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Abstract. Shapley value attribution is an increasingly popular explain-
able AI (XAI) method, which quantifies the contribution of each feature
to the model’s output. However, recent work has shown that most exist-
ing methods to implement Shapley value attributions have some draw-
backs. Due to these drawbacks, the resulting Shapley value attributions
may provide biased or unreliable explanations, which fail to correctly cap-
ture the true intrinsic relationships between features and model outputs.
Moreover, it is difficult to evaluate these explanation errors because the
true underlying dependencies between features and model outputs are
typically unknown. In this paper, we theoretically analyze the explana-
tion errors of Shapley value attributions by decomposing the explanation
error into two components: observation bias and structural bias. We also
clarify the underlying causes of these two biases and demonstrate that
there is a trade-off between them. Based on this error analysis framework,
we develop two novel concepts: over-informative and under-informative
explanations. We theoretically analyze the potential over-informativeness
and under-informativeness of existing Shapley value attribution methods.
Particularly for the widely deployed assumption-based Shapley value at-
tributions, we affirm that they can easily be under-informative due to the
distribution drift caused by distributional assumptions. We also propose
a measurement tool to quantify the distribution drift that causes such
€rrors.
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1 Introduction

Explainable AT (XAI) is an emerging field that seeks to provide human-interpretable
insights into complex and black-box machine learning (ML) models. Feature at-
tribution, particularly Shapley value attribution, is one increasingly popular X AT
method, which explains a model’s output by quantifying each input feature’s
contribution to the model [I86]. The literature suggests that feature attribu-
tion methods can be true to the model and/or true to the data [5/4]. Feature
attribution methods that are true to the model aim to understand the model’s
functional or algebraic dependencies on features. However, standard supervised
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ML learning models typically do not explicitly model dependencies between fea-
tures [29013]. Moreover, in the presence of feature interdependence, a model can
often be written in different algebraic forms that perform identically [I1]. Hence,
even if an attribution is exactly true to the model, it still might not correctly
represent the intrinsic relationships between features and the model’s output.
If knowledge discovery is our objective, we want feature attributions to be true
to the data, representing the model’s informational dependencies on features.
Feature attribution methods that are true to the data put less emphasis on the
particular model but more on the true underlying data-generating process [5].

In this work, we focus on the study of Shapley value attributions that are
true to the data. Since they can explain ML models more informatively, we call
them informative Shapley value attributions. In practice, Shapley value attribu-
tions have been widely used to assist decision explaining and model debugging.
Moreover, researchers have recently begun applying Shapley value attributions
for scientific discovery. For example, Shapley value attribution techniques have
been used to identify risk factors for diseases and mortality [22I2/T4I26]; gain
valuable new insights into genetic or molecular processes [20J30/12]; and capture
informative patterns for fraud detection [21], etc.

While Shapley value attributions provide promising directions to improve the
understanding of underlying information systems, there remain concerns about
their accuracy. Specifically, informative Shapley value attributions must be com-
puted based on the true underlying distributions of the data, which are typically
unknown in practice. Thus, we can only estimate these distributions using an
observed dataset. However, the given dataset is usually too sparse to capture
the complex distributions of high-dimensional or many-valued features, leading
to significant estimation errors [28]. To address data sparsity, a number of ap-
proaches have been proposed [IJI9TIIT7]. Nevertheless, [4] and [3I] demonstrate
that all of these approaches suffer from some drawbacks that lead to undesir-
able errors. Hence, in practice, instead of estimating the true distribution, most
built-in Shapley value attribution tools are designed based on some distributional
assumptions, such as feature independence assumption. However, untenable as-
sumptions may also result in incorrect attributions [II], making Shapley value
attributions vulnerable to model perturbation [25/T5]. In this sense, most of the
existing Shapley value attribution methods are unreliable and error-prone. Fur-
thermore, related works discussing errors of Shapley value attribution methods
are primarily method-specific and example-based. There has not been a unified
theoretical analysis for explanation errors of Shapley value attributions.

In this paper, we establish a comprehensive error analysis framework for
Shapley value attributions. Under this framework, all explanation errors can
be decomposed into two components: observation bias and structural bias. We
analyze that observation bias arises due to the data sparsity, while structural
bias results from unrealistic structural assumptions. We further demonstrate the
trade-off between observation bias and structural bias. Based on this trade-off,
we propose two novel concepts to describe Shapley value attributions: over-
informativeness (with large observation bias) and under-informativeness (with
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large structural bias). Using our proposed error analysis framework, we theoret-
ically analyze the potential over- and under-informativeness of various existing
Shapley value attribution methods. Furthermore, for the widely deployed dis-
tributional assumption-based Shapley value attribution methods, we provide a
mathematical analysis that shows how these methods can be under-informative
due to the distribution drift caused by distributional assumptions. To evaluate
this risk, we propose a measurement tool to quantify the distribution drift.

We verify our theoretical error analyses on the Bike Sharing dataset [10] and
the Census Income dataset [3]. The experimental results confirm our theoretical
analysis that Shapley value attribution methods that rely on structural assump-
tions tend to be under-informative, while excessive data smoothing methods can
be sensitive to data sparsity, especially in low-density regions. This highlights
the applicability of our error analysis framework, which can discern potential
errors in many existing and future feature attribution methods.

2 Background

2.1 Notation

We seek to explain an ML model, denoted by f : X — ), which takes an instance
x = (21,...,24) from the domain set X as input and outputs predictions for a
target variable Y € Y C R (for classification, we typically focus on the predicted
probability of a given class). In this paper, we use uppercase symbols X, Y to
denote random variables, and lowercase symbols z, y to denote specific values.
Furthermore, we use the notation Xg to refer to a sub-vector of X containing
features in the subset S C [d] = {1, ...,d}, and Xg to refer to its complementary
sub-vector, which contains features from S = [d] \ S. We assume that X and YV’
follow an unknown distribution p(X,Y"). Instead of the true distribution, we are
provided with a dataset D,(X,Y) = {(z™,y™M)}N_, of N samples observed
from p(X,Y"). This can be a training or testing set. Similarly, we use D,(Xs,Y)
to denote the portion of D,(X,Y’) containing only features in the subset S, and
D,(X,Y|Xs = xg) to denote the portion containing samples that satisfy Xg =
xg. Thus, sub-dataset D,(Xg,Y) is drawn from p(Xg,Y) and D,(X,Y|Xg =
xg) is drawn from p(X,Y|Xgs = zg).

A popular way to explain the model f is to quantify each feature’s contribu-
tion to a specific model output. This concept is referred to as feature attribution
and denoted by a vector ¢ = (¢, ..., dq), where each ¢; is called the attribu-
tion score or importance score of feature i. The model output could be either
an individual prediction f(z) for a specific sample x, or a performance metric
M(f,D,(X,Y)) evaluated across the entire dataset D, (X,Y). In the former case,
we term ¢ as local feature attribution, whereas in the latter case, ¢ is referred to
as global feature attribution.

2.2 Informative Shapley Value Attribution

Shapley value was originally a method from game theory to allocate credit to
players in cooperative games [24]. They have been recently utilized to summarize
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each feature’s contribution in model outputs [I8lJ6]. Specifically, using Shapley
values, each feature i’s importance score can be calculated as

_ 1S — 1S =1)!
B d! ’

(1)
and v(S) : P([d]) — R is a set function representing the model’s output when
only features in subset S C [d] are considered. This importance score captures
the average marginal contribution, v(SU{i})—v(S), of feature i across all possible
subsets of features S that exclude i.

Shapley value attribution can be characterized under the framework of removal-
based explanations [T]. Specifically, to design a Shapley value attribution algo-
rithm (also called a Shapley value explainer), we need to specify two components:

¢i(v) = Z w(S) (v(SU{i}) —v(S)), where 7(S5)
SCld\{d}

— A removal function (RF) fs(zg) that can make predictions based on a
sub-vector of input xg instead of the full input vector x.

— A value function v (S) associated with the selected RF fg. For exam-
ple, for local feature attributions, we specify the value function as vy, (S) =
fs(zs), while for global feature attributions, the value function can be de-
signed as vy, (S) = M(fs,Pp(Xs,Y)) (see more discussions in [7]).

Under the removal-based framework, the RF fg is leveraged to assess the impact
of removing features in the complement subset S from the original model f.
Thus, the choice of RF significantly influences the resulting feature attributions.
Recent research [7J5/46] emphasize that, to ensure the Shapley value attributions
faithfully capture the informational dependencies between model outputs and
input features, we should select fs(xs) to be the conditional expectation of
model prediction f(X) given the feature sub-vector Xg = xg. Mathematically,

fs(xs) = E[f(X)|Xs = 25] = Epx5)x5=2s)[f (x5, X5)]. (2)

In this case, we call fs the conditional RF, and ¢(vys,) the informative Shap-
ley value attribution. Since the true distribution p(X) is typically unknown, the
conditional distribution p(Xg|Xg = xg) is unavailable. Therefore, we can only
estimate fs(zg) using the given dataset D,(X) (which we call the explaining
set), such as the training set or testing set. There are two main challenges asso-
ciated with this estimation task:

1. NP-hard The exact computation of the Shapley value attribution in Equa-
tion requires the estimation of fg for all possible subsets S, which has
exponential complexity in dimension d [I].

2. Data sparsity For each fs(xg), we need to estimate the conditional distri-
bution p(Xg|Xs = xg). However, in the explaining set, there could be very
few or even no samples that match the condition Xg = xg. This problem
usually happens in problems that involve high-dimensional or many-valued
features [28/4]. For example, within a "bank dataset", it is unlikely to find
any individual that exactly satisfies the condition: "credit score = 3.879,
income = $112,643".



Error Analysis of Shapley Value-Based Explanations 5

Various methods have been proposed to estimate the conditional RF fg (see
discussion in [7]), which either smooths the data or makes distributional assump-
tions [28]. However, due to the above two challenges, almost all existing estima-
tion methods are error-prone and possibly computationally expensive, leading
to incorrect explanations (see discussion in [4]). To gain better insights into
this problem, in this paper, we provide a comprehensive analysis of potential
explanation errors when estimating the informative Shapley value attributions

p(vy, )

3 Observation Bias & Structural Bias Trade-Off

The Shapley value attribution in Equation is a function of the value func-
tion v(S). Furthermore, the value function is intrinsically related to the RF. As
a result, errors in estimating the conditional RF will directly cause errors in
evaluating the value function, leading to errors in Shapley value attributions.

3.1 Overfitting and Underfitting of the RF

We use the notation féN) to denote an estimated conditional RF based on an ex-

plaining set of size N. Let fs =limpy 0o féN) be the limit of the estimate when
using an infinitely large explaining set. For instance, Frye et al. [11] proposed
adopting a supervised surrogate model hg(xg) for the estimation of the condi-

tional RF fs(xg). In this case, féN)(xs) = hjv (rs) and fs(zs) = hg-(z3),
where &V ), * are obtained by minimizing the empirical MSE and true MSE,

respectively. In essence, féN) is an estimate of fs, and fs is a proxy for the true
conditional RF fg.

The error associated with an estimated RF féN) can be decomposed into two
components: the estimation error and the approzimation error [23], expressed
as:

PN — fs = (FY) = fs) + (fs — fs)

= €estimation T €approximation -

(3)

The estimation error quantifies the risk of utilizing a finite dataset for the condi-
tional RF estimation. This type of error can be highly sensitive to data sparsity
but can be mitigated by either smoothing the data [28] or increasing the data

size. The estimated RF féN) is said to be owverfitting at a point Xg = xg if it
exhibits a significant absolute estimation error | féN)(xS) — fs(zs)|.

On the other hand, the approximation error measures the level of risk as-
sociated with making distributional or modeling assumptions. In this case, the
estimated RF féN) is said to be underfitting at a point Xg = zg if it demon-
strates a significant absolute approximation error |fs(zg) — fs(xs)|. It is worth
noting that underfitting cannot be alleviated through an increase in data size,
but can be exacerbated by excessive data smoothing



6 N. Zhao et al.

3.2 Explanation Error Decomposition

Since we use féN) to estimate the true conditional RF fg, the true value function

vfg is estimated by v F) - The difference between these two value functions
S

causes explanation errors for the Shapley value attributions in Equation .
Using similar ideas as in Section 3.1, we propose to decompose the explanation
error into

6(v;m) = dlvg) = (9(vjm) = 8lvz,)) + (6lv7,) = olvr,))

= observation bias + structural bias.

(4)

We call the first component ¢(vj)) — ¢(v;) the observation bias, which oc-
curs because we make explanations based on only a finite number of observations
of the whole distribution. Next, we call the second component ¢(v;) — ¢(vy) the
structural bias, arising from the utilization of an imperfect or limited knowledge
structure to make explanations. While observation bias is caused by the esti-
mation error, structural bias arises from the approximation error (see Equation
).

Observation bias may become substantial when the explaining set is too
sparse to accurately capture the complex underlying distribution. To mitigate
this, we can make simplifying structural assumptions to approximate fg, for
example, by using a surrogate model or an assumed distribution. However, im-
posing assumptions may cause the approximation to be inadequate. For exam-
ple, using a surrogate model hy(zg) with complexity |f] may be insufficient to
encompass a perfect 8* that satisfy hg- = fg. Moreover, making unrealistic dis-
tributional assumptions may drift the true underlying distribution p(X) to a
different one ¢(X). Therefore, there is typically a trade-off between observation
bias and structural bias in estimating the conditional RF using a finite explaining
set. Figure [1] gives an illustration of this trade-off.

need to need to lead to
yo--Reeele. vy ---bete S
Observation Bias Data Sparsity Structural Complexity Structural Bias
— — {—=—=========-
fr lead to f lead to fr need to b

Fig. 1: An illustration of the trade-off between observation bias and structural
bias. On one hand, to reduce observation bias, it is necessary to alleviate the
data sparsity, which requires us to decrease the structural complexity of the con-
ditional RF approximation. However, this simplification of structural complexity
might concurrently lead to an increase in structural bias. On the other hand, to
reduce structural bias, we may need to increase the structural complexity, which
inevitably entails an aggravation of the data sparsity, consequently increasing
the observation bias.
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3.3 Over-informative Explanation

When the absolute value of observation bias W(Ufém) — ¢(vy,)| is large, we say
that the corresponding feature attribution is over-informative. Over-informativeness
often manifests in high-dimensional data and low-density regions, where the pro-
vided explaining set is typically too sparse to represent the whole population.
Consequently, the estimated conditional RF féN) can easily be overfitting, re-
sulting in an undesirable observation bias. When the feature attribution is over-
informative, it may erroneously assign importance to uninformative or noisy
features. To better illustrate the concept of over-informative explanations, we
present a toy example on two-dimensional data below.

Ezample 1 (Over-informative explanation). Consider model f(z1,22) = 10xs

based on two independent features, X; and X5. Suppose X; ~ N (0,1) and X5 ~
N(0,1). Now, consider the case where we do not know the true distribution of

(X1, X2), and we only observe a dataset of 100 samples {(x1 , (1)), ce (xgloo), xéwo))}.
Suppose this dataset contains an outlier (21, x2) = (5, 1), where the value X; =5

is notably greater than that of all other samples. The objective is to explain the
prediction f(5,1) = 10. According to the Shapley value formula in Equation ,

in order to obtain feature attribution ¢, we need to estimate the conditional RFs

froy, frys fray- Let us consider the empirical estimates [28] of these conditional

RFs at (5,1), which are:

" 100 1 oo o
100) 1)
f{ﬂ} = 15 Zf 2y = 109 Z} 10zy” ~ 0,

s H(w&“ =5)f(x”, 7))
S I = 5)
il Iy’ = 1) (7", 25)
SN = 1)
With these estimates, using Equation , we can calculate gzgl ~ 5. This implies
that X; contributes half to the prediction f(5,1) = 10. However, it is clear

that, in reality, X is an uninformative feature for f and ¢; should always be
0. This error occurs because we observe only one sample with X; = 5 in the

a3 6) = =10,

=10.

fay (1) =

dataset, making the empirical estimator f {(}(})0) overfitting at (5,1). Since the true
conditional RF is fy13 = 0, the estimation error is 10, causing the observation

bias to be 5. In this case, the Shapley value attribution qgl is over-informative
and it erroneously assigns importance to irrelevant features.

3.4 Under-informative Explanation

Conversely, when the absolute value of structural bias |¢(v; ) —¢(vy) is large, we
say that the corresponding feature attribution is under-informative. In practice,
making unreasonable assumptions is the primary reason for under-informativeness.
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When the feature attribution is under-informative, it may underestimate or even
ignore some relevant mutual information between input features and model out-
puts. For example, Chen et al. [5] demonstrate that assuming feature indepen-
dence can result in highly correlated features receiving considerably different
importance scores. We give a toy two-dimensional example below to illustrate
an under-informative feature attribution.

Ezample 2 (Under-informative explanation). Suppose we are given two features
X, and X5, where X7 = 2X5, representing the same factor in two different units,
e.g., price in different currencies or temperature in different scales. Consider two
linear models f;(z1,22) = 1021 + 22 and fa(z1,22) = x1 + 1929, which both
equals 21x5. In essence, f; and fo are the same model with different algebraic
forms. However, under the feature independence assumption, they can be ex-
plained in two different ways. Assume E[X;] = E[X5] = 0 and suppose we are
interested in explaining the same prediction f1(2,1) = f2(2,1) = 21. Using the
Shapley value attribution formula for linear models under independent feature
assumptlon we can calculate ¢1 = 20, QSQ =1 for f;, and ¢1 =2 ¢2 =19 for
f2. That means X is given dominantly high feature attribution for f; while Xy
is given dominantly high feature attribution for f5. In reality, X; and X5 should
receive the same attribution score, i.e., 1 = ¢2, because they provide the same
information. In this case, both explanations are under-informative due to the
unrealistic feature independence assumption.

In summary, Shapley value attribution could be over-informative if it is es-
timated based on insufficient observations. Meanwhile, it could also be under-
informative if it is approximated based on unrealistic structural assumptions. In
the following sections, we use the error analysis framework proposed in Equation
to analyze the over- and under-informativeness of existing conditional RF es-
timation methods. These methods can be categorized into two main approaches:
smoothing the data and making distributional assumptions.

3.5 Explanation Error Analysis of Data-Smoothing Methods

To address the challenge of data sparsity, one effective method is to smooth the
explaining set. Typically, the data can be smoothed using either non-parametric
kernel-based approaches or parametric model-based approaches. However, ex-
cessive data smoothing can lead to serious structural bias. Unfortunately, it is
unclear to what extent the explaining set should be smoothed [28]. Below we
analyze the potential explanation errors of some popular data smoothing meth-
ods.

4 Following [18], given a linear model f(z) = Z?zl Bjx; + Bo, under the feature
independence assumption, the Shapley value attribution for the jth feature can be
calculated as ¢; = B;(z; — E[X}]).
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Empirical conditional RF [28]: the structural bias is zero because the empirical
estimator will converge to the true conditional RF when the data size goes to in-
finity. However, the empirical conditional RF is usually seriously over-informative
when data sparsity exists (as illustrated in Example 1).

Non-parametric kernel-based approaches [T/19]: in this type of approach, the ex-
tent of data smoothing is controlled by the bandwidth(s) of the kernel, which
could be set either too conservatively, resulting in over-informativeness, or too
generously, leading to under-informativeness. Moreover, the selected kernel func-
tion might not correctly define the similarity between samples [4], causing un-
desirable structural bias.

Parametric model-based approaches [11]: for both the conditional generative
model and supervised surrogate model proposed in [I1I], the extent of data
smoothing is controlled by the complexity of the selected neural networks. Over-
informativeness and under-informativeness respectively coincide with the over-
fitting and underfitting of the trained neural network. However, controlling the
overfitting and underfitting of this trained neural network is challenging. First,
since the neural network is trained on an exponential number of all possible sub-
datasets D,(Xg), it is sometimes difficult to ensure learning optimality within
an acceptable computation time [4]. As a result, non-optimal learning may result
in structural bias. Furthermore, even if a neural network is well-trained, it might
still be overfitting under data sparsity in low-density regions (see examples in
[31]), causing observational bias.

TreeSHAP [I6J17): this is a specific Shapley value attribution method for tree-
structured models. TreeSHAP is usually under-informative. First, it utilizes the
predefined tree structure of the original model, which was trained under un-
clear assumptions about feature dependencies [I]. Second, it approximates the
conditional expectation E[f(X)|Xgs = zg] by averaging the predictions from all
leaves that are not against the condition Xg = xg. Essentially, this procedure
relaxes the condition Xg = xg into a set of weaker conditions. For instance,
with a stump containing two leaves "X; < 10" and "X; > 10", we approximate
E[f(X)|X1 = 8] by E[f(X)|X1 < 10]. This relaxation of conditions introduces
structural bias.

3.6 Explanation Error Analysis of Distributional Assumptions-
Based Methods

Besides smoothing the data, an alternative way to mitigate data sparsity is
to approximate the conditional distribution p(Xg|Xgs = xg) with an assumed
distribution 7(Xg). In this paper, we call r(Xg) the removal distribution, as it
is the assumed distribution for removed feature subset Xg. As discussed in [4],
there are four common removal distributions:

1. Baseline: r(Xg) = 1(Xg = %), assuming X5 has a constant value z% [28].
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2. Marginal: r(Xg) = p(Xg), assuming Xg and Xg are independent [18].

3. Product of marginal: 7(Xg) = [[,c5p(X;), assuming each feature in S is
independent [§].

4. Uniform: r(Xg) = [[;e5ui(Xi), where u; denotes a uniform distribution
over X;. In this case, each feature in S is assumed to be independently and
uniformly distributed [27].

With p(Xg|Xs = zs) =~ r(Xg), the conditional RF fg in formula (2]) can be
approximated as

fs(as) = By [f (25, Xg)] = / f(s, as)r(X

which can be empirically estimated by

%]

Il
8
Uy~
QU
8
W™
G

N
0 s) = 5 3 s, ad), (©
n=1

using an explaining set D,.(X) = {(z(™)}N_, drawn from 7(X).

Observational bias: The purpose of making assumptions is to reduce the dis-
tribution complexity, and thus the observation bias. In particular, to estimate
the conditional distribution p(Xg|Xs = xg) for any arbitrary zg, we require
a dataset with complexity O(]X]). This complexity will change when using an
assumed removal distribution r(Xg). Table [I| summarizes the data complexity
requirement for the above four removal distributions.

Table 1: The complexity of different removal functions.

Removal distribution Formula Data complexity required
Conditional p(Xg|Xs =xs) o(|x])
Baseline 1(Xg = x%) o)
Marginal p(Xg) O(|Xs|)
Product of marginals [L;csp(X:) o (Hz‘eé |Xl|)
Uniform Hz 3 ui (X5) 0 (Hieg |XZ|)

From Table[I] we can see that the baseline removal distribution simplifies the con-
ditional distribution into a constant value, thus having a zero observation bias.
The marginal removal distribution also decreases the data complexity require-
ment from O(]X|) into O(]X5|). However, not all the distributional assumptions
can ensure a decrease in complexity, even though the assumptions are strong. For
example, both product of marginal and uniform removal distributions require a
dataset with a complexity of O (Hze g |Xi|), which might not be necessarily lower
than the complexity requirement of conditional distribution (i.e., O(|X|)) in the
presence of interdependencies among features.
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Structural bias: By reducing the data complexity requirement, making some
distributional assumptions can reduce the observation bias. However, if these
assumptions are far from the true underlying distribution, they could also en-
gender considerable structural bias. Specifically, distributional assumptions can
make the true joint distribution p(X) drift towards a different distribution ¢(X),
where ¢(Xg|Xs = zs) = r(Xg). To analyze the structural bias induced by dis-
tributional drift, we introduce the following definitions.

Definition 1. An out-of-distribution (OOD) sample of p(X) from q(X) is
a sample x drawn from q(X), i.e., x ~ q(X), but does not belongs to p(X), i.e.,
p(X =) = 0. Conversely, if p(X = x) > 0, it is defined as an in-distribution
sample of p(X).

Definition 2. The OOD rate of q(X) to p(X) is defined as the proportion of
samples drawn from q(X) that are OOD samples of p(X), denoted as Pr{X ¢

p(X)|X € ¢(X)}.

For an arbitrary value xs observed from p(Xg), the instance x = (rg, 2’y) where
x5 ~ r(Xg) is called a hybrid sample [4]. As a result of the distribution drift,
hybrid samples (zg, 2') ~ ¢(X) could be either in-distribution or OOD samples
of p(X). Thus, we can derive the approximation error of the conditional RF

estimator fs(xg) in Equation as

fs(xs) — fs(as)

f(zs, 25)r(Xs

Il
\

H
0‘1\
S~—

IS

8
9Tt

\
o
—

8
&

(zs,x5)€q(X

xs,xs) r(Xg==x S)dxg +

Il
~—

(ws,2%)#p(X

1’5,1’8) (Xg = S)dx%. — fs(xs)

~—

(zs,25)ep(X

Il
~—

f(xs,itfg)T(Xg =xf)day +
(25 ,2) £p(X)

/ flzs,2g) [r(Xs = o5) — p(X5 = 5| Xs = ws)| dalg. (7)
(w25 €p(X)

Therefore, the approximation error of assumption-based RFs stems from two
sources: (i) the inclusion of OOD samples in the approximation; and (ii) changes
in the probability density of in-distribution samples. The OOD sample-related
approximation error may contribute to a large proportion of structural bias,
especially when the OOD rate is high. In practice, some OOD samples may be
senseless. For instance, the OOD samples could represent a bank client who is 20
years old but has 25-year working experience, or a clinic patient whose systolic
blood pressure is lower than his diastolic blood pressure. Moreover, adversar-
ial attacks have been designed in the literature [25] to arbitrarily manipulate
model explanations (feature attributions). Under our error analysis framework,
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it is easy to see that these attacks essentially target the OOD sample-related ap-
proximation error in Equation @, intentionally modifying the structural bias.

4 OOD Measurement of Distribution Drift

In practice, assumption-based RFs, such as the baseline RF and marginal RF,
are widely used thanks to their simple implementations [I5]. For these methods,
explanation errors mainly arise from structural bias caused by distributional
assumptions, which are unchangeable once the assumptions are made. Hence,
it is crucial to evaluate structural bias or under-informativeness resulting from
distributional assumptions. However, it is impossible to directly measure the
structure bias because the true conditional RF fg is unknown. As discussed in
Section [3.6] structural bias arises from distribution drift, which usually leads to
the use of OOD samples in estimating Shapley value attributions. Therefore, we
can alternatively assess structural bias or under-informativeness by measuring
how much the distribution drifts, and how high the OOD rate is.

4.1 Distribution Drift & OOD Detection

Let S be a random variable on domain P([d]) \ [d] (i.e., the power set of [d]
excluding [d], which is the set of all possible subsets involved in the computation
of Shapley value attribution scores for all d features).

Lemma 1. For each S € P([d]) \ [d], Pr{S =S} = Wld)'
s
Proof. According to Equation , the Shapley value feature attribution of the
ith feature ¢; is essentially the weighted average of feature i’s marginal contri-
bution over all possible subsets S C [d] \ {¢}, with weights equal 7(S). In the
context of all d features, a subset S only appears when computing Shapley value
attribution scores for features that are not in S. There are d — |S| such features.
Therefore, the probability function of S can be derived as
d—15| _d=15] [SIMd = 15[=1)

i (s) = o .o

Pr{S=S}= d d! d~(‘d)

Given S = S and an instance x, we have
p(X =2z|S=95)=p(Xs =25)p(Xg =25|Xs = 2x5).

By assuming a removal distribution r(Xg) on the conditional distribution p(Xg =
x5|Xs = zg), the distribution drift into

(X =28 =9) =p(Xs = x5)r(X5 = x5). (8)

Then, considering all possible subsets S, the marginal density of a hybrid sample
x ~ q(X) can be computed as

dX=a)=1 Y p(Xs = as)r(Xs = us). 9)
SeP([d)\[d] (|S|)
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If the assumed removal distribution 7(Xg) # p(Xg|Xs = xg), there will be

a distribution drift from p(X) to ¢(X). For example, when using baseline and
marginal removal distributions, the true distribution p(X) could drift into g*@*¢!ne(X)
and g™ 9l ( X), respectively, where

) 1 1
qbaseline(X) — - Z Tp(XS)]l(XS = x%), and (10)
SeP([d)\[d] (|S‘)

margina 1 1
gy = = 3" —p(Xs)p(Xs). (11)
SeP([d)\]d] (IS\)

To detect the OOD samples, Slack et al. [25] proposed training a binary
classifier ood score(x) to predict whether a given sample = belongs to p(X)
or ¢(X). Specifically, we first generate a M-size dataset Dy(X) from ¢(X) and
label it as 0. This dataset is then combined with the provided explaining set
D,(X) labeled as 1 to train the classifier. The classifier returns an OOD score,
approximating the probability that the input x comes from p(X). A hybrid
sample (zg, ) is considered an OOD sample if ood_score(xg, zs) is smaller
than a selected threshold ¢.

Furthermore, let C' = ood_score(X) denote the OOD score random vari-
able, and let p(C), ¢(C) denote the distributions of C' induced by p(X), ¢(X)
respectively. If no distribution drift occurs, i.e., ¢(X) = p(X), then we have
q(C) = p(C). Conversely, if q(C) # p(C), then ¢(X) # p(X), indicating a dis-
tribution drift. Thus, to detect the distribution drift, we propose comparing the
distribution drift by examining the distributions of OOD scores C' calculated
on D,(X) and Dy(X). One possible way to compare the two distributions is to
visualize their density histograms in a single plot (see Figure [2| for an exam-
ple). Another way is to quantify the distribution drift by calculating the total
variation distance [9):

1 1
DrvI(©).a(O)] = 5 [ 1€ = ) = a(C = o). (12)

The total variation distance can be conveniently estimated by half the absolute
sum of density difference in all bins between the two density histograms.

5 Experiments

In this section, we conduct experiments to verify the error analyses we performed
on existing Shapley value attribution methods in previous sections. First, we
demonstrate how to apply the method we proposed in Section to detect and
measure the distribution drifts caused by different distributional assumptions
that have been used in the literature. Next, we will show that this distribution
drift can lead to under-informative attributions, which assign significantly dif-
ferent important scores to highly correlated features. Finally, we demonstrate
how data sparsity can cause over-informative attributions, which assign high
important scores to irrelevant or noisy features.
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Dataset To assure the generalizability of our conclusions, we conduct our ex-
periments on two datasets. Our first dataset is the Bike Sharing Dataset, which
contains 17,389 records of hourly counts of bike rentals in 2011-2012 in the Capi-
tal Bike Sharing system [10]. The dataset comprises a set of 11 features, following
an unknown joint distribution. The objective is to predict the number of bikes
rented during a specific hour of the day, based on various features related to time
and weather conditions, such as hour, month, humidity, and temperature. The
second dataset that we use is the Census Income (also known as Adult) dataset,
which contains information such as age, work class, education, etc. of 48,842
adults [3]. The goal is to predict whether an adult’s income exceeds 50,000 dol-
lars. The dataset is extracted from the 1994 Census database. In each dataset,
samples with missing data are removed.

For the Bike Sharing dataset, we aim to explain an xgBoost regressor trained
on a training set of 15,379 samples and tested on a testing set of 2,000 samples.
In addition, we split the Census Income dataset into a training set of 32,561
samples and a testing set of 4,000 samples. Our goal for the Census Income
dataset is to explain an xgBoost classifier trained and tested on the respective
sets.

5.1 Distribution Drift Detection

In this section, we will demonstrate how different distributional assumptions
caused distribution drifts and estimate the corresponding OOD rates. Besides
the training and test datasets described above, we generate four sets of hy-
brid samples by using four different removal distributions: uniform, product of
marginal, marginal, and baseline. To make the results comparable, we calculate
the OOD scores of the four hybrid sample sets using a single OOD classifier. Such
an OOD classifier is trained using samples from the training set (labeled as 1)
and hybrid samples generated from uniform removal distribution (labeled as 0).
Note that this OOD classifier is still valid for OOD detection on hybrid samples
generated from the other distributions because those samples are in-distribution
of the uniform removal distribution.

The trained OOD classifier is then used to calculate OOD scores C' for all real
samples from both the training and testing sets, as well as for all hybrid samples
in the four generated sets. We plot density histograms of these OOD scores
in Figure 2] The total variance distances between the OOD score distributions
calculated from the training samples versus the generated hybrid samples are
given in Table [2). First, we observe that the OOD deunsity histograms of the
training and test samples overlap, which implies that there is no distribution
drift detected between the training and testing sets of both datasets. Second,
we observe that all four removal distributions introduce noticeable distribution
drifts, together with a considerable number of OOD samples. This is particularly
evident for the uniform and product of marginal removal distributions, where the
OOD rates are exceptionally high when adopting a threshold of 0.3 (0.866 and
0.757 for the Bike Sharing dataset, and 0.901 and 0.69 for the Census Income
dataset, respectively). In contrast, the marginal removal distribution seems to



00D_Score Drift (Uniform)

Error Analysis of Shapley Value-Based Explanations

(a) Bike Sharing Dataset

10 00D_Score Drift (Product of Marginal)

00D_Score Drift (Marginal)

15

00D _Score Drift (Baseline)

== hybrid samples
1 real samples(Training)
) real samples(Testing)

02 04 o6 o8 10
00D score

00D_Score Drift (Uniform)

, 00D Score Drift (Product of Marginal)

mmm hybrid samples
[ real samples(Training)
) real samples(Testing)

02 o4 06 08 To
00D score

10

mmm hybrid samples

[ real samples(Training)
[ real samples(Testing)

02 04 o6 08
00D score

(b) Census Income Dataset

00D_Score Drift (Marginal)

= hybrid samples
[ real samples(Training)
[ real samples(Testing)

02 03 o6 08 10
00D score

00D_Score Drift (Baseline)

= hybrid samples
[ real samples(Training)
[ real samples(Testing)

mm= hybrid samples
) real samples(Training)
3 real samples(Testing)

00D score

00D score

mm hybrid samples
[ real samples(Training)
) real samples(Testing)

02 04 o6 08
00D score

Density

= hybrid samples
3 real samples(Training)
3 real samples(Testing)

02 04 06 08 10
00D score

Fig. 2: The density histograms of OOD scores on real samples and hybrid samples

Table 2: The OOD rates and total variance distance

Removal distribution[OOD rate (t:0.3)[Total Variance Distance

Bike Sharing Dataset

Uniform 0.866 0.868
Product of Marginal 0.757 0.77
Marginal 0.538 0.578
Baseline 0.666 0.696
Census Income Dataset
Uniform 0.901 0.903
Product of Marginal 0.69 0.729
Marginal 0.448 0.524
Baseline 0.756 0.804

exhibit the least distribution drift, (Dpy = 0.578 in the Bike Sharing dataset and
Dpy = 0.524 in the Census Income dataset, respectively). Finally, the fact that
the total variance distances are all greater than 50% for all removal distributions

in both datasets highlights the severity of the distribution drifts.
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5.2 Under-informativeness Audit

In Section [5.1] we showed that assumption-based methods caused severe distri-
bution drifts. In this section, we will demonstrate that these distribution drifts
can contribute to under-informative attributions.

For both datasets, we explain model predictions on 100 samples using Shapley
value attributions calculated from five different RFs, namely SHAP-B (with base-
line RF), SHAP-M (with marginal RF), SHAP-PoM (with product of marginal
RF), SHAP-U (with uniform RF) and SHAP-S (with surrogate model-estimated
conditional RF). In addition, TreeSHAP is also used to explain the predictions
of xgBoost models on each dataset.

Importance of Temperature VS Feeling_temperature Importance of Hours_per_week VS Minutes_per week
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M Feeling_temperature W minutes_per_week
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Fig. 3: Under-informativeness Audit on 100 predictions. (a) the average absolute
SHAP scores of features "Temperature" and "Feeling Temperature" (ideally,
they should receive similar scores); (b) the average absolute SHAP scores of
features "Hours per week" and "Minutes per week" (ideally, they should
receive exactly the same score).

Intuitively, an informative feature attribution should (1) assign similar attri-
bution scores to the two highly correlated features Temperature and Feeling Temperature
with Pearson correlation of 0.99 for the Bike Sharing dataset as they convey al-
most the same information; (2) assign exactly the same attribution score to
features "Hours per week" and "Minutes per week" for the Census Income
Dataset because they hold the same information but in different scales.

From Figure [3a] we can observe that TreeSHAP, SHAP-B, SHAP-M, SHAP-
PoM, and SHAP-U all assign much higher importance scores to feature Temperature
than Feeling Temperature. Moreover, in Figure[3b] TreeSHAP, SHAP-B, SHAP-
M, SHAP-PoM, and SHAP-U only assign importance to feature "Hours per week"
and ignore feature "Minutes per week". This is because these methods do not
consider the dependencies among features, leading to under-informative attri-
butions. In contrast, SHAP-S trains a surrogate model to learn feature cor-
relations, thus able to allocate similar importance scores to Temperature and
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Feeling Temperature. For the Census Income dataset, even though SHAP-S
mitigates the problem of under-informativeness by assigning importance to both
"Hours per week" and "Minutes per week", however, these scores are not
the same. This indicates that the SHAP-S still produces structural bias and does
not completely resolve the under-informativeness problem for the Census Income
dataset.

5.3 Over-informativeness Audit

In this section, we turn our attention to over-informativeness and observation
bias. Recall that, the observation bias in Equation is ¢(v f.(N)) - d(vy,)
S

where fs = limy_ 0 fé.N). However, since we do not have an infinite explain-
ing set, we cannot evaluate the observational bias directly. In this experiment,
we estimate fs by féM), where féM) is estimated using the whole training
sets of both datasets. That is, M = 15,379 for the Bike Sharing dataset and
M = 32,561 for the Census Income dataset. For random explaining sets with
N € {10, 100, 1000, 10000}, we estimate the average absolute observation bias in
the Shapley value attributions of 10 predictions, namely

1 1do d
T0d > |6ij (v300) = @i (vpon)l;
i=1 j=1

where ¢;; is the Shapley value attribution of the jth feature in the ith pre-
diction. The results are plotted in Figure 4l We observe similar trends in both
datasets. Generally, observation bias decreases when the size of the explaining
set increases. This illustrates the relationship between observation bias and data
sparsity. However, different methods exhibit different sensitivity to data spar-
sity. Specifically, SHAP-B always has 0 observation bias, which agrees with our
analysis in Section [3.6] For SHAP-M, SHAP-PoM, and SHAP-U, observation
bias quickly stabilizes at N = 1,000. In contrast, SHAP-S shows high sensitivity
to data sparsity, especially for the Census Income Data, at N = 10,000, the
observation bias of SHAP-S is still much higher than those of other methods.
Note that both datasets that we use contain less than 20 features. If the data
is high-dimensional, SHAP-S will be more impacted by data sparsity, producing
higher observation bias.

As discussed in Section [3.5] even if the surrogate model has an overall good
fit on a large explaining set, SHAP-S can still be over-informative on low-density
regions where data sparsity persists. To verify this remark, we generate a noisy
feature from a mixed Gaussian distribution: Z ~ N(0,1) with probability 0.999
and Z ~ N(10,1) otherwise. For each dataset, we train a surrogate model on the
whole training set with this noisy feature added. Even when the explaining set
is large, the values from N (10, 1) are still sparse, so the surrogate model is easy
to overfit at points with Z ~ N(10,1). To see this, we use the SHAP-S feature
attribution that utilizes the trained surrogate model to explain 100 predictions
where Z ~ N(0,1) versus where Z ~ N(10,1). The feature attribution results
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Fig.4: The change in average estimated observation bias of the Shapley value
attributions as the size of the explaining set changes.

are plotted in Figure[5] We can see that, in both datasets, even with a surrogate
model trained on a large explaining set, SHAP-S still assigns high importance
to mnoisy features if given predictions with Z ~ AN(10,1). This noisy feature
should be given 0 importance because it is sampled independently from all other
features.
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Fig. 5: Average absolute feature attributions given by SHAP-S on 100 predictions
where the noisy feature comes from either A'(0,1) or A(10,1).

6 Conclusions

We proposed a unified error analysis framework for informative Shapley value at-
tributions. Our framework stems from the estimation and approximation errors
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arising from estimating the conditional removal function. These errors corre-
spond to observation and structural bias, which generate feature attributions
that are respectively over- or under-informative. We apply our error analysis to
discern potential errors in various existing Shapley value attribution techniques.
Carefully designed experimentation verifies our theoretical analysis. Future work
can utilize our error analysis framework to develop new Shapley value attribution
methods that can effectively mitigate both under- and over-informativeness.
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