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Focal Volume, Acoustic Radiation Force, and
Strain in Two-Transducer Regimes

Kasra Naftchi-Ardebili, Mike D. Menz, Hossein Salahshoor, Gerald R. Popelka, Stephen A. Baccus, Kim
Butts Pauly

Abstract— Transcranial focused ultrasound stimulation
(TUS) holds promise for non-invasive neural modulation
in treating neurological disorders. Most clinically relevant
targets are deep within the brain, surrounded by other
sensitive regions that need to be spared clinical inter-
vention. However, in TUS, increasing frequency with the
goal of improving spatial resolution reduces the effective
penetration depth. We show that by using a pair of 1 MHz,
orthogonally arranged transducers we improve the spatial
resolution afforded by each of the transducers individu-
ally, by nearly 40 fold, achieving a sub-cubic millimeter
target volume of 0.24 mm3 deep within the brain. We show
that orthogonally placed transducers generate highly lo-
calized standing waves with Acoustic Radiation Force
(ARF) arranged into periodic regions of compression and
tension near the target. We further present an extended capability of the orthogonal setup, which is to impart
selective pressures–either positive or negative, but not both–on the target. Lastly, we share our preliminary
findings that strain can arise from both particle motion and ARF with the former reaching its maximum value at
the focus, and the latter remaining null at the focus and reaching its maximum around the focus.
As the field is investigating the mechanism of interaction in TUS by way of elucidating the mapping between
ultrasound parameters and neural response, orthogonal transducers expand our toolbox by making it possible
to conduct these investigations at much finer spatial resolutions, with localized and directed (compression vs.
tension) ARF and the capability of applying selective pressures at the target.

Index Terms— Acoustic radiation force, acoustic strain, neuromodulation, transcranial focused ultrasound.

I. INTRODUCTION

S INCE the early experiments by Fry et al. [1], interest in
ultrasound as a noninvasive method for high resolution

deep brain stimulation has grown substantially. Recent large
animal studies with single element or phased array transducers
have shown important results and strong evidence toward this
goal [2]–[6]. While somewhat large focal spots achievable with
single element transducers are reasonable, and even desirable,
for many applications there is still a need in pushing the enve-
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lope of resolution. There are roughly 50, 000 neurons in any
cubic millimeter of cerebral cortex in humans [7]. Sonicating
a 10-cubic millimeter target with a single element 1 MHz
transducer at a full width half maximum (FWHM) intensity
will engage around 500, 000 neurons. Stimulation of fewer
numbers of neurons will characterize neural subpopulation
responses to transcranial ultrasound stimulation (TUS) on a
finer scale.

Prior work identified the gain in spatial resolution accompa-
nied by an orthogonal pair of transducers [8]–[10]. However,
these efforts had only scratched the surface as neither the
acoustic radiation force (ARF) nor the standing waves present
in the orthogonal arrangement were thoroughly investigated.
In fact, historical aversion towards unwanted standing waves
that arise from scattering of the ultrasound beams inside
the skull compelled authors to deliberately annihilate the
standing waves in their orthogonal pair of transducers [9].
Interestingly, in their 2019 paper, Menz et al. [11] showed
that stronger neural responses were recorded when salamander
retina was subjected to standing ultrasound waves in vitro, in
contrast to propagating waves in vivo. They observed signif-
icantly stronger neural activity at transducer-multi electrode
array distances that were 0.5 multiples of the wavelength,
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where standing waves occur, and validated the important role
standing waves may play in eliciting neural responses in the
salamander retina in vitro. To leverage this interesting finding,
Kim et al. [12] proposed the use of two single element
transducers in vivo, on opposite sides of the skull facing
each other in what we call the antiparallel setup, to generate
standing waves at the neural target of interest. Although the
most intuitive approach in replicating the in vitro standing
waves observed and validated by Menz et al. [11], a pair of
antiparallel transducers failed to improve the spatial resolution
afforded by either transducer because the broad axial beam
profiles of the two transducers overlapped with one another
producing yet another broad axial profile.

In this work, we show that placement of two single el-
ement transducers at a 90◦ angle to each other (orthogonal
arrangement) achieves both objectives: it increases resolutions
deep within the brain by reaching sub-cubic millimeter target
volumes (0.24 mm3 in our setup, roughly 12, 000 neurons in
contrast to 500, 000), and simultaneously generates standing
waves that were previously reported effective by Menz et al.

In this work, we consider not only the control of the
sonication target volume but also the underlying physical
effects that give rise to neural stimulation. There is growing
evidence that neurons respond to the mechanical effects of
ultrasound, either from the pressure, acoustic radiation force
(ARF), strain, or even an ensemble of these [11], [13]–[17]. In
this report, we first describe the mathematical models of ARF
at three different tiers of complexity and report their accuracy
for a single transducer. We do this to show the inconsistencies
of the two simpler models, because various forms of ARF
formulae are assumed in the literature and sometimes the
underlying assumptions are not explicitly stated [12], [18]–
[26]. We believe it is critical to discuss these various models
in detail because adoption of these simplifying assumptions
without regards to whether the assumed conditions are met,
gives rise to erroneous ARF calculations, both in terms of
magnitude and direction. Next, we show the ARF for the
three setups of single transducer, antiparallel transducers, and
orthogonal transducers without the simplifying assumptions
that fail in the limit of curved (focused) wavefronts. By
computing the ARF in the orthogonal setup, we demonstrate
interesting properties of the force field, notably the locations
of the force sinks and sources. Although these periodic sinks
and sources are also present in the antiparallel setup, they are
not localized and span the axial profile of the two transducers.
Because neural populations may respond selectively to tension
(at ARF source) or compression (at ARF sink), this type of
modeling may then become crucial for controlled transcranial
neuromodulation. Insofar as neuromodulation is concerned,
the control of pressure at the focus typically has been limited
to modulating the pressure amplitudes and pulsing schemes.
With these conventional modulations spatial and temporal
periodicity of the wave remain intact; that is to say, every
rarefaction is followed by a countervailing compression, within
the limits of a linear regime. We currently don’t know whether
in neurological diseases where asynchronous or abnormal
firing of the neurons is the underlying cause, being able to
selectively subject the neurons to rarefaction only or com-

pression only may prove optimal. Selective application of
pressure at non-destructive levels–in contrast to destructive
levels such as shock waves–has never been attempted before.
We introduce the unipolar pressure method that allows us
to select, in advance, the polarity of the dominant pressure
(either positive pressure only or negative pressure only) we
would like to deliver to the target of interest. Such a technique,
possible only with orthogonal transducers of high bandwidth,
would allow us to study the pressure preference of neurons
in different regions of the brain and explore the existence of
pressure-specific responses in neural populations.

Lastly, we present our preliminary findings on strain and
show the different fields that arise from strain due to particle
motion versus strain due to ARF. These strains are related as
they occur simultaneously, but one may dominate the other
depending on the choice of frequency.

Simultaneous and accurate knowledge of pressure, ARF,
and strain for the region being sonicated is essential in
elucidating the ultrasound-neuron mechanism of interaction,
and is indispensable if the ultimate goal is to develop a valid
mapping between TUS parameters and neural activity. It is the
aim of this study to shed light on these unknowns.

II. METHODS

A. Simulation Setup
All ultrasound simulations were performed in k-Wave [27],

a widely used MATLAB [28] package for the time-domain
simulation of the acoustic wave fields. All transducers were
single-element, with 30 mm aperture diameter and 30 mm
focal length. Specific simulation parameters are presented in
Table I.

TABLE I
K-WAVE PARAMETERS FOR DIFFERENT SIMULATION SETUPS

Simulation
Setup

Pulse
Form

Pressure
Amplitude

Frequency Resolution Acoustic
Velocity

ARF Continuous
Wave

1 MPa 1 MHz 0.1 mm 1500 m/s

Unipolar
Pressure

3-Cycle,
Gaussian

1 MPa 1 MHz 0.1 mm 1500 m/s

PM Strain 20-Cycle,
Gaussian

5 MPa 250 kHz 0.2 mm 1500 m/s

ARF
Strain

Step Force 5 MPa 250 kHz 0.2 mm 20 m/s

We chose 5 MPa for strain simulations to be able to observe a sharp and
clear tissue displacement. Because ARF strain simulations were run for
5 ms, we reduced the grid resolution to 0.2 mm and the acoustic velocity
to 20 m/s, to reduce the computational load of these simulations along the
temporal dimension. These considerations would not affect the ARF strain
maps.

Whereas ARF and unipolar pressure simulations were with
1 MHz transducers, for strain simulations we set the center
frequency to 0.25 MHz to reduce the computational load
along the temporal axis. For the same reason, acoustic velocity
for ARF strain simulations was set to 20 m/s (instead of
1500 m/s in ARF and unipolar pressure simulations), so that it
was computationally feasible to simulate the slower-timescale
tissue displacements (5 ms in our setup). Without these modi-
fications, simulation memory requirements exceeded what we
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Highlights

• The use of orthogonally arranged transducers in TUS achieves unprecedented spatial resolutions and introduces the capability
of applying localized acoustic radiation force and selective pressures for targeted neural modulation.

• Orthogonal configuration enhances spatial resolution by 40x and enables localized tension and compression through ARF. It
further allows selective pressures with PPP/PNP = 1.54 for precise targeting and control in neuromodulation.

• These findings pave the way for more precise and effective treatments for neurological disorders through high resolution targeting
and modulation capabilities, using only two orthogonally-placed transducers.

had available to us. Given our simulation conditions, namely
the relatively low pressure amplitude in ARF and unipolar
pressure scenarios, and a homogeneous medium, nonlinear
effects were minimal. However, for strain simulations under
5 MPa, we incorporated nonlinearity into our simulations.
It should be emphasized that simulations in k-Wave were
performed on a collocated grid, because pressure and parti-
cle velocities were simultaneously required to compute the
ARF [29]. As such, particle velocities must be obtained via
u non staggered in k-Wave, otherwise the default option
simulates the staggered velocities, resulting in erroneous ARF
calculations.

B. Transducer Arrangements
Three transducer arrangements were studied: a single trans-

ducer, two transducers in an antiparallel configuration, and
two transducers at orthogonal angles. In the antiparallel setup,
two identical transducers were placed on-axis, with their focal
points overlapping. In the orthogonal setup, two transducers
were placed at 90◦ with respect to one another with their focal
points overlapping.

In computing the target volumes, each of three arrangements
were compared to the other two. In investigating the effect of
the simplifying assumptions on ARF, only the case of a single
transducer was studied. In comparing the ARF field in single,
antiparallel, and orthogonal configurations, only the complete
form of ARF, equation (9), was employed. Unipolar pressures
were presented for orthogonal transducers only, as they are
not feasible with other arrangements. And lastly, we report
our preliminary results on strain for all three configurations.

C. Spatial Resolution
To compute the spatial resolution we assumed an ellipsoidal

target. Axis lengths for the ellipsoid were obtained through
the FWHM of the intensity at −3 dB, which were then used
to compute the volume of the ellipsoid with the following
equation:

V =
4

3
π
(a
2

)( b
2

)2
, (1)

where a and b were the major and minor axes of the ellipsoid,
respectively. Although the simulations were conducted in 2D
where we had only one major and one minor axis for an
ellipse, the symmetry of the problem dictated that addition of a
3rd axis would introduce yet another minor axis. This allowed
us to estimate the 3D target volume from a 2D simulation
simply by introducing an additional

(
b
2

)
in equation (1), hence

the power of 2.

D. Acoustic Radiation Force

The impulse of a force applied to a control volume results
in change of momentum in the control volume:

dPV = Fdt
dPV

dt
= F,

(2)

whereby force vector F could be directly computed from the
rate of change of momentum vector PV in the control volume
of interest. Note that vector quantities are in bold font. The
left-hand side (LHS) in equation (2) could be written out
explicitly as:

dPV

dt
=

dP
dt

+
dPout

dt
− dPin

dt
. (3)

The right-hand side (RHS) requires some explanation [30],
[31]:

• dP
dt : rate of change of instantaneous momentum inside
the control volume, where P(t) =

˝
ρvdV . This force

component is equivalent to the ARF.
• dPout

dt : rate of momentum leaving the control volume due
to mass flow.

• dPin
dt : rate of momentum entering the control volume due

to mass flow.
Substituting F for the LHS in equation (3), and recognizing

that dPout
dt −

dPin
dt is momentum flux through a closed area A,

that is
!

ρ(v · n̂)vdA, we can rewrite equation (3) as:

F =
d

dt

˚
ρvdV +

"
ρ(v · n̂)vdA. (4)

We can expand the LHS into body forces, notably the
gravity, and surface forces, pressure and viscosity, to write
out the integral momentum equation [30], [31]:

˚
ρgdV −

"
pn̂dA+ Fviscous =

d

dt

˚
ρvdV +

"
ρ(v · n̂)vdA,

(5)

where the LHS terms are gravitational force, pressure force,
and force due to viscosity. Note that g is the acceleration
due to gravity, ρ is density, p is pressure, and n̂ is the
normal vector to the surface A. Since the timescale over which
particle collisions take place is very short, we can ignore the
gravitational force. Moreover, because the bulk modulus of
biological tissue is much greater than the shear modulus, and
that normal stresses are dominant compared to shear stresses,
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it is reasonable to drop the viscous force [32]. Momentum
flux and force due to pressure are in the form of surface
integrals, whereas ARF is a volume integral. To be able to
assume an infinitesimal volume for both the LHS and the RHS,
we need to first rewrite the momentum flux and force due
to pressure in terms of volume integrals. In order to convert
the momentum flux and pressure force to volume integrals,
we invoked the divergence theorem and gradient theorem,
respectively. That allowed us to write everything in terms of
volume integrals, and drop the integrals with the intention of
studying an infinitesimal δV volume. Complete derivation is
included in the Appendix, where we show how we arrive at
the following equation for the ith component of ARF:

ARF (t)i = −
∂

∂xk

(
pδik + ρvivk

)
, (6)

where δ denotes the Kronecker delta, p is pressure, ρ is
unperturbed density (constant), v is particle velocity, and xk

is the kth dimension in space. Due to the periodicity of the
waves, integrating equation (6) over one complete cycle is
sufficient to compute the net ARF [32]:

ARFi = −
∂

∂xk

(
⟨p⟩δik + ⟨ρvivk⟩

)
, (7)

with ⟨·⟩ = 1
π

´ t′+π

t′
(·)dt, where π denotes the period. Note that

repeated indices in k follow Einstein summation. Invoking the
first law of thermodynamics and utilizing Taylor’s expansion
make it possible to expand the ⟨p⟩ term to second order
approximation and write the general form of ARFi as follows
[32], [33]:

ARFi = −
∂

∂xk

[(
1

2ρc2
⟨p2⟩ − 1

2
ρ⟨|v|2⟩

)
δik+⟨ρvivk⟩

]
, (8)

with c and v denoting the sound and particle velocities. The
two terms inside the parentheses refer to the mean Eulerian
excess pressure [33], while the last term is the Reynolds stress
tensor. We will investigate the complete form of equation (8),
as well as its reduced forms under two tiers of quasi-planar
wave and purely-planar wave simplifying assumptions.

1) Complete Form: The simulations in this work were per-
formed in 2D. Substituting x and y for indices in equation (8)
to emphasize that simulations were in Cartesian coordinates,
we arrive at the x and y components of ARF:

(
Fx

Fy

)
= −



∂

∂x

(
1

2ρc2
⟨p2⟩ − 1

2
ρ⟨v2x + v2y⟩

)
+

ρ
〈
2vx

∂vx
∂x

+ vx
∂vy
∂y

+ vy
∂vx
∂y

〉
∂

∂y

(
1

2ρc2
⟨p2⟩ − 1

2
ρ⟨v2x + v2y⟩

)
+

ρ
〈
2vy

∂vy
∂y

+ vy
∂vx
∂x

+ vx
∂vy
∂x

〉


. (9)

2) Quasi-Planar Wave Assumption: This tier of simplifying
assumptions considers p = ρcv, which holds for planar
waves. Substituting ρcv for p in the ⟨p2⟩ term in equation (9)
annihilates the mean Eulerian excess pressure. The resulting
ARF formula becomes:

(
Fx

Fy

)QP

= −

(
ρ⟨2vx ∂vx

∂x + vx
∂vy

∂y + vy
∂vx

∂y ⟩
ρ⟨2vy ∂vy

∂y + vy
∂vx
∂x + vx

∂vy

∂x ⟩

)
. (10)

While considerably simplifying equation (9), the quasi-
planar wave assumption drops consequential terms. Fig. 1
shows these neglected terms: the mean Eulerian excess pres-
sure along with its gradients in x and y. Although the mean
Eulerian excess pressure itself could be deemed negligible
compared to the pressure values at the focus, its gradient is
orders of magnitude larger and should not be hastily dropped.

3) Purely-Planar Wave Assumption: The simplest form of
ARF assumes propagation of purely planar waves, where in
addition to substituting ρcv for the pressure term, any lateral
wave propagation is disregarded. As such, in our simulations
where a single transducer is sonicating in x, any y component
of velocity will be ignored. The ARF formula under these
assumptions becomes:

ARF PP = F PP
x = −ρ⟨2vx

∂vx
∂x
⟩. (11)

Equations (9), (10), and (11) were used to compute the
ARF for a single transducer to investigate the effect of these
simplifying assumptions on validity of ARF. To compute
the valid ARF in the single, antiparallel, and orthogonal
configurations, however, only equation (9) was used.

E. Unipolar Pressures

The approach in imparting selective pressures on the target
is best explained with simple schematics, presented in Fig.
2. In the hypothetical limit of single-cycle pulses, inversion
of one transducer and delaying of the other transducer by
half the period will result in either their compression or their
rarefaction poles to overlap, but not both. In Fig. 2 transducer
1 (trxd 1) is inverted with respect to transducer 2 (trxd 2),
while transducer 2 is delayed by half the period. At time τ ,
the negative pole of the first transducer arrives at the target in
singular form, without overlapping with any pressure fronts
from the second transducer. After some ∆t timesteps, the
pressure poles from both transducers overlap at the target, and
2∆t timesteps later, the two pulses move past the target. This
schematic would result in a peak positive to peak negative
pressure ratio of 2/1, effectively imparting a dominant unipolar
positive pressure on the target.

In an actual simulation, given the curvature of the wave
fronts and the window applied to the pulses, implementation
of unipolar pressures with simple half-period delay is not
feasible. In realistic scenarios an iterative approach, such as the
one used in this work (Algorithm 1), needs to be implemented.
Optimal delay is one that maximizes the peak positive to peak
negative pressure ratio (PPP/PNP) at the target.
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Fig. 1. Terms that would be ignored in the quasi-planar wave assumption. a) The mean Eulerian excess pressure. Transducer orientation is
indicated in the lower left hand corner of the figure. b) Axial beam profiles of the mean Eulerian excess pressure as well as its gradient. c) Lateral
beam profiles of the mean Eulerian excess pressure as well as its gradient. Note that even though the mean Eulerian excess pressure itself may
seem quite small and negligible, its gradients are about three orders of magnitude larger than the mean Eulerian excess pressure itself. Therefore,
neglecting these terms results in erroneous ARF computations.

Fig. 2. Unipolar pressure with orthogonal transducers. Two single-cycle
pulses are generated by both transducers. The pulse from transducer 1
is inverted relative to the pulse from transducer 2, while the pulse from
transducer 2 is delayed by half the period. At time τ + ∆t the two
positive poles overlap, resulting in a PPP/PNP ratio of 2/1.

F. Strain
There are generally two routes to computing strain: dy-

namics and kinematics. To solve for strain through dynamics
requires in-depth knowledge of the material properties of
the medium, such as knowledge of the accurate relationship
between strain and stress. Specifically, ARF could be related
to stress via [29]:

ARFi = −
∂σik

∂xk

, (12)

with σij denoting the stress tensor. In Newtonian fluids such
as water, shear stress τ is linearly related to the shear strain
rate [34]:

τ = µ
∂γ

∂t
, (13)

where µ is the dynamic viscosity term and γ is the shear strain.
Perhaps putting together equations (12) and (13) would allow
computing the ARF by taking the gradient of the strain rate,
but that formalism will likely not lend itself to a straightfor-
ward calculation of strain itself from ARF. Conversely, through
kinematics we can readily solve for strain as long as we
have knowledge of displacements along each dimension. In
our simulations, we obtained displacement from velocity as
follows:

Algorithm 1 Calculate optimal delay n∗ that maximizes PPP
PNP

n: delay in simulation timesteps
n∗: optimal delay in simulation timesteps
π: period in simulation timesteps

Require: 0 ≤ n ≤ π
p1: pressure field for the first transducer, tensor of t×x×y

p2: inverted pressure field for the second transducer, tensor
of t× x× y
ti: initial time (shortly before reaching the target)
tf : final time (shortly after reaching the target)
x∗: x component of the target
y∗: y component of the target
ppp pnp← empty list
for 0 ≤ i ≤ int(n) + 1 do
max overlap← max(p1[ti − i : tf − i, x∗, y∗] + p2[ti :
tf , x

∗, y∗])
min overlap ← abs(min(p1[ti − i : tf − i, x∗, y∗] +
p2[ti : tf , x

∗, y∗]))
add max overlap/min overlap to end of ppp pnp list

end for
n∗ = argmax{ppp pnp}

ui[t+ 1] = ui[t− 1] + 2∆t(vi[t]), (14)

where ui[t] and vi[t] are position and velocity in the ith

direction at time t, and ∆t is the temporal resolution. Strain,
in that case, is simply obtained from the following formula:

Eij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xi

∂uk

∂xj

)
, (15)

where Eij represents normal strain when i = j and shear strain
when i ̸= j. Note that the repeated indices are summed over
i and j. For small deformations however, the nonlinear term
is negligible [35].

We have made a clear distinction between strain due to
periodic particle motion displacement, which we denote EPM,
and strain due to acoustic radiation force-induced displace-
ment, which we denote EARF. The fundamental difference
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between the two is in how we define displacement, u. Under
particle motion, the displacement uPM is defined as the am-
plitude of the periodic particle oscillations. Under ARF, the
displacement uARF is defined as the magnitude of the time-
averaged bulk tissue displacement. In both cases we used
equation (14) to compute the relevant displacements before
applying equation (15). k-Wave readily simulates pressure
and particle velocity. Therefore, EPM was easily computed
by first calling kspaceFirstOrder2D, and then applying
equations (14) and (15). To obtain EARF, we need to compute
bulk tissue displacements, but k-Wave does not directly sim-
ulate these. One indirect way to do this, as show in [29], is
to first run kspaceFirstOrder2D, use the pressure and
particle velocities to compute the stress, apply that stress as
a constant on transducer surface in the pstdElastic2D
function, and then follow through with equations (14) and
(15) to obtain EARF. Given this indirect approach, we refrain
from reporting exact numerical values for EARF and EPM, but
instead normalize each of them independently. It should be
emphasized that when we refer to shear strain, we are referring
to application of equation (15) to the longitudinal waves under
the i ̸= j condition, and not application of equation (15) to
shear waves themselves. A comparison between strain due to
longitudinal and strain due to transverse (shear) waves had
previously been reported [36]. Our focus in this study was
the distinction between particle motion strain and ARF strain,
both in longitudinal waves. We did not study shear (transverse)
waves.

III. RESULTS

A. Spatial Resolution

The exact gain in spatial resolution depends on the specifi-
cations of the transducers. However, optimal spatial resolution
is achieved with an orthogonal pair of transducers compared to
an antiparallel pair or a single transducer of identical specifica-
tions. In Fig. 3, we show the pressure amplitude profiles in 2D
space across the single, antiparallel, and orthogonal transducer
setups. Pressures were normalized to that of a single transducer
to show the 2× gain in pressure when two transducers were
employed with overlapping foci, regardless of their spatial
arrangements. Significant improvement in spatial resolution is
evident from the size of the target in Fig. 3c compared to Fig.
3a and Fig. 3b.

To quantitatively analyze the improvement in spatial res-
olution, we need to compute the target volumes in these
three transducer configurations. Assuming target foci are in
the shape of ellipsoids, obtaining their full width at half
maximum (FWHM) of intensity volumes requires computing
the major and minor axes of the ellipsoid at the −3 dB level
of the intensity. Under these considerations, the target volume
was 9.54 mm3 for the single transducer, 9.54 mm3 for the
antiparallel transducers, and 0.24 mm3 for the orthogonal
transducers. For a pair of transducers, a simple 90-degree ro-
tation of one transducer resulted in a 39.75 fold improvement
in spatial resolution. These results along with Fig. 3 confirm
that the antiparallel setup did not confer any advantages in
terms of spatial resolution, because the broad axial beam

profiles of the two transducers overlapped, resulting in yet
another broad beam profile. The orthogonal setup leverages
the relative sharpness of the lateral beam profile compared to
the axial beam profile, and trims the axial beam profile of one
transducer with the lateral beam profile of the other transducer
and vice versa.

B. Acoustic Radiation Force in a Single Transducer

1) Complete Form: The complete form of the acoustic
radiation force for a single transducer was computed using
equation (9). To demonstrate the overall direction of the force
in comparison to the pressure field, we superimposed the force
vectors over the pressure amplitude for a single transducer
(Fig. 4a and 5a). Our simulation of ARF in complete form
was in agreement with previous valid simulations [29] and
Magnetic Resonance Acoustic Radiation Force Imaging (MR-
ARFI) experiments [37].

2) Quasi-Planar Wave Assumption: Imposition of the quasi-
planar wave assumption ignores the mean Eulerian excess
pressure as well as its gradients. As shown in Fig. 4b, under
this tier of simplifying assumptions, when compared to the
complete form, there was a gross exaggeration of the lateral
ARF component relative to the axial ARF component, which
defied both intuition and past experimental results [37].

3) Purely-Planar Wave Assumption: The simplest and at the
same time the most limiting tier of these simplifying assump-
tions is the assumption of purely planar waves propagating
along the transducer axis (Fig. 4c). Whereas the quasi-planar
wave assumption overly exaggerated the lateral component
of ARF, the purely-planar wave assumption took it to the
opposite extreme and completely ignored it. More so than
its value being incorrect, purely-planar ARF suggested there
were on-axis forces towards the surface of the transducer
immediately prior to the focus, which was categorically false.
Forces should be pointing away from the transducer surface
and any indication that some major attractive forces (pointing
towards the transducer) were present in the ARF field would
be at odds with previous studies [29], [32], [37].

C. Acoustic Radiation Force in Antiparallel Configuration

Close examination of the simplifying assumptions in com-
puting ARF and the erroneous results they gave rise to,
convinced us to use the complete form, equation (9), in
computing the ARF for the more complicated antiparallel and
orthogonal configurations. In Fig. 5b we show the acoustic
radiation force vectors over the pressure field of the antiparallel
transducers. Note that in contrast to the unidirectionality of
the force vectors in a single transducer (Fig. 5a), pointing
away from the transducer surface (left to right), the antiparallel
setup generated periodic sinks and sources, arranged along the
axis of the two transducers. At the antinodes of the standing
wave the forces were convergent (sinks) and at the nodes of
the standing wave the forces were divergent (source). This
interesting pattern, however, was not localized and spanned
the entirety of the 10 mm-FWHM of the antiparallel config-
uration.
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Fig. 3. Pressure amplitude profiles at 1 MHz in 2D for three different transducer configurations. Relative transducer positions are indicated in the
lower left hand corner of each panel and all pressures are normalized to the single transducer. FWHM ellipsoid target volumes are shown in the top
portion of each figure. a) A single transducer with its characteristic on-axis ellipsoid target. FWHM target volume was 9.54 mm3. b) Antiparallel
pair of transducers with on-axis standing waves. FWHM target volume was 9.54 mm3. c) Orthogonal pair of transducers with the ellipsoid target
rotated and aligned with the diagonal axis (dashed line) and the standing waves along the antidiagonal axis (dotted line). FWHM target volume was
0.24 mm3.

Fig. 4. ARF, computed with the complete solution and two tiers of simplifying assumptions, superimposed over the pressure field. a) ARF vectors
reach their peak values about the focus and point away from the transducer surface. This is in agreement with MR-ARFI experiments. b) Under
the qusi-planar wave assumption, the lateral components of ARF dominate the axial components, which is at odds with experimental observations.
c) A purely-planar wave assumption neglects any lateral components and suggests that prior to the focus at the 30 mm mark, there are forces
pointing towards the transducer surface, which is entirely incorrect.

Fig. 5. ARF, computed with the complete solution, superimposed over the pressure field across the three transducer configurations. Transducer
orientations are shown with the white insets in each figure. a) ARF vectors in a single transducer were unidirectional and pointed away from the
transducer surface. They also reached their maximum value near the focus. b) Periodic ARF sinks and sources lied along the axis of the antiparallel
configuration. At the nodes we observed compression, while at the antinodes we observed tension. c) Highly localized ARF sinks and sources were
observed in the orthogonal regime. These regions of high compression and high tension, respectively, were confined to a 4 × 4 mm2 area.

D. Acoustic Radiation Force in Orthogonal Configuration
In Fig. 5c we show the pressure amplitude of the orthogonal

setup, as well as the ARF vectors. Similar to the antipar-
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allel configuration (Fig. 5b), ARF sinks and sources were
periodically aligned. However, in contrast to the antiparallel
configuration, these regions were along the antidiagonal axis
of the transducers, and were confined to an area of only
4 × 4 mm2, instead of 4 × 10 mm2. This suggested that if
we used the orthogonal arrangement to sonicate a neural sub-
population, those at the target (an ARF sink) would experience
a sustained compression, while those immediately surrounding
the target (ARF sources) would experience a sustained tension.
To further test the validity of these simulations and be able
to visually inspect the directionality of ARF in the orthogonal
setup, we sonicated glass beads of approximately 50 microns
in diameter, suspended in water. In this experiment, two
transducers were elevated by 45◦ from the horizontal, forming
a 90◦ angle with one another (Fig. 6c). As predicted by our
simulations, the glass beads were pushed towards the focus
(ARF sink), and pulled apart immediately surrounding the
focus (where the ARF sources reside). As a result, there was
a concentration of glass beads at the focus and an absence of
glass beads surrounding the focus (Fig. 5d).

E. Unipolar Pressures
Tri-cycle pulses from two orthogonally arranged transducers

were generated to demonstrate the unipolar pressure method.
Once the pulses from the two transducers were inverted with
respect to one another, we computed the appropriate time
delay using the straightforward iterative approach presented in
Algorithm 1. An optimal time delay was one that maximized
the peak positive pressure to peak negative pressure ratio.
Inversion and a 20-simulation timestep delay (as calculated via
Algorithm 1) resulted in a dominant positive pressure, with a
peak positive pressure to peak negative pressure ratio of 1.54.
No sudden rise in pressure resembling those used in histotripsy
[38]–[41] was seen, suggesting this approach could potentially
be used as a safe method for unipolar neuromodulation with
selective pressure polarity. In Fig. 7 we show the 2D pressure
field in the unipolar pressure method as a function of time. At
time t∗ the two positive polarities superimpose and generate
a dominant positive pressure. At full width at 65% of max
pressure (FW65M, −3.74 dB), only the dominant positive
pressure was observed while the negative pressure polarities
fell under the FW65M cutoff. At this threshold, x and y
dimensions of the peak positive pressure (Fig. 6b) measured
at 0.4 mm each, resulting in a surface area of 0.16 mm2 that
would experience such selective PPP/PNP of 1.54 using two 1
MHz transducers in the orthogonal arrangement.

F. Strain in a Single Transducer
1) Strain due to Particle Motion: Ultrasound consists of

compression waves. Therefore, the largest particle oscillation
amplitude will be along the axial dimension (the direction
of wave propagation). Accordingly, as shown in Fig. 8, the
dominant component of particle motion strain was the normal
axial strain, EPM

zz . Normal lateral component of EPM was
significantly smaller, and the shear strain was nearly zero.
As the pulse traveled along the z-axis, the sign of strain
varied between + and −. In Fig. 14a we account for this

variation in time and show the amplitude envelope over the
dominant, normal axial component of particle motion strain.
EPM
zz reached its maximum value at the focus, and similar to

the pressure profile, tapered off with distance from the focus.
2) Strain due to ARF: Strain under the effect of bulk tissue

displacement due to ARF showed interesting properties in all
its three components. We see in Fig. 9a that normal axial strain
was positive prior to the focus (z < 30 mm). In that region
tissue was stretched, under the effect of ARF. Conversely,
past focus (z > 30 mm), strain was negative, suggesting
compression in that region of the tissue. At the focus however,
normal axial strain remained zero. Normal lateral strain, Fig.
9b suggested that at the focus, along the transducer axis
(z = 30 mm, y = 0 mm), tissue was compressed, while
on either side of the transducer axis it was stretched out. The
most interesting pattern was observed in the shear component
of ARF strain, EARF

zy . As shown in Fig. 9c, the dominant
component of ARF strain was the shear strain and it remained
null at the focus, while it reached its peak values surrounding
the focus. This stems from the fact that strain is the gradient
of displacement, and that maximum tissue displacement due
to ARF occurs at the focus.

G. Strain in Antiparallel Configuration

1) Strain due to Particle Motion: In the antiparallel config-
uration, EPM

zz (Fig. 10a) dominated the other components of
particle motion strain. This effect, similar to the case of a
single transducer, was due to the fact that large-amplitude
particle oscillations were along the axis of the two transducers.
Because the antiparallel configuration gives rise to standing
waves, strain at the nodes of the standing waves was zero.
At the antinodes, strain was maximum and its sign alternated
with time.

2) Strain due to ARF: Normal axial strain in this context
dominated the other components of strain. As shown in Fig.
11a, under the effect of ARF emanating from each transducer
surface, the tissue was “sandwiched” at the focus, as evidenced
by the sharp negative strain at the geometric focus of the setup.
Both the normal lateral strain as well as shear strain (Fig.
11b, c) were insignificant in comparison to the normal axial
strain. The high frequency ripples and ringing in Fig. 11 are
simulation artifacts and shall be ignored.

H. Strain in Orthogonal Configuration

1) Strain due to Particle Motion: In the orthogonal configura-
tion, propagating waves lie on the diagonal axis, and standing
waves lie on the antidiagonal axis of the two transducers
(Fig. 3c). Therefore, while we used equation 15, instead
of computing strain along the axial and lateral dimensions,
we computed strain along the diagonal and antidiagonal
directions. As evidenced by Fig. 12, strain due to particle
motion in the diagonal dimension was comparable to strain
in the antidiagonal dimension, both of which dominated the
shear strain. Antidiagonal strain was slightly greater than the
diagonal strain due to its sharper displacement profile relative
to the diagonal displacement profile.
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Fig. 6. ARF in orthogonal regime and its experimental validation. a) Pressure amplitude in orthogonal setup in MPa. The orientation of the two
transducers is shown at the bottom left of the figure. b) A closer view of the force field shows the convergence of ARF at the focus and the divergence
of ARF surrounding the focus. c) The orientation of the transducers in the experiment. Each transducer was elevated from the horizontal surface
by 45◦, forming a 90◦ angle with one another. d) 50-micron glass beads suspended in water were pushed together at the focus, and they were
pulled apart in regions surrounding the focus, as evidenced by the arrangement of the glass beads in space. This experiment corroborated the ARF
simulations in a and b.

Fig. 7. The unipolar pressure method in the orthogonal setup. a) The tri-cycle pulses approaching each other at the (30 mm, 30 mm) focus
with opposite polarities. b) At time t∗, constructive superposition of the positive polarities of the pulses at the focus result in a PPP/PNP of 1.54 over
a FW65M surface area of 0.16 mm2. c) Pulses move past each other in singular form, without any constructive or destructive interference that
meets the FW65M cutoff.

2) Strain due to ARF: Normal diagonal strain under ARF
looked relatively similar to the normal axial strain of a single
transducer (Fig. 9a), but rotated by 45◦. At the geometric focus
of the two transducers the normal diagonal strain was zero.
As shown in Fig. 13, both the normal antidiagonal as well as
shear strains dominated the normal diagonal strain. However,
antidiagonal strain (Fig. 13b) was the largest strain component,
under the compressive effect of the counter-propagating waves
from the two transducers.

In Fig. 14, we display the peak component of particle
motion strain and the peak component of ARF strain for each
of the three configurations. All particle motion strains were

jointly normalized (Fig. 14a-c), and all ARF strains were
normalized together (Fig. 14d-f). The antiparallel configura-
tion had the largest strain value for both particle motion and
ARF. This was due to the greater particle and tissue displace-
ments in the antiparallel setup, which resulted from higher
pressures generated when two transducers faced each other.
Following the same logic, the strain values for the orthogonal
configuration and a single transducer ranked second and third,
respectively, in terms of decreasing strain magnitude. In terms
of localization, however, the normal lateral particle motion
strain in the orthogonal setup (Fig. 14c) was more focused
compared to the other two configurations
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Fig. 8. Single transducer strain due to particle motion. a) Normal axial strain. Transducer location is shown by the inset at the lower left of the
figure. Because on-axis particle oscillations had the largest amplitude at the focus, we observed that normal axial strain dominated the other strain
components. b) Normal lateral strain. Particles oscillated both axially and laterally. However, axial oscillations dominated lateral oscillations and
therefore, normal lateral strain had a lower value compared to normal axial strain. c) Shear strain. Shear strain due to particle motion was almost
zero in the entire simulation field.

Fig. 9. Single transducer strain due to ARF. a) Normal axial strain. Transducer orientation is shown by the inset at the lower left of the figure.
Because the tissue displacement reached its maximum around the focus, normal axial strain due to ARF was zero at the focus. b) Normal lateral
strain. Along the transducer axis, normal lateral strain was negative, denoting compressive effects due to the curvature of the transducer. This was
accompanied by positive normal strains on either side of the transducer axis. c) Shear strain. The dominant component of strain due to ARF was
the shear strain. It reached its maximum around the focus and remained null at the focus.

Fig. 10. Antiparallel configuration strain due to particle motion. a) Normal axial strain. The orientation of the transducers is shown by the inset at
the bottom of the figure. We observed that normal axial strain dominated the other strain components. Moreover, given that two counter-propagating
waves generate standing waves, strain at the nodes of the standing wave was zero and reached its maximum values at the antinodes. b) Normal
lateral strain. Due to the curvature of the transducers, there were lateral components to tissue displacement. However, this normal lateral strain was
significantly smaller than the normal axial strain. c) Shear strain. Shear strain due to particle motion was nearly zero.

IV. DISCUSSION

The results of this study demonstrate that using two 1 MHz
transducers in an orthogonal configuration can achieve targets

as small as 0.24 mm3 deep in the brain, an impressive 40-
fold gain in spatial resolution compared to a single transducer
with identical specifications. Importantly, the gain in spatial
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Fig. 11. Antiparallel configuration strain due to ARF. a) Normal axial strain. The orientation of the transducers is shown by the inset at the bottom
of the figure. Because ARF from the two transducers pushed the tissue from both sides, we observed “sandwiching” of the tissue at the geometric
center of the simulation setup (sharp negative strain). b) Normal lateral strain. Normal lateral strain was at least an order of magnitude smaller than
the normal axial strain. c) Shear strain. The counter-propagating tissue displacement due to ARF resulted in minimal shear strain compared to the
normal axial strain. In all of the figures, minor ripples in the images are due to simulation artifacts.

Fig. 12. Orthogonal configuration strain due to particle motion. Transducer locations, as well as the diagonal and antidiagonal axes are shown by
the inset at the lower left of the figure. a) Normal diagonal strain. b) Normal antidiagonal strain. c) Shear strain. Because particle oscillations were
equally decomposed and projected over the diagonal and antidiagonal axes, normal strains along these axes dominated the shear strain. Moreover,
given the relative sharpness of the antidiagonal displacement profile compared to the diagonal displacement profile, the overall normal antidiagonal
particle-motion strain (b) was greater than the normal diagonal strain (a).

Fig. 13. Orthogonal configuration strain due to ARF. Transducer locations, as well as the diagonal and antidiagonal axes are shown by the inset
at the lower left of the figure. a) Normal diagonal strain. We anticipated that normal diagonal strain would be zero at the focus, accompanied by
tension (positive strain) and compression (negative strain) on either side of the focus along the diagonal axis. b) Normal antidiagonal strain. Due
to the counter-propagating waves along the antidiagonal axis, tissue was compressed at the focus, as marked by the sharp negative strain at the
(30mm, 30mm) zone. c) Shear strain. Although shear strain was much greater than normal diagonal strain, it was still slightly less than the
normal antidiagonal strain.

resolution for the orthogonal arrangement in contrast to a
single transducer is independent of frequency, meaning that
much lower frequencies will also benefit from this setup.

However, the exact gain will remain a function of transducer
specifications. Moreover, we showed that standing waves,
identified as desirable in eliciting neural activity in salamander
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Fig. 14. Comparison of dominant components of strain due to particle motion (PM) and strain due to acoustic radiation force (ARF) across the three
configurations. Top row represents PM strains, and bottom row represents ARF strains. Each row is normalized together. Each column represents
one of the three configurations, denoted by the text at the top, and the graphical inset at the bottom of the columns. FWHM focal volumes for PM
strain are shown with the ellipses in dashed green. Numerical values of the FWHM volumes are shown on the upper left of each figure. Note that
these are 20-cycle pulses at 250 kHz. a) Normal axial strain due to PM in a single transducer. b) Normal axial strain due to PM in the antiparallel
setup. c) Normal lateral strain due to PM in the orthogonal setup. d) Shear strain due to ARF in the single transducer configuration. e) Normal axial
stain due to ARF in the antiparallel configuration. f) Normal lateral strain due to ARF in the orthogonal configuration. Magnitudes of strain, both
due to PM as well as ARF, were a function of pressure. As such, the antiparallel setup had the largest strain (PM and ARF) values, followed by
the orthogonal setup, and the single transducer setup. In terms of resolution of the PM strain, the orthogonal configuration in (c) was confined to a
smaller area in comparison to the other two configurations.

retina [11], were generated along the antidiagonal axis of the
orthogonal setup. By providing a thorough treatment of the
acoustic radiation force (ARF), we revealed the shortcomings
associated with different tiers of simplifying assumptions.
Computation of ARF in the orthogonal setup, without the
simplifying assumptions that break in the limit of focused
ultrasound beams, showed highly localized regions of com-
pression (at ARF sinks) and tension (at ARF sources) along
the antidiagonal axis of the orthogonal setup. This regimented
ARF field enables the study of neural sub-populations’ re-
sponses to compression versus tension on a fine spatial scale.

One potential disadvantage of using transducers positioned
orthogonally compared to the antiparallel setup is efficiency. In
the orthogonal setup, the vector components of ARF from each
transducer have to be decomposed into their projections along
the antidiagonal and diagonal axes. Because the transducers
are at 90-degree angles, these projections are calculated by
multiplying the vector components by cos 45◦. The projected
components onto the antidiagonal axis interact directly to
generate standing waves along the antidiagonal axis, while
the remaining components, projected onto the diagonal axis,
interact as propagating waves. In the antiparallel setup, both

transducers are facing each other and are positioned on-axis,
allowing the entirety of their ARF vectors to interact directly
without needing decomposition or projection, as is the case
in the orthogonal setup. This direct interaction of the full
vector components, rather than only their

√
2/2 fractions, makes

the antiparallel setup more efficient. However, the orthog-
onal arrangement outperforms the antiparallel arrangement
substantially in terms of spatial resolution. As observed, a
pair of antiparallel transducers with identical specifications,
though capable of generating standing waves on-axis, did
not yield any improvement in spatial resolution compared to
a single transducer. Although Riis et al. [42] demonstrated
that frequency modulation sharpened the focal volume in the
antiparallel setup, this approach comes with three drawbacks
when compared to the orthogonal setup. First, the gain in
spatial resolution is still less than with the orthogonal setup.
Second, to generate the necessary destructive/constructive
interference for suppression of off-target pressures, phased
transducers are needed for the multi-frequency approach in the
antiparallel setup, whereas the orthogonal arrangement can be
used with either single-element or phased-array transducers.
In the orthogonal setup, phased array transducers will only
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be needed in transcranial settings where aberrations due to
the skull are significant and need to be corrected for each
transducer to ensure constructive interference at the intended
target. Third, in transcranial settings, with frequency modu-
lation for the antiparallel setup, phase aberration corrections
due to the skull have to simultaneously be account for, as
well as focal volume sharpening via frequency modulation.
This turns the problem into a bi-objective one, with a trade-
off between accurate energy deposition at the target and focal
volume sharpening. In contrast, when orthogonal transducers
are used transcranially, the sole objective is phase aberration
correction to ensure constructive interference at the target; the
90-degree arrangement of the transducers automatically takes
care of focal volume sharpening.

To further expand our toolbox in transcranial ultrasound
stimulation (TUS), we introduced the unipolar method in
the orthogonal setup, which allows for imparting dominant
pressures of single polarity on the target so that the possible
selective response of neurons to pressure polarity can be
investigated. Application of unipolar pressures is not restricted
to generating single dominant peaks. A variety of duty cycles
and pulse repetition frequencies could be designed with ap-
propriate delays to generate unipolar pulse trains. A unipolar
method will require phase aberration correction if employed
transcranially. In such scenarios, Algorithm 1 will have to
include phase correction for each iteration. Depending on
the phase correction method, computational cost could be a
potential drawback in transcranial unipolar method.

The field has not yet taken a deep dive into the mechanical
effects of TUS on neural tissue. Pressure, intensity, and pulsing
scheme remain the dominant metrics reported across the board.
However, we find it imperative to pair those metrics with
known mechanical effects on the tissue, such as ARF and
strain. Strain, as discussed, can arise from both particle motion
and ARF. Although they are related and co-exist, they present
vastly different strain maps. Interestingly, for a given pressure
at the focus, strain magnitude due to particle motion did
not change as a function of frequency. This was because
the smaller displacement gradients at lower frequencies were
offset by the larger particle displacements, and vice versa.
We hypothesize that in the limit of high frequencies, strain
due to ARF will dominate strain due to particle motion for
two reasons: First, ARF scales with tissue attenuation, and
attenuation is greater at higher frequencies. Second, past a
certain threshold, neural tissue will no longer be able to resolve
the rapid particle oscillations and will perceive displacement
due to particle motion as a constant signal, gradient of which
is zero. Further analysis and experimental setups are needed
to explore and validate these hypotheses.

In our quest to elucidate the mechanism of interaction in
TUS and build a mapping between ultrasound parameters and
neural activity, it is crucial to study neural subpopulations on
a finer scale, probe their likely differential responses under
divergent and convergent ARF, impart selective pressures on
the target to explore potential selectivity to pressure, and
understand the particle motion and ARF strain profiles of
the region under investigation. In this manuscript, we have
provided the theoretical tools necessary for conducting these

experimental investigations.

APPENDIX

Divergence Theorem

The divergence theorem allows for rewriting a volume
integral over a continuously differentiable vector field F, as
a surface integral over its boundary, and vice versa:

˚
V

(∇ · F)dV =

"
S

(F · n̂)dS, (16)

where the LHS is the volume integral of the volume V , ∇· is
the divergence operator, and the RHS is the surface integral
over the boundary of the volume V . F · n̂ is the component
of the vector field perpendicular to the surface, denoted by n̂.
For more details on the divergence theorem, please refer to
Div, Grad, Curl, and All That by H. M Schey [43].

Gradient Theorem

k⃗ · ∇Φ =
(
k1, k2, . . . , kn

)T( ∂Φ

∂x1
,
∂Φ

∂x2
, . . . ,

∂Φ

∂xn

)
=

n∑
i=1

ki
∂Φ

∂xi
.

(17)
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Φ
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)
= Φ

(
∂k1
∂x1

+
∂k2
∂x2

+ · · ·+ ∂kn
∂xn

)
= Φ

n∑
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∂ki
∂xi

.

(19)

Putting together equations 17, 18, and 19, we have:

k⃗ · ∇Φ = ∇ · (Φk⃗)− Φ(∇ · k⃗). (20)
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k⃗ ·
˚
∇ΦdV =

˚
k⃗ · ∇ΦdV

=

˚ {
∇ · (Φk⃗)− Φ(∇ · k⃗)

}
dV from (20)

=

˚
∇ · (Φk⃗)dV −

˚
Φ(∇ · k⃗)dV

=

˚
∇ · (Φk⃗)dV since k⃗ is fixed

=

¨
(Φk⃗) · n̂dS

invoking the divergence theorem

= k⃗ ·
¨

Φn̂dS since k⃗ is fixed

k⃗ ·
˚
∇ΦdV = k⃗ ·

¨
Φn̂dS

⇒˚
∇ΦdV =

¨
Φn̂dS,

(21)

which is the gradient theorem.

Acoustic Radiation Force

Impulse of a force applied to a control volume results in
change of momentum in the control volume:

dPV = Fdt
dPV

dt
= F,

(22)

whereby force vector F could be directly computed from the
rate of change of momentum vector PV in the control volume
of interest. The left-hand side (LHS) in equation (22) could
be written out explicitly as

dPV

dt
=

dP
dt

+
dPout

dt
− dPin

dt
. (23)

The right-hand side (RHS) requires some explanation [30],
[31]:

• dP
dt : rate of change of instantaneous momentum inside
the control volume, where P(t) =

˝
ρvdV . This force

component is equivalent to the ARF.
• dPout

dt : rate of momentum leaving the control volume due
to mass flow.

• dPin
dt : rate of momentum entering the control volume due

to mass flow.
Substituting F for the LHS in equation (23), and recognizing

that dPout
dt −

dPin
dt is momentum flux through a closed area A,

that is
!

ρ(v · n̂)vdA, we can rewrite equation (23) as:

F =
d

dt

˚
ρvdV +

"
ρ(v · n̂)vdA. (24)

We can expand the LHS into body forces, notably the
gravity, and surface forces, pressure and viscosity, to write
out the integral momentum equation [30], [31]:

˚
ρgdV−

"
pn̂dA+ Fviscous =

d

dt

˚
ρvdV +

"
ρ(v · n̂)vdA,

(25)

where the LHS terms are gravitational force, pressure force,
and force due to viscosity. Since the timescale over which
particle collisions take place is very short, we can ignore the
gravitational force. Moreover, because the bulk modulus in
ultrasound is much greater than the shear modulus, and that
normal stresses are dominant compared to shear stresses, it
is reasonable to drop the viscous force [32]. Dropping these
terms simplifies equation (25):

d

dt

˚
ρvdV = −

"
pn̂dA−

"
ρ(v · n̂)vdA, (26)

As we see in equation (26) momentum flux and force
due to pressure are in the form of surface integrals, whereas
ARF is a volume integral. In order to convert the momentum
flux and pressure force to volume integrals, we will invoke
the divergence theorem, equation (16), and gradient theorem,
equation (21), respectively:

"
pn̂dA =

˚
∇pdV

following the gradient theorem in 21.
(27)

"
ρ(v · n̂)vdA =

"
ρ(v · n̂)(viî+ vj ĵ + vkk̂)dA

since v is a vector

=

"
ρ(v · n̂)vidAî+

"
ρ(v · n̂)vjdAĵ

+

"
ρ(v · n̂)vkdAk̂

=

˚
∇ · (ρvvi)dV î+

˚
∇ · (ρvvj)dV ĵ

+

˚
∇ · (ρvvk)dV k̂

using the divergence theorem in 16.
(28)

At this point we have converted all the surface integrals to
volume integrals. The time derivative in the LHS in equation
(26) could be taken inside the integral:

d

dt

˚
ρvdV =

˚
d

dt
(ρv)dV. (29)

Substituting equation (27) and (28) for the RHS in equation
(26) yields:

−
"

pn̂dA−
"

ρ(v · n̂)vdA =

−
˚
∇pdV −

˚
∇ · (ρvvi)dV î

−
˚
∇ · (ρvvj)dV ĵ −

˚
∇ · (ρvvk)dV k̂.

(30)
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Putting them all together, we can rewrite equation (26) in
terms of volume integrals only:

˚
d

dt
(ρv)dV = −

˚
∇pdV −

˚
∇ · (ρvvi)dV î

−
˚
∇ · (ρvvj)dV ĵ −

˚
∇ · (ρvvk)dV k̂.

(31)

To simplify the math, let’s focus only on the ith component:
˚

d

dt
(ρvi)dV = −

˚
(∇p)idV −

˚
∇ · (ρvvi)dV

= −
˚ [

(∇p)i +∇ · (ρvvi)
]
dV.

(32)

Now that all of our integrals are volume integrals, we can
approximate the volume integral over a control volume by
replacing

˝
(·)dV with δV :

d

dt
(ρvi)δV = −

[
(∇p)i +∇ · (ρvvi)

]
δV, (33)

where δV terms can be dropped from either end. Recognizing
the d

dt (ρvi) as the ith component of ARF, we have:

ARF (t)i = −(∇p)i −∇ · (ρvvi). (34)

Let’s expand the RHS in equation (34):

(∇p)i =
∂p

∂xi
. (35)

∇ · (ρvvi) = ∇ · (ρviviî+ ρvivj ĵ + ρvivkk̂)

= ρ

(
∂

∂xi
(v2i ) +

∂

∂xj
(vivj) +

∂

∂xk
(vivk)

)
= ρ

(
2vi

∂vi
∂xi

+ vi
∂vj
∂xj

+ vj
∂vi
∂xj

+ vi
∂vk
∂xk

+ vk
∂vi
∂xk

)
.

(36)

Since our simulations were in 2D, we dropped the last
two terms corresponding to a 3rd dimension in the above
equation. We can rewrite equation (36) in 2D more compactly
as follows:

ARF (t)i = −
∂

∂xk

(
pδik + ρvivk

)
, (37)

where δik is the Kronecker delta and repeated indices in
k follow Einstein summation. Note that equation (37) is a
function of time. Given the periodicity of the wave, in order
to compute the net ARF, we can simply integrate this equation
over one full period:

ARFi =

ˆ t′+π

t′
ARF (t)idt

= −
ˆ t′+π

t′

∂

∂xk
(pδik + ρvivk)dt

= − ∂

∂xk

ˆ t′+π

t′
(pδik + ρvivk)dt,

(38)

with π denoting one period. Let
´ t′+π

t′
(·)dt = ⟨·⟩:

ARFi = −
∂

∂xk
⟨pδik + ρvivk⟩ (39)

= − ∂

∂xk
(⟨p⟩δik + ⟨ρvivk⟩),

where the second term is the Reynolds stress tensor. ρ can
be replaced with the unperturbed density, ρ0. Since the unper-
turbed pressure, p0, is fixed, the pressure term in (39) could
be replaced with ⟨p−p0⟩. This term, which we will denote as
⟨PE⟩, is the mean Eulerian excess pressure [32], [33]. Invoking
Taylor’s expansion and the first law of thermodynamics, we
can write the first term in equation (39) as [33]:

⟨p⟩ = ⟨p− p0⟩
= ⟨PE⟩

= −1

2
ρ0⟨|v|2⟩+

1

2

ρ0
c2
⟨
(−p
ρ0

)2⟩. (40)

Putting it all together, the ith component of the net ARF is:

ARFi =

− ∂

∂xk

[(
1

2ρ0c2
⟨p2⟩ − 1

2
ρ0⟨|v|2⟩

)
δik + ⟨ρ0vivk⟩

]
.

(41)

Because the simulations in this manuscript were done in
Cartesian coordinates in 2D, the explicit form of ARF in x
and y was computed as follows:

ARFx = − ∂

∂x

(
1

2ρ0c2
⟨p2⟩ − 1

2
ρ0⟨v2x + v2y⟩

)
− ρ0

〈
2vx

∂vx
∂x

+ vx
∂vy
∂y

+ vy
∂vx
∂y

〉
ARFy = − ∂

∂y

(
1

2ρ0c2
⟨p2⟩ − 1

2
ρ0⟨v2x + v2y⟩

)
− ρ0

〈
2vy

∂vy
∂y

+ vy
∂vx
∂x

+ vx
∂vy
∂x

〉
(42)

Where Does 2αI/c Come From?

ARF under the purely planar wave assumption assumes
the form presented in equation (11). Under this assumption,
pressure takes on the form p = ρcv, with c and v denoting
sound and particle velocities, respectively:
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ARF PP = −ρ⟨ ∂
∂x

v2x⟩

= −ρ ∂

∂x
⟨v2x⟩

= −ρ ∂

∂x
⟨ p2

ρ2c2
⟩ since p = ρcv

= − ρ

ρc

∂

∂x
⟨p

2

ρc
⟩

= −1

c

∂

∂x
ITA

since temporal average intensity, ITA, is

equivalent to ⟨p2/ρc⟩.

(43)

Note that the gradient of ITA necessitates an intensity
field that is not constant in space. Otherwise the gradient
would return zero. Exponential decay of the temporal average
intensity is one popular assumption: I(x) = I0e

−2αx with α
being the attenuation constant. Substituting for ITA in equation
(43):

ARF PP = −1

c

∂

∂x

(
I0e

−2αx
)

(44)

= −1

c
(−2αITA)

=
2αI

c
.

Note that I in equation (44) is the temporal average inten-
sity.

A few words should be said about equation (44) in com-
parison to equation (42). First, attenuation is not a necessary
condition for momentum transfer. In fact, non-dissipative
derivations are common and valid [26], [29], [32], due to
the cumbersome complexities that arise with inclusion of
viscosity. As we saw earlier, momentum transfer builds upon
conservation of energy. As such, when we remove the viscous
forces and arrive at the inviscid formulation in equation (26),
we still end up computing ARF accurately, without including
attenuation. This is due to the fact that in the context of
focused ultrasound, normal stresses are dominant in contrast
to shear stresses and attenuation due to viscosity can safely
be ignored [32]. Second, although the attenuation term in
equation (44) makes it seem necessary for the existence of
ARF, it is only necessary if the purely planar wave assumption
is considered. Under such extreme simplifying assumptions,
where planar waves are equally present everywhere in space,
not including attenuation would simply return a zero gradient
for intensity. Of course one could first run a simulation
to steady state and instead of using a simple exponentially
attenuated formula for intensity, directly take the gradient of
the accurately simulated temporal average intensity, − 1

c
∂
∂xITA.

This way, unlike the exponentially attenuated beam assump-
tion, the maximum beam intensity would accurately fall on the
focus. However, as we saw in the simulations for the purely
planar wave assumption, this simple gradient would result in a
categorically false ARF field with part of the force components
pointing towards the transducer surface and part pointing away

from the transducer. Third, we could fine tune the α parameter
so that the numerical value of ARF matches that computed
with equation (42). However, even then, equation (44) fails
to provide any notion of direction for ARF. In simple, single
transducer scenarios, one could augment the fine tuning idea
with the intuitive understanding that any value computed for
ARF should point away from the transducer surface. That
way, a notion of direction could be ascribed to the numerical
value computed via equation (44). However, in more complex
situations such as the orthogonal setup, prior knowledge of
the directionality of ARF components is rather difficult if
not impossible. To that end, we highly encourage the use of
equation (42) instead of equation (44). Although equation (42)
is written out explicitly for 2D, its extension to 3D is trivial:

ARFi = −
∂

∂xi

(
1

2ρ0c2
⟨p2⟩ − 1

2
ρ0⟨v2i + v2j + v2k⟩

)
− ρ0

〈
2vi

∂vi
∂xi

+ vi
∂vj
∂xj

+ vj
∂vi
∂xj

+ vk
∂vi
∂xk

+ vi
∂vk
∂xk

〉
.

(45)

CODE AVAILABILITY

All simulation files and analysis scripts are available at:
https://github.com/kbp-lab/Crossbeam.
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