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Abstract—This paper studies multi-active intelligent-reflecting-
surface (IRS) cooperative sensing, in which multiple active IRSs
are deployed in a distributed manner to help the base station
(BS) provide multi-view sensing. We focus on the scenario where
the sensing target is located in the non-line-of-sight (NLoS) area
of the BS. Based on the received echo signal, the BS aims to
estimate the target’s direction-of-arrival (DoA) with respect to
each IRS. In addition, we leverage active IRSs to overcome the
severe path loss induced by multi-hop reflections. Under this
setup, we minimize the maximum Cramér-Rao bound (CRB)
among all IRSs by jointly optimizing the transmit beamforming
at the BS and the reflective beamforming at the multiple IRSs,
subject to the constraints on the maximum transmit power at the
BS, as well as the maximum transmit power and the maximum
power amplification gain at individual IRSs. To tackle the
resulting highly non-convex max-CRB minimization problem, we
propose an efficient algorithm based on alternating optimization,
successive convex approximation, and semi-definite relaxation,
to obtain a high-quality solution. Finally, numerical results are
provided to verify the effectiveness of our proposed design
and the benefits of active IRS-assisted sensing compared to the
counterpart with passive IRSs.

I. INTRODUCTION

Integrating sensing into wireless communication systems
has emerged as a prominent application scenario for future
sixth-generation (6G) wireless networks [1]. This catalyzes
extensive emerging technologies, including autonomous driv-
ing, virtual reality, and airspace supervision. With the wireless
sensing capability, cellular base stations (BSs) can extract
useful environmental and object information from echo signals
[2], and achieve ultra-resolution and high-accuracy sensing by
exploiting the massive antenna deployment. Furthermore, the
base station (BS) with multiple antennas in communication
networks is able to provide ultra-resolution and high-accuracy
sensing. However, the wireless sensing generally requires the
line-of-sight (LoS) channel between the BS and target, which
is typically blocked by various infrastructures, vehicles, or
vegetation, thus seriously limiting the sensing performance [3].

The development of passive intelligent reflecting surfaces
(IRSs) provides a viable solution to bypassing the blockage.
This is achieved by constructing virtual LoS paths via re-
flecting the incident signals with properly controlled phases
and/or amplitudes [4]. In the literature, there have been various
existing works aiming to enhance communication or sensing
capabilities by deploying passive IRSs in wireless systems [5]–
[7]. Nevertheless, transmit signals generally suffer from sig-
nificant path loss caused by multi-hop reflections, which forms
the bottleneck for further improving the system performance
[8]. To overcome this limitation, a new active IRS architecture
has been proposed in [9]. In contrast to passive IRSs, which
only reflect signals without amplification, active IRSs have the

capability of amplifying reflecting signals through the inte-
gration of reflection-type amplifiers into reflecting elements.
Despite the additional power consumption, active IRS can
effectively compensate for the severe path loss in an energy-
efficient manner [10].

The merits of active IRSs make them excellent enablers
for both communication and sensing systems. Several works
conducted preliminary studies on the application of active IRSs
in integrated sensing and communication (ISAC) systems. For
instance, in [11], the authors proposed the utilization of an
active IRS to enhance the communication secrecy rate, aiming
at maximizing the worst radar detection signal-to-noise ratio
(SNR). Furthermore, [12] investigated an active IRS-aided
ISAC system in a cloud radio access network, where an active
IRS is adopted to address the blockage issue between the BS
and targets/users. The radar beampattern towards the sensing
targets was optimized to boost the sensing performance. Sim-
ilarly, the work [13] also deployed an active IRS to introduce
an additional virtual LoS link between the BS and the target.
The study focused on the joint design of transmit/receive
and reflective beamforming to maximize the radar SNR while
ensuring the predefined signal-to-interference-plus-noise ratios
(SINRs) for communication users. However, these prior works
on active IRS-enabled sensing or ISAC mainly focused on
the case with one single IRS. Unfortunately, for sensing tasks
such as direction-of-arrival (DoA)-based target localization,
a single IRS only provides a piece of sensing information
inferred from one observation angle, which is not robust and
far from satisfactory for target sensing. Therefore, leveraging
multiple IRSs to achieve multi-view sensing and provide
information from different observation angles is an effective
way to improve the performance and robustness of sensing,
which motivates our study in this work.

This paper studies a multi-active-IRS cooperative sensing
system, in which multiple active IRSs are deployed at different
locations to assist the BS in providing multi-view sensing and
overcoming the severe path loss due to multi-hop reflections.
Specifically, we first propose a multi-IRS cooperative sensing
framework based on time division mode, and then derive the
closed-form Cramér-Rao bound (CRB) for the estimation of
target’s DoA with respect to each IRS. To achieve the optimal
sensing performance, we minimize the maximum CRB for
target DoA estimation among all IRSs by jointly optimiz-
ing the transmit beamforming at the BS and the reflective
beamforming at the IRSs. To obtain a high-quality solution
to the highly non-convex max-CRB minimization problem,
we propose an efficient algorithm based on alternating opti-
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mization, successive convex approximation (SCA), and semi-
definite relaxation (SDR). Finally, numerical results verify
the effectiveness of our proposed design and the advantages
of active IRS-assisted sensing compared to that with passive
IRSs. It is shown that the maximum transmit power budget
and the maximum amplification gain at the IRSs both limit
the sensing performance, especially when the transmit power
budget at the BS becomes large. It is also shown that transmit
beamforming at the BS is of greater importance than reflective
beamforming at IRSs in minimizing the maximum sensing
CRB.

Notations: The circularly symmetric complex Gaussian
distribution with mean µ and covariance A are denoted as
CN (µ,A). The notations (·)T , (·)∗, (·)H , and tr(·) denote the
transpose, conjugate, conjugate-transpose, and trace operators,
respectively. IL stands for the identity matrix of size L × L.
ℜ(·) and ℑ(·) denote the real and imaginary parts of the
argument, respectively. | · | and arg {·} denote the absolute
value and angle of a complex element, respectively. E(·)
denotes the expectation operation, diag(x) denotes a diagonal
matrix with the diagonal entries specified by vector x, and
Diag(X) denotes a diagonal matrix with the diagonal entries
specified by the diagonal elements in X. rank (X) denotes
the rank value of matrix X and [·]l,p denotes the (l, p)-
th element of a matrix. j denotes the imaginary unit. ⊗
and ◦ denote the Kronecker product and Hadamard product
operators, respectively.

II. SYSTEM MODEL
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Fig. 1. Multi-IRS-assisted cooperative sensing.

We consider a multi-active-IRS cooperative sensing system,
where a BS and L active IRSs cooperate to locate one target.
The BS is equipped with M uniform linear array (ULA) anten-
nas while each IRS consists of a uniform planar array (UPA)
of N = Nh × Nv reflecting elements. Let L = {1, . . . , L}
denote the set of IRSs and N = {1, . . . , N} denote the set of
reflecting elements at each IRS in this system. It is assumed
that the direct link between the BS and the target is typically
obstructed by blockages such as infrastructures, vehicles, and
environmental elements.

We consider the quasi-static channel model, in which the
wireless channels remain unchanged over the transmission
block of interest. Let Tc denote the transmission block of
interest or the radar dwell time. Gl ∈ CN×M denotes the
channel matrix between the BS and IRS l, which can be
obtained by the system via proper channel estimation (see,
e.g., [14]). We assume that the IRSs are delicately deployed

such that the channels between IRSs and the target are LoS.
Denote θl and ϕl as the vertical and azimuth angles of the
target with respect to IRS l, respectively. The steering vector
of the reflecting elements at IRS l for the DoA (θl, ϕl) is given
by

al = av(θl)⊗ ah(θl, ϕl), (1)

where

av(θl) = [1, ej
2πdv

λ cos(θl), · · · , ej
2πdv(Nv−1)

λ cos(θl)]T , (2)
ah(θl, ϕl) =

[1, ej
2πdh

λ sin(θl) cos(ϕl), · · · , ej
2πdh(Nh−1)

λ sin(θl) cos(ϕl)]T , (3)

and λ denotes the carrier wavelength. In addition, dh and dv
denote the horizontal and vertical spacing of two neighboring
reflection elements at IRSs, respectively. Thus, the round-trip
target response matrix of the IRS l′-target-IRS l link is given
by

El,l′ = βl,l′ala
T
l′ , (4)

where βl,l′ denotes the complex coefficient that accounts for
the radar cross-section of the target and the round-trip path
loss of the IRS l′-target-IRS l link. Furthermore, we define
βl ≜ βl,l and El ≜ El,l for ease of presentation.

Next, we consider the design of transmit beamforming at
the BS and the reflective beamforming at the IRSs. Let ψl =
[ψl,1, . . . , ψl,N ]T denote the complex reflection coefficients
imposed by IRS l and amax denote the maximum amplitude
amplification gain of the elements at IRS. Since each element
of active IRSs can not only tune the phase but also amplify
the amplitude of the signal, the complex reflective coefficient
can be formulated as ψl,n = al,ne

jρl,n ,∀l ∈ L, n ∈ N ,
where al,n and ρl,n are the amplitude and phase of reflective
coefficient, respectively [9]. The maximum power amplifi-
cation gain constraints at the active IRSs are expressed as
|ψl,n| = al,n ≤ amax,∀l ∈ L, n ∈ N .

In this work, we consider that the IRSs operate in a time
division mode to avoid the inter-IRS interference, where the
total radar dwell time Tc is divided into L time blocks, each
consisting of TL = Tc

L time symbols. Under this mode, IRS
l is active during the time symbols {(l − 1)Tc

L + 1, . . . , lTc

L }
while the others are silent. Let sl[t] = [sl,1[t], . . . , sl,M [t]]

T

denote the transmitted signal by the BS at time symbol
t ∈ {(l − 1)Tc

L + 1, . . . , lTc

L }. Then, the sample covari-
ance matrix of the transmit signal over the corresponding
TL time symbols is given by Rs,l = E

{
sl[t]s

H
l [t]

}
≃

1
TL

∑lTc
L

t=(l−1)Tc
L +1

sl[t]s
H
l [t] ⪰ 0. The total sample covariance

matrix over the radar dwell time Tc needs to satisfy the
maximum transmit power constraint 1

L

∑
l∈L tr (Rs,l) ≤ Pt,

where Pt is the maximum transmit power at the BS.
Since the BS normally has more computation capacity, in

this paper we consider sensing signals are received and pro-
cessed at the BS. In contrast, the active IRSs only manipulate
signals from the BS or echo signals reflected by the target.
In particular, each IRS amplifies twice during one round-trip
signal propagation. First, IRS l amplifies the transmit signal
sl[t] from the BS as

xl,1[t] = ΨlGlsl[t] +Ψlzl,1[t], (5)



where Ψl = diag(ψl), and zl,1[t] ∼ CN (0, σ2
r IN ) denotes the

reflected amplification noise induced by active IRS l. Second,
when the target reflects the signal back to IRS l, IRS l again
amplifies the echo signal as

xl,2[t] = Ψl (Elxl,1[t] + zl,2[t])

= ΨlElΨlGlsl[t] +ΨlElΨlzl,1[t] +Ψlzl,2[t], (6)

where zl,2[t] ∼ CN (0, σ2
r IN ) is the reflected amplification

noise induced by active IRS l. Let Ps denote the maximum
transmit power budget at each IRS. Therefore, the power
constraint at each active IRS is given by

C1 : E
{
∥xl,1[t]∥2 + ∥xl,2[t]∥2

}
=

tr
(
ΨlElΨlGlRs,lG

H
l ΨH

l EH
l ΨH

l

)
+ σ2

r tr
(
ΨlElΨlΨ

H
l EH

l ΨH
l

)
+tr

(
ΨlGlRs,lG

H
l ΨH

l

)
+ 2σ2

r tr
(
ΨlΨ

H
l

)
≤ Ps, ∀l ∈ L. (7)

Based on the signal model at the IRSs in (6), the received
echo signal at the BS from IRS l at time symbol t ∈ {(l −
1)Tc

L + 1, . . . , lTc

L } is given by

yl[t] = GT
l ΨlElΨlGlsl[t] +GT

l ΨlElΨlzl,1[t]

+GT
l Ψlzl,2[t] + z[t], (8)

where z[t] ∼ CN (0, σ2
b IM ) denotes the additive white Gaus-

sian noise (AWGN) at the BS. By concatenating Sl = [sl[(l−
1)Tc

L + 1], . . . , sl[l
Tc

L ]], Yl = [yl[(l− 1)Tc

L + 1], . . . ,yl[l
Tc

L ]],
Zl,1 = [zl,1[(l − 1)Tc

L + 1], . . . , zl,1[l
Tc

L ]], and Zl = [z[(l −
1)Tc

L + 1], . . . , z[lTc

L ]], we have

Yl=GT
l ΨlElΨlGlSl+GT

l ΨlElΨlZl,1+GT
l ΨlZl,2+Zl. (9)

Accordingly, based on the received echo signal Yl in (9),
the BS needs to estimate the DoAs {θl, ϕl} and the complex
coefficient {βl} in the complete target response matrix El as
unknown parameters. Then, based on the estimated DoAs of
the target with respect to all IRSs {θl, ϕl}, l ∈ L, the Stansfield
method can be utilized to infer the coordinates of the target
[15].1

III. ESTIMATION CRB DERIVATION FOR ACTIVE IRS
In this section, we derive the CRB for target localization.

Specifically, the BS estimates the DoA of the target with regard
to the IRSs and then uses the multiple estimates of DoAs
to infer the 3D position of the target. Let ξ̄l = [θl, ϕl,β

T
l ]

T

denote the vector of unknown parameters to be estimated with
respect to IRS l, where βl = [ℜ(βl),ℑ(βl)]T . By vectorizing
the received echo signal Yl, we have

yl = vec(Yl) = ηl +wl, (10)

where

ηl =
[
(GT

l ΨlElΨlGlsl[
(l−1)Tc

L + 1])T ,

· · · , (GT
l ΨlElΨlGlsl[l

Tc

L ])T
]T
, (11)

wl =
[
(GT

l Ψlzl,2[
(l−1)Tc

L + 1])T + (zl[
(l−1)Tc

L + 1])T ,

· · · , (GT
l Ψlzl,2[l

Tc

l ])
T + (zl[l

Tc

l ])
T
]
. (12)

1The design of DoA estimation and target localization algorithms is beyond
the scope of this paper’s work, and we defer them for future research.

Note that in (12), we neglect the effect of the noise term zl,1
due to the triple-reflection path loss from the IRS-target-IRS-
BS link. Based on (11) and (12), the mean and covariance
matrix of yl are obtained as ηl and

Ryl
= ITc

L
⊗Rwl

, (13)

respectively, where Rwl
= σ2

r G
T
l ΨlΨ

H
l G∗

l +σ
2
b IM . Accord-

ing to the definition of CRB, the CRB for estimating parameter
vector ξ̄l is given by CRBξ̄l(Rs,l,Ψl) = tr(F−1

l ), where
Fl ∈ R4×4 denotes the Fisher information matrix (FIM) with
respect to ξ̄l. According to the estimation theory, the (p, q)-th
element of Fl is given by [16]

[Fl]p,q =

tr

(
R−1

yl

∂Ryl

∂[ξ̄l]p
R−1

yl

∂Ryl

∂[ξ̄l]q

)
+2ℜ

(
∂ηH

l

∂[ξ̄l]p
R−1

yl

∂ηl

∂[ξ̄l]q

)
. (14)

Based on (14), we have the following proposition.
Proposition 1: We define the derivatives of a with respect

to θl and ϕl as ȧθl and ȧϕl
, respectively. Then, the FIM for

estimating Fl is given by

Fl =

 Fθl,θl Fθl,ϕl
Fθl,βl

FT
θl,ϕl

Fϕl,ϕl
Fϕl,βl

FT
θl,βl

FT
ϕl,βl

Fβl,βl

 , (15)

where

Fθl,θl =
2Tc
L

|βl|2tr
(
CH

θl,l
R−1

wl
Cθl,lRs,l

)
, (16a)

Fϕl,ϕl
=

2Tc
L

|βl|2tr
(
CH

ϕl,l
R−1

wl
Cϕl,lRs,l

)
, (16b)

Fβl,βl
=

2Tc
L

tr
(
HH

l R−1
wl

HlRs,l

)
I2, (16c)

Fθl,ϕl
=

2Tc
L

|βl|2tr
(
CH

θl,l
R−1

wl
Cϕl,lRs,l

)
, (16d)

Fθl,βl
=

2Tc
L

ℜ
(
βltr

(
CH

θl,l
R−1

wl
HlRs,l

)
[1, j]

)
, (16e)

Fϕl,βl
=

2Tc
L

ℜ
(
βltr

(
CH

ϕl,l
R−1

wl
HlRs,l

)
[1, j]

)
, (16f)

with Cθl,l = GT
l Ψl

(
ȧθla

T
l + alȧ

T
θl

)
ΨlGl, Cϕl,l =

GT
l Ψl

(
ȧϕl

aTl + alȧ
T
ϕl

)
ΨlGl, and Hl = GT

l Ψlala
T
l ΨlGl.

Proof: See Appendix A.

IV. JOINT TRANSMIT AND REFLECTIVE BEAMFORMING
FOR TARGET ESTIMATION

In this section, we jointly design the transmit beamforming
{Rs,l} at the BS and the reflective beamforming {Ψl} at
the IRSs to improve the performance of target estimation.
Specifically, we first use the derived closed-form FIM in (15)
to formulate the optimization problem. Then, we propose an
efficient algorithm to find a high-quality solution based on
alternating optimization.

Our aim is to minimize the maximum CRBs among
CRBξ̄l(Rs,l,Ψl), subject to the maximum transmit power
constraint at the BS, the maximum transmit power constraints
at the IRSs, and the maximum power amplification gain con-
straints at the IRSs. Consequently, the optimization problem
is formulated as



(P1) : min
{Ψl,Rs,l}

max
l∈L

CRBξ̄l(Rs,l,Ψl)

s.t. C1, (17a)
1

L

∑
l∈L

tr (Rs,l) ≤ Pt, (17b)

Rs,l ⪰ 0, (17c)
|[Ψl]n,n| ≤ amax,∀l ∈ L, n ∈ N . (17d)

In problem (P1), (17a)-(17d) are the transmit power constraints
at the IRSs, the transmit power constraint at the BS, the semi-
definite constraint regarding the sample covariance matrix of
the transmit signal, and the maximum power amplification gain
constraints at the IRSs, respectively. Note that problem (P1) is
non-convex due to the non-convexity of the objective function
and the constraint in (17a). To address this issue, we adopt the
alternating optimization approach, wherein the transmit signal
covariance {Rs,l} at the BS and the reflection coefficients
{Ψl} at the IRSs are optimized alternately.

A. Optimal Transmit Beamforming Design

Under given Reflective Beamforming {Ψl}, the optimiza-
tion problem is rewritten as

(P2) : min
{Rs,l}

max
l∈L

tr(F−1
l ) s.t. (17a) − (17c).

Problem (P2) is also difficult to solve due to the fact that the
objective function cannot be expressed in an analytical form.
To solve problem (P2), we first introduce an auxiliary variable
κi to transform it into the following equivalent problem:

(P2.1) : min
{Rs,l},κ

κ

s.t. tr(F−1
l ) ≤ κ,∀l ∈ L, (18a)

(17a) − (17c).

From the expression of FIM in (15), we note that Fl is a
linear function to Rs,l and thus tr(F−1

l ) is a convex function
to Rs,l. Therefore, the constraints in (18a) are convex. As
a result, problem (P2.1) is a convex semi-definite program
(SDP) problem, which can be optimally solved by existing
solvers like CVX [17].

B. Reflective Beamforming Design

Under given transmit beamforming {Rs,l}, the optimization
problem is rewritten as

(P3) : min
{Ψl}

max
l∈L

tr(F−1
l ) s.t. (17a), (17d).

Note that the FIM Fl depends only on the reflective beamform-
ing Ψl at the IRS l. Thus, problem (P3) can be equivalently
decomposed into L subproblems each given by

(P3.l.1) : min
Ψl

tr(F−1
l ) s.t. (17a), (17d).

This problem is highly non-convex because the transmit
power constraints at IRSs in (17a) and the elements in FIM

are non-convex functions with respect to {Ψl}. By introducing
auxiliary variables {κi}4i=1, problem (P3.l.1) is equivalent to

(P3.l.2) : min
Ψl,{κi}4

i=1

∑4

i=1
κi

s.t.
[

Fl ei
eTi κi

]
⪰ 0, i = 1, . . . , 4, (19a)

(17a), (17d),

where ei denotes the i-th column of the identity matrix I4,
and the constraint in (19a) is derived by using the Schur
complement. Note that problem (P3.l.2) is still non-convex due
to the constraints in (17a) and (19a). To handle it, we resort to
SDR and SCA techniques to transform these constraints into
a convex form.

First, by defining Θl = ψlψ
H
l , where rank(Θl) = 1,

we approximate the objective function tr(F−1
l ) according to

Lemma 1.
Lemma 1: With a given local point Θ(i)

l , the FIM in (15)
is approximated as

F̂l =

 F̂θl,θl F̂θl,ϕl
F̂θl,βl

F̂T
θl,ϕl

F̂ϕl,ϕl
F̂ϕl,βl

F̂T
θl,βl

F̂T
ϕl,βl

F̂βl,βl

 , (20)

in which

F̂ϱ1 =
2Tc

L
|βl|2tr

(
∇T

ϱ1(Θ
(i)
l )

(
Θl −Θ

(i)
l

))
+

2Tc

L
|βl|2Qϱ1(Θ

(i)
l ), (21a)

F̂ϱ2 =
2Tc

L
ℜ
(
βl

(
tr
(
∇T

ϱ2(Θ
(i)
l )

(
Θl −Θ

(i)
l

))
+Qϱ2(Θ

(i)
l )

)
[1, j]

)
, (21b)

F̂βl,βl =
2Tc

L

(
tr
(
∇T

βl,βl
(Θ

(i)
l )

(
Θl −Θi

l

))
+Qβl,βl(Θ

(i)
l )

)
I2, (21c)

where ϱ1 ∈ {(θl, θl), (ϕl, ϕl), (θl, ϕl)} and ϱ2 ∈
{(θl,βl), (ϕl,βl)}.

Proof: See Appendix B.
Then, we transform the constraint in (17a) into a convex

form. The four terms in the left-hand-side of (17a) are equiv-
alent to

tr
(
ΨlElΨlGlRs,lG

H
l ΨH

l EH
l ΨH

l

)
= |βl|2 tr

(
Ψlala

T
l ΨlGlRs,lG

H
l ΨH

l a∗l a
H
l ΨH

l

)
= |βl|2 tr

(
AH

l AlΘl

)
tr
(
R1Θ

T
l

)
, (22a)

tr
(
ΨlElΨlΨ

H
l EH

l ΨH
l

)
= |βl|2 tr

(
Ψlala

T
l ΨlΨ

H
l a∗l a

H
l ΨH

l

)
= |βl|2

(
tr
(
AH

l AlΘl

))2
, (22b)

tr
(
ΨlGlRs,lG

H
l ΨH

l

)
= tr

(
GlRs,lG

H
l Diag (Θl)

)
, (22c)

tr
(
ΨlΨ

H
l

)
= tr (Θl) , (22d)

respectively, where Al = diag(al) and R1 =
AlGlRs,lG

H
l AH

l . Note that (22a) and (22b) are quadratic
functions with respect to Θl, and we approximate them using
their first-order Taylor expansions. The derivatives of the



trace terms in (22a) and (22b) with respect to Θl are given
by

∇c,1(Θl) =
∂

∂Θl
tr
(
AH

l AlΘl

)
tr
(
R1Θ

T
l

)
= tr

(
R1Θ

T
l

)
AT

l A
∗
l + tr

(
AH

l AlΘl

)
R1, (23a)

∇c,2(Θl) =
∂

∂Θl

(
tr
(
AH

l AlΘl

))2

= 2tr
(
AH

l AlΘl

)
AT

l A
∗
l . (23b)

Based on (22c) and (22d), and the derivatives in (23a) and
(23b), the constraint in (17a) is approximated as

|βl|2 tr
(
∇T

c,1(Θ
i
l)
(
Θl −Θ

(i)
l

))
+ |βl|2 tr

(
AH

l AlΘ
(i)
l

)
tr

(
R1

(
Θ

(i)
l

)T
)

+ σ2
r |βl|2 tr

(
∇T

c,2(Θ
i
l)
(
Θl −Θ

(i)
l

))
+ σ2

r |βl|2
∣∣∣tr(AH

l AlΘ
(i)
l

)∣∣∣2
+tr

(
GlRs,lG

H
l Diag (Θl)

)
+2σ2

r tr (Θl) ≤ Ps, ∀l ∈ L. (24)

By adopting (20) and (24), in the i-th SCA iteration, problem
(P3.l.2) is transformed into problem (P3.l.3) with

(P3.l.3) : min
Θl,{κi}4

i=1

∑4

i=1
κi

s.t.
[

F̂l ei
eTi κi

]
⪰ 0, i = 1, . . . , 4, (25a)

[Θl]n,n ≤ a2max, (25b)
rank(Θl) = 1, (25c)
(24).

Furthermore, we drop the rank-one constraint in (25c) and ac-
cordingly obtain the relaxed version of (P3.l.3) as (SDR3.l.3).
Note that problem (SDR3.l.3) is a convex problem which can
be efficiently solved by CVX. Let Θ⋆

l denote the optimal
solution to problem (SDR3.l.3), which generally may not meet
the rank-one condition. Therefore, we implement Gaussian
Randomization to find an efficient rank-one solution to (P3.l.3)
and (P3.l.2) based on the obtained {Θ⋆

l } [18]. In particular,
we generate a number of random vectors rl ∼ CN (0, IN ),
and then construct a number of rank-one solutions as ψl =

(Θ⋆
l )

1
2 rl. Next, we verify whether the maximum amplitude

of the elements in ψl exceeds the maximum amplification
gain amax. If so, we normalize ψl = amax

ψl

max(|ψl|) , where
max(|ψl|) represents the maximum amplitude value of the
elements in ψl. Finally, we seek the optimal solution of ψl that
minimizes CRBξ̄l(Rs,l,Ψl) while satisfying the constraints in
(17a) among all randomly generated ψl’s.

Through alternately solving problems (P2) and (P3), a high-
quality solution to problem (P1) is obtained. Note that problem
(P2) is optimally solved, while solving (P3) leads to a non-
increasing sequence of max-CRB values with a sufficiently
large number of Gaussian randomizations. Consequently, the
alternating optimization-based algorithm guarantees conver-
gence by generating a monotonically decreasing sequence of
max-CRB values throughout the iterations.
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Fig. 2. The achieved max-CRB versus the maximum transmit power Pt at the BS with
Ps = 0.1 W, M = 16, and Nv = Nh = 4.

After implementing the designed transmit and reflective
beamforming in the considered system, the received echo
signal in (9) is leveraged to estimate the DoA {θl, ϕl} by
using sophisticated estimation methods, such as the multiple
signal classification and rotational invariance techniques [19].

V. NUMERICAL RESULTS

This section provides numerical results to validate the
effectiveness of our proposed design. In the simulation, we
adopt the Rician fading channel model with the K-factor being
5 dB for channels between the BS and IRSs. The channels
between IRSs and the target are assumed to be LoS channels.
Additionally, we set the noise power as σ2

r = σ2
b = −80

dBm, and the radar dwell time as Tc = 100 time symbols.
In particular, we consider a scenario with one BS, two active
IRSs, and one target. The BS and two IRSs are located at
(0, 0, 0) meters (m), (−5, 10, 0) m, and (−5, 20, 0) m, respec-
tively. The target is located at (5, 15, 0) m. To better illustrate
the superiority of our proposal, we adopt the following two
benchmarks for comparison.

Transmit beamforming (BF) only: The IRSs implement
random reflection coefficients. Accordingly, we only optimize
the transmit beamforming at the BS by solving problem (P2)
in Section IV-A.

Reflective BF only: The BS adopts the isotropic transmis-
sion by setting Rs,l =

Pt
M IM ,∀l ∈ L. Then, we optimize the

reflective beamforming at all IRSs by solving problem (P3) in
Section IV-B.

Fig. 2 plots the achieved max-CRB versus the maximum
transmit power Pt at the BS. First, it is observed that our pro-
posed design outperforms other benchmark schemes, and the
max-CRB performance achieved by active IRSs outperforms
that of passive IRSs by a significant margin. This clearly shows
the benefit of deploying active IRSs for wireless sensing.
Besides, the max-CRB achieved by the ‘Transmit BF only’
benchmark is lower than that of the ‘Reflective BF only’
one. This indicates that transmit beamforming plays a more
prominent role in the considered sensing system. In particular,
a delicate design of transmit beamforming to direct beams
toward multiple active IRSs is a rule of thumb for establishing
high-quality sensing links. Furthermore, it is also observed that
the higher maximum amplification gain at the IRSs, the better
sensing performance can be achieved. This is because a looser
maximum amplification gain constraint of the elements at IRSs
implies more degrees of freedom in reflective beamforming.
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Fig. 3 shows the achieved max-CRB versus the maximum
transmit power Ps at the IRSs. In the low Ps regime, it is
observed that the CRBs under different Pt are almost the same
and decrease as Ps increases. This phenomenon occurs because
the received echo signal power is primarily constrained by the
maximum transmit power budget at the IRSs. Subsequently,
in the high Ps regime, it is observed that the CRBs keep
constants. This is attributed to the fact that the maximum
transmit power budget at the IRS is large enough, and the
received echo signal power is mainly constrained by the
transmit power at the BS instead.

Fig. 4 plots the achieved max-CRB versus the number of
antennas M at the BS. It is observed that the CRB decreases
as M increases, but the performance saturates as M further
increases. In particular, when the number of antennas, M ,
starts to increase from a small number, the received echo
signal power is enhanced rapidly due to the enlarged array
gain. However, when M further goes large, the array gain is
no longer the limiting factor of sensing performance. Instead,
the maximum transmit power budgets at the BS and IRSs limit
the received echo signal power. This leads to a diminishing
performance gain in terms of max-CRB when more antennas
are deployed at the BS.

VI. CONCLUSION

This paper investigated multi-active-IRS-assisted cooper-
ative sensing, where multiple active IRSs are deployed to
provide multi-view sensing. We proposed a multi-active-IRS
time division sensing framework and then derived the closed-
form CRBs for estimation of target parameters. Then, we

proposed an efficient joint transmit and reflective beamforming
design to minimize the maximum CRB among all IRSs,
subject to the maximum transmit power budgets at the BS
and IRSs, and the maximum amplification gain constraints
at the IRSs. Numerical results demonstrated the effectiveness
of our proposed design, and active IRSs outperform passive
ones by a significant margin for target sensing. Furthermore,
it is shown that the maximum transmit power budget and
the maximum amplification gain at the IRSs jointly limit
the sensing performance, especially when the transmit power
budget at the BS becomes large. Additionally, it indicates that
the design of transmit beamforming is more critical than that
of reflective beamforming.

APPENDIX A
PROOF OF PROPOSITION 1

We define DN = diag{dN} with dN = [0, 1, · · · , N − 1],
and then we derive the derivative of al with respect to θl as
follows:

ȧθl =
∂al
∂θl

=
∂av(θl)⊗ ah(θl, ϕl)

∂θl

= −j 2πdv
λ

sin(θl)DNv
av(θl)⊗ ah(θl, ϕl)

+ j
2πdh
λ

cos(θl) cos(ϕl)av(θl)⊗DNh
ah(θl, ϕl)

= −j 2πdv
λ

sin(θl) (dNv
⊗ 1Nh

) ◦ (av(θl)⊗ ah(θl, ϕl))

+ j
2πdh
λ

cos(θl) cos(ϕl) (1Nv
⊗ dNh

) ◦ (av(θl)⊗ ah(θl, ϕl))

=

(
j
2πdh
λ

cos(θl) cos(ϕl) (1Nv ⊗ dNh
)

−j 2πdv
λ

sin(θl) (dNv
⊗ 1Nh

)

)
◦ al

= ζθl ◦ al = Zθlal, (26)

where Zθl = diag(ζθl) with ζθl =
j 2πdh

λ cos(θl) cos(ϕl) (1Nv
⊗ dNh

) −
j 2πdv

λ sin(θl) (dNv
⊗ 1Nh

) and 1N ∈ RN×1 with all
elements are one. Similarly, the derivative of al with respect
to ϕl is derived by

ȧϕl
=
∂al
∂ϕl

=
∂av(θl)⊗ ah(θl, ϕl)

∂ϕl

=
∂av(θl)

∂ϕl
⊗ ah(θl, ϕl) + av(θl)⊗

∂ah(θl, ϕl)

∂ϕl

=−j 2πdh
λ

sin(θl)sin(ϕl)(1Nv
⊗ dNh

)◦(av(θl)⊗ ah(θl, ϕl))

= ζϕl
◦ al = Zϕl

al, (27)

where Zϕl
= diag(ζϕl

) with ζϕl
=

−j 2πdh

λ sin(θl) sin(ϕl) (1Nv ⊗ dNh
). Next, we derive

Fθl,θl , Fϕl,ϕl
, and Fβl,βl

. According to the definition of FIM,
Fθl,θl is given by

Fθl,θl =tr

(
R−1

yl

∂Ryl

∂θl
R−1

yl

∂Ryl

∂θl

)
+2ℜ

(
∂ηH

l

∂θl
R−1

yl

∂ηl
∂θl

)
.

(28)



By substituting (13) into (28), we have

tr

(
R−1

yl

∂Ryl

∂θl
R−1

yl

∂Ryl

∂θl

)
= 0. (29)

Then, substituting (11) into (28), we obtain

ℜ
(
∂ηH

l

∂θl
R−1

yl

∂ηl

∂θl

)
=

ℜ

 lTc
L∑

t=
(l−1)Tc

L
+1

(
∂GT

l ΨlElΨlGlsl[t]

∂θl

)H

R−1
wl

∂GT
l ΨlElΨlGlsl[t]

∂θl


= |βl|2ℜ

 lTc
L∑

t=
(l−1)Tc

L
+1

sHl [t]GH
l ΨH

l

(
ȧθla

T
l + alȧ

T
θl

)H

ΨlG
∗
l R

−1
wl

GT
l Ψl

(
ȧθla

T
l + alȧ

T
θl

)
ΨlGlsl[t]

)
= |βl|2

Tc

L
tr
(
CH

θl,lR
−1
wl

Cθl,lRs,l

)
. (30)

where Cθl,l = GT
l Ψl

(
ȧθla

T
l + alȧ

T
θl

)
ΨlGl. Based on (29)

and (30), Fθl,θl is obtained. Similarly, the closed-form expres-
sions of Fϕl,ϕl

, Fθl,ϕl
, Fθl,βl

, Fϕl,βl
, and Fβl,βl

are given by

Fϕl,ϕl
=

2Tc
L

|βl|2tr
(
CH

ϕl,l
R−1

wl
Cϕl,lRs,l

)
, (31)

Fθl,ϕl
=

2Tc
L

|βl|2tr
(
CH

θl,l
R−1

wl
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)
, (32)

Fθl,βl
=

2Tc
L

ℜ
(
βltr

(
CH
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R−1

wl
HlRs,l

)
[1, j]

)
, (33)

Fϕl,βl
=

2Tc
L

ℜ
(
βltr

(
CH
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)
[1, j]

)
, (34)

Fβl,βl
=

2Tc
L

tr
(
HH

l R−1
wl

HlRs,l

)
I2, (35)

respectively, where Cϕl,l = GT
l Ψl

(
ȧϕl

aTl + alȧ
T
ϕl

)
ΨlGl

and Hl = GT
l Ψlala

T
l ΨlGl with ȧϕl

= ∂al

∂ϕl
= Zϕl

al. As
a result, Proposition 1 is proved.

APPENDIX B
PROOF OF LEMMA 1

Based on the partial derivative ȧθl = Zθlal and ȧϕl
=

Zϕl
al in (26) and (27), respectively, we have

Cθl,l = GT
l Al

(
Zθlψlψ

T
l +ψlψ

T
l Zθl

)
AlGl, (36)

Cϕl,l = GT
l Al

(
Zϕl

ψlψ
T
l +ψlψ

T
l Zϕl

)
AlGl, (37)

Hl = GT
l Alψlψ

T
l AlGl, (38)

where Al = diag(al). By defining Θl = ψlψ
H
l , we can

transform the trace term in (16a) as
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where R1 = AlGlRs,lG
H
l AH

l and R2 =
AH

l Gl
∗R−1

wl
GT

l Al. Then, we assume R−1
wl

is constant
and derive the derivative of (39) with respect to Θl as
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As a result, the derivative of Fθl,θl is given by
∇Fθl,θl(Θ

(i)
l ) = 2Tc

L |βl|2Qθl,θl . Similar to (39), the
trace terms in (16b)-(16f) are transformed into
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respectively, and the corresponding derivatives of them with
respect to Θl are given by
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As a result, Lemma 1 is proved.
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