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Abstract. In the wild nonabelian Hodge correspondence on curves, filtered Stokes G-local systems

are regarded as the objects on the Betti side. In this paper, we demonstrate a construction of the
moduli space of them, called the Betti moduli space, it will reduce to the wild character variety when

the Betti weights are trivial. We study some particular examples including Eguchi—Hanson space

and the Airy equation together with the corresponding moduli spaces. Furthermore, we provide a
proof of the correspondence among irregular singular G-connections, Stokes G-local systems, and

Stokes G-representations to fill a gap in the literature. This correspondence can be viewed as the

G-version of irregular Riemann–Hilbert correspondence on curves.

1. Introduction

1.1. Background. The study of the nonabelian Hodge correspondence on noncompact curves begins
with Simpson [Sim90], where he introduced filtered regular Higgs bundles, filtered regularDX -modules,
and filtered local systems along with corresponding stability conditions to establish a one-to-one cor-
respondence among them. This correspondence is famously known as the tame nonabelian Hodge
correspondence, where tameness characterizes a polynomial growth condition of flat sections or the
regularity of meromorphic connections. Under this framework, filtered local systems are local systems
on a noncompact curve with additional structures called weighted filtrations (also called parabolic
structures). They correspond to fundamental group representations satisfying certain compatibility
conditions determined by weights (these conditions are trivial in some sense). The existence of weights
makes the stability of filtered local systems not equivalent to the irreducibility of the corresponding
fundamental group representations. In a similar way, Biquard–Boalch [BB04] generalized Simpson’s
correspondence to a broader framework beyond tameness, called wildness, where meromorphic con-
nection can be irregular. They established a one-to-one correspondence between (poly)stable filtered
irregular Higgs bundles and (poly)stable filtered irregular DX -modules under a “very good” condition.
Although this work is known as the (unramified) wild nonabelian Hodge correspondence, it does not
touch the objects from the Betti side.

To establish a comprehensive wild nonabelian Hodge correspondence, a crucial step involves figuring
out the correct objects on the Betti side, which not only correspond to filtered irregular DX -modules
but also preserves stability conditions. Classically, the Riemann–Hilbert correspondence connects DX -
modules with local systems. The same idea holds in the wild case and it is well-known that there
is a one-to-one correspondence between connections with irregular singularities (or called irregular
DX -modules) and Stokes local systems [Sib77, Mal78, Mal83, LR94], which is also known as the
wild Riemann–Hilbert correspondence. Moreover, this correspondence was studied systematically in a
great generality by Boalch for reductive groups as the structure group [Boa14, Boa18, Boa21]. Inspired
by previous works, the authors introduced (Betti) weights to Stokes local systems, which are called
filtered Stokes local systems and regarded as the objects on the Betti side, and define its stability
condition. Then, an (unramified) wild nonabelian Hodge correspondence at the level of categories was
established [HS23a]. Moreover, the result also holds for complex reductive groups. For the case of
trivial Betti weights, filtered Stokes local systems from the Betti side reduce to Stokes local systems.
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In this case, Boalch constructed the moduli space of Stokes local systems by identifying Stokes local
systems with representations of the fundamental groupoid of irregular curves, which is now known as
the wild character variety. However, as the tame case Simpson ever observed, the stability of filtered
Stokes G-local systems no longer aligns with the irreducibility of the corresponding representations,
which is different from the case of trivial Betti weights investigated by Boalch–Yamakawa [BY23].
Consequently, this leads to the fact that a construction of the moduli spaces of filtered Stokes G-local
systems becomes challenging.

In this paper, we provide a construction of this moduli space in detail, for both unramified and
ramified cases and study some specific examples.

1.2. Main result. We introduce some notations first. Let G be a connected complex reductive group
with a given maximal torus T . Let X be a connected smooth projective algebraic curve over C with
a collection D of finite points. Denote by XD := X\D the punctured curve. We also fix a collection
of irregular types Q = {Qx, x ∈ D} and a collection of weights θ = {θx, x ∈ D} labelled by points in
D, where a weight is regarded as a rational cocharacter Hom(Gm, T )⊗Z Q.

To construct the moduli space of filtered Stokes G-local systems, we first relate Stokes G-local
systems to Stokes G-representations, and study the wild Riemann–Hilbert correspondence for reductive
groups G onXD in both unramified and ramified cases in §2. The proof is similar to [Boa14, Appendix],
where the author studied the unramified case. We also want to remind the reader that this result should
be well-known to experts but we still include it here because we do not find a direct reference.

In §3, we review the stability conditions on filtered Stokes G-local systems (Definition 3.4), which is
the stability condition considered in the wild nonabelian Hodge correspondence [HS23a], and construct
the moduli space of filtered Stokes G-local systems. We would like to point out that King’s result
[Kin94] inspires us to relate the stability condition of filtered Stokes G-local systems to the stability
condition in the sense of GIT (Proposition 3.9), which help us to construct the moduli sapce.

Theorem 1.1 (Theorem 3.10). The moduli space MB(XD, G,Q,θ) of degree zero θ-filtered Stokes
G-local systems with irregular type Q on XD exists as a quasi-projective variety.

Then the Betti moduli spaces in the wild nonabelian Hodge correspondence follows directly (Corollary
3.11).

In §4, we study some examples of filtered Stokes G-local systems together with its moduli spaces.
Here is a summary of the results.

(1) When the weights θ are trivial, the moduli spaceMB(XD, G,Q,θ) is exactly the wild character
variety, which has been studied in [Boa14, DDP18, HMW19].

(2) When the irregular types Q are trivial, the moduli space MB(XD, G,Q,θ) is the moduli space
of filtered G-local systems [HS23b], which is the Betti moduli space in the tame nonabelian
Hodge correspondence.

(3) We equip Eguchi–Hanson space with distinct weights and find a filtered Stokes local system
which is stable but not irreducible. This example shows that the Betti moduli space in the
wild nonabelian Hodge correspondence may not be the wild character varieties.

(4) We calculate the corresponding Stokes G-representations of the classical Airy equation and
show that the moduli space, where it lies in, is a single point. Therefore, the corresponding
irregular singular connection of the Airy equation is both rigid and physically rigid. This
result is also obtained in [HJ24, Theorem 1.2.1] recently. Moreover, we prove that in the case
of G = SL2(C) and a ramified irregular type Q, the moduli space MB(XD,SL2(C), Q, θ) is
always isomorphic to the wild character variety and does not depend on the weight (Proposition
4.4). This result can be generalized to G = SLn(C) in a certain extent (Remark 4.5).

Acknowledgments. The authors would like to thank Konstantin Jakob, Yichen Qin and Xi-
aomeng Xu for helpful discussions. Pengfei Huang acknowledges funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant
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2. Irregular Riemann–Hilbert Correspondence

Let X be a connected smooth projective algebraic curve over C (i.e. a connected compact Riemann
surface) with a collection of finite points D. Denote by XD := X\D the punctured curve. In
this section, we study the irregular Riemann–Hilbert correspondence for connected complex reductive
groups G on XD in both unramified and ramified cases. Fixing a collection of irregular types Q =
{Qx, x ∈ D}, we prove the equivalence of the following three categories on XD

• the category of G-connections with irregular type Q;
• the category of Stokes G-local systems with irregular type Q;
• the category of Stokes G-representations with irregular type Q.

In §2.1, we first study the correspondence on a punctured disc D∗, and then in §2.2, we prove the
equivalence of categories on XD. In §2.3, we give an equivalent description of the space of Stokes
G-representations, which will be used to construct the moduli space of filtered Stokes G-local systems
in §3.

2.1. Local Correspondence. We fix some notations first

R = C{z}, R̂ = C[[z]],

K = C({z}), K̂ = C((z)).

Sometimes, we add subscript ‘z’ to emphasize the local coordinate, for instance, Rz = C{z} and

Rw = C{w}. Let D = SpecR and D̂ = Spec R̂ be the disc and formal disc, respectively, and then

D∗ : punctured disc,

D̂∗ : formal punctured disc.

Let G be a connected complex reductive group with a given maximal torus T . Let g (resp. t) be the
Lie algebra of G (resp. T ). Denote by R the set of roots.

Let V be a G-bundle on D∗ with a G-connection ∇. A G-connection in this paper is always assumed
to be algebraic. To simplify the terminology, such a pair (V,∇) is also called a G-connection. With
respect to the local coordinate ‘z’, we write ∇ as

∇ = d+A(z)dz,

where d is the exterior differential and A(z) ∈ g(K) is the connection form. Note that the connection
form A(z) of ∇ is in g(K) because we are working on connections with irregular singularities. Two
G-connections ∇1 = d+A1(z)dz and ∇2 = d+A2(z)dz are (gauge) equivalent if there exists g ∈ G(K)
such that g ◦ ∇1 = ∇2, i.e.

A2(z) = −g′ · g−1 + gA1(z)g
−1.

Moreover, we say that ∇1 and ∇2 are formally (gauge) equivalent if there exists an element g ∈ G(K̂)
such that g ◦ ∇1 = ∇2.

Now given a G-connection ∇ = d+A(z)dz, we consider the following set

Ĝ(∇) := {g ∈ G(K̂) | g ◦ ∇ is a G-connection}.
Equivalently, this set can be regarded as

Ĝ(∇) = {g ∈ G(K̂) | − g′ · g−1 + gA(z)g−1 ∈ g(K)}.
Clearly,

G(K) ⊆ Ĝ(∇) ⊆ G(K̂).
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The quotient set Ĝ(∇)/G(K) classifies all G-connections which are formally equivalent to∇. Moreover,

taking an arbitrary element∇′ ∈ Ĝ(∇), we have Ĝ(∇) = Ĝ(∇′), and thus Ĝ(∇)/G(K) = Ĝ(∇′)/G(K),
which implies that the quotient does not depend on the choice of representatives. When G = GLn(C),
the Malgrange–Sibuya isomorphism theorem [Mal78, Mal83, Sib77] describes Ĝ(∇)/G(K) as a non-
abelian cohomological set. The argument can be applied to complex reductive groups in the same way.

We briefly review the setup and state the result. For convenience, let D = C and denote by D̃ → D
the real oriented blowup of D at 0 ∈ D, i.e. D̃ = S1 × [0,+∞). Let U be an open subset of S1, and we
define an open subset

Ũ = {(ρ, θ) ∈ D̃ | ρ > 0, θ ∈ U}

of D̃. Now, we define a nonabelian sheaf Λ∇ on S1, of which a germ g at θ ∈ S1 is an (holomorphic)

element in G(O(Ũ)) such that

• g is asymptotic to the identity on Ũ at 0;
• g ◦ ∇ = ∇.

We refer the reader to [Mal83, §3] and [LR94, I.2] for more details about the construction of this sheaf.
With a similar argument as in the case of G = GLn(C), we have the following Malgrange–Sibuya
theorem for reductive groups:

Theorem 2.1 (Theorem A.1 in [Boa14]). There exists a bijection between the sets Ĝ(∇)/G(K) and
H1(S1,Λ∇).

To give a more precise description of the cohomology H1(S1,Λ∇), we first introduce irregular types.
An element in the following form

Q(z) = q−nz
−n/r + · · ·+ q−1z

−1/r

for some positive integers n and r, where q−i ∈ t, is called an irregular type. Under the substitution
z = wr, we have

Q(w) = q−nw
−n + · · ·+ q−1w

−1.

The substitution z = wr can be regarded as choosing a covering D → D. An irregular type is called
unramified if r = 1, and ramified if r ≥ 2.

Definition 2.2. Given an irregular type Q, a G-connection ∇ = d + A(z)dz is with irregular type
Q, if under the substitution z = wr, the connection d + A(w)d(wd) is formally equivalent (under the

action of G(K̂w)) to a connection in the form

d+ dQ+ b−1
dw

w
,

where b−1 ∈ g, such that [Q, b−1] = 0.

It has been proven that any G-connection is of a certain irregular type.

Theorem 2.3 ([BV83]). Given any G-connection d + A(z)dz, where A(z) = a−nz
−n + · · · ∈ g(Kz),

there exists a positive integer r such that under the substitution z = wr, the G-connection d+A(w)dw is

formally equivalent to d+B(w)dw (under the action of G(K̂w)), where B(w) = b−n′w−n′
+· · · ∈ g(Kw)

such that

• bi ∈ t for i ≤ −2;
• bi = 0 for i ≥ 0;
• [bi, bj ] = 0.

Remark 2.4. In the above theorem, although the integer r is not unique, in this paper we always
assume that the integer r we choose is the smallest one.
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Now we fix a G-connection ∇ = d + A(z)dz with irregular type Q. In the case of G = GLn(C),
Loday-Richaud gives a constructive description of H1(S1,Λ∇) from unipotent Lie groups [LR94]. The
arguments can be applied to complex reductive groups as well. In the following, we only give the
statement and refer the reader to [Boa14, BY15] for the description.

Given a root α ∈ R, it determines a meromorphic function qα(z) := α(Q(z)). A direction d ∈ S1 is
an anti-Stokes direction (supported by α) if the meromorphic function exp(qα(z)) has maximal decay
as z goes to zero in the direction. Denote by A the set of all anti-Stokes directions with respect to
the given irregular type Q. Given an anti-Stokes direction d ∈ A, let R(d) ⊆ R be the subset of roots
supporting d, and for each α ∈ R, let Uα := exp(gα) ⊆ G be the corresponding unipotent subgroup.
Denote by Stod the image of the product map

∏
α∈R(d) Uα → G, which is a unipotent group [LR94,

I.4.8]. We define

Sto(Q) :=
∏
d∈A

Stod.

Theorem 2.5 (Theorem A.2 in [Boa14]). There is a bijection

Sto(Q) → H1(S1,Λ∇).

Remark 2.6. In [Boa14, Appendix], although the author only deals with the unramified case, the
results and arguments hold for the ramified case. Therefore, we only state Theorem 2.1 and Theorem
2.5 without a proof.

In [BY15], the authors define a local system I on S1, of which sections over sectors are functions
in the form Q =

∑n
i=1 q−iz

−i/r, where q−i/r ∈ C and n, r ∈ N. The sheaf I can be regarded as a vast

disjoint union of circle coverings of S1, and each component of I (i.e. an element in π0(I)) is a covering
of S1. Given a point p ∈ S1, the fiber Ip is a free Z-module. We define a pro-tori Tp := Hom(Ip,C∗),
where a pro-tori is an inverse limit of torus. We obtain a system T of pro-tori over S1, of which Tp is
the fiber at p ∈ S1.

Definition 2.7. An I-graded G-local system on S1 is a G-local system L on S1 together with a
morphism T → Aut(L) of local systems over S1 factoring through an algebraic quotient of T .

Boalch–Yamakawa proved the following equivalence of categories.

Theorem 2.8 (Theorem 6 in [BY15]). The category of G-connections on D̂∗ is equivalent to the
category of I-graded G-local systems on S1.

Remark 2.9. Let L be an I-graded G-local system on S1, and denote by ∇ the corresponding G-

connection on D̂∗. We briefly state how irregular types of ∇ corresponds to morphisms T → Aut(L).
We fix a point p ∈ S1, and then we obtain a morphism Tp → Aut(Lp) ∼= G by restricting to p.
Moreover, we suppose that the image of the morphism lies in the maximal torus T of G. Since the
image of Tp → T is a quotient of Tp, it is equivalent to a finite rank free Z-submodule of Ip, of which
the generators can be regarded as irregular types. In this sense, we say that a I-graded G-local system
is of irregular type Q, if the corresponding connection ∇ is with irregular type Q. Note that in [BY15],
it is called irregular classes of I-graded G-local systems, while in this paper, we use the terminology
irregular types for convenience.

Recall that D̃ is the real oriented blow-up of D at zero, and the zero point is usually denoted by

x. Denote by ∂ = S1 the boundary circle. We draw a concentric circle (a halo) ∂′ on D̃, and denote
by H the region between ∂ and ∂′. In other words, H is regarded as a tubular neighbourhood of ∂
with another boundary circle ∂′. We puncture ∂′ at #A many distinct points and denote them by
{xd, d ∈ A}. According to the anti-Stokes directions, we require that all the #Ax auxiliary small cilia
between each anti-Stokes direction and its nearby puncture do not cross (see the following picture for
example).
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Denote by DQ the punctured surface obtained in the above way. Moreover, we have

DQ ↪→ D̃ → D.

Definition 2.10. A Stokes G-local system with irregular type Q on D∗ is a G-local system L on DQ

such that L|H is with irregular type Q and the monodromy around each puncture xd in DQ lies in
Stod.

Remark 2.11. Since H is a tubular neighbourhood of ∂, the fundamental group of H is isomorphic to
the fundamental group of ∂. Then, the category of G-local systems on H is equivalent to the category
of G-local systems on ∂. Thus, a G-local system on H with irregular type Q actually means that the
corresponding G-local system on ∂ is with irregular type Q.

Theorem 2.12 (Local Correspondence). The category of G-connections with irregular type Q on D∗

is equivalent to the category of Stokes G-local systems with irregular type Q on D∗.

Proof. We fix a G-connection ∇0 with irregular type Q. Then, isomorphism classes of G-connections

with irregular type Q are classified by Ĝ(∇0)/G(K). As we discussed above Theorem 2.1, the quotient
set does not depend on the choice of ∇0. Given an arbitrary G-connection ∇′ with irregular type Q,
denote by L′ (resp. L0) the corresponding G-local system of ∇′ (resp. ∇0). Moreover, we regard
L0 as a G-local system on H, while L′ as a G-local system on D∗. By Theorem 2.1 and 2.5, there

is a bijection between Sto(Q) =
∏

d∈A Stod and Ĝ(∇0)/G(K). Denote by (γd)d∈A the corresponding
elements of ∇′ in

∏
d∈A Stod, where γd ∈ Stod. Then, we glue L0 and L′ via γd around each puncture

xd. Thus, we obtain a G-local system on DQ, which is clear a Stokes G-local system with irregular
type Q on D∗.

On the other hand, given a Stokes G-local system L with irregular type Q on DQ, we obtain two
G-local systems L′ and L0 by taking restrictions to D∗ and H respectively. Under isomorphisms, we
suppose that L0 is the G-local system given by the G-connection ∇0. Since L is a Stokes G-local
system with irregular type Q, the monodromy γd around puncture xd for each d ∈ A gives an element
(γd)d∈A ∈ Sto(Q). Therefore, we obtain a G-connection with irregular type Q. □

2.2. Global Correspondence. Let X be a connected smooth projective algebraic curve over C. Let
D be a given collection of finitely many distinct points on X, which is also regarded as a reduced effec-
tive divisor on X, and denote by XD := X\D the punctured curve, which is also called a noncompact

curve. Let X̃ be the real oriented blow-up of X at each puncture x ∈ D. It is equivalent to consider

that X̃ is obtained from X by replacing each puncture x ∈ D by an oriented boundary circle ∂x, of
which points are considered to be oriented directions emanating from x. Now we equip each puncture
x ∈ D with an irregular type Qx, and denote by Q = {Qx, x ∈ D} the collection with irregular types.
For each x ∈ D, let Ax be the set of anti-Stokes directions of Qx. Then, we draw a concentric circle (a

halo) ∂′
x on X̃ near ∂x. Denote by Hx the region between ∂x and ∂′

x, which is a tubular neighbourhood
of ∂x. Then, we puncture ∂′

x at #Ax distinct points according to anti-Stokes directions such that all
the #Ax auxiliary small cilia between each anti-Stokes direction and its nearby puncture do not cross.
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Denote by {xd, d ∈ Ax} the collection of punctures with respect to point x ∈ D. Finally, let XQ ↪→ X̃
be the punctured surface obtained in the above way, which is called the irregular curve given by Q.

Definition 2.13. A Stokes G-local system with irregular type Q on XD is a G-local system L on XQ

such that for each puncture x ∈ D, the restriction L|Hx
is with irregular type Qx (up to isomorphism)

and the monodromy around each puncture xd lies in the Stokes group Stod for every d ∈ Ax.

Theorem 2.14 (Global Correspondence). The category of G-connections with irregular type Q on V ,
is equivalent to the category of Stokes G-local systems with irregular type Q on XD.

Proof. This is an immediate result of the local correspondence (Theorem 2.12). □

If we do not fix a specific irregular type, then we have the following correspondence, which is regarded
as the G-version of the classical irregular Riemmann–Hilbert correspondence of Deligne, Malgrange,
Sibuya, Loday-Richaud [LR94, Mal83, Sib77].

Corollary 2.15. The category of G-connections on XD is equivalent to the category of Stokes G-local
systems on XD.

Now we will introduce the fundamental groupoid of XQ and show that the category of Stokes G-
local systems with irregular type Q on XD is equivalent to the category of specific G-representations of
the fundamental groupoid of XQ. We first introduce two sets H(∂) and H determined by an irregular

type. Given an irregular type Q, denote by H the centralizer of Q = qnz
−n/r + · · · + q−1z

−1/r in G.
More precisely,

H = {k ∈ G | [k, q−i] = 0 for each i.}
Denote by H(∂) ⊆ G the subset of formal monodromies given by Q. In the unramfied case, H = H(∂).
Boalch–Yamakawa proved the following result:

Lemma 2.16 (Lemma 15 in [BY15]). The (H ×H)-action on H(∂) via (h1, h2)(m) = h1mh2 gives a
H-bitorsor structure on H(∂).

Now we fix a base point b0 ∈ XQ, which is not in the boundary circle ∂x for each x ∈ D. For each
boundary circle ∂x of XQ, we choose a base point bx, and denote by b := {b0, bx, x ∈ D} the set of
base points. Let Π1(XQ, b) be the fundamental groupoid of XQ with b as the set of base points. Here
is an explicit description of generators of Π1(XQ, b):

(1) α1, β1, · · · , αg, βg are loops based at b0 determined by the genus of X;
(2) for each x ∈ D, the simple closed loop γx based at bx goes once around ∂x;
(3) for each d ∈ Ax, the loop γx,d based at bx goes once around the nearby puncture xd so that

xd is the only puncture inside γx,d;
(4) for each base point bx, the simple path γ0x connects b0 and bx.

For the relations of Π1(XQ, b), for each x ∈ D, we define

(∗) µx = γ−1
0x · γx ·

( ∏
d∈Ax

γx,d

)
· γ0x,

which is a loop based at b0. Then, the relation of Π is(
g∏

i=1

[αi, βi]

)
·

(∏
x∈D

µx

)
= id.

In the above setup, γx is usually regarded as formal monodromy, while µx is regarded as topological
monodromy. In fact, the definition of Π1(XQ, b) does not depend on the choice of base points, for
which use the notation Π as an abbreviation. Denote by Ω the free group generated by generators of
Π and there is a natural surjection Ω → Π.

Let Hom(Π, G) be the space of G-representations of Π. An element (point) ρ ∈ Hom(Π, G) is
called a Stokes G-representation with irregular type Q on XD if for each x ∈ D and d ∈ Ax, we have
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ρ(γx) ∈ H(∂x), which is the set of formal monodromies given by Qx, and ρ(γx,d) ∈ Stod. Denote by
HomS(Π, G) the space of all Stokes G-representations with irregular type Q, which is a smooth affine
variety. Here is an equivalent description of HomS(Π, G) with respect to generators and relations of
Π. For each x ∈ D, we define

A(Qx) = H(∂x)× Sto(Qx).

We consider the closed subvariety

HomS(Ω, G) :=

(
(G×G)g ×

∏
x∈D

(G×A(Qx))

)
⊆ Hom(Ω, G).

Given a G-representation ρ : Ω → G, we use the following notations

ai = ρ(αi), bi = ρ(βi), ρ(γx) = hx, ρ(γx,d) = Sx,d, ρ(γ0x) = cx.

Then HomS(Π, G) includes all data

((ai, bi)1≤i≤g, (cx, hx, Sx,d)x∈D,d∈Ax
) ∈ HomS(Ω, G)

such that (
g∏

i=1

[ai, bi]

)
·

(∏
x∈D

(c−1
x hx(

∏
d∈Ax

Sx,d)cx)

)
= id.

Recall that Hx is the stabilizer of Qx for x ∈ D. We define

H :=
∏
x∈D

Hx, H(∂) :=
∏
x∈D

H(∂x).

There is a (G×H)-action on HomS(Π, G) given as follows:

(g, (kx)x∈D) · ((ai, bi)1≤i≤g, (cx, hx, Sx,d)x∈D,d∈Ax) :=

((gaig
−1, gbig

−1)1≤i≤g, (kxcxg
−1, kxhxk

−1
x , kxSx,dk

−1
x )x∈D,d∈Ax

).

Under this action, HomS(Π, G) becomes a (twsited) quasi-Hamiltonian (G ×H)-space with moment
map

µ : HomS(Π, G) → G×H(∂),

ρ 7→ (
∏
x∈D

(
c−1
x hx(

∏
d∈Ax

Sx,d)cx

)
, (h−1

x )x∈D).

As a result, the quotient MB(XD, G,Q) := HomS(Π, G)//(G × H), which is called wild character
variety, exhibits a structure of an algebraic Poisson variety with symplectic leaves [Boa14, BY15].
Two Stokes G-representations with irregular type Q are isomorphic if they are in the same (G×H)-
orbit.

Theorem 2.17 (Theorem A.3 in [Boa14]). There is a one-to-one correspondence between (G ×H)-
orbits in HomS(Π, G) and isomorphism classes of Stokes G-local systems with irregular type Q on XD.
Thus, the category of Stokes G-local systems with irregular type Q on XD is equivalent to the category
of Stokes G-representations with irregular type Q on XD.

2.3. Stokes G-representations. In the previous subsection, we follow Boalch’s idea to construct the
fundamental groupoid Π of XQ with respect to a collection of base points b = {b0, bx x ∈ D}, and
then in the definition of the fundamental groupoid Π, it has a path (a generator) γ0x connecting b0
and bx for each x ∈ D. In the following, we will define a fundamental group of XQ with respect to a
single base point and give an equivalent description of the space of Stokes G-representations.

We define a free group Ω′ with generators

(1) α′
1, β

′
1, . . . , α

′
g, β

′
g;

(2) γ′
x for each x ∈ D;
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(3) γ′
x,d for each d ∈ Ax.

Adding a relation

(∗′)

(
g∏

i=1

[α′
i, β

′
i]

)
·

(∏
x∈D

µ′
x

)
= id,

where

µ′
x = γ′

x ·

( ∏
d∈Ax

γ′
x,d

)
,

we obtain a group Π′. There is a morphism Ω′ → Ω (resp. Π′ → Π)

α′
i 7→ αi, β′

i 7→ βi, γ′
x 7→ γ−1

0x γxγ0x, γ′
x,d 7→ γ−1

0x γx,dγ0x,

which induces one Hom(Ω, G) → Hom(Ω′, G) (resp. Hom(Π, G) → Hom(Π′, G)). Therefore, the group
Π′ can be regarded as the fundamental group of XQ with respect to a given base point b0. Given a
G-representation ρ′ : Ω′ → G, we introduce the following notations

a′i = ρ′(α′
i), b′i = ρ′(β′

i), h′
x = ρ′(γ′

x), S′
x,d = ρ′(γ′

x,d).

Consider the group
∏

x∈D Gx, where Gx := G. We define an action

(
∏
x∈D

Gx)×Hom(Ω′, G) → Hom(Ω′, G)

via

(gx)x∈D · ((a′i, b′i)1≤i≤g, (h
′
x, S

′
x,d)x∈D,d∈Ax

) := ((a′i, b
′
i)1≤i≤g, (g

−1
x h′

xgx, g
−1
x S′

x,dgx)x∈D,d∈Ax
).

Consider the fiber product(
(
∏
x∈D

Gx)×Hom(Ω′, G)

)
×Hom(Ω′,G)

(
(G×G)g ×

∏
x∈D

A(Qx)

)
,

where
(
(G×G)g ×

∏
x∈D A(Qx)

)
↪→ Hom(Ω′, G) is the natural inclusion. The fiber product is a

closed subvariety of (
∏

x∈D Gx)×Hom(Ω′, G), and it includes all points

((gx)x∈D, ((a′i, b
′
i)1≤i≤g, (h

′
x, S

′
x,d)x∈D,d∈Ax

)) ∈ (
∏
x∈D

Gx)×Hom(Ω′, G)

such that

g−1
x h′

xgx ∈ H(∂x), g−1
x S′

x,dgx ∈ Stod
for each x ∈ D and d ∈ Ax. Then, we define

HomS(Ω
′, G) :=

(
((
∏
x∈D

Gx)×Hom(Ω′, G))×Hom(Ω′,G) ((G×G)g ×
∏
x∈D

A(Qx))

)∣∣∣∣
Hom(Ω′,G)

.

Clearly, HomS(Ω
′, G) is a locally closed subset and includes all points

((a′i, b
′
i)1≤i≤g, (h

′
x, S

′
x,d)x∈D,d∈Ax

) ∈ Hom(Ω′, G)

satisfying the condition that for each x ∈ D, there exists gx ∈ G such that

g−1
x h′

xgx ∈ H(∂x), g−1
x S′

x,dgx ∈ Stod.

Adding the relation (∗′), we obtain a closed subvariety HomS(Π
′, G) ↪→ HomS(Ω

′, G). Furthermore,
the natural G-action on Hom(Ω′, G) given by conjugation

g · ((a′i, b′i)1≤i≤g, (h
′
x, S

′
x,d)x∈D,d∈Ax

) := ((ga′ig
−1, gb′ig

−1)1≤i≤g, (gh
′
xg

−1, gS′
x,dg

−1)x∈D,d∈Ax
)

induces a G-action on HomS(Π
′, G).
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Proposition 2.18. There is a one-to-one correspondence between (G×H)-orbits in HomS(Π, G) and
G-orbits in HomS(Π

′, G).

Proof. There is a natural morphism

HomS(Π, G) → HomS(Π
′, G)

given by

((ai, bi)1≤i≤g, (cx, hx, Sx,d)x∈D,d∈Ax
) → ((ai, bi)1≤i≤g, (c

−1
x hxcx, c

−1
x Sx,dcx)x∈D,d∈Ax

).

In other words,

a′i = ai, b′i = bi, h′
x = c−1

x hxcx, S′
x,j = c−1

x Sx,jcx.

Given an arbitrary element (g, (kx)x∈D) ∈ G×H, we have

(g, (kx)x∈D) · ((ai, bi)1≤i≤g, (cx, hx, Sx,d)x∈D,d∈Ax
) =

((gaig
−1, gbig

−1)1≤i≤g, (kxcxg
−1, kxhxk

−1
x , kxSx,dk

−1
x )x∈D,d∈Ax

).

Moreover,

g · ((a′i, b′i)1≤i≤g, (h
′
x, S

′
x,d)x∈D,d∈Ax) = ((ga′ig

−1, gb′ig
−1)1≤i≤g, (gh

′
xg

−1, gS′
x,dg

−1)x∈D,d∈Ax).

Clearly, the image of

(g, (kx)x∈D) · ((ai, bi)1≤i≤g, (cx, hx, Sx,d)x∈D,d∈Ax
) ∈ HomS(Π, G)

is

g · ((a′i, b′i)1≤i≤g, (h
′
x, S

′
x,d)x∈D,d∈Ax

) ∈ HomS(Π
′, G).

The proposition follows directly. □

We have the following corollary as a direct result of Theorem 2.17 and Proposition 2.18.

Corollary 2.19. There is a one-to-one correspondence between G-orbits in HomS(Π
′, G) and isomor-

phism classes of Stokes G-local systems with irregular type Q on XD.

Terminology. From now on, a representation in HomS(Π
′, G) will be called a Stokes G-representation

on XD.

3. Moduli Space of Filtered Stokes G-Local Systems

In this section, we construct the moduli space of filtered Stokes G-local systems with irregular type
Q on XD. By Proposition 2.18 and Corollary 2.19, it is equivalent to construct the moduli space for
filtered Stokes G-representations with irregular type Q. In §3.1, we first give the stability condition for
filtered Stokes G-representation (Definition 3.4) based on Ramanathan’s approach [Ram75, Ram96].
In §3.2, we give a third construction of the space of Stokes G-representations, which will be used in
the construction of the moduli space. In §3.3, we prove that the stability condition of filtered Stokes
G-representations is equivalent to a stability condition in the sense of GIT (Proposition 3.9), and then
we follow King’s approach [Kin94, §2] to construct the moduli space (Theorem 3.10). In this section,
since we always fix an irregular type Q, if there is no ambiguity, we use the terminology filtered Stokes
G-representations (or filtered Stokes G-local systems) without mentioning the irregular type.
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3.1. Stability Condition of Filtered Stokes G-local Systems. Recall that G is a connected
complex reductive group with a maximal torus T . Denote by R the set of roots. There is a natural
pairing of cocharacters and characters

⟨·, ·⟩ : Hom(Gm, T )×Hom(T,Gm) → Z.
This pairing can be extended to cocharacters and characters with rational coefficients, and a rational
cocharacter in this paper is also called a weight. Now we fix a Borel subgroup B, which includes T .
Let P be a parabolic subgroup. Given a character χ of P and a cocharacter µ of T , we define

⟨µ, χ⟩ := ⟨g−1µg, χ⟩,

where g satisfies B ⊆ gPg−1 and g−1µg is a cocharacter of P . Furthermore, the definition ⟨µ, χ⟩ does
not depend on the choice of such element g.

Let {ei} (resp. {e∗i }) be a basis of Hom(Gm, T )⊗Z Q (resp. Hom(T,Gm)⊗Z Q) such that ⟨ei, e∗j ⟩ =
δij . Suppose that G is semisimple for convenience, and then, {ei} is regarded as a collection of
simple coroots, while {e∗i } is regarded as the set of the corresponding fundamental weights. Given a
cocharacter θ, a character χθ is uniquely determined by the conditions

⟨ei, χθ⟩ = ⟨θ, e∗i ⟩
for each i, and similarly, a cocharacter θχ is determined by a given character χ by the conditions

⟨θχ, e∗i ⟩ = ⟨ei, χ⟩
for each i. Clearly, we have

⟨θ, χ⟩ = ⟨θχ, χθ⟩.
Now let θ be a weight. It determines a parabolic subgroup

Pθ := {g ∈ G | the limit lim
t→0

θ(t)gθ(t)−1 exists }

with Levi subgroup Lθ. Here is another interpretation of Pθ. Define

Rθ := {α ∈ R | ⟨θ, α⟩ ≥ 0}.

Then Pθ = ⟨T,Uα, α ∈ Rθ⟩, i.e. Pθ is generated by T and Uα for α ∈ Rθ. On the other hand, given a
parabolic subgroup P ⊆ G, denote by RP the set of roots of P . Clearly, RPθ

= Rθ. Now we consider
a special type of characters, which is called dominant characters and introduced by [Ram75, §2].

Definition 3.1. Given a parabolic subgroup P , a character χ of P is called dominant (resp. anti-
dominant) if it is a positive (resp. negative) linear combination of fundamental weights given by roots
in RP .

In [HS23b], the authors proved the following lemma.

Lemma 3.2 (Lemma 4.6 in [HS23b]). Given a weight θ, the character χθ is a dominant character of
Pθ. On the other hand, given a character χ, if it is a dominant character of some parabolic subgroup
P , then Pθχ ⊇ P .

Definition 3.3. Let θ = {θx, x ∈ D} be a collection of weights. A θ-filtered Stokes G-representation
is a Stokes G-representation ρ′ such that the formal monodromy h′

x = ρ′(γ′
x) is conjugate to an element

in Pθx for every x ∈ D. The corresponding Stokes G-local system is called a θ-filtered Stokes G-local
system.

It is well-known that a connected complex reductive group G is covered by its Borel subgroups.
Clearly, the statement also holds for parabolic subgroups. Then, fixing an arbitrary parabolic sub-
group P , any g ∈ G is conjugate to an element in P . Therefore, the space of θ-filtered Stokes
G-representations can also be regarded as HomS(Π

′, G).
Given a Stokes G-representation ρ′ : Π′ → G, a parabolic subgroup P is compatible with ρ′, if there

is a lifting
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P

Π′ G
ρ′

In other words, the representation ρ′ is well-defined when restricted to P . Let L be the Levi subgroup
of P . If P is compatible with ρ′, then ρ′ is also well-defined by restricting to L. Under the morphism
P ↠ L → G, we obtain a G-representation and denote it by ρ′L.

Given a θ-filtered Stokes G-representation ρ′, there exists gx ∈ G such that gxρ
′(γ′

x)g
−1
x ∈ P−θx for

each x ∈ D. Suppose that the parabolic subgroup P is compatible with ρ′, and then B−θx ⊆ gxPg−1
x ,

where B−θx ⊆ P−θx is the Borel subgroup. Let χ be a character of P and the natural pairing is given
as

⟨θx, χ⟩ = ⟨g−1
x θxgx, χ⟩ = ⟨θx, gxχg−1

x ⟩.

We define the degree of a θ-filtered Stokes G-representation ρ′ as

degloc ρ′(P, χ) := ⟨θ, χ⟩ =
∑
x∈D

⟨θx, χ⟩.

Furthermore, a parabolic subgroup P is admissible with ρ′ if P is compatible with ρ′ and for any
character χ : P → Gm trivial on the center, we have degloc ρ′(P, χ) = 0.

We follow Ramanathan’s stability condition on principal bundles [Ram75, Ram96] to give the defini-
tion of stability condition on filtered Stokes G-representations (also for filtered Stokes G-local systems),
which is called the R-stability condition.

Definition 3.4. A θ-filtered Stokes G-representation ρ′ is R-semistable (resp. R-stable), if for

• any proper parabolic subgroup P ⊆ G compatible with ρ′,
• any nontrivial anti-dominant character χ : P → Gm, which is trivial on the center of P ,

we have

degloc ρ′(P, χ) ≥ 0 (resp. > 0).

Moreover, two R-semistable θ-filtered Stokes G-representations ρ′1 and ρ′2 are S-equivalent if there
exist parabolic subgroups P1 and P2 (with Levi subgroups L1 and L2) admissible with ρ′1 and ρ′2
respectively such that the corresponding Stokes G-representations (ρ′1)L1

and (ρ′2)L2
are conjugate

under the action of G.

Definition 3.5. A θ-filtered Stokes G-representation ρ′ is of degree zero, if for any character χ of G,
we have degloc ρ′(P, χ) = 0. Note that when G is semisimple, this condition is always satisfied.

3.2. An Equivalent Construction. In this subsection, we give a third construction of the space of
Stokes G-representations. We define a free group Ω′′ generated by the following elements

(1) α′′
1 , β

′′
1 , . . . , α

′′
g , β

′′
g ;

(2) ι′′x, γ
′′
x for each x ∈ D;

(3) γ′′
x,d for each d ∈ Ax.

Given a relation

(∗′′)

(
g∏

i=1

[α′′
i , β

′′
i ]

)
·

(∏
x∈D

µ′′
x

)
= id,

where

µ′′
x = ι′′x · γ′′

x ·

( ∏
d∈Ax

γ′′
x,d

)
,
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we obtain a group Π′′. The natural surjection Ω′′ → Π′′ induces a closed embedding Hom(Π′′, G) ↪→
Hom(Ω′′, G). Moreover, given a G-representation ρ′′ : Ω′′ → G (or ρ′′ : Π′′ → G), we introduce the
following notations

a′′i = ρ′′(α′′
i ), b′′i = ρ′′(β′′

i ), ρ′′(ι′′x) = l′′x, ρ′′(γ′′
x) = h′′

x, ρ′′(γ′′
x,d) = S′′

x,d.

We define a morphism Ω′ → Ω′′ (resp. Π′ → Π′′)

α′ 7→ α′′, β′ 7→ β′′, γ′
x 7→ ι′′xγ

′′
x , γ′

x,d 7→ γ′′
x,d,

which induces a morphism Hom(Ω′′, G) → Hom(Ω′, G) (resp. Hom(Π′′, G) → Hom(Π′, G)). Taking
the fiber product

HomS(Ω
′′, G) HomS(Ω

′, G)

Hom(Ω′′, G) Hom(Ω′, G) ,

we obtain a quasi-projective variety HomS(Ω
′′, G), which includes all points

((a′′i , b
′′
i )1≤i≤g, (l

′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

) ∈ Hom(Ω′′, G)

satisfying the condition that for each x ∈ D, there exists gx ∈ G such that

g−1
x l′′xh

′′
xgx ∈ H(∂x), g−1

x S′′
x,dgx ∈ Stod.

Moreover, we define a (
∏

x∈D Gx)-action on HomS(Ω
′′, G) via

(gx)x∈D · ((a′′i , b′′i )1≤i≤g, (l
′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax) := ((a′′i , b

′′
i )1≤i≤g, (g

−1
x l′′x, h

′′
xgx, S

′′
x,d)x∈D,d∈Ax),

where Gx = G for each x ∈ D.
Now given a collection of weights θ = {θx, x ∈ D}, denote by P = {P−θx , x ∈ D} the collection of

parabolic subgroups. We define a closed subvariety HomS(Ω
′′,P ) ⊆ HomS(Ω

′′, G), of which points

((a′′i , b
′′
i )1≤i≤g, (l

′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

)

satisfy the condition that

l′′x ∈ Lθx , h′′
x ∈ P−θx

for each x ∈ D. We take the fiber product

H̃omS(Ω
′′,P ) HomS(Ω

′′,P )

(
∏

x∈D Gx)×HomS(Ω
′′, G) HomS(Ω

′′, G) .

Then we restrict it to Hom(Ω′′, G) and define

HomS(Ω
′′, [P ]) := H̃omS(Ω

′′,P )|HomS(Ω′′,G).

The variety HomS(Ω
′′, [P ]) includes all points

((a′′i , b
′′
i )1≤i≤g, (l

′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

) ∈ HomS(Ω
′′, G)

such that for each x ∈ D, there exists gx ∈ G such that g−1
x l′′x ∈ Lθx and h′′

xgx ∈ P−θx . Then we obtain
a closed subvariety HomS(Π

′′, [P ]) ⊆ HomS(Ω
′′, [P ]) by adding the relation (∗′′). Since the collection

P of parabolic subgroups is determined by θ, we would like to use the notation

HomS(Π
′′,θ) := HomS(Π

′′, [P ]).

Define L =
∏

x∈D Lθx . There is a L-action on HomS(Π
′′,θ) defined as follows

(lx)x∈D · ((a′′i , b′′i )1≤i≤g, (l
′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

)

:=((a′′i , b
′′
i )1≤i≤g, (l

′′
xl

−1
x , lxh

′′
x, S

′′
x,d)x∈D,d∈Ax

)



14 PENGFEI HUANG AND HAO SUN

Then we define a (G×L)-action on HomS(Π
′′,θ)

(g, (lx)x∈D) · ((a′′i , b′′i )1≤i≤g, (l
′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

)

:=((ga′′i g
−1, gb′′i g

−1)1≤i≤g, (gl
′′
xl

−1
x , lxh

′′
xg

−1, gS′′
x,dg

−1)x∈D,d∈Ax).

Lemma 3.6. There is a one-to-one correspondence between (G × L)-orbits in HomS(Π
′′,θ) and G-

orbits in HomS(Π
′, G). Therefore, (G×L)-orbits in HomS(Π

′′,θ) are in one-to-one correspondence with
isomorphism classes of θ-filtered Stokes G-representations, and thus isomorphism classes of θ-filtered
Stokes G-local systems.

Proof. The surjective morphism

Hom(Π′′, G) → Hom(Π′, G)

induces the surjection

HomS(Π
′′,θ) → HomS(Π

′, G)

given by

((a′′i , b
′′
i )1≤i≤g, (l

′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

) → ((a′′i , b
′′
i )1≤i≤g, (l

′′
xh

′′
x, S

′′
x,d)x∈D,d∈Ax

).

Given an arbitrary element (g, (lx)x∈D) ∈ G×L, the image of

(g, (lx)x∈D) · ((a′′i , b′′i )1≤i≤g, (l
′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

) ∈ HomS(Π
′′,θ)

is exactly

g · (a′′i , b′′i )1≤i≤g, (l
′′
xh

′′
x, S

′′
x,d)x∈D,d∈Ax) ∈ HomS(Π

′, G).

This finishes the proof of this lemma. □

3.3. Moduli Space. In this subsection, we follow King’s approach [Kin94] to construct the moduli
space of filtered Stokes G-local systems. We fix a collection of weights θ and we suppose that d is
the common denominator of θx for x ∈ D, i.e. dθx is a cocharacter for every x ∈ D. In the previous
subsection, we construct a quasi-projective variety HomS(Π

′′,θ) with a natural (G × L)-action such
that the (G×L)-orbits are in one-to-one correspondence with isomorphism classes of θ-filtered Stokes
G-representations by Lemma 3.6. We will introduce a particular character χθ : G×L → Gm such that
a θ-filtered Stokes G-representation ρ′ is R-semistable if and only if the corresponding representation
ρ′′ ∈ HomS(Π

′′,θ) is χθ-semistable in the sense of GIT. Based on the equivalence of stability conditions,
we use HomS(Π

′′,θ) to construct the moduli space.
We define a character

χθ : G×L → Gm,

as

χθ(g, (lx)x∈D) = χ0(g) ·
∏
x∈D

χ−dθx(lx),

where χ0 is the trivial character of G and the character χ−dθx is determined by the weight −dθx.
Given a cocharacter λ : Gm → G×L, it is given by a cocharacter λ0 of G and a cocharacter λx of Lθx

for each x ∈ D. Thus, the pairing ⟨λ, χθ⟩ is given by

⟨λ, χθ⟩ = ⟨λ0, χ0⟩+
∑
x∈D

⟨λx, χ−dθx⟩ =
∑
x∈D

⟨λx, χ−dθx⟩.

With respect to the (G×L)-action and character χθ, King defined the GIT quotient HomS(Π
′′,θ)//(G×

L, χθ), which parametrizes GIT equivalence classes of χθ-semistable points in HomS(Π
′′,θ). We refer

the reader to [Kin94, §2] for more details about this construction. Applying [Kin94, Proposition 2.5,
2.6], we have the following equivalent description of χθ-semistable points.
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Lemma 3.7. Denote by ∆ the kernel of the (G×L)-action on HomS(Π
′′,θ). A point ρ′′ ∈ HomS(Π

′′,θ)
is χθ-semistable if and only if χθ(∆) = {1} and any cocharacter λ of G × L, for which the limit
limt→0 λ(t) · ρ′′ exists, satisfies ⟨λ, χθ⟩ ≥ 0. It is χθ-stable if and only if any cocharacter λ, for which
limt→0 λ(t) ·ρ′′ exists and ⟨λ, χθ⟩ = 0, is in ∆. Moreover, two χθ-semistable points ρ′′1 and ρ′′2 are GIT
equivalent if and only if there are cocharacters λ1 and λ2 such that ⟨λ1, χθ⟩ = ⟨λ2, χθ⟩ = 0 and the
limits limt→0 λ1(t) · ρ′′1 and limt→0 λ2(t) · ρ′′2 are in the same (G×L)-orbit.

Remark 3.8. We give a precise description of the cocharacter λ such that lim
t→0

λ(t) · ρ′′ exists, and we

regard ρ′′ as a tuple

((a′′i , b
′′
i )1≤i≤g, (l

′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

).

Given a cocharacter λ : Gm → G × L, it is uniquely determined by a cocharacter λ0 of G and a
cocharacter λx of Lθx for each x ∈ D. Suppose that the limit lim

t→0
λ(t) · ρ′′ exists. Then the existence

of the limits

lim
t→0

λ0(t)a
′′
i λ

−1
0 (t), lim

t→0
λ0(t)b

′′
i λ

−1
0 (t), lim

t→0
λ0(t)S

′′
x,dλ

−1
0 (t)

implies that a′′i , b
′′
i , S

′′
x,d ∈ Pλ0

, and the existence of the limits

lim
t→0

λ0(t)l
′′
xλ

−1
x (t), lim

t→0
λx(t)h

′′
xλ

−1
0 (t)

implies that l′′xh
′′
x ∈ Pλ0

. Therefore, the corresponding representation ρ′ ∈ HomS(Π
′, G) of ρ′′ (under

the morphism Π′ → Π′′) is compatible with Pλ0
. Moreover, we claim that for each x ∈ D, there exists

gx ∈ G such that λx(t) = g−1
x λ0(t)gx, g

−1
x l′′x ∈ Lθx and h′′

xgx ∈ P−θx . Therefore, we have

(•) ⟨λ, χθ⟩ =
∑
x∈D

⟨λx, χ−dθx⟩ = −d
∑
x∈D

⟨θx, χλx
⟩ = −d

∑
x∈D

⟨θx, χλ0
⟩ = −d⟨θ, χλ0

⟩.

Here is a brief explanation for the claim. By construction, for each x ∈ D, there exists g′x ∈ G such
that g′−1

x l′′x ∈ Lθx and h′′
xg

′
x ∈ P−θx . The existence of the limit

g′−1
x (lim

t→0
λ0(t)l

′′
xh

′′
xλ

−1
0 (t))g′x = lim

t→0
(g′−1

x λ0(t)g
′
x)(g

′−1
x l′′xh

′′
xg

′
x)(g

′−1
x λ−1

0 (t)g′x)

shows that g′−1
x λ0(t)g

′
x is a cocharacter of some maximal torus in Lθx . We choose lx ∈ Lθx and define

gx := g′xlx such that g−1
x λ0(t)gx and λx(t) are cocharacters of the same maximal torus in Lθx . Then

we consider the limits

g−1
x (lim

t→0
λ0(t)l

′′
xλ

−1
x (t)) = lim

t→0
(g−1

x λ0(t)gx)(g
−1
x l′′x)λ

−1
x (t)

(lim
t→0

λ−1
x (t)h′′

xλ
−1
0 (t))gx = lim

t→0
λ−1
x (t)(h′′

xgx)(g
−1
x λ−1

0 (t)gx).

Note that

g−1
x l′′x = l−1

x g′−1
x l′′x ∈ Lθx , h′′

xgx = h′′
xg

′
xlx ∈ P−θx ,

and g−1
x λ0(t)gx and λx(t) are cocharacters of the same maximal torus in Lθx . Therefore, the existence

of the above two limits imply g−1
x λ0(t)gx = λx(t).

Proposition 3.9. Given a point ρ′′ ∈ HomS(Π
′′,θ), denote by ρ′ the corresponding θ-filtered Stokes

G-representation. Then, ρ′ is R-semistable (resp. R-stable) of degree zero if and only if the point ρ′′

is χθ-semistable (resp. χθ-stable). Moreover, two χθ-semistable points ρ′′1 and ρ′′2 are GIT equivalent
if and only if the corresponding R-semistable θ-filtered Stokes G-representations ρ′1 and ρ′2 are S-
equivalent.

Proof. We suppose that G is semisimple first. We regard ρ′′ as a tuple

((a′′i , b
′′
i )1≤i≤g, (l

′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

) ∈ HomS(Π
′′,θ).
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Suppose that the point ρ′′ is χθ-semistable. We choose a parabolic subgroup P compatible with ρ′

and pick an arbitrary anti-dominant character χ of P , which is trivial on the center of P . We have

⟨θ, χ⟩ = 1

d

∑
x∈D

⟨dθx, χ⟩ =
1

d

∑
x∈D

⟨−dθx,−χ⟩ = 1

d

∑
x∈D

⟨λ−χ, χ−dθx⟩ =
1

d
⟨λ−χ, χθ⟩.

The cocharacter λ−χ and the element ρ′′ determine a cocharacter λ : Gm → Gθ such that

λ = (λ0, λx, x ∈ D), λ0 := λ−χ, λx(t) := g−1
x λ0(t)gx,

where gx is given in Remark 3.8. By Lemma 3.2, we have Pλ−χ
⊇ P . By the compatibility of P with ρ′,

the limit limt→0 λ(t) · ρ′′ exists. Since ρ′′ is χθ is χθ-semistable by assumption, we have ⟨λ−χ, χθ⟩ ≥ 0
by Lemma 3.7, and thus ⟨θ, χ⟩ ≥ 0. Therefore, ρ′ is R-semistable.

To prove that ρ′ is of degree zero, we suppose that ρ′′ is χθ-stable and ρ′ is R-stable for convenience.
Given a character χ : G → Gm, the corresponding cocharacter λχ has the property that its image is
in the center of G, and thus in ∆. In this case, we always have ⟨λχ, χθ⟩ = 0. Then the formula (•)
implies

⟨θ, χ⟩ = −d⟨λχ, χθ⟩ = 0.

Therefore, ρ′ is of degree zero.
For the other direction, we suppose that ρ′ is R-semistable of degree zero. Clearly, χθ(∆) = {1}

because ρ′ is of degree zero. We take a cocharacter λ : Gm → G× L such that the limit lim
t→0

λ(t) · ρ′′

exists. Remark 3.8 shows that

a′′i , b
′′
i , S

′′
x,j , l

′′
xh

′′
x ∈ Pλ0

.

Therefore, Pλ0 is compatible with ρ′. Also, χλ0 is a dominant character of Pλ0 by Lemma 3.2. Then
the formula (•) gives

⟨λ, χθ⟩ = −d⟨θ, χλ0⟩ ≥ 0

because ρ′ is R-semistable. This finishes the proof for the semistable case. The argument for the stable
case is similar.

When G is reductive, let R(G) be its radical. By Remark 3.8, a cocharacter λ : Gm → G × L, of
which the limit lim

t→0
λ(t) ·ϕ exists, is uniquely determined by a cocharacter λ0 : Gm → G. Moreover, λ0

is uniquely determined by a cocharacter λss of the semisimple group [G,G] and a cocharacter λR(G)

of R(G). Thus, the formula (•) gives
⟨λ, χθ⟩ = −d⟨θ, χλ0⟩ = −d(⟨θ, χλss⟩+ ⟨θ, χλR(G)

⟩).
Note that there is a natural injection of characters

Hom(G,Gm) → Hom(R(G),Gm),

whose image is of finite index. Therefore, Hom(G,Gm) ⊗Z Q ∼= Hom(R(G),Gm) ⊗Z Q. By definition
of degree zero, we know that for any character χ of G, we have ⟨θ, χ⟩ = 0. Then, ⟨θ, χλR(G)

⟩ = 0.
Therefore,

⟨λ, χθ⟩ = −d⟨θ, χλss⟩ = ⟨λss, χθ⟩,
and we reduces it to the semisimple case.

For the second statement about S-equivalence, we introduce some notations first. Given ρ′′ ∈
HomS(Π

′′,θ), let λ : Gm → G×L be a cocharacter given by a tuple (λ0, λx, x ∈ D), where λ0 : Gm → G
and λx : Gm → Lθx are cocharacters, such that the limit limt→0 λ(t) · ρ′′ exists. Denote by P the
parabolic subgroup given by λ0 with Levi subgroup L. We introduce the following notations:

(a′′i )L := lim
t→0

λ0(t)a
′′
i λ

−1
0 (t), (b′′i )L := lim

t→0
λ0(t)b

′′
i λ

−1
0 (t), (S′′

x,d)L := lim
t→0

λ0(t)S
′′
x,dλ

−1
0 (t),

(l′′x)L := lim
t→0

λ0(t)l
′′
xλ

−1
x (t), (h′′

x)L := lim
t→0

λx(t)h
′′
xλ

−1
0 (t), (ρ′′)L := lim

t→0
λ(t) · ρ′′,
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and clearly,

(a′′i )L, (b′′i )L, (S′′
x,d)L, (l′′x)L(h

′′
x)L ∈ L.

Denote by ρ′ : Π′ → G the corresponding representation of ρ′′ under the morphism Π′ → Π′′, and then
(ρ′)L is the corresponding representation of (ρ′′)L. In the following, we suppose that G is semisimple,
and the reductive case can be reduced to the semisimple case as we discussed above.

Assume that ρ′′1 and ρ′′2 are GIT equivalent. By Lemma 3.7, there exist cocharacters λ1 and λ2 of
G×L such that

• ⟨λ1, χθ⟩ = ⟨λ2, χθ⟩ = 0,
• the limits (ρ′′1)L1

= lim
t→0

λ1(t) · ρ′′1 and (ρ′′2)L2
= lim

t→0
λ2(t) · ρ′′2 exist,

• (ρ′′1)L1
and (ρ′′2)L2

are in the same (G×L)-orbit.

There exists (g, (lx)x∈D) ∈ G×L such that

(g, (lx)x∈D) · (lim
t→0

λ1(t) · ρ′′1) = lim
t→0

λ2(t) · ρ′′2 .

By Lemma 3.6, we have

g · (lim
t→0

λ10(t) · ρ′1) = lim
t→0

λ20(t) · ρ′2.

The cocharacters λ10 and λ20 determine parabolic subgroups P1 and P2 and Levi subgroups L1 and
L2 respectively. Clearly,

lim
t→0

λi0(t) · ρ′i = (ρ′i)Li
, i = 1, 2 ,

and thus

g · (ρ′1)L1 = (ρ′2)L2 .

Now we have to prove that ρ′i is admissible with Pi based on the condition ⟨λi, χθ⟩ = −d⟨θ, χλi0
⟩ = 0.

It is equivalent to show that for any character χi : Pi → Gm, we have ⟨θ, χi⟩ = 0. With the same
approach as in [Ram96] (for instance the proof of [Ram96, Lemma 3.5.8]), it is equivalent to choose
a faithful embedding G ↪→ GL(V ) and prove this property for general linear groups. Therefore, the
argument can be proved in the same way as [HS23b, Lemma 3.22]. In conclusion, ρ′1 and ρ′2 are
S-equivalent.

For the other direction, suppose that ρ′1 and ρ′2 are S-equivalent, and then there exist parabolic
subgroups P1 and P2 (with Levi subgroups L1 and L2) admissible with ρ′1 and ρ′2 respectively such
that g · (ρ′1)L1 = (ρ′2)L2 for some g ∈ G. Clearly, gP1g

−1 = P2. We choose cocharacters λi0 : Gm → G
such that Pλi0

= Pi for i = 1, 2. We define cocharacters λi : Gm → G×L as

λi = (λi0, λix, x ∈ D),

where λix := g−1
ix λi0gix : Gm → Lθx and gix ∈ G is given in Remark 3.8. Since Pi is compatible with

ρ′i, we have

⟨λi, χθ⟩ = −d⟨θ, χλi0
⟩ = 0

and the limit

lim
t→0

λi(t) · ρ′′i

exist for i = 1, 2. By Lemma 3.7, we only have to prove that (ρ′′1)L1
and (ρ′′2)L2

are in the same
Gθ-orbit. Since g · (ρ′1)L1 = (ρ′2)L2 , the key point is to find lx ∈ Lθx for each x ∈ D such that

(g, (lx)x∈D) · (ρ′′1)L1 = (ρ′′2)L2 .

Consider the element

g−1
ix (l′′ix)Li

= lim
t→0

(g−1
ix λi0(t)gix)(g

−1
ix l′′ix)λ

−1
ix (t).
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Since g−1
ix λi0(t)gix = λix(t) and g−1

ix l′′ix ∈ Lθx , we have g−1
ix (l′′ix)Li ∈ Lθx . With a similar argument, we

have (h′′
ix)Li

gix ∈ Lθx . Note that

g(l′′1x)L1
(h′′

1x)L1
g−1 = (l′′2x)L2

(h′′
2x)L2

.

Reformulating the equation, we have

g−1
2x gg1x(g

−1
1x (l

′′
1x)L1

)((h′′
1x)L1

g1x)g
−1
1x g

−1g2x = (g−1
2x (l

′′
2x)L2

)((h′′
2x)L2

g2x).

Therefore, g−1
2x gg1x ∈ Lθx because the normalizer of Lθx is itself. We define

lx := ((l′′2x)L2
)−1g(l′′1x)L1

Clearly,

lx = (g−1
2x (l

′′
2x)L2

)−1(g−1
2x gg1x)(g

−1
1x (l

′′
1x)L1

) ∈ Lθx .

Since

lx = ((l′′2x)L2
)−1g(l′′1x)L1

= (h′′
2x)L2

g((h′′
1x)L1

)−1,

it is easy to check

(g, (lx)x∈D) · (ρ′′1)L1
= (ρ′′2)L2

.

Therefore, (ρ′′1)L1 and (ρ′′2)L2 are in the same Gθ-orbit. □

Under the equivalence of Stokes G-representations and Stokes G-local systems (Corollary 2.19), we
obtain the moduli space of filtered Stokes G-local systems.

Theorem 3.10. The quasi-projective variety

MB(XD, G,Q,θ) := HomS(Π
′′,θ)//(G×L, χθ)

is the moduli space of degree zero R-semistable θ-filtered Stokes G-local systems with irregular type
Q on XD, of which points are in one-to-one correspondence with S-equivalence classes of degree zero
R-semistable θ-filtered Stokes G-local systems with irregular type Q. There exists an open subset
Ms

B(XD, G,Q,θ), of which points correspond to isomorphism classes of degree zero R-stable θ-filtered
Stokes G-local systems with irregular type Q.

Proof. By Proposition 3.9, the theorem follows directly from King’s result [Kin94, §2]. □

We define a map HomS(Ω
′′,P ) →

∏
x∈D P−θx as

((a′′i , b
′′
i )1≤i≤g, (l

′′
x, h

′′
x, S

′′
x,d)x∈D,d∈Ax

) → (l′′xh
′′
x)x∈D.

Consider the following composition of maps

H̃omS(Ω
′′,P ) → HomS(Ω

′′,P ) →
∏
x∈D

P−θx →
∏
x∈D

Lθx .

We fix a collection of elements Mθ = {Mθx , x ∈ D} in the Levi subgroups, i.e. Mθx ∈ Lθx , which is

regarded as an element in
∏

x∈D Lθx . Denote by H̃omS(Ω
′′,P ,Mθ) ⊆ H̃omS(Ω

′′,P ) the preimage of
Mθ ∈

∏
x∈D Lθx . Taking the restriction

HomS(Ω
′′,θ,Mθ) := H̃omS(Ω

′′,P ,Mθ)|HomS(Ω′′,G)

and adding the relation (∗′′), we obtain a variety HomS(Π
′′,θ,Mθ) together with an induced (G×L)-

action. We define

MB(XD, G,Q,θ,Mθ) := HomS(Π
′′,θ,Mθ)//(G×L, χθ).

As a direct result of Theorem 3.10, we obtain the Betti moduli space considered in the (unramified)
wild nonabelian Hodge correspondence on noncompact curves [HS23a].
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Corollary 3.11. There exists a quasi-projective variety MB(XD, G,Q,θ,Mθ) as the moduli space of
degree zero R-semistable θ-filtered Stokes G-local systems with irregular type Q on XD such that the
Levi factors of formal monodromies around punctures are given by Mθ (up to conjugation).

4. Examples

We study some examples about the moduli space of filtered Stokes G-local systems in this section.
In §4.1, we consider the case of trivial weights. We conclude that the R-stability of filtered Stokes
G-representations (with trivial weights) is equivalent to the irreducibility of the corresponding repre-
sentations (Lemma 4.1) and the moduli space is an affine variety, which is known as the wild character
variety [Boa14, DDP18]. In §4.2, we consider the case of trivial irregular types. If all irregular types
are trivial, then the discussion completely reduce to the tame case, of which the moduli space has been
constructed in [HS23b]. In §4.3, we consider the Eguchi–Hanson space, of which the irregular type
is unramified. In this case, we find a particular θ-filtered Stokes G-local system, which is R-stable
but not semisimple as a representation. This example shows that wild character varieties may not
be the Betti moduli space in the nonabelian Hodge correspondence. In §4.4 and §4.5, we start from
the Airy equation and study Stokes SL2(C)-local systems with ramified irregular type on XD, where
(X,D) = (P1, 0). In this case, we find that Stokes SL2(C)-representations are always irreducible.
Therefore, the corresponding moduli space is exactly the wild character variety by Corollary 4.2.

4.1. Trivial weights. Fixing a collection of irregular types Q, let Π′ be the group defined in §2.3.
Suppose that all weights are trivial, i.e. θx = 0 for x ∈ D. We use the notation 0 for the collection of
trivial weights. In this case, Lθx = G. Then,

G×L = G×
∏
x∈D

G.

Moreover, the character χ−dθx is also trivial, which implies that the character χ0 : G × L → Gm is
trivial.

Lemma 4.1. A degree zero 0-filtered Stokes G-representation ρ′ : Π′ → G is R-stable (resp. R-
semistable) if and only if it is an irreducible (resp. semisimple) representation.

Proof. Given an irreducible representation ρ′ : Π′ → G, it cannot be restricted to any proper nontrivial
parabolic subgroup P . Then it is R-stable automatically. On the other hand, given a degree zero R-
stable 0-filtered Stokes G-representation ρ′, suppose that a nontrivial proper parabolic subgroup P is
compatible with ρ′. We choose an arbitrary nontrivial anti-dominant character χ : P → Gm, which is
trivial on the center of P . We have

degloc ρ′(P, χ) = ⟨0, χ⟩ = 0

because θx is trivial for every x ∈ D. This contradicts the assumption that ρ′ is R-stable. Therefore,
any nontrivial proper parabolic subgroup is not compatible with ρ′, which means that ρ′ is irreducible.
The proof for semistable case is similar. □

Corollary 4.2. The moduli space

MB(XD, G,Q,0) = HomS(Π
′′,0)//(G×L, χ0)

is an affine variety, of which points correspond to isomorphism classes of semisimple Stokes G-
representations. There exists an open subset Ms

B(XD, G,Q,0), of which points correspond to iso-
morphism classes of irreducible Stokes G-representations.

Proof. Since all weights θx are trivial, HomS(Π
′′,0) = HomS(Π

′′, G) is an affine variety. Since the
character χ0 is trivial, the GIT quotient HomS(Π

′′,0)//(G×L, χ0) is an affine variety. By Theorem 3.10,
points in MB(X,G,Q,0) are in one-to-one correspondence with S-equivalence classes of degree zero
R-semistable 0-filtered Stokes G-representations, which are exactly isomorphism classes of semisimple
representations by Lemma 4.1. This finishes the proof of this corollary. □
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The moduli space MB(X,G,Q,0) given above is exactly the wild character variety considered by
Boalch [Boa14, §8 and §9]. The difference is that Boalch constructed the moduli space from the
fundamental groupoid Π, while we construct the moduli space from Π′ and Π′′. Moreover, we also
refer the reader to [Boa14, Theorem 9.3] for another proof that ρ ∈ HomS(Π, G) is stable (in the sense
of GIT) if and only if it is irreducible.

4.2. Trivial Irregular Types. Suppose that all irregular types are trivial, i.e. Qx = 0 for any x ∈ D,
and we use the notation 0 for the collection of trivial irregular types. In this case, the Betti moduli
space in the wild case completely reduce to the tame case considered in [HS23b].

Recall that the generators of the fundamental groupoid Π of XQ introduced in §2.2 are given by

(1) αi, βi, 1 ≤ i ≤ g;
(2) γx for x ∈ D;
(3) γx,d for x ∈ D and d ∈ Ax;
(4) γ0x for x ∈ D.

Since all irregular types are trivial, there is no anti-Stokes directions and then the set Ax is empty for
every x ∈ D. Therefore, when irregular types are trivial, the group Π is generated by αi, βi, γx, γ0x
with the relation (

g∏
i=1

[αi, βi]

)
·

(∏
x∈D

µx

)
= id,

where µx = γ−1
0x · γx · γ0x. Following the same discussion, the group Π′ introduced in §2.3 is generated

by

(1) α′
i, β

′
i for 1 ≤ i ≤ g;

(2) γ′
x for x ∈ D,

with the relation (
g∏

i=1

[α′
i, β

′
i]

)
·

(∏
x∈D

µ′
x

)
= id,

where µ′
x = γ′

x. Clearly, Π′ can be regarded as the fundamental group of XD and the formal mon-
odromy reduces to the topological monodromy. By Proposition 2.18, isomorphism classes of Stokes
G-local systems with irregular type 0 are in one-to-one correspondence with G-orbits in Hom(Π′, G),
which implies that Stokes G-local systems with irregular type 0 on XD are exactly G-local systems
on XD. For the construction of the moduli space, we introduce the third group Π′′ in §3.2, which is
generated by

(1) α′′
i , β

′′
i for 1 ≤ i ≤ g;

(2) ι′′x, γ
′′
x for x ∈ D

with the relation (
g∏

i=1

[α′′
i , β

′′
i ]

)
·

(∏
x∈D

µ′′
x

)
= id,

where µ′′
x = ι′′xγ

′′
x . Fixing a collection of weights θ = {θx, x ∈ D}, the variety HomS(Π

′′,θ) now
parametrizes points

((a′′i , b
′′
i )1≤i≤g, (l

′′
x, h

′′
x)x∈D)

such that for each x ∈ D, there exists gx ∈ G such that g−1
x l′′x ∈ Lθx and h′′

xgx ∈ Pθx . Moreover,
there is a natural (G × L)-action on HomS(Π

′′,θ). This construction is exactly the same as [HS23b,
Construction 3.10], and it is easy to check that the stability condition in this special case is equivalent
to that in [HS23b]. Therefore, the moduli space MB(X,G,0,θ) of degree zero R-semistable θ-filtered
Stokes G-local systems with irregular type 0 on XD is exactly the moduli space MB(XD, G,θ) of
degree zero R-semistable θ-filtered G-local systems on XD [HS23b, Theorem 1.2].
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4.3. “Weighted” Eguchi–Hanson Space. We consider an explicit example such that G = SL2(C)
and (X,D) = (P1, 0). Denote by α and −α the roots of SL2(C), and let

U+ := Uα =

(
1 ∗
0 1

)
, U− := U−α =

(
1 0
∗ 1

)
.

Given an irregular type with a pole of order 3 at z = 0

Q−3 =
A3

z3
+

A2

z2
+

A1

z
,

where the subscript of the irregular type is for its degree, the leading coefficient A3 is nontrivial. Since
G = SL2(C), the leading coefficient A3 is automatically regular and semisimple. In this case, the
irregular type Q−3 has 6 anti-Stokes directions and

Sto(Q−3) = (U+ × U−)
3.

Since this irregular type Q−3 is in the unramified case, the centralizer of Q−3 coincides with the set
of formal monodromies given by Q−3, i.e.

H = H(∂) =

{(
a

a−1

) ∣∣∣ a ∈ C∗
}
.

Therefore, the space HomS(Π1(XQ−3
), G) ⊆ G×H × (U+ × U−)

3 is a closed subvariety including

(c, h, (u+,i, u−,i)1≤i≤3) ∈ G×H × (U+ × U−)
3

such that c−1(h
∏3

i=1(u+,iu−,i))c = id.
Given the weight

θ =

(
1
2

− 1
2

)
∈ t,

it determines a parabolic subgroup of SL2(C) as

Pθ =

{(
a b
0 a−1

)
| a ∈ C∗, b ∈ C

}
.

We consider a special θ-filtered Stokes G-representation

ρ = (c, h, (u+,i, u−,i)1≤i≤3) ∈ HomS(Π1(XQ−3
), G)

such that c, h, u+,i, u−,i ∈ Pθ and at least one of them is not included in P−θ. For example,

u+,1 =

(
1 1
0 1

)
, u+,2 =

(
1 −1
0 1

)
and the other elements are identity matrix. Clearly, if we take P = Pθ, the parabolic subgroup P is
compatible with ρ. Furthermore, taking any nontrivial anti-dominant character χ of P , it is easy to
check

degloc ρ(P, χ) = ⟨θ, χ⟩ > 0,

and the θ-filtered Stokes G-representation ρ is R-stable. By Theorem 3.10, it corresponds to a point
in Ms

B(XD, G,Q−3, θ).
On the other hand, this representation ρ is indecomposable but not semisimple. As we discussed

in §4.1, the classical wild character variety MB(XD, G,Q, 0) only parametrizes semisimple repre-
sentations. Therefore, the θ-filtered Stokes G-representation ρ does not correspond to a point in
Ms

B(XD, G,Q−3, 0). This example illustrates the fact that

MB(XD,SL2(C), Q−3, 0) ≇ MB(XD,SL2(C), Q−3, θ)

for general weight θ. Moreover, the moduli space MB(XD, G,Q−3, 0) is exactly the Eguchi–Hanson
space considered in [Boa18, §2], where he concluded that this is a smooth affine variety of dimension
2.
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4.4. Airy Equation. We start from the Airy equation

y′′(t) = ty(t).

This equation corresponds to the following connection

∇ = d+

(
0 −t
−1 0

)
dt.

We change the coordinate z = 1
t

∇ = d+

(
0 z−3

z−2 0

)
dz.

Clearly, ∇ has an irregular singularity at z = 0 (or t = ∞). Thus, the Airy equation corresponds to a
connection on P1\{0} with an irregular singularity at z = 0, at which the topological monodromy is
trivial [vdPS03, Example 8.15]. We continue working locally on the local coordinate z. Let

A(z) =

(
0 z−3

z−2 0

)
=

(
0 1
0 0

)
z−3 +

(
0 0
1 0

)
z−2

be the connection form of ∇. We take (on a ramified cover)

g1 =

(
z1/4

z−1/4

)
and get

g1 ◦ ∇ = d− dg1 · g−1
1 + (g1A(z)g−1

1 )dz

= d+

(
0 z−5/2

z−5/2 0

)
dz − 1

4

(
1 0
0 −1

)
dz

z

Then we take

g2 =

 1√
2

− 1√
2

1√
2

1√
2

 ,

and obtain

g2 ◦ (g1 ◦ ∇) = d+

(
−z−5/2 0

0 z−5/2

)
dz − 1

4

(
0 1
1 0

)
dz

z

= d+ d
(( 2

3z
−3/2 0
0 − 2

3z
−3/2

))
− 1

4

(
0 1
1 0

)
dz

z
.

Therefore, the corresponding connection of the Airy equation is of irregular type

Q− 3
2
=

(
2
3 0
0 − 2

3

)
z−

3
2 ,

which is in the ramified case. In conclusion, the corresponding connection of the Airy equation is a
SL2(C)-connection with irregular type Q− 3

2
on XD, where (X,D) = (P1, 0), and thus corresponds to

a Stokes SL2(C)-representation (local system) with irregular type Q− 3
2
on XD.

4.5. Stokes SL2(C)-local Systems with Ramified Irregular Types. We start from the setup

G = SL2(C), (X,D) = (P1, 0), Q− 3
2
=

(
2
3 0
0 − 2

3

)
z−

3
2 ,

which is the same as §4.4, and consider Stokes SL2(C)-representations with irregular type Q− 3
2
on XD.

Following the same notation as in §4.3, we have

Sto(Q− 3
2
) = U+ × U− × U+
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and

H =

{(
a

a−1

) ∣∣∣ a ∈ C∗
}
, H(∂) =

{(
a

−a−1

) ∣∣∣ a ∈ C∗
}
.

A point (c, h, u+,1, u−, u+,2) ∈ G × H × U+ × U− × U+ corresponds to a Stokes G-representation in
HomS(Π1(XQ− 3

2

), G) if it satisfies the condition that c−1hu+,1u−u+,2c = id. Ignoring c, we consider

the equation

hu+,1u−u+,2 = id.

Let

h =

(
0 a

−a−1 0

)
, u+,1 =

(
1 b
0 1

)
, u− =

(
1 0
c 1

)
, u+,2 =

(
1 d
0 1

)
.

We have (
0 −a

a−1 0

)
=

(
1 b
0 1

)(
1 0
c 1

)(
1 d
0 1

)
.

Therefore,

b = −a, c = a−1, d = −a.

This means that the formal monodromy uniquely determines Stokes data in this case. Therefore, the
moduli space

MB(XD,SL2(C), Q− 3
2
, 0) ∼= pt

is a point. Note that whatever the formal monodromy is, the corresponding representation is irre-
ducible. By the discussion in §4.1, we have

MB(XD,SL2(C), Q− 3
2
, θ) ∼= MB(XD,SL2(C), Q− 3

2
, 0) ∼= pt

for any weight θ. Moreover, the Stokes SL2(C)-representation corresponding to the Airy equation is
the unique point in the moduli space MB(XD,SL2(C), Q− 3

2
, θ) as we discussed in §4.4. As a result,

the connection corresponds to the Airy equation is both rigid and physically rigid.

Remark 4.3. Recently, we noticed that Hohl and Jakob studied physical rigidity of Kloosterman con-
nections and applied the result to a G-version Airy equation and get the same result for rigidity [HJ24,
Theorem 1.2.1].

Now we suppose that Q is a ramified irregular type. Since we work on SL2(C), the leading coefficient
of Q is regular and semisimple. Denote by A the set of anti-Stokes directions of Q, and for each d ∈ A,
Stod is a product of U+ and U−. Let Sto(Q) :=

∏
d∈A Stod. At the same time, we have

H =

{(
a

a−1

) ∣∣∣ a ∈ C∗
}
, H(∂) =

{(
a

−a−1

) ∣∣∣ a ∈ C∗
}
.

A Stokes SL2(C)-representation with irregular type Q can be regarded as a tuple (c, h, (Sd)d∈A) such
that

(⋆) c−1h(
∏
d∈A

Sd)c = id.

Since the product
∏

d∈A Sd contains both (nontrivial) upper and lower triangular matrices, any repre-
sentation corresponding a tuple (c, h, (Sd)d∈A) satisfying the relation (⋆) is irreducible. Then we have
the following proposition:

Proposition 4.4. Let G = SL2(C). Given a ramified irregular type Q, we have

MB(XD,SL2(C), Q, θ) ∼= MB(XD,SL2(C), Q, 0)

for any weight θ.
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Remark 4.5. In the case of SLn(C), if the leading coefficient of a ramified irregular type Q is regular
and semisimple, the same consequence holds as Proposition 4.4, i.e.

MB(XD,SLn(C), Q, θ) ∼= MB(XD,SL2(C), Q, 0)

for any weight θ.
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