

Figure 12: Influence of time window size on operation cost and platooning benefit

Given the downtrend displayed in Figure 12b, we can witness that the platooning benefit
diminishes significantly as the time window tolerance shrinks. Comparing the curve of the 20-
customer case and the 5-customer case, we can find that the percentage decrease in platooning
benefit for the 20-customer case is about 2.5% when the time window tolerance decreases from 25
to 15. However, the decrease in platooning benefit is even smaller than 0.5% for the 5-customer
case. Therefore, we can further highlight that the time window tolerance is much more crucial

32



for cases with more customers and that platoon potential is also immense. On the other hand,
a smaller time window tolerance yields an increase in the total operation cost, proved by the
curves shown in Figure 12a, but the increase is at a maximum of about 10% even for the largest
20-customer case, which is limited. Therefore, the remarkable shrinking in platooning benefit
in percentage is not mainly caused by the slight increase in the total operation cost but by the
decrease in the absolute value of platooning benefit. Consequently, we can summarize that
imposing a tighter time window tolerance will eliminate a considerable amount of platooning
potential, thus leading to a decline in platooning benefit and an alternation of dispatching and
routing strategies as more trucks may travel alone.

5 Conclusion

This study discusses the planning of truck platooning for a capacitated road-network vehicle
routing problem and highlights the benefits of applying the platooning feature for such a multi-
delivery problem. A MIP model, defined as RCVRPTW-TP-R is proposed to optimize the dis-
patch and routing plan of trucks in a way to minimize the total operation cost of the central
coordinator or a carrier company. The operation cost includes vehicles’ dispatch cost and their
on-road energy consumption costs, which are also influenced by trucks’ weight and carrying
loads. Specifically, the plan generated by the model will identify the serving truck for each cus-
tomer node, the number of dispatched trucks, and the trucks’ itineraries with time schedules so
as to serve the customers within the required time windows. We propose a 3-stage solution algo-
rithm embedded with a dynamic programming approach, a Modified Insertion Heuristic, and a
"route-then-schedule" scheme to derive a high-quality solution with a reasonable amount of time.
We further conduct numerical experiments on a virtual small network and a real-world network,
i.e., the Yangtze River Delta network, to validate the feasibility of our model and demonstrate
the platooning benefit. Comparisons between CPLEX and our proposed algorithm are presented
to highlight the performance and effectiveness of our solution approach, and the results of most
cases show that our proposed approach outperforms CPLEX both in time and solution quality.
Sensitivity analyses have also been presented to quantify the impact of several key parameters on
the operation plans and costs. It is revealed that the fuel consumption rate and the platoon size
limit significantly influence the platooning benefit, but the impact of the platoon size limit on the
total operation cost is limited. Unit dispatch cost influences the platooning benefit negatively,
and it may alter the routing and dispatching strategy, thus inducing remarkable changes in the
operation cost. In addition, platooning benefit is found to be positively correlated with time
window tolerance and platoon saving ratio, but the impact of these factor on total operation cost
are relatively small. Truck capacity has also proved to be important as its increase can effectively
reduce the operation cost.

This study can be further extended or enhanced in several directions. From the perspective of
problem formulation, goods transfer among trucks can be taken into consideration in formulating
the problem to better depict the delivery service in the real-world scenario. Goods transfer
is a valuable point to be further investigated because transshipments are universal in logistics
service, and it can greatly improve logistics efficiency and save delivery costs, as mentioned by
Wolfinger (2021), Giusti et al. (2023), and Wolfinger and Salazar-Gonzàlez (2021). In addition,
goods transfer matches our basic model because we have already taken the truckload and weight
into consideration, and thus involving goods transfer will not be a complicated add-on to our
model. However, the inclusion of these factors may further complicate the problem and thus a
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more effective solution approach may be required. To develop a possibly more efficient solution
algorithm, a more advanced feedback mechanism or perturbation strategy can be derived to
further contract the solution space and fasten the solving process. For instance, we only shuffle
the customer grouping results when the scheduling problem is infeasible, but we can further
apply the shuffling mechanism on the feedback loop when the scheduling problem is feasible to
broaden the solution space and avoid trapping at a local optimum.
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