
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 1

AudioRepInceptionNeXt: A lightweight
single-stream architecture for efficient audio

recognition
Kin Wai Lau1,2, Yasar Abbas Ur Rehman2, Lai-Man Po1

City University of Hong Kong1

TCL AI Lab2

Abstract—Recent research has successfully adapted vision-
based convolutional neural network (CNN) architectures for
audio recognition tasks using Mel-Spectrograms. However, these
CNNs have high computational costs and memory requirements,
limiting their deployment on low-end edge devices. Motivated
by the success of efficient vision models like InceptionNeXt and
ConvNeXt, we propose AudioRepInceptionNeXt, a single-stream
architecture. Its basic building block breaks down the parallel
multi-branch depth-wise convolutions with descending scales of
k × k kernels into a cascade of two multi-branch depth-wise
convolutions. The first multi-branch consists of parallel multi-
scale 1× k depth-wise convolutional layers followed by a similar
multi-branch employing parallel multi-scale k × 1 depth-wise
convolutional layers. This reduces computational and memory
footprint while separating time and frequency processing of Mel-
Spectrograms. The large kernels capture global frequencies and
long activities, while small kernels get local frequencies and
short activities. We also reparameterize the multi-branch design
during inference to further boost speed without losing accu-
racy. Experiments show that AudioRepInceptionNeXt reduces
parameters and computations by 50%+ and improves inference
speed 1.28× over state-of-the-art CNNs like the Slow-Fast while
maintaining comparable accuracy. It also learns robustly across
a variety of audio recognition tasks. Codes are available at
https://github.com/StevenLauHKHK/AudioRepInceptionNeXt.

Index Terms—CNN, Ausio recognition, Large kernel, Repa-
rameterization

I. INTRODUCTION

Learning deep feature representations for audio understand-
ing has been extensively studied over the past decade using a
variety of deep neural network architectures like Convolutional
Neural Networks (CNN) [1]–[5], Long-Short Term Memory
(LSTM) [6]–[9], and the recent Transformer networks [10]–
[12]. These deep neural networks typically learn the mapping
from an audio sample to its corresponding label, intermediate
feature representations [13]–[15], or augmented audio sam-
ple [16], [17]. In practice, these deep neural networks for
audio-understanding tasks have the flexibility to be trained
by either using the raw audio samples [10], [11], [18] or
a 2D time-frequency spectrogram [1], [3], [13]–[15], [19]–
[23]. Recent advances in deep neural networks have had a

K.W. Lau is with the Department of Electrical Engineering, City Uni-
versity of Hong Kong, Hong Kong, and also with TCL AI Lab. Y.A.U.
Rehman is with TCL AI Lab. (e-mail: kinwailau6-c@my.cityu.edu.hk,
yasar.abbas@my.cityu.edu.hk)

L.-M. Po is with the Department of Electrical Engineering, City University
of Hong Kong, Hong Kong (email: eelmpo@cityu.edu.hk)

revolutionary impact on numerous audio understanding do-
mains, including but not limited to predictive tasks like sound
event classification [24], the direction of voice prediction
[25], speech command recognition [26], speaker identification
[27], and generative tasks such as music generation [28].
Although the Transformers-based networks such as wave2vec
[18] and ViT [10] show promising results in these audio
understanding tasks; deploying them in their naı̈ve form on
the edge devices would require allocating massive amounts
of compute resources for the architecture besides the audio
data. For example, the base model of wave2vec 2.0 [18]
requires over 89.78M (in millions) parameters compared to
CNN models that only require 4.60M parameters [29]. This
limits the applicability of Transformers in realizing numerous
recent applications of general-purpose audio understanding
that require on-device computation and training, such as fed-
erated learning [30]. Except for speech recognition, we found
that the CNN-based deep neural networks are still prevalent for
audio understanding tasks, such as audio event recognition and
music classification, while maintaining similar performance
compared to Transformers, and suitable for deployment and
running on edge devices [31].

The Slow-Fast [1] is a recent framework focusing on
the CNN architecture design for audio understanding, which
proposed a two-stream pathway CNN, that has obtained better
performance with lower parameter count than the Transform-
ers on EPIC-SOUND datasets [31]. Following the success
of separable kernels in the recent work on audio recogni-
tion [32], the Slow-Fast model proposed to use 1 × k and
k × 1 kernels to capture the frequency and temporal feature
independently considering non-homogeneous statistics of the
audio-spectrogram. Later work [22] extends the study of
the Slow-Fast model with self-supervised contrastive learning
and discovered that such architectures provide better feature
generalization on a diverse set of audio understanding tasks.
Although performing remarkably well on a variety of audio
understanding tasks, we found that these CNN models still
incur high computational costs and memory footprints that
potentially limit their applicability on edge devices for a
variety of audio understanding applications. As an example,
the Slow-Fast model incurs 26.68M parameters, which is
1.10× higher than the conventional ResNet-50 model (with
24.13M parameters) (See Figure 1).

To enable general-purpose audio understanding on edge

ar
X

iv
:2

40
4.

13
55

1v
1 

 [
cs

.S
D

] 
 2

1 
A

pr
 2

02
4

https://github.com/StevenLauHKHK/AudioRepInceptionNeXt


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 2

Fig. 1. Comparison of the Top-1 accuracy and GFLOPs on VGG Sounds. Different markers represent different baseline backbone architectures.

devices without incurring high computational and memory
footprints, we focus here on a parallel rather unexplored area
of redesigning and reparameterization of CNN architectures.
Our motivation for redesigning and investigating the CNN-
based architectures for general-purpose audio understanding
is due to the following: (1) Although CNN architectures incur
lower computational and memory costs, their performance
heavily depends on the network architecture and design. In
practice, direct deployment of the trained model on the low-
end edge devices for inference might result in slow inference
speed and increased memory footprints. (2) The Siamese
networks, such as the Slow-Fast [1], incur a higher compu-
tational and memory footprint than single-stream networks
like ResNet50, InceptionNeXt-Tiny and our proposed network
(see. Figure 1). (3) The single-stream multi-branch CNN [31]
networks with reduced parameters and theoretical GLOPS
show low throughput (audio frames/seconds) due to the high
memory access costs [33]–[35], and inefficient configuration
of small operators in the multi-branch design [35].

To address these issues, we focus on the design of a very
deep and parameter-efficient CNN architecture for general-
purpose audio recognition tasks that can be easily deployed on
edge devices. Unlike the Slow-Fast model proposed recently
[1], we rethink the design of CNN for audio recognition and
propose an efficient single-stream CNN architecture called
AudioRepInceptionNeXt by employing parallel multi-scale
separable convolutional kernels (see. Figure 2b).

The proposed model incurs lower computational and
memory footprints while maintaining similar performance as
the state-of-the-art CNN models. Additionally, the parallel
multi-scale convolutional kernels in the proposed model can
be rescaled to a single-scale convolutional branch during the

inference time that not only further reduces the computational
and memory footprints but also enhances the network
throughput by a significant margin while maintaining the
same performance as the original design. In this way, the
model can capture the local and global temporal-frequency
information via the multi-scale kernel designs during the
training while eliminating the side-effect of multi-scale kernel
design (i.e., slow inference speed and high memory access
costs) during the inference time. Such design allows the
simultaneous use of very large-scale kernels, e.g., 21 × 21,
and small-scale kernels, e.g., 3 × 3 [33], [36], [37] in the
parallel multi-scale branch of AudioRepInceptionNeXt during
training. This design also allows our model to capture the
global frequency semantic information and long-duration
activities, and local details of frequency information and short-
duration activities. We found that the proposed design takes
few parameters (26.68M vs. 11.69M), lower computational
complexity (5.55 GFLOPs vs. 2.55 GFLOPs), and higher
inference speed (796 samples/sec vs. 1019 samples/sec)
compared to the two-stream Slow-Fast model while achieving
similar performance with a marginal difference of 0.28% in
accuracy (see Figure 1).

Our contributions can be summarized as follow:

1) We address the computational inefficiency issues in
the multi-stream Slow-Fast model. We show that the
proposed single-stream multi-scale separable kernel ar-
chitecture, AudioRepInceptionNeXt, effectively reduces
the number of parameters and computational complexity
incurred by multi-stream network architecture, without
any performance degradation.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 3

2) We employ reparameterization techniques [33], [34],
[38] to further eliminate the side effect of multi-scale
kernel design (i.e., slow inference speed and high mem-
ory access costs) by converting it into a single separable
kernel during the inference, without any performance
drop.

3) We validate the effectiveness of the proposed AudioRe-
pInceptionNeXt on various audio classification tasks,
including sound event classification, speech command
classification, and music instrument classification. We
demonstrate that AudioRepInceptionNeXt can achieve
comparable or superior results as the state-of-the-art
CNN-based models on the variety of downstream tasks
[39] while saving half of the GFLOPs and memory
footprint.

The rest of this paper is organized as follows. In Section
II, we introduce literature on the state-of-the-art single-stream
and multi-stream CNN-based network for audio recognition.
In addition, we introduce the motivation for using model repa-
rameterization in this paper. Section III presents our proposed
AudioRepInceptionNeXt network, followed by the experiment
results in Section IV. Section V provides ablation studies with
the multi-branch design and the usage of large kernels. Finally,
we conclude our work with a conclusion and future work in
Section VI.

II. RELATED WORK

A. Single-Stream Architecture to Multi-Stream Architecture
Single-stream convolution neural network (CNN) is widely

used in audio recognition tasks including sound event classifi-
cation, speech recognition, and music classification [2], [40]–
[43]. There are two widely used approaches in single-stream
CNN-based audio recognition systems. The first approach
treats the raw audio waveform as input and utilizes a single-
stream CNN to extract the feature for classification [5], [18],
[43], [44]. Wav2vec [43] is a representation work in this
regard that takes the 1D audio signal as input and trains a
1D CNN in an unsupervised contrastive manner to learn the
intermediate audio representation for speech recognition. The
second approach first preprocesses the 1D audio signal into a
2D time-frequency Mel-spectrogram followed by feeding it to
the 2D CNN [3], [21], [45], [46].

On the other hand, multi-stream architectures simultane-
ously work with either single or multimodal data such as
raw audio and spectral features of audio [1], [23], [47].
Slow-Fast model [1] is a representative work that uses two-
stream network architecture to capture both frequency and
fine-grained temporal information from two different resolu-
tions of the Log-Mel-Spectrogram independently. Their results
demonstrated that the performance of the two-stream network
outperforms the state-of-the-art single-stream network.

Although the above-mentioned single-stream and two-
stream networks demonstrate promising results in audio recog-
nition, they incur high computational and memory footprints
during training and inference, which hinder their deployment
on low-resource edge devices, such as smartphones. There-
fore, it is imperative to explore a lightweight and parameter-
efficient single-stream network that can achieve comparable

results with the single-stream and two-stream networks while
achieving low computational and memory footprints. In this
work, we propose a parallel multi-scale convolutional kernel
block to enrich the temporal and frequency feature repre-
sentation during the training. This results in a single-stream
CNN-based network architecture with lower parameters and
computational footprints. The proposed design further enables
the use of model reparameterization by combining multiple
kernels into a single kernel during inference without any loss
of performance.

B. Model Re-parameterization

Model Reparameterization [33], [34], [38] approaches sim-
plify complex multi-branch network architecture into a single-
branch network structure during the model inference stage,
without sacrificing performance. These approaches enable
the use of the complex network architecture for learning
efficient feature representations during the training stage and
a simplified and parameters-efficient network during the in-
ference stage. For instance, RepVGG [34] proposed extra
1 × 1 convolutional layers parallel to the 3 × 3 convolution
layers in the original VGG network to learn richer feature
representations during the training. After the training, the
additional 1 × 1 layers are merged with the 3 × 3 layers via
linear transformations of convolution, resulting in a VGG-like
model with no extra parameters or computational cost during
inference. RepVGG has been shown to outperform the original
VGG model without adding any inference-time cost. Similarly,
the Diverse Branch Block (DBB) method proposed in [38]
enhances the representation capacity of a single convolution
by combining multiple branches of varying complexities to
enrich the feature representation. The DBB block includes
a sequence of convolutions, multi-scale convolutions, and
average pooling during training, which can be converted into
a single convolutional layer using the linear transformation
properties of convolution. Inspired by the success of RepVGG
and DBB, RepLKNet [33] employed a similar technique by
using a large kernel and a small kernel in parallel during
training. After training, the small kernel is absorbed into
the large kernel, enabling the large kernel to capture both
global and local information resulting in improved the model’s
performance.

Our motivation for model reparameterization differs from
these previous works in one important way. We have discov-
ered that the inference speed of the multi-branch architecture
designs without reparameterization does not correlate closely
with the number of model parameters and GLOPs (see. Table
II). For example, the multi-branch architecture designs before
reparameterization, such as InceptionNeXt [48] and the pro-
posed AudioRepInceptionNeXt, is slower compared to other
models like the multi-stream Slow-Fast model, despite having
lower parameters and GFLOPs. We attribute this discrepancy
in speed to the increased memory access and synchronization
time required by the multi-branch design [35]. Therefore, the
reparameterization approach adopted in our work focuses on
addressing the issue of optimizing the memory access and
synchronization time of multi-branch designs. By optimizing



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 4

(a) Slow-Fast Model vs. AudioRepInceptionNeXt

(b) AudioRepInceptionNeXt Block (Left); AudioRepInceptionNeXt (2D) Block (Right)

Fig. 2. (a) Architecture of the Slow-Fast Model (Upper) and AudioRepInceptionNeXt (Bottom); (b) AudioRepInceptionNeXt Block during the training (Left)
and Structural Re-parameterization of AudioRepInceptionNeXt Block after the training (Right); AudioRepInceptionNeXt (2D) (Right side of the dotted line)
DW-Conv represents the depth-wise convolution and other notations can be found in Section III.

memory access and synchronization time in this way, the
reduction in the number of model parameters and GLOPs
becomes highly correlated with the increase in inference speed
in multi-branch CNN design.

III. METHODOLOGY

In this section, we first describe the macro architecture
design of the proposed AudioRepInceptionNeXt, followed by
the micro block design in detail. We then provide a complexity
analysis of the AudioRepInceptionNeXt Block.

A. Model Architecture
In this work, we use a typical hierarchical architecture

design as depicted in Fig. 2 and the details are listed in Table

I. The hyperparameters of the model are listed as follows:

• Si: the stride used in the convolutional layer in the input
stem and in the downsampling layers in stage i;

• Ki: the kernel size of the convolutional layer in the input
stem and in the downsampling in stage i;

• Ci: the number of output channels of stage i;
• Ei: the channel expansion ratio of inverted bottleneck in

stage i;
• Li: the number of blocks in stage i;

1) Model Input: As depicted in Figure. 2a, AudioRepIn-
ceptionNeXt accepts the 2D audio mel-spectrogram as input
with resolution T ×F . Unlike images, the width and height of
the Mel-spectrogram represent distinct information, in which



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 5

TABLE I
DETAIL SETTINGS OF AUDIOREPINCEPTIONNEXT.

Output Size Layer name AudioRepInceptionNeXt-B0 AudioRepInceptionNeXt-B1

Stage 1 T
4
× F

4

stem S1 = (2, 2);K1 = (5, 7)
Max pooling layer S2 = (2, 2);K2 = (3, 3)

Embed. Dim C1 = 32 C1 = 64

Convolution Encoder
C2 = 32
L2 = 3
E2 = 4

C2 = 64
L2 = 3
E2 = 4

Stage 2 T
8
× F

8

Downsampling S3 = (2, 2);K3 = (1, 1)

Convolution Encoder
C3 = 64
L3 = 4
E3 = 4

C3 = 128
L3 = 4
E3 = 4

Stage 3 T
16

× F
16

Downsampling S4 = 2;K4 = (1, 1)

Convolution Encoder
C4 = 128
L4 = 6
E4 = 4

C4 = 256
L4 = 6
E4 = 4

Stage 4 T
32

× F
32

Downsampling S1 = (2, 2);K1 = (1, 1)

Convolution Encoder
C5 = 256
L5 = 3
E5 = 4

C5 = 512
L5 = 3
E5 = 4

T and F axes correspond to the time and frequency bin, re-
spectively. The time axis is generally longer than the frequency
axis.

2) Marco Design: Adhering to the design of ResNet50
[49], our model comprises an input stem layer and four
subsequent AudioRepInceptionNeXt stages. The first stem
layer consists of a 5 × 7 convolutional layer with a stride
of 2 on both the time and frequency axis and output feature
maps with 64 channels. It is followed by a 3×3 Max-pooling
layer with stride 2. The spatial resolution of the output feature
maps after these two layers is 4 times lower compared to the
spatial resolution of input to the network. Except for stage 1,
each stage starts with the downsampling convolutional layer
having 1×1 kernel and a stride of 2. The downsampling layer
is subsequently followed by an AudioRepInceptionNeXt block
that contains a 1×1 convolution layer and a parallel separable
kernel with kernel sizes of 21, 11, and 3. Similar to ConvNeXt
[37], we adopted an inverted bottleneck design in each of the
AudioRepInceptionNeXt blocks, where the width of the 1× 1
MLP layer (expansion layer) is four times wider (along the
channel dimensions) than the width of the input (along the
channel dimension), as shown in Fig.2b (left).

B. AudioRepInceptionNeXt Block

In this section, we describe the main components of the
AudioRepInceptionNeXt block.

1) Parallel multi-scale kernel: As mentioned in Section
I, the key property of the Slow-Fast model is utilizing two
streams of the CNN network in parallel to capture the temporal
and frequency information at different scales. In contrast,
we adopted the multi-branch design, motivated by the visual
CNN-based InceptionNet [50], which allows us to capture the
temporal and frequency information at multiple scales with a
single stream network. However, unlike the InceptionNet, we
aim to use large-size kernels in the multi-branch layers, e.g.,
21 × 21 and 11 × 11, in conjunction with small-size kernels,
e.g., 3 × 3 and 1 × 1. The large kernel (i.e., 21 × 21 and
11 × 11) captures the global-frequency semantic information
and long-duration activities, while the small kernel (i.e., 3×3)

captures the local-frequency information and short-duration
activities. Finally, all the feature maps are added and passed
to the 1 × 1 layers for channel-wise information exchange.
However, naı̈vely using the large kernels may incur high
computational costs. To tackle this issue, we use depthwise
separable convolutional kernel design as explained in the
following subsection.

2) Depthwise Separable Kernel: As the parallel large ker-
nel convolutional layers incur high computational costs in
terms of the number of network parameters, we adopt the
separable kernel design with depth-wise convolution (DW-
Conv) following [1], [32]. It should be noted that our design
of depthwise separable kernels refers to the decomposition
of the 2D depthwise kernel and not to the conventional 2D
depthwise separable kernels [51] (that employ 2D depthwise
convolution following the 1× 1 convolution). We decompose
the 2D depthwise convolutional kernels, k × k, into 1 × k
and k × 1 as shown in Fig.2b (left). However, instead of
using a cascaded 1 × k and k × 1 architecture design, we
first aggregate the multi-scale temporal features obtained by
applying 1 × k, followed by aggregating the multi-scale fre-
quency features obtained by applying the k × 1 kernel. This
design helps in obtaining two separable kernels 1 × k, and
k×1 after applying the reparameterization technique resulting
in faster inference speed. In addition to reducing the memory
footprint and computational time, previous studies [1], [32]
have demonstrated that the use of such types of separable
kernels allows the model to extract temporal and frequency
information independently, leading to improvements in audio
classification tasks. The reason is that the statistics of the
spectrogram are not homogeneous, unlike natural images. We
conducted a similar experiment within our network to verify
the advantages of utilizing separable kernels, as discussed in
Section IV-F.

3) Inverted Bottleneck: In the conventional design of the
inverted bottleneck [52], [53], the number of channels in the
hidden layer was four times the input channels. However, with
large kernels e.g., 21, and 11, this design incurs increased
computational cost. Unlike these methods, we place the par-
allel multi-scale depthwise separable kernel at the top before



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 6

Fig. 3. Re-parameterization of the horizontal multi-scale kernel in the AudioRepInceptionNeXt Block. Here we assume all the layers have the same number
of input channels, output channels, and stride size.

applying the 1×1 expansion layer with expansion ratio Ei for
channel-wise information exchange following the ConvNeXt
design.

4) Identity shortcut: Shortcut connections make the model
an implicit ensemble of numerous shallower models [33],
[54], such that the model can benefit from the different
receptive fields. We demonstrate that shortcuts can improve the
performance of AudioRepInceptionNeXt by 0.67% in VGG-
Sound audio event classification [39] as shown in section V.

C. Reparameterization for Inference time model

We employ the AudioRepInceptionNeXt depicted in Figure
3(a) during the training stage to learn feature representations
from audio signals. During the inference stage, we first ap-
ply the reparameterization technique to convert the multi-
branch AudioRepInceptionNeXt blocks into a single-branch
reparametrized block as shown in Figure 3(b).

In this subsection, we describe how to convert the trained
multi-branch kernels with varying scales into a single kernel
(i.e., 1 × k and k × 1) for inference as shown in figure 3(b).
Here we use the horizontal 1 × k kernels as an example. A
similar operation can be applied to the vertical k × 1 kernel.
One can see from Figure 3(b) we use three horizontal kernels
of size 1×21, 1×11, and 1×3. Specifically, we use W (21) ∈
RCin×Cout×1×21 to denote the kernel of a 1× 21 convolution
layer with Cin input channels and Cout output channels,
W (11) ∈ RCin×Cout×1×11 and W (3) ∈ RCin×Cout×1×3 for

kernel 1× 11 and 1× 3, respectively. We use µ(i), σ(i), α(i),
and β(i), where i ∈ 3, 11, 21, as the mean, standard deviation,
learned scaling factor and bias of the batch normalization (BN)
layer following the 1×21, 1×11 and 1×3 convolution layers.
Let F (1) ∈ RN×Cin×H1×W1 and F (2) ∈ RN×Cout×H2×W2

be the input and output features of the multi-scale horizontal
convolution layers, respectively. N , H and W represent the
batch size, height and width of the feature map, respectively.
We assume Cin = Cout, H1 = H2, and W1 = W2 for
simplifying the calculation. Before the re-parameterization, the
output of the multi-branch horizontal convolution layers can
be obtained by using the following equation.

F (2) = BN{F (1) ∗W (21), µ(21), σ(21), α(21), β(21)}
+BN{F (1) ∗W (11), µ(11), σ(11), α(11), β(11)}
+BN{F (1) ∗W (3), µ(3), σ(3), α(3), β(3)},

(1)
where

BN(F, µ, σ, α, β):,j,:,: = (F:,j,:,: − µj)
αj

σj
+ βj . (2)

Note that the identity branch is ignored in the equation 1 for
simplifying the calculation. In equation 1, the ∗ represents the
convolution operation. In equation 2, BN(.) and j represent
the batch normalization function and output channel index,
respectively. F:,j,:,: represents the jth feature map output by
the layer preceding the batch normalization layer. Note that the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 7

sub-indices of the BN(.) function and F follow the following
order: batch size, output channel, height of the feature map,
and width of the feature map. We first convert every BN layer
and its corresponding horizontal convolution layer into a single
convolution layer with a bias term. Let W̄ (i) and b̄(i) be the
kernel and the bias term after the combination, respectively.
The kernel weight and bias can be obtained via the following
equation.

W̄
(i)
j,:,:,: =

αj

σj
Wj,:,:,:, (3)

b̄
(i)
j = −µjαj

σj
+ βj . (4)

Note that the sub-indices of the kernel weight W̄ (i)
j,:,:,: follow

the following order: output channel, input channel, height of
the kernel, and width of the kernel. After the combination,
the output of each branch can be obtained by the following
equation.

BN(F (1) ∗W (i), µ(i), σ(i), α(i), β(i)):,j,:,:

= (F (1) ∗ W̄ (i)):,j,:,: + b̄
(i)
j .

(5)

After the combination of the BN layer and its corresponding
convolution layer, we can obtain three convolutional layers
with horizontal kernel and three bias terms. Then we obtain
the final 1 × 21 kernel by adding the 1 × 11 and 1 × 3 onto
the central point of the 1 × 21 kernel and the final bias term
by adding three bias terms together. The final kernel weight
and bias can be obtained by the following equation.

W̄
(21)
j,:,:,: =

i∑
n=1

αn
j

σn
j

Wn
j,:,:,:, (6)

b̄
(21)
j =

i∑
n=1

−
µn
j α

n
j

σn
j

+ βn
j . (7)

Before adding both the small kernels to the large kernel, we
apply zero padding to both small kernels such that they have
the same kernel size as 1× 21. Note that such transformation
requires the 1× 11 and 1× 3 layer to have the same stride.

D. Comparison to Multi-stream Slow-Fast model

Compared to the current state-of-the-art CNN-based Slow-
Fast model [1], our new proposed network uses a single-
stream architecture instead of two-stream architecture. Our
21 × 1 and 1 × 21 large separable kernel can focus on
the global-frequency semantic information and long-duration
activities inherent in the similar functionality of the Slow
model. Meanwhile, the 3 × 1 and 1 × 3 separable kernels
act as a Fast model that captures the local-frequency semantic
information and short-duration activities. The major benefit
of using the single-stream network is that the computational
complexity and memory footprint can be reduced by 54%
and 56%, respectively, compared to the two-stream slow-
fast model. In contrast, our network can achieve comparable
performance as the slow-fast model. The following section
will provide the complexity analysis of the new proposed
architecture.

IV. EXPERIMENT

A. Pretraining Dataset

VGG-Sound. VGG-Sound [39] is a large-scale audio
dataset extracted from YouTube videos. It contains more than
200K audio clips each with 10 seconds duration sampled at
16KHz. There are a total of 309 classes which include the
sound emitted from objects, human actions, and interactions.

B. Downstream Task Datasets

EPIC-KITECHENS-100. EPIC-KITECHENS-100 [55] is
a large-scale egocentric audio-visual dataset, which captures
daily activities in the kitchen. The videos are being recorded in
45 different kitchens and contain 100 hours of data. It includes
90K trimmed action clips and they capture the hand-object
activities. The ground-truth labels are formed by a verb and a
noun (e.g., move tap, open kettle, and open bin). There are 97
verb classes and 300 noun classes in total. Most of the actions
are short-duration (average action length is 2.6 seconds). The
audio is sampled at 24kHz.

EPIC-Sound. EPIC-Sound [56] is a large-scale audio event
classification dataset that is re-annotated from the EPIC-
KITCHENS-100 dataset. Unlike EPIC-KITCHENS-100, the
actions in EPIC-Sound can be discriminated purely from the
audio, for example, cutting food instead of cutting tomatoes.
This dataset includes 75.9k segments of audible events and
actions with 44 classes.

Speech Commands V2 (KS2). Speech Commands V2 [57]
is an automatic speech commands recognition dataset that
contains more than 100K audio clips with 1 second for each
of them. It also contains 35 common speech commands for
the recognition task.

UrbanSound8K (Urban8K). UrbanSound8K [58] is a ur-
ban sound event classification dataset. It contains 8K labeled
sound excerpts with less than 4 seconds for each clip and 10
urban sound classes.

NSynth. Nsynth [4] is an audio dataset containing 305,979
musical notes and each of them with a unique pitch, timbre,
and envelope. The sounds were collected from 1006 instru-
ments from commercial sample libraries and annotated based
on their source, instrument family, and sonic qualities. There
are 11 instrument families in total.

C. Training and Validation Details

We follow the same training strategy as the baseline Slow-
Fast model [1], i.e., we pretrain our models on the VGG-
SOUND dataset [39] followed by fine-tuning it on the down-
stream tasks datasets. The input audio signal is first converted
into a Log-Mel spectrogram with 128 Mel bands before
feeding it to the network. During both the pretraining and fine-
tuning stages, we applied the augmentation methods proposed
in SpecAugment [17] following the common practice as in [1],
[10]–[12]. These augmentations include frequency masking,
time masking, and time warping. All the models are trained
with a batch size of 32 on 4x NVIDIA RTX3090 GPUs during
the pretraining and fine-tuning stages.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 8

TABLE II
COMPARISON WITH CNN-BASED SOTA METHODS ON VGG-SOUND EVENT CLASSIFICATION PRETRAINING DATASET. REPARAM STANDS FOR

RE-PARAMETERIZATION. PARAM STANDS FOR PARAMETER SIZE. GFLOPS STANDS FOR FLOATING POINT OPERATIONS. TP STANDS FOR THROUGHPUT.
TOP-1 STANDS FOR TOP-1 ACCURACY, TOP-5 STANDS FOR TOP-5 ACCURACY, MAP STANDS FOR MEAN AVERAGE PRECISION AND AUC STANDS FOR

AREA UNDER CURVE. NOTE THAT THE MODELS ARE SEPARATED BY THE MODEL SIZE. THE UPPER THREE ROWS REPRESENT THE SMALL MODEL SIZE,
WHILE THE REMAINING ROWS REPRESENT THE LARGE MODEL SIZE.

Model Reparam (M) Param (M) GFLOPs TP (GPU) TP (CPU) Top-1 Top-5 mAP AUC d-prime
BCResNets-8 [59] N/A 0.39 1.45 492 5.62 46.42 73.70 35.6 95.8 2.45
BN-InceptionNetV1 [60] N/A 6.35 1.86 2031 12.10 50.85 77.20 53.2 97.3 2.73
AudioRepInceptionNeXt-B0 (ours) ✗ 2.18 0.49 1399 11.80 49.25 76.33 52.1 97.5 2.77
AudioRepInceptionNeXt-B0 (ours) ✓ 2.11 0.46 2245 16.40 49.25 76.33 52.1 97.5 2.77
Slow-Fast (baseline) [1] N/A 26.68 5.55 796 6.90 52.24 78.14 54.4 97.5 2.76
RepLKNet-31T [33] ✗ 29.52 7.86 279 0.41 52.22 78.03 54.4 97.5 2.78
RepLKNet-31T [33] ✓ 29.32 7.79 295 0.43 52.22 78.03 54.4 97.5 2.78
ResNet50 [46] N/A 24.13 5.26 915 7.80 52.07 77.72 54.1 97.3 2.74
InceptionNeXt-Tiny [48] N/A 24.20 5.46 682 7.70 50.16 76.28 52.5 97.4 2.75
AudioRepInceptionNeXt-B1(2D) ✗ 13.70 3.52 529 0.91 51.26 77.54 53.4 97.5 2.77
AudioRepInceptionNeXt-B1 (2D) ✓ 13.19 3.27 666 0.95 51.26 77.54 53.4 97.5 2.77
AudioRepInceptionNeXt-B1 (ours) ✗ 11.83 2.62 700 6.10 51.96 77.86 54.0 97.6 2.79
AudioRepInceptionNeXt-B1 (ours) ✓ 11.69 2.55 1019 7.50 51.96 77.86 54.0 97.6 2.79

1) Pretraining: For the pretraining stage, we follow the
baseline Slow-Fast model experiment setting [1] and randomly
pick a sample of 5.12 seconds from the audio signal followed
by feeding it to the Log-Mel filter banks with a window size of
20ms, and a hop length of 10ms. This results in a spectrogram
of size 512 × 128, which is given as an input to the model. We
follow the training setting described in [1] to train the models
using an SGD optimizer for 50 epochs with a momentum of
0.9 and an initial learning rate of 0.01. We drop the learning
rate by 0.1 at epochs 30 and 40.

2) Fine-Tuning: We use the same strategy as [1] in the fine-
tuning stage. We attach a linear prediction head on top of the
VGG-Sound pre-trained backbone model to classify the target
classes in different fine-tuning datasets. We froze all the batch
normalization layers except the first one in the stem layer and
fine-tuned the whole model. We use the same optimizer setting
as the pretraining stage, except the initial learning rate is set
to 0.001, which is reduced after 20 and 25 epochs by a factor
of 0.1. The model is finetuned for 30 epochs.

For the EPIC-KITECHENS-100, we follow the setting
described in [1] and randomly pick 2.08 seconds of audio
and apply a Log-Mel-Filter bank with a window size of 10ms
and a hop length of 5ms. This results in a spectrogram of
size 416×128 which is fed to the model as an input. Note that
due to the need to downsample the spectrogram by a factor
of 32 in our proposed model, adjustments were made to the
sampling time, resulting in a slightly longer duration of 2.08
seconds. For EPIC-SOUND, we follow the setting described
in [56] and apply a mel-log-filter bank with a window size of
10ms and a hop length of 5ms. However, we randomly pick
2.08 seconds instead of 2 seconds as stated in [56] to account
for the downsampling stage in our model. This results in a
spectrogram of size 416×128. For KS2 dataset, which has a
maximum audio length of 1.023 seconds, we use a similar
windows size of 5ms and hop length of 2ms in [56]. This
results in a spectrogram of size 512×128. For NSYNTH and
Urban8K datasets, following the setup for the VGG sound
dataset in [1], we randomly pick a sample of 4.16 seconds
from the audio signal and apply a Log-Mel-Filter bank with a
window size of 20ms and a hop length of 10ms. This results
in a spectrogram of size 416×128.

D. Evaluation Metrics

For the evaluation of the VGG-Sound classification task,
we follow the protocol of [1], [2], [39] and report the top-1
accuracy, top-5 accuracy, mean average precision (mAP), area
under curve (AUC) and d-prime. For the evaluation of the
EPIC-Sounds, KS2, Urban8K, and Nsynth, we report the top-1
and top-5 accuracy. For the EPIC-KITCHENS-100, we follow
the evaluation method in [55] and report the top-1 and top-
5 accuracy of verb and noun classes. Additionally, we report
the top-1 and top-5 accuracy on unseen audio clips in EPIC-
KITCHENS-100 to test the generalization ability of the fine-
tuned model.

For the measurement of the GPU inference speed (sam-
ple/secs), we test all the models on an NVIDIA RTX3090
using a batch size of 32. We first feed 50 batches to warm up
the hardware, followed by 50 batches to record the average
running time. To measure the CPU inference speed, we con-
duct the tests on Intel®Xeon®Gold 6226R CPU @ 2.90GHz
using a batch size of 1. The tests are performed using a single
thread, and we record the average time after the 50 rounds.

E. Effects of Re-parametrization

To verify the effectiveness of the re-parametrization in our
proposed AudioRepInceptionNeXt, we perform the compari-
son against the state-of-the-art (SOTA) methods. The compar-
ison is performed in terms of the parameter size, GFLOPs,
throughput, and top-1 accuracy before and after the re-
parametrization. We report the results in Table II. One can see
that before reparameterization, AudioRepInceptionNeXt-B1 is
12% and 23% slower than the Slow-Fast [1] and ResNet50
[46] respectively, and 60% faster than RepLKNet [33]. We
conjecture the low throughput of AudioRepInceptionNeXt is
due to its complicated multi-branch design although it incurs
lower parameters and theoretical GFLOPs than SlowFast and
ResNet50. As discussed in [33]–[35], the large kernel with
depthwise convolution increases the memory access costs.
Additionally, as mentioned in [35], small operators (i.e.,
individual convolution (e.g., 1 × 1) and pooling operations)
with multi-branch design are less efficient on GPUs and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 9

TABLE III
TRANSFER LEARNING RESULTS ON EPIC-SOUNDS, KS2, URBAN8K AND NSYNTH. NOTE THAT THE MODELS ARE SEPARATED BY THE MODEL SIZE.

THE UPPER THREE ROWS REPRESENT THE SMALL MODEL SIZE, WHILE THE REMAINING ROWS REPRESENT THE LARGE MODEL SIZE.

Model Param (M) GFLOPs EPIC-Sounds KS2 Urban8K Nsynth
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

BCResNet-8 [59] 0.33 1.17 52.91 84.08 95.80 99.19 84.82 98.73 76.13 95.44
BN-InceptionNetV1 [60] 6.07 1.51 53.81 85.00 96.84 99.30 82.41 98.39 78.09 94.21
AudioRepInceptionNeXt-B0 2.02 0.37 53.43 84.77 97.11 99.45 82.33 98.15 78.94 96.58
Slow-Fast (baseline) [1] 26.06 4.50 52.84 83.12 97.30 99.37 81.83 97.13 77.49 96.32
RepLKNet-31T [33] 29.18 6.33 52.79 82.40 97.01 99.48 83.40 98.10 78.48 96.75
ResNet50 [46] 23.59 4.27 52.57 82.77 97.17 99.37 80.62 97.96 77.56 96.36
InceptionNeXt-Tiny [48] 24.00 4.43 51.24 81.73 96.94 99.34 82.08 97.54 77.24 96.68
AudioRepInceptionNeXt-B1 (2D) 13.05 2.65 51.97 82.35 96.83 99.38 81.93 97.75 77.33 97.47
AudioRepInceptionNeXt-B1 (ours) 11.55 2.07 52.74 83.22 97.20 99.39 83.44 98.13 77.28 97.00

introduce extra kernel launching and synchronization over-
head thus reduces the degree of parallelism on GPU. In our
AudioRepInceptionNeXt block, the separable kernels of size
1× 11, 1× 3, 11× 1, and 3× 1 are relatively small operators
compared to 1 × 21 and 21 × 1. To address these issues,
we employ the re-parametrization technique, as discussed
in Section III-C, that results in a network style similar to
ResNet50, as shown in Figure 2b. One can see from Table
II that the reparametrized version of AudioRepInectionNeXt
achieves 1.28×, 1.11×, and 3.65× improvement in throughput
compared to the Slow-Fast, ResNet50, and RepLKNet respec-
tively while maintaining comparable performance. Notably,
the re-parametrization technique does not impact the accuracy,
and results in lossless compression of the model. In the rest
of the sections, we report the evaluation of the reparametrized
version of AudioRepInceptionNeXt.

F. Comparison against the CNN-based baselines on VGG
Sound pretraining

We compare the performance of AudioRepInceptionNeXt
against the CNN-Based baselines that include BCResNet-8
[59], BN-InceptionNet [60], ResNet [46], Slow-Fast model [1],
InceptionNeXt [48], RepLKNet [33] and 2D AudioRepIncep-
tionNeXt(without any separable convolution kernel and with
branch configurations of 21× 21, 11× 11 and 3× 3 kernels)
as shown in Figure 2b (Right). To ensure a fair comparison,
we downscaled the original RepLKNet-31B model, with 79M
parameters, to the RepLKNet-31T model with 29.3M parame-
ters. This downsizing involved reducing the channel size to 64,
128, 320, and 512 for model stages 1 to 4, respectively. All the
evaluation is performed on the VGG-Sound event classification
dataset. We report the results in Table II.

Our key findings include: First, the proposed AudioRe-
pInceptionNeXt demonstrates a remarkable reduction in the
number of parameters and theoretical GFLOPs while achiev-
ing comparable or superior performance compared to other
CNN-based methods. For instance, when compared to the
multi-stream Slow-Fast model, AudioRepInceptionNeXt-B1
achieves a 56% reduction in parameters and 54% reduction
in theoretical GLOPs, with only a slight performance drop
of 0.28%. Similarly, in comparison to multi-branch large
kernel InceptionNeXt-Tiny, our proposed model achieves a
52% reduction in parameters and a 53% reduction in GFLOPs

while attaining a higher accuracy of 1.8%. Furthermore, when
compared to 2D large kernel-based RepLKNet-31T, our model
achieves comparable accuracy with a difference of only 0.26%
while saving 71.05% of parameters and 68% of GFLOPs.
Additionally, compared to the 2D version of the proposed
AudioRepInceptionNeXt-B1, our model achieves a 0.7%
higher accuracy while saving 11% of model parameters and
22% of GFLOPs. This result is consistent with the findings in
[1], [32], demonstrating that the model with separable kernels
performs better by enabling the extraction of temporal and fre-
quency information independently. Second, our model demon-
strates the fastest inference speed on GPU compared to other
CNN-based baselines, aligning with the theoretical GFLOPs.
The proposed AudioRepInceptionNeXt-B0 obtains 2245 fps
(vs. 2031 fps and 492 fps obtained by BN-InceptionNetV1 and
BCResNet-8, respectively), while AudioRepIncetpionNeXt-
B1 obtains 1019 fps (vs.796 fps obtained by Slow-Fast). Third,
the proposed AudioRepInceptionNeXt-B1 achieves a higher
inference speed on the CPU compared to the Slow-Fast model,
RepLKNet-31T, AudioRepInceptionNeXt-B1 2D, and BN-
InceptionNetV1, while maintaining a comparable performance
with Slow-Fast and RepLKNet-31T. We also note that the
CPU inference speed of AudioRepInceptionNeXt-B1 is com-
parable to ResNet50 and InceptionNeXt-Tiny while surpassing
InceptionNeXt-Tiny in terms of accuracy and achieving com-
petitive accuracy compared to ResNet50. When comparing the
inference speeds of ResNet50 and AudioRepInceptionNeXt-
B1 on CPU and GPU, we conjecture that the difference in
the inference speed among these models can be attributed to
the optimized implementation of depthwise convolution on
GPU compared to CPU, as discussed in [61]. Additionally,
the disparity in arithmetic intensity (the ratio of compute
to memory operations), as mentioned in Section IV-E, also
contributes to the observed variations in speed on GPU and
CPU. These findings highlight the superior performance of
AudioRepInceptionNeXt in terms of parameter efficiency,
theoretical GFLOPs, and inference speed compared to other
CNN-based baselines.

G. Performance on Downstream task datasets
To verify the conclusion from Section IV-F, we conduct

transfer learning experiments on multiple datasets: Speech
Command V2 [57], UrbanSound8K [62], EPIC-KITCHEN-
100 [55], NSynth [4] and EPIC-Sound [56]. As shown in Table



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 10

TABLE IV
TRANSFER LEARNING RESULTS ON EPIC-KITCHENS-100.NOTE THAT THE MODELS ARE SEPARATED BY THE MODEL SIZE. THE UPPER THREE ROWS

REPRESENT THE SMALL MODEL SIZE, WHILE THE REMAINING ROWS REPRESENT THE LARGE MODEL SIZE.

Overall Unseen Participants
Top-1 Accuracy Top-5 Accuracy Top-1 Accuracy

Model Param (M) GFLOPs Verb Noun Action Verb Noun Action Verb Noun Action
BCResNet-8 [59] 0.41 1.17 42.26 18.14 1.99 77.72 42.00 2.19 37.18 17.84 2.44
BN-inceptionNetV1 [60] 6.44 1.51 44.68 21.03 12.90 79.94 46.36 27.77 38.30 17.27 9.67
AudioRepInceptionNeXt-B0 2.14 0.37 46.34 20.71 13.51 80.52 46.75 29.77 40.85 17.28 9.86
Slow-Fast (baseline) 26.88 4.33 46.86 22.98 15.52 80.12 47.58 30.17 39.62 17.28 10.52
RepLKNet-31T [33] 29.36 6.33 47.33 23.46 16.12 80.25 47.95 30.75 40.00 17.37 9.48
ResNet50 [46] 24.32 4.28 46.03 22.79 15.21 80.71 47.83 30.06 40.84 16.24 9.76
InceptionNeXt-Tiny [48] 24.27 4.43 44.72 21.80 14.07 79.27 45.93 28.18 38.77 15.96 9.10
AudioRepInceptionNeXt-B1 (2D) 13.23 2.65 46.89 22.37 15.01 79.95 48.12 31.09 40.46 16.99 9.57
AudioRepInceptionNeXt-B1 11.73 2.07 47.57 22.14 15.42 80.45 48.06 31.17 39.62 17.00 9.57

TABLE V
MODEL SIZE AND INFERENCE TIME COMPARISON BETWEEN CNN-BASED METHODS AND AUDIOREPINCEPTIONNEXT ON THE MOBILE DEVICE. LOWER
INFERENCE TIME IS BETTER. NOTE THAT THE MODELS ARE SEPARATED BY THE MODEL SIZE. THE UPPER THREE ROWS REPRESENT THE SMALL MODEL

SIZE, WHILE THE REMAINING ROWS REPRESENT THE LARGE MODEL SIZE.

Model Param (M) GFLOPs Model Size (MB) Inference Time (ms)
BCResNet-8 [59] 0.33 1.17 1.6 227
BN-InceptionNetV1 [60] 6.35 1.86 25 114
AudioRepInceptionNeXt-B0 (ours) 2.11 0.46 9 59
Slow-Fast (baseline) [1] 26.68 5.55 106 317
RepLKNet-31T [33] 29.32 7.79 117 2136
ResNet50 [46] 24.13 5.26 96 310
InceptionNeXt-Tiny [48] 24.20 5.46 97 357
AudioRepInceptionNeXt-B1 (2D) 13.19 3.27 53 615
AudioRepInceptionNeXt-B1 (ours) 11.69 2.55 47 232

Fig. 4. Mobile runtime application development flow by using the ONNX
Runtime library.

III and Table IV, our proposed model achieves comparable
performance to the multi-stream Slow-Fast model in terms of
accuracy on four transfer learning datasets, while saving 56%
and 54% of parameters and GFLOPs, respectively. Moreover,
when compared to the Urban8K dataset our model outperforms
the Slow-Fast model by 1.61% in terms of top-1 accuracy.
Additionally, when compared to other CNN-based methods,
our methods achieve comparable or superior performance in
terms of accuracy, while having the lowest parameters count

and computational GFLOPs. These results indicate that our
model can learn the rich representations that are applicable to
different domains and are robust when transferred to various
audio understanding tasks. These findings are also aligned with
the results obtained from the pretraining on the VGG Sound
dataset, as discussed in section IV-F.

H. Implementation on Mobile Devices

To evaluate the inference speed on the mobile device,
we deploy all models on an Android mobile platform.
The implementation procedure is summarized in Fig.4. We
first convert the PyTorch models to the Open Neural Net-
work Exchange (ONNX) format [63]. It is an open-source
machine-independent format compatible with different hard-
ware, drivers, and operating systems. We then utilize the
Android development tools, specifically Android Studio and
Kotlin, to build an application interface for conducting the
speed evaluation. To run the ONNX models on Android mobile
devices, we leverage the ONNX Runtime mobile package.
It provides a lightweight and optimized runtime specifically
designed for mobile platforms. During the evaluation, we run
all models on Redmi Note 9 Pro smartphone with Snapdragon
720G SoC with floating point 32. Specifically, we feed an input
with a batch size of 1 and record the average inference time
by processing 50 batches.

I. Runtime Performance on Mobile Devices

As shown in Table V, our model demonstrates superior per-
formance in terms of inference speed and model size on mobile
devices compared to other state-of-the-art CNNs. Notably, the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 11

TABLE VI
ABLATION STUDY ON THE DESIGN OF MULTI-BRANCH LARGE KERNEL.

Structure 3× 3 11× 11 21× 21 31× 31 Identity Inverted Bottleneck Param (M) GFLOPs Throughput Top-1 Top-5 mAP AUC d-primeBefore Rep. After Rep. Before Rep. After Rep. Before Rep. After Rep.
s1 ✓ ✗ ✗ ✗ ✓ ✓ 11.56 11.54 2.49 2.48 1118 1175 51.40 77.79 53.82 97.43 2.75
s2 ✗ ✓ ✗ ✗ ✓ ✓ 11.62 11.60 2.52 2.51 1048 1101 51.55 77.46 53.76 97.50 2.77
s3 ✗ ✗ ✓ ✗ ✓ ✓ 11.69 11.68 2.55 2.55 971 1019 51.36 77.83 53.54 97.61 2.79
s4 ✓ ✗ ✓ ✗ ✓ ✓ 11.73 11.69 2.57 2.55 833 1019 51.60 77.74 53.87 97.55 2.78
s5 ✗ ✓ ✓ ✗ ✓ ✓ 11.79 11.69 2.60 2.55 794 1019 51.64 77.68 53.66 97.55 2.78
s6 ✓ ✓ ✓ ✗ ✓ ✓ 11.83 11.69 2.62 2.55 701 1019 51.96 77.86 53.97 97.58 2.79
s7 ✓ ✓ ✓ ✓ ✓ ✓ 12.08 11.69 2.74 2.55 554 1001 51.49 77.77 54.23 97.58 2.79
s8 ✓ ✓ ✓ ✗ ✗ ✓ 11.83 11.69 2.62 2.55 727 1076 51.29 77.44 53.68 97.62 2.80
s9 ✓ ✓ ✓ ✗ ✓ ✗ 3.02 2.85 0.73 0.65 1011 1803 51.02 77.41 53.67 97.61 2.79

AudioRepInceptionNeXt-B1 model outperforms the classical
ResNet50 by reducing the inference time and model size by
25% and 50%, respectively. In comparison to the recent multi-
branch large kernel InceptionNeXt-Tiny, our model achieves
a 35% faster inference speed and 51% smaller model size.
When compared to RepLKNet-31T, a 2D large kernel-based
model, our proposed model exhibits substantial improvements,
saving 89% of the inference time and reducing the model size
by 60%. Moreover, our method surpasses the multi-stream
Slow-Fast model, achieving 27% lower inference time and
56% smaller model size. The results clearly demonstrate the
efficiency of our model in terms of both inference speed and
model size on mobile devices, showcasing its superiority over
existing state-of-the-art CNNs.

V. ABLATION STUDIES

We conduct a series of ablation studies on AudioRepIn-
ceptionNeXt to verify the significance of multi-branch design
and the usage of large kernels. To save the compute, we
only conduct ablation studies on the VGG-Sound dataset
and AudioRepInceptionNeXt-B1 architecture. Specifically, we
first ablate some branches with different kernel sizes and
then observe the performance changes. We then compare the
AudioRepInceptionNeXt block to a counterpart with a block
without a shortcut path. Concretely, we remove the identity
shortcut for both horizontal and vertical multi-scale kernels.
Note that we follow the same training setting as mentioned in
section IV. We report the results of such an ablation study in
terms of the number of parameters, GFLOPs, throughput, and
accuracy before and after re-parameterization in Table VI.

As shown in Table VI, for the single branch setting (i.e.,
structure s1 to s3), there is no significant accuracy im-
provement when we enlarge the kernel size from 3 to 11.
Meanwhile, there is 0.19% performance degradation when we
further enlarge the kernel size from 11 to 21. We conjecture
that the model overlooks the local details when we enlarge
the respective field of the kernel. To verify it, we introduce
the multi-branch setting (i.e., structure s4 to s6) with kernel
sizes 11 and 3 in our ablation studies. The results demonstrate
that all the multi-branch models can lift the accuracy above
51.55% and outperform the single-branch models. Comparing
the triple branch (i.e., structure s6) to the dual branch (i.e.,
structure s4 and s5), we note that removing any single branch
degrades the performance, suggesting that all the branches
are indispensable. However, when we introduced additional
branches with a kernel size of 31 × 31, the accuracy started
to degrade by 0.4%.

To verify the importance of the identity shortcut in the paral-
lel multi-scale horizontal and vertical kernel, we remove all the
identity shortcut layers and form a new structure s8 as shown
in table VI. Compared to the full structure s6, the accuracy
of s8 is dropped by 0.67%. This indicates the importance of
identity shortcuts in the AudioRepInceptionNeXt block.

To further verify the importance of the inverted bottleneck
layer, we remove the 1× 1 channel expansion layer and form
a new structure s9 as shown in table VI. Compared to the full
structure s6, the accuracy of s9 is dropped by 0.94%. This
demonstrates the importance of the inverted bottleneck.

VI. CONCLUSION

In this study, we address the issue of computational and
memory inefficiency in the multi-stream and multi-branch
convolutional neural networks (CNNs). To alleviate these
problems, a simple single-stream model was proposed which
employs a parallel multi-scale separable kernel design, effec-
tively reducing the number of parameter counts and GFLOPs
by 50% during the training. In order to eliminate the side
effects arising from multi-scale kernel design, such as slow
inference speed and frequent memory access, we utilize a repa-
rameterization technique during the inference. Moreover, we
adopt depthwise separable kernels and an inverted bottleneck
design to address the inefficiencies associated with the large-
scale kernels in the parallel branches of the multi-scale kernel.
Our experimental results show that the proposed AudioRepIn-
ceptionNeXt achieves a favorable trade-off between parameter
size and computational time while maintaining comparable
or superior performance in relation to the baseline Slow-
Fast model and AudioRepInceptionNeXt (2D). Additionally,
our findings demonstrate that the proposed model is a robust
learner capable of achieving better or comparable performance
compared to the SlowFast model across various transfer
learning datasets. This study provides valuable insights for
researchers and practitioners in the field of deep learning
who seek to enhance the computational efficiency of audio
classification models.

REFERENCES

[1] E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen, “Slow-fast
auditory streams for audio recognition,” in ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 855–859. 1, 2, 3, 5, 7, 8, 9, 10

[2] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold et al.,
“Cnn architectures for large-scale audio classification,” in 2017 ieee
international conference on acoustics, speech and signal processing
(icassp). IEEE, 2017, pp. 131–135. 1, 3, 8



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 12

[3] S. Verbitskiy, V. Berikov, and V. Vyshegorodtsev, “Eranns: Efficient
residual audio neural networks for audio pattern recognition,” Pattern
Recognition Letters, vol. 161, pp. 38–44, 2022. 1, 3

[4] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and
K. Simonyan, “Neural audio synthesis of musical notes with wavenet au-
toencoders,” in International Conference on Machine Learning. PMLR,
2017, pp. 1068–1077. 1, 7, 9

[5] S. Allamy and A. L. Koerich, “1d cnn architectures for music genre
classification,” in 2021 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2021, pp. 01–07. 1, 3

[6] I. Lezhenin, N. Bogach, and E. Pyshkin, “Urban sound classification
using long short-term memory neural network,” in 2019 federated
conference on computer science and information systems (FedCSIS).
IEEE, 2019, pp. 57–60. 1

[7] G. Duan, S. Zhang, M. Lu, C. Okinda, M. Shen, and T. Norton, “Short-
term feeding behaviour sound classification method for sheep using
lstm networks,” International Journal of Agricultural and Biological
Engineering, vol. 14, no. 2, pp. 43–54, 2021. 1

[8] D. Utebayeva, A. Almagambetov, M. Alduraibi, Y. Temirgaliyev, L. Ilip-
bayeva, and S. Marxuly, “Multi-label uav sound classification using
stacked bidirectional lstm,” in 2020 Fourth IEEE International Con-
ference on Robotic Computing (IRC). IEEE, 2020, pp. 453–458. 1

[9] J. K. Das, A. Ghosh, A. K. Pal, S. Dutta, and A. Chakrabarty, “Urban
sound classification using convolutional neural network and long short
term memory based on multiple features,” in 2020 Fourth International
Conference On Intelligent Computing in Data Sciences (ICDS). IEEE,
2020, pp. 1–9. 1

[10] Y. Gong, Y.-A. Chung, and J. Glass, “Ast: Audio spectrogram trans-
former,” arXiv preprint arXiv:2104.01778, 2021. 1, 7

[11] Y. Gong, C.-I. Lai, Y.-A. Chung, and J. Glass, “Ssast: Self-supervised
audio spectrogram transformer,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, no. 10, 2022, pp. 10 699–10 709. 1, 7

[12] K. Chen, X. Du, B. Zhu, Z. Ma, T. Berg-Kirkpatrick, and S. Dubnov,
“Hts-at: A hierarchical token-semantic audio transformer for sound
classification and detection,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 646–650. 1, 7

[13] A. Saeed, D. Grangier, and N. Zeghidour, “Contrastive learning of
general-purpose audio representations,” in ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 3875–3879. 1

[14] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. Kashino, “Byol
for audio: Self-supervised learning for general-purpose audio represen-
tation,” in 2021 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2021, pp. 1–8. 1

[15] L. Wang and A. v. d. Oord, “Multi-format contrastive learning of audio
representations,” arXiv preprint arXiv:2103.06508, 2021. 1

[16] S. Suh, W. Lim, S. Park, and Y. Jeong, “Acoustic scene classification
using specaugment and convolutional neural network with inception
modules,” Proceedings of the DCASE2019 Challenge, New York, NY,
USA, pp. 25–26, 2019. 1

[17] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method for
automatic speech recognition,” arXiv preprint arXiv:1904.08779, 2019.
1, 7

[18] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representations,”
Advances in neural information processing systems, vol. 33, pp. 12 449–
12 460, 2020. 1, 3

[19] L. Ford, H. Tang, F. Grondin, and J. R. Glass, “A deep residual network
for large-scale acoustic scene analysis.” in InterSpeech, 2019, pp. 2568–
2572. 1

[20] F. Schmid, K. Koutini, and G. Widmer, “Efficient large-scale audio
tagging via transformer-to-cnn knowledge distillation,” arXiv preprint
arXiv:2211.04772, 2022. 1

[21] Y. Gong, Y.-A. Chung, and J. Glass, “Psla: Improving audio tagging with
pretraining, sampling, labeling, and aggregation,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 29, pp. 3292–
3306, 2021. 1, 3

[22] L. Wang, P. Luc, Y. Wu, A. Recasens, L. Smaira, A. Brock, A. Jaegle, J.-
B. Alayrac, S. Dieleman, J. Carreira et al., “Towards learning universal
audio representations,” in ICASSP 2022-2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2022, pp. 4593–4597. 1

[23] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley,
“Panns: Large-scale pretrained audio neural networks for audio pattern

recognition,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 28, pp. 2880–2894, 2020. 1, 3

[24] A. Mesaros, T. Heittola, T. Virtanen, and M. D. Plumbley, “Sound event
detection: A tutorial,” IEEE Signal Processing Magazine, vol. 38, no. 5,
pp. 67–83, 2021. 1

[25] K. Ahuja, A. Kong, M. Goel, and C. Harrison, “Direction-of-voice
(dov) estimation for intuitive speech interaction with smart devices
ecosystems.” in UIST, 2020, pp. 1121–1131. 1

[26] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018. 1

[27] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale
speaker identification dataset,” arXiv preprint arXiv:1706.08612, 2017.
1

[28] K. Chen, C.-i. Wang, T. Berg-Kirkpatrick, and S. Dubnov, “Music
sketchnet: Controllable music generation via factorized representations
of pitch and rhythm,” arXiv preprint arXiv:2008.01291, 2020. 1

[29] Y. Gao, J. Fernandez-Marques, T. Parcollet, A. Mehrotra, and N. D.
Lane, “Federated self-supervised speech representations: Are we there
yet?” arXiv preprint arXiv:2204.02804, 2022. 1

[30] Y. Gaol, J. Fernandez-Marques, T. Parcollet, P. P. de Gusmao, and
N. D. Lane, “Match to win: Analysing sequences lengths for efficient
self-supervised learning in speech and audio,” in 2022 IEEE Spoken
Language Technology Workshop (SLT). IEEE, 2023, pp. 115–122. 1

[31] K. W. Lau, Y. A. U. Rehman, Y. Xie, and L. Ma, “Audioinceptionnext:
Tcl ai lab submission to epic-sound audio-based-interaction-recognition
challenge 2023,” 2023. 1, 2

[32] F. Xiao, Y. J. Lee, K. Grauman, J. Malik, and C. Feichtenhofer,
“Audiovisual slowfast networks for video recognition,” arXiv preprint
arXiv:2001.08740, 2020. 1, 5, 9

[33] X. Ding, X. Zhang, J. Han, and G. Ding, “Scaling up your kernels to
31x31: Revisiting large kernel design in cnns,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 11 963–11 975. 2, 3, 6, 8, 9, 10

[34] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg: Mak-
ing vgg-style convnets great again,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp.
13 733–13 742. 2, 3, 8

[35] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 116–131.
2, 3, 8

[36] M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu, “Visual
attention network,” arXiv preprint arXiv:2202.09741, 2022. 2

[37] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 11 976–11 986. 2,
5

[38] X. Ding, X. Zhang, J. Han, and G. Ding, “Diverse branch block:
Building a convolution as an inception-like unit,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 10 886–10 895. 3

[39] H. Chen, W. Xie, A. Vedaldi, and A. Zisserman, “Vggsound: A large-
scale audio-visual dataset,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 721–725. 3, 6, 7, 8

[40] J. Salamon and J. P. Bello, “Deep convolutional neural networks and
data augmentation for environmental sound classification,” IEEE Signal
processing letters, vol. 24, no. 3, pp. 279–283, 2017. 3

[41] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning sound
representations from unlabeled video,” Advances in neural information
processing systems, vol. 29, 2016. 3

[42] I. Martı́n-Morató, F. Paissan, A. Ancilotto, T. Heittola, A. Mesaros,
E. Farella, A. Brutti, and T. Virtanen, “Low-complexity acous-
tic scene classification in dcase 2022 challenge,” arXiv preprint
arXiv:2206.03835, 2022. 3

[43] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec:
Unsupervised pre-training for speech recognition,” arXiv preprint
arXiv:1904.05862, 2019. 3

[44] F. Li, M. Liu, Y. Zhao, L. Kong, L. Dong, X. Liu, and M. Hui, “Feature
extraction and classification of heart sound using 1d convolutional neural
networks,” EURASIP Journal on Advances in Signal Processing, vol.
2019, no. 1, pp. 1–11, 2019. 3

[45] F. Schmid, K. Koutini, and G. Widmer, “Efficient large-scale audio
tagging via transformer-to-cnn knowledge distillation,” in ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2023, pp. 1–5. 3



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEB 2024 13

[46] A. Jansen, M. Plakal, R. Pandya, D. P. Ellis, S. Hershey, J. Liu, R. C.
Moore, and R. A. Saurous, “Unsupervised learning of semantic audio
representations,” in 2018 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE, 2018, pp. 126–130. 3,
8, 9, 10

[47] X. Li, V. Chebiyyam, and K. Kirchhoff, “Multi-stream network
with temporal attention for environmental sound classification,” arXiv
preprint arXiv:1901.08608, 2019. 3

[48] W. Yu, P. Zhou, S. Yan, and X. Wang, “Inceptionnext: When inception
meets convnext,” arXiv preprint arXiv:2303.16900, 2023. 3, 8, 9, 10

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778. 5

[50] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826. 5

[51] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017. 5

[52] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520. 5

[53] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500. 5

[54] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave
like ensembles of relatively shallow networks,” Advances in neural
information processing systems, vol. 29, 2016. 6

[55] D. Damen, H. Doughty, G. M. Farinella, A. Furnari, E. Kazakos, J. Ma,
D. Moltisanti, J. Munro, T. Perrett, W. Price et al., “Rescaling egocentric
vision,” arXiv preprint arXiv:2006.13256, 2020. 7, 8, 9

[56] J. Huh, J. Chalk, E. Kazakos, D. Damen, and A. Zisserman, “Epic-
sounds: A large-scale dataset of actions that sound,” arXiv preprint
arXiv:2302.00646, 2023. 7, 8, 9

[57] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” ArXiv e-prints, Apr. 2018. [Online]. Available:
https://arxiv.org/abs/1804.03209 7, 9

[58] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban
sound research,” in 22nd ACM International Conference on Multimedia
(ACM-MM’14), Orlando, FL, USA, Nov. 2014, pp. 1041–1044. 7

[59] B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted residual learning
for efficient keyword spotting,” arXiv preprint arXiv:2106.04140, 2021.
8, 9, 10

[60] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. pmlr, 2015, pp. 448–456. 8, 9, 10

[61] G. Lu, W. Zhang, and Z. Wang, “Optimizing depthwise separable
convolution operations on gpus,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 1, pp. 70–87, 2021. 9

[62] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for
urban sound research,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 1041–1044. 9

[63] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,”
2019. 10

https://arxiv.org/abs/1804.03209

	Introduction
	Related Work
	Single-Stream Architecture to Multi-Stream Architecture
	Model Re-parameterization

	Methodology
	Model Architecture
	Model Input
	Marco Design

	AudioRepInceptionNeXt Block
	Parallel multi-scale kernel
	Depthwise Separable Kernel
	Inverted Bottleneck
	Identity shortcut

	Reparameterization for Inference time model
	Comparison to Multi-stream Slow-Fast model

	Experiment
	Pretraining Dataset
	Downstream Task Datasets
	Training and Validation Details
	Pretraining
	Fine-Tuning

	Evaluation Metrics
	Effects of Re-parametrization
	Comparison against the CNN-based baselines on VGG Sound pretraining
	Performance on Downstream task datasets
	Implementation on Mobile Devices
	Runtime Performance on Mobile Devices

	Ablation Studies
	Conclusion
	References

