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Abstract

Simulation based inference (SBI) methods enable the estimation of posterior

distributions when the likelihood function is intractable, but where model simula-

tion is feasible. Popular neural approaches to SBI are the neural posterior estimator

(NPE) and its sequential version (SNPE). These methods can outperform statistical

SBI approaches such as approximate Bayesian computation (ABC), particularly for

relatively small numbers of model simulations. However, we show in this paper that

the NPE methods are not guaranteed to be highly accurate, even on problems with

low dimension. In such settings the posterior cannot be accurately trained over the

prior predictive space, and even the sequential extension remains sub-optimal. To

overcome this, we propose preconditioned NPE (PNPE) and its sequential version

(PSNPE), which uses a short run of ABC to effectively eliminate regions of param-

eter space that produce large discrepancy between simulations and data and allow

the posterior emulator to be more accurately trained. We present comprehensive

empirical evidence that this melding of neural and statistical SBI methods improves

performance over a range of examples, including a motivating example involving a

complex agent-based model applied to real tumour growth data.
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1 Introduction

Computational models, frequently termed as simulators, are typically governed by stochas-

tic processes. When provided with a set of parameter values, these simulators output

synthetic data that inherently capture the stochastic nature of the simulated phenomena.

However, a substantial challenge arises in performing posterior inference for the parame-

ters of these simulators, as the corresponding likelihood function is often intractable. An

example is agent-based modelling of tumour growth (e.g. Jenner et al. (2020); Aylett-

Bullock et al. (2021)), where cell proliferation, movement and invasion are governed by

probabilistic rules, which depend on key biological parameters. Consequently, standard

statistical inference methods that rely on a closed form expression for the likelihood func-

tion are inapplicable in this scenario.

To address this issue, simulation based inference (SBI) methods have been developed,

which approximate the posterior based only on simulations from the model. The most

thoroughly examined SBI method in the statistical literature is approximate Bayesian

computation (ABC) (Sisson et al., 2018). Advancements in deep neural networks have

led to the emergence of neural SBI methods (Cranmer et al., 2020). Their widespread

application spans various fields, including biology (Wehenkel et al., 2023), neuroscience

(Fengler et al., 2021; West et al., 2021), and astronomy (Mishra-Sharma, 2022; Dax et al.,

2021).

Statistical SBI methods, such as ABC methods, are well-developed and boasts strong

theoretical guarantees of convergence to the true posterior (Beaumont et al., 2009; Blum,

2010; Biau et al., 2015; Lintusaari et al., 2017; Sisson et al., 2018; Beaumont, 2019). ABC

approaches compare observed to simulated data using a discrepancy function and prefer

parameter values that generate discrepancies below a pre-defined threshold, ϵ. However,

often a small value of ϵ is required to obtain accurate posterior approximations, which can

significantly increase the number of model simulations required, and hence the computa-

tional cost (Csilléry et al., 2010; Turner and Van Zandt, 2012). Advanced ABC samplers

such as adaptive sequential Monte Carlo ABC (SMC ABC, e.g. Sisson et al. (2007);

Drovandi and Pettitt (2011)) have been developed to mitigate this issue. However, the

efficiency of ABC methods may decrease as ϵ becomes smaller, requiring a significantly

larger number of simulated datasets. Enhancing the efficiency of ABC algorithms remains

an active area of research (Lintusaari et al., 2017; Sisson et al., 2018).

With the rapid advances in machine learning methods, more efficient approaches based

on neural networks have been developed (Papamakarios et al., 2017, 2021). A popular

approach is neural posterior estimator (NPE) and its sequential version, the sequen-

tial NPE (SNPE) (Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg

et al., 2019). These methods use a set of training pairs of parameter values and simulated

datasets to fit a neural conditional density estimator (NCDE), such as a conditional nor-
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malising flow (Rezende and Mohamed, 2015; Winkler et al., 2019; Durkan et al., 2019;

Dolatabadi et al., 2020), to approximate the posterior. NPE uses parameter values drawn

from the prior, whilst SNPE uses parameter values drawn from previous NPE approx-

imations for a given number of rounds. The idea of the sequential approach is that a

more accurate emulator of the posterior can be achieved when more (parameter value,

simulated data) training pairs are generated in higher density regions of the posterior.

Lueckmann et al. (2021) have shown that NPE can outperform ABC, particularly for a

relatively small number of model simulations.

However, in real-world problems, there may be little known about the parameters a

priori, so that a vague prior may be employed. For example, a uniform distribution with

a wide constraint range may be used as a prior distribution. For some problems in this

setting we find that it is difficult to construct an accurate NCDE across a wide parameter

space, which leads to NPE producing an inaccurate posterior approximation. We find

that even SNPE may not able to recover from such an initially deficient approximation,

even with a relatively large number of rounds, and hence model simulations. One way to

mitigate this kind of unstable NCDE training is to clip the extreme simulated datasets

(Shih et al., 2023; de Santi et al., 2023). However, this approach is ad-hoc and it is

not clear how much clipping is required for a given problem and may require extensive

experimentation, and each level of clipping requires refitting of the NCDE.

This paper contains three key contributions. Firstly, we explore several examples

where NPE methods fail to produce highly accurate posterior approximations, even in

relatively low dimensional problems. Our second contribution is the development of pre-

conditioned NPE (PNPE), and its sequential extension (PSNPE), which combines the

strengths of statistical and ML approaches to SBI. The preconditioning step involves ap-

plying an ABC algorithm for efficiently discarding parts of the parameter space that lead

to large discrepancies, which then subsequently permits NPE methods to perform well. In

a sense, our preconditioning step acts as a principled clipping method. Our third contri-

bution shows via an extensive empirical study that our preconditioned NPE approaches

outperform NPE approaches when the latter performs sub-optimally, and is competitive

when it performs well. Our motivating example involves fitting a complex agent-based

model of tumor growth to real cancer data.

2 Simulation-based Inference

Consider a simulator that takes parameters θ ∈ Rd where d is the number of parameters

and generates a simulated dataset x ∈ RD where D is the dimension of the data, but its

density p(x|θ) is intractable. The objective of SBI is to accurately estimate the posterior

density of θ conditional on the observed dataset xo ∈ RD based only on simulating data

from the model and not requiring evaluation of the intractable likelihood, p(xo|θ). Two
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popular SBI methods are ABC and NPE, which are summarised below.

2.1 Approximate Bayesian computation

Statistical SBI (Sisson et al., 2018), such as the ABC rejection algorithm, is based on

Monte Carlo rejection sampling. That is, it keeps only the parameter values simulated

from the prior that generate simulated data x such that ρ(x, xo) < ϵ, where ρ(x, xo) is

a user-defined discrepancy function between the simulated and observed data, and ϵ is a

user-defined threshold often referred to as the ABC tolerance.

SMC ABC algorithms (e.g. Sisson et al. (2007); Drovandi and Pettitt (2011)) aim to

be more efficient by sampling a sequence of ABC posteriors with decreasing ϵ’s, updating

the importance distribution at each iteration. More specifically, SMC ABC algorithms

define a sequence of non-increasing ABC thresholds ϵ1 ≥ ϵ2 ≥ · · · ≥ ϵT , such that

pϵt(θ|xo) ∝ p(θ)

∫
RD

I
(
ρ(xo, x) < ϵt

)
p(x|θ)dx, for t = 1, . . . , T. (2.1)

Here, ϵT = ϵ represents the target ABC posterior.

In many real-world applications, x, xo ∈ RD are considered high-dimensional data,

necessitating a mapping to a lower-dimensional space for computational efficiency. This

is typically done using summary statistics S(·). If summary statistics are required, we use

S(x) and S(xo) instead of the full datasets x and xo. The choice of appropriate summary

statistics is a subject of ongoing research and is discussed extensively in the literature

(see Sisson et al. (2018)).

However, even sophisticated ABC algorithms can require a significant number of model

simulations to achieve a suitably small value of ϵ (Biau et al., 2015; Csilléry et al., 2010;

Beaumont et al., 2009; Blum, 2010).

2.2 Neural posterior estimation

NPE usesN training pairs of simulator parameter values and simulated datasets, {θi, xi}Ni=1,

to estimate the posterior distribution p(θ|x) (Papamakarios et al., 2021). Once the NPE

is trained on the simulated datasets, the posterior distribution p(θ|xo) can be computed

by inputting the observed dataset xo. A conditional neural density estimator qF (x,ψ)(θ),

utilizing a neural network F and its adjustable network weights ψ, is often used as an

NPE. In order to train qF (x,ψ)(θ), the following loss is minimized:

A neural density estimator qF (x,ϕ)(θ) used neural network F with adjustable network

weights ϕ is used for NPE that trained by minimize the loss:

ψ∗ = argmin
ψ
−

N∑
i=1

logqF (xi,ψ)(θi), (2.2)
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over network weights ψ. For a sufficiently expressive qF , qF (x,ψ)(θ) = p(θ|x).
SNPE aims to improve the accuracy of the approximate posterior for a particular

observed dataset xo iteratively by sampling parameter values from a previous NPE ap-

proximation for a given number of rounds. The current NPE approximation is treated

as a proposal distribution p̃(θ) for the next round. However, training qF using parameter

values drawn from p̃(θ) will not converge to the true posterior distribution, but rather to

p̃(θ|xo) ∝ p(θ|xo)
p̃(θ)

p(θ)
. (2.3)

Many approaches have been developed to overcome this limitation, such as Papa-

makarios and Murray (2016); Lueckmann et al. (2017); Greenberg et al. (2019). Among

all these approaches, we use the automatic posterior transformation (APT, also known

as SNPE-C), as proposed by Greenberg et al. (2019), which has been reported to signif-

icantly outperform the others (Lueckmann et al., 2021). However, APT can suffer from

a ‘leakage’ issue, in which case we use truncated sequential neural posterior estimation

(TSNPE) (Deistler et al., 2022), which aims to overcome the leakage problem. For sim-

plicity, we refer to our specific implementation as SNPE hereafter, but we note that other

implementations of SNPE can be used with our method.

2.2.1 Illustrative Example

We consider a sparse vector autoregressive (SVAR) model that has been considered pre-

viously in the SBI literature (Thomas et al., 2020; Drovandi et al., 2023). The SVAR

model is given by:

yt = Xyt−1 + ξt, (2.4)

where yt ∈ Rk represents the k-dimensional observation of the time series at time t,

X ∈ Rk×k is the transition matrix, and ξt ∼ N (0, σ2I) is a k-dimensional noise vector

with σ2 being the noise parameter. The model considers a sparse transition matrix X

where the only off-diagonal entries that are non-zero must satisfy the following conditions:

(1) they are strictly off-diagonal entries, meaning i ̸= j for 1 ≤ i, j ≤ k; (2) if variable i

is coupled with variable j, then Xi,j ̸= 0 and Xj,i ̸= 0 (note that Xi,j is not necessarily

equal to Xj,i). To ensure the stability of the SVAR, the diagonal elements of X are set to

-0.1. The parameter space of SVAR can easily scale to higher dimensions by increasing k.

In this study, the model parameters θ ∈ Rk+1 are the non-zero off-diagonal entries of X

and its variance and we consider k = 6, which leads to 7 parameters. This choice is based

on the assumption that if SNPE does not produce highly accurate approximations in

this low-dimensional case, it is unlikely to be accurate in a higher dimensional parameter

space. We generate an observed dataset of length T = 1000 using the true parameter

value θ = (0.579,−0.143, 0.836, 0.745,−0.660,−0.254, 0.1). We use summary statistics to
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reduce the dimension of the data. Following Thomas et al. (2020); Drovandi et al. (2023),

we use the lag 1 autocovariance 1
T

∑T
t=2 y

i
ty
j
t−1 as the summary statistics, where yit is the

tth observation of the ith time series. We use the sample standard deviation of the k

time series to inform σ. Thus there is a single summary statistic that is intended to be

informative about each parameter.

We employ a uniform distribution as the prior, constrained between -1 and 1 for the

k parameters and between 0 and 1 for σ. We find that extreme values of the summary

statistics can be produced by parameter values away from the true parameter value. To

stabilize the training, we clip simulated datasets with summary statistic outliers (any

simulated values greater than 10, around 3% of training datasets). Note that some ex-

perimentation was required to obtain a clipping value that led to reasonable results for

SNPE.

For illustrative purposes, we run three rounds of SNPE and compare the results with

those from BSL, considering BSL results as the gold standard for this example. Ideally,

we would expect performance to improve when increasing the number of SNPE rounds.

However, as shown in Figures 1 and 2, even with datasets clipped for every round, SNPE

does not improve the accuracy of the estimates as the number of rounds increases.

Figure 1: Comparison of marginal posterior distributions between BSL (orange), NPE
(dashed pink) and SNPE (red), with black dashed lines representing the true values. The
SNPE results are based on three rounds.
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Figure 2: Comparison of posterior predictive distribution of the summary statistics of
observation datasets between BSL (orange), NPE (dashed pink) and PNPE (red), with
black dashed lines representing the true values. The SNPE results are based on three
rounds.

3 Method

We find that NPE can perform sub-optimally when the prior predictive distribution of

the data is complex and has significant variability. When this occurs, the NCDE may not

be sufficiently accurate, especially in regions of high posterior support. The sequential

version of NPE was originally designed to overcome this issue, however if the initial NPE

approximation is not substantially better than the prior, then subsequent rounds of SNPE

may suffer from the same issue.

Other approaches to overcome this issue may be to increase the training sample size

or to try different configurations of the neural network, but both of these may increase

the computational cost substantially and may not address the issue. Instead, we propose

the preconditioned NPE (PNPE) method, and its sequential extension below, in order to

make NPE methods more reliable.

3.1 Preconditioned NPE

For a vague prior distribution p(θ), parameter values drawn from it might be very far

from the true posterior. We suggest using a short run of ABC to refine those parameter
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values so that they are closer to the true posterior p(θ|xo), i.e.,

pϵ(θ|xo) ∝ p(θ)

∫
RD

p(x|θ)I(ρ(xo, x) < ϵ)dx, (3.1)

where I(·) is the indicator function and ϵ can be chosen considerably larger than what

might typically be used in an ABC algorithm. Then we fit a density estimator to those

parameter samples. The key idea is to use an efficient ABC algorithm to quickly discard

poor regions of the parameter space that generate unusual datasets relative to the ob-

served data, which provides better quality training datasets for NPE. We note that any

ABC algorithm could be employed here, but we use the SMC ABC algorithm of Drovandi

and Pettitt (2011) in this paper (see Appendix A for a full description of this method).

The SMC ABC algorithm generates n samples from a sequence of ABC posteriors based

on decreasing ABC thresholds, ϵ1 > · · · > ϵT , where ϵT = ϵ is the target ABC thresh-

old. The sequence of tolerances is determined adaptively, by, at each iteration of SMC,

discarding a proportion of the samples, a · n, with the highest discrepancy, where a is a

tuning parameter. Then, the population of samples is rejuvenated through a resampling

and move step. During the move step, a Markov chain Monte Carlo (MCMC) ABC ker-

nel is employed to maintain the distribution of particles based on the current value of

the tolerance. The number of MCMC steps Rt to apply to each particle is determined

adaptively based on the overall MCMC acceptance rate, that is Rt =
⌈

log(c)
log(1−pacct )

⌉
, where

pacct is the estimated MCMC acceptance probability at the tth SMC iteration. A natural

stopping rule for the algorithm is when the MCMC acceptance rate becomes intolerably

small.

Based on n parameter samples from the ABC posterior, we fit an unconditional nor-

malising flow qG (note that other density estimators could be used). Then we can use

qG as the initial importance distribution for the (S)NPE process. We call this melding of

ABC and (S)NPE as the preconditioned (S)NPE method. The method is summarised in

Algorithm 1.

Algorithm 1 Precondition SNPE

1: Choose preconditioning ABC algorithm and SNPE implementation
2: Obtain {θ∗i }

n
i=1 from the preconditioning ABC algorithm

3: Set ϕ∗ ← argmin
ϕ

n∑
i=1

−logqG(ϕ)(θ
∗
i )

4: Perform SNPE using initial importance distribution qG(ϕ∗)(θ)

If we obtain a well-trained unconditional normalizing flow, this unconditional normal-

izing flow can act as the initial importance distribution, i.e., p̃(θ) in Equation 2.3, and

to draw samples for training the NPE. Following Papamakarios and Murray (2016), it

is noted that given an expressive enough conditional normalizing flow, NPE converges
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to the true posterior p(θ|xo) as N → ∞, with an appropriate importance re-weight if

p̃(θ) ̸= p(θ).

Choosing a suitable value of ϵ for our method requires some thought. A smaller value

of ϵ will focus in on more promising regions of the parameter space, but will increase

the computational time of the preconditioning step. A larger value of ϵ will lead to a

fast preconditioning step, but may not eliminate enough of the poor parts of the space to

improve the training of the NCDE. In this paper we use an MCMC acceptance rate of 10%

(unless otherwise specified) as the stopping criteria for the SMC ABC algorithm in the

preconditioning step. For our examples we find that this choice is effective at balancing

the aforementioned objectives. We note that other choices are possible.

Furthermore, once these poor simulations have been removed, we find NPE to be more

effective than ABC, since ABC requires an exponentially increasing number of simulations

to drive ϵ to 0. To avoid the scaling problem of ABC, the preconditioning step only takes

a short run of ABC, and thus we are not interested in driving ϵ to 0.

3.2 Computational cost

We now consider computational cost for P(S)NPE and compare it with SNPE. The pre-

conditioning step can be considered as the initial round of NPE where the total number

of simulated datasets generated during SMC ABC is denoted as nABC. Hence, it is worth

noting that P(S)NPE, like SNPE, is not amortized since it requires running an ABC

algorithm for each observation datasets x0.

Furthermore, for complex real-world problems, the simulation time may depend on

the parameter values, and parameter values with very low posterior support can produce

substantially longer simulation times. For such problems, it is important from a compu-

tational perspective to quickly eliminate such regions from the parameter space, as is the

motivation of the preconditioning ABC algorithm. Thus, for problems where SNPE does

not perform well, we find PSNPE to be substantially more computationally efficient in

terms of compute time.

3.3 Illustrative Example Revisited

We apply PNPE to the illustrative example shown in Section 2.2.1. For the precondi-

tioning step, we use the adaptive SMC ABC algorithm proposed by Drovandi and Pettitt

(2011), with tuning parameters n = 1k, a = 0.5, and c = 0.01. We employ an uncon-

ditional normalizing flow as the unconditional density estimator. For this, we use the

state-of-the-art neural spline flow implemented in the Pyro package.

In order to make a fair comparison between P(S)NPE and SNPE, we use the same

number of simulations as in the SMC ABC algorithm, denoted nABC, to train the initial

round of NPE. We run the SMC ABC algorithm ten times to obtain the average number
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of simulations it requires, which is nABC = 54k. For illustrative purposes, we only run

two rounds of SNPE and compare it with PNPE.

The estimated marginal posterior plots are displayed in Figure 3, where the black solid

lines represent the true parameter values. It is evident that our PNPE method (in a single

round) produces a substantially sharper approximation of the posterior compared to that

of SNPE.

Figure 3: Performance on SVAR model. Comparison of marginal posterior distribu-
tions between BSL (orange), SNPE (red), preconditioning step (blue dash) and PNPE
(green solid), with black dashed lines representing the true values.

It is evident that even a short run of the ABC algorithm gives a reasonable posterior

approximation to train an unconditional normalizing flow as the unconditional density

estimator, which then generates samples for NPE training. Figures 3 and 4 show that the

improved parameter posteriors leads to more accurate posterior predictive distributions of

the summaries compared to SNPE. This indicates that with a good starting point, NPE

can further improve accuracy.
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Figure 4: Performance on SVAR model. Comparison of posterior predictive distri-
butions of the summary statistics of observation datasets between BSL (orange), SNPE
(red), preconditioning step (blue dash) and PNPE (green solid), with black dashed lines
representing the true values.

4 Further Experiments

We present two additional examples, including our motivating example, where SNPE,

perhaps surprisingly, does not produce highly accurate posterior distributions. To fairly

compare our method with vanilla SNPE and potentially TSNPE, we run the ABC al-

gorithm 10 times and compute the average total number of simulations that the ABC

algorithm requires. We then use this same number of simulations for the initial NPE in

both SNPE and TSNPE. For all experiments, we utilize the adaptive SMC ABC algo-

rithm proposed by Drovandi and Pettitt (2011) for the preconditioning part with tuning

parameters n = 1k, a = 0.5, c = 0.01, and use an unconditional normalizing flows as

the unconditional density estimator. For SNPE, we use 10k samples for each round of

training.

We find that even with a single round of PNPE, there can be a significant im-

provement in performance. The code is publicly available in: https://github.com/john-

wang1015/PNPE
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4.1 High-dimensional SVAR model

To investigate how our method scales to higher dimensional problems, we take the illus-

trative SVAR example from before and consider k = 20, which leads to 21 parameters.

We detail the experimental settings in Section B.1. To ensure a fair comparison, we run

the SMC ABC algorithm ten times using a 10% acceptance rate as the stopping criterion

and calculate the average number of simulations it takes. We then use the same number

of simulations, approximately nABC ≈ 45k, to train the initial NPE. Hence, the total

number of simulations for both PNPE and SNPE is the same (55k in total). To stabilize

the training, we apply the same clipping technique used in the previous low-dimensional

case, which results in approximately 11% of the training samples being removed in the

initial round of NPE and about 1% to 2% in the second rounds. Starting from the third

round, SNPE is unable to sample any parameter values from the neural networks due to

a severe leakage issue (Deistler et al., 2022).

The estimated marginal posterior plots are displayed in Figure 5, where the black solid

lines represent the true parameter values. It is evident that as the number of parameter

dimensions increases, training the unconditional normalizing flows becomes more chal-

lenging. With well-trained unconditional normalizing flows, PNPE outperforms SNPE in

high-dimensional cases (in this example, except for parameter θ3.).
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Figure 5: Performance on SVAR model with 21 parameters. Comparison of
marginal posterior distributions between BSL (orange), SNPE (red) and PNPE (green),
with black dashed lines representing the true values. The result of SNPE uses 2 rounds.
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Figure 6: Performance on SVAR model with 21 parameters. Comparison of pos-
terior predictive distributions of the summary statistics of observation datasets between
BSL (orange), SNPE (red) and PNPE (green), with black dashed lines representing the
true values. The result of SNPE uses 2 rounds.

4.2 Biphasic Voronoi cell-based model

Finally, we consider a challenging real-world problem in cancer biology: calibrating the

biphasic Voronoi cell-based model (BVCBM) Wang et al. (2024) that models tumor

growth. The model uses a parameter τ to divide the tumor into two growth phases. Here,

the term ‘growth phase’ refers to the different growth patterns of the tumor. There are

four parameters that govern tumor growth during each phase, namely (p0, ppsc, dmax, gage),

where p0 and ppsc are the probability of cell proliferation and invasion, respectively, dmax

is the maximum distance between cell and nutrient, and gage is the time taken for a cell

to be able to divide. Thus there is nine parameters in total, four parameters each of

two phases, and the parameter τ at which the growth phase changes. In this paper, we

calibrate to two real-world pancreatic cancer datasets Wade (2019), which describe tu-

mor growth as time series data. The datasets span 26 and 32 days, respectively, with
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measurements taken each day. While the ground truth posteriors are unknown for those

datasets, we compute posterior predictive distributions to assess if SNPE and PNPE can

effectively calibrate the model to the data.

We employ vague prior distributions for all parameters. Specifically, we use a Uniform

distribution constrained between 1 and 24 hours × the number of days for gage during both

growth phases. Additionally, we use a Uniform distribution constrained between 2 and

the number of days minus 1 for τ . The prior distributions for the remaining parameters

are detailed in Appendix B.2.

As reported by Wang et al. (2024), CPU times for model simulation range from 1.76

to 137.27 seconds per simulation when using samples from the prior distribution. This

implies that 10k simulations for the first round of SNPE take approximately 2 hours.

Consequently, the initial stages of SNPE are computationally expensive. In contrast, the

ABC preconditioning step takes around 10-15 minutes. This is due to the fact that the

longer simulation times tend to also lead to large discrepancies with the observed data,

and such samples are quickly rejected by ABC. For the ABC part, around 18k and 16k

simulations are used for the 26-day and 32-day pancreatic cancer datasets, respectively.

We observed a leakage problem occurring in rounds 8 and 5 for the 26-day and 32-day

datasets, respectively. At round 10, the acceptance rate of SNPE for the 26-day measure-

ment dataset is above 50%, leading us to utilize rejection sampling for sample generation.

While a 50% acceptance rate for rejection sampling is acceptable, it is less efficient com-

pared to direct simulation from the trained conditional normalizing flows in the previous

round. Hence, we employ TSNPE for this dataset. For the 32-day measurement dataset,

only 0.000% of samples are accepted at round 8, making it computationally expensive.

Consequently, we use TSNPE for this dataset.

To estimate the posterior predictive distributions, we sample 1k parameter values from

(T)SNPE and PNPE, using them to simulate datasets. We then plot these data in the form

of credible intervals. As a baseline, we show the prior predictive distributions in Appendix

C. The top and bottom rows of Figure 7 displays the posterior predictive distribution for

the 26-day and 32-day datasets, respectively (the same plots but on the log scale are shown

in Appendix C). It is evident that both SNPE and TSNPE provide biased estimations, as

the posterior predictive does not capture the observed data well. The posterior predictive

distribution for the preconditioning step (middle column) shows that the ABC step can

capture the data reasonably well since the observed data lie within the 90% posterior

predictive interval. Our method (third column) provides a better fit, as the variance of

the posterior predictive distribution is tighter than that of the preconditioning step and

still captures the observed data. This demonstrates that even one round of PNPE can

perform more accurate estimations based on our results.
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Figure 7: Posterior predictive distributions for two pancreatic cancer datasets.
90% Posterior predictive interval plots for SNPE (a), preconditioning step (b) and PNPE
(c) for the 26-day dataset; 90% Posterior predictive interval plots for SNPE (d), precon-
ditioning step (e) and PNPE (f) for the 32-day dataset.

5 Discussion

We present a neural SBI method that is both simple and easy to deploy, designed to

enhance the accuracy of SNPE methods. Our method, termed preconditioned neural pos-

terior estimation (PNPE) and its sequential version, PSNPE, employs an ABC algorithm

for the initial step. This algorithm is used to efficiently filter out poor regions of the

parameter space. Additionally, we use the ABC posterior samples to train an uncondi-

tional density estimator qG, enabling qG to serve as the initial proposal distribution for

SNPE. The core concept is that an improved starting point can significantly enhance the

accuracy of SNPE estimations. Indeed, we obtained very good results with PNPE.

We showcase several examples where either SNPE failed to perform inference effec-

tively, such as in the SVAR case, or produced biased results, as observed in the BVCBM.

For the SVAR example, SNPE methods struggle due to the impact of low-quality sam-

ples from certain parameter space regions, adversely affecting the training process. The

ABC method can efficiently eliminate these bad samples, thereby enhancing the training.

For cases where SNPE results in biased estimations, our methods were effective at accu-

rately fitting observed data (real data for BVCBM example). This is substantiated by
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our empirical results for the posterior predictive distribution discussed in experimental

section.

Although our method demonstrates the capability to enhance estimation accuracy, it

does have some limitations. Firstly, our method requires model simulations in the ABC

preconditioning step, which may lead to greater computational demands in situations

where SNPE methods perform well. However, by performing the preconditioning step,

significantly fewer model simulations may be required in the SNPE part to achieve high

accuracy. In this paper we used SMC ABC for the preconditioning step, but we note that

other ABC algorithms or SBI methods could be used. We do not recycle the simulations

performed in the ABC preconditioning step for the SNPE phase, but it could be possible

to modify our method to exploit these model simulations. Here we used the acceptance

rate as the stopping criterion for the preconditioning step, but another option could be to

check after each iteration of SMC ABC and stop the preconditioning if a suitable NCDE

is found. Secondly, the choice of an unconditional density estimator necessitates careful

consideration. In scenarios involving low-dimensional parameter spaces, a kernel density

estimator might be a preferable option compared to unconditional normalizing flows.

It is important to note that the preconditioning step of our method requires manual

selection of the summary statistics or discrepancy function. However, this choice is not

as critical as in a typical ABC application, since we aim to remove poor parts of the

parameter space rather than achieve a highly accurate posterior approximation. In this

paper we used the same summary statistics as in the preconditioning step for the subse-

quent rounds of NPE. However, we note it would be possible to use different summaries

after the preconditioning step, and possibly use automated summary statistic selection

methods (Fearnhead and Prangle, 2012; Chen et al., 2023).

In this paper we considered the well-specified scenario, where the model is either known

to be correct or can provide a good fit to the data with a suitable choice of parameter

values. Standard neural SBI methods are known to potentially perform poorly under

model misspecification Bon et al. (2023); Cannon et al. (2022); Schmitt et al. (2023). Our

preconditioning method may be useful in the misspecified scenario, since ABC are known

to perform reasonably well under model misspecification. That is, ABC still converges

onto the pseudo-true parameter value Frazier et al. (2020). The preconditioning step

could be followed by a robust neural SBI method such as Kelly et al. (2023); Huang et al.

(2024); Gloeckler et al. (2023); Ward et al. (2022). We plan to explore this in future

research.

Overall, PNPE employs a preconditioning step to focus on important parts of the

parameter space, thereby creating a good starting point for training SNPE and enhanc-

ing estimation accuracy. We have empirically demonstrated that PNPE is capable of

producing more accurate estimations in complex real-world problems.
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A Further background for SMC ABC

We provide a detailed description of the adaptive SMC ABC algorithm we used in this

paper and provide pseudocode in Algorithm 2 for reference. This algorithm starts by

drawing N independent samples from the prior distribution p(θ), represented as {θi}Ni=1.

For each sample θi (known as a particle), the algorithm simulates a dataset xi from the

stochastic model and calculates the corresponding discrepancy ρi = ρ(xi, xo), resulting in

the pair set {θi, ρi}Ni=1. These pairs are then arranged in order of increasing discrepancy

such that ρ1 < ρ2 < · · · < ρN . The first tolerance threshold, ϵ1, is set as the largest

discrepancy, ρN . To move through the target distributions, the algorithm adjusts the

tolerance dynamically. The next tolerance, ϵt, is set as ρN−Na , where Na = ⌊Na⌋, and a
is a tuning parameter. Essentially, in each step, the algorithm discards the top a× 100%

of particles with the highest discrepancies. After discarding these particles, only N −Na

particles remain. To replenish the set back to N particles, the algorithm resamples Na

times from the ‘alive’ particles, copying both the parameter and discrepancy values. This

process, however, leads to duplicates in the particle set. To add variety to the set, the

algorithm applies an MCMC ABC kernel to each resampled particle. The parameters

for the MCMC proposal distribution qt(·|·) are derived from the current particle set.

For instance, if using a multivariate normal random walk proposal, its covariance Σt is

based on the particle set’s sample covariance. The acceptance of a proposed parameter

(assuming a symmetric proposal) and simulated data is determined by the equation:

pt = min

(
1,
p(θ̃)

p(θ)
I(ρ(xo, x̃) < ϵt)

)
, (A.1)

where θ̃ ∼ q(·|θ) and x̃ ∼ p(·|θ̃) are proposed parameter values and dataset, respectively.

However, proposals may be rejected, leaving some particles unchanged. To address this,

the algorithm performs Rt iterations of the MCMC kernel on each particle, where Rt =⌈
log(c)

log(1−pacct )

⌉
, where c is a tuning parameter of the algorithm that can be interpreted as the

probability that a particle is not moved in the Rt iterations. The acceptance probability

pacct is estimated from trial MCMC ABC iterations and used to compute Rt for the next set

of MCMC ABC iterations. For this adaptive SMC ABC algorithm, two stopping rules can

be used. The first stopping rule halts the ABC algorithm when the maximum discrepancy

is below a set tolerance, ϵT . The second stopping rule terminates the algorithm when the

MCMC acceptance probability pacct falls below a predefined threshold pacc. Here we choose

the second rule, and since we only require a short run of ABC, we set pacc to be higher

than what is typically used in an ABC analysis.
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Algorithm 2 Adaptive SMC ABC

Input: The observed data xo, the stochastic model p(x|θ), distance function ρ(·, ·),
prior distribution p(θ), number of particles N , tuning parameters a and c for adaptive

selection of discrepancy thresholds and selecting the number of MCMC iterations in the

move steps, target tolerance ϵT , initial number of trial MCMC iterations Sinit, minimum

acceptable MCMC acceptance rate pmin

for i = 1, . . . , N do

Simulate xi ∼ p(x|θi) where θi ∼ p(θ)

Compute ρi = ρ(xo, xi)

end for

Sort {θi}Ni=1 by {ρi}Ni=1 such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN

Set Na = ⌊aN⌋, t = 2, ϵt = ρN−Na , ϵ1 = ρN , St = Sinit, p̃acct = 1

while ϵt−1 > ϵT or p̃acct > pmin do

Compute Σ as the sample covariance matrix of {θi}N−Na
i=1

Generate {θi}Ni=N−Na+1 by resampling from {θi}N−Na
i=1 with replacement

for i = N −Na + 1, . . . , N do

for j = 1, . . . , St do

Simulate x̃ ∼ p(x|θ̃) based on proposal θ̃ ∼ N (θi,Σ)

Compute ρ̃ = ρ(xo, x̃)

Compute pi,jt = min
(
1, p(θ̃)

p(θ)
I(ρ̃ < ϵt)

)
.

With probability pi,jt , set θi = θ̃ and ρi = ρ̃; otherwise, retain the current

values of θi and ρi

end for

end for

p̃t =
∑N

i=N−Na+1

∑St

j=1 p
i,j
t /
(
St(N −Na)

)
Rt = ⌈log(c)/

(
1 + log(1− p̃t)

)
⌉

for i = N −Na + 1, . . . , N do

for j = Rt − St, . . . , Rt do

Simulate x̃ ∼ p(x|θ̃) based on proposal θ̃ ∼ N (θi,Σ)

Compute ρ̃ = ρ(xo, x̃)

Compute pi,jt = min
(
1, p(θ̃)

p(θ)
I(ρ̃ < ϵt)

)
.

With probability pi,jt , set θi = θ̃ and ρi = ρ̃; otherwise, retain the current

values of θi and ρi

end for

end for

p̃acct =
∑N

i=N−Na+1

∑Rt

j=1 p
i,j
t /
(
Rt(N −Na)

)
St+1 = ⌈Rt/2⌉
Sort {θi}Ni=1 by {ρi}Ni=1 such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN

Set ϵt+1 = ρN−Na , ϵt = ρN

t = t+ 1

end while

return Samples {θi}Ni=1 from ABC posterior
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B Experimental Details

We use the adaptive SMC ABC algorithm Drovandi and Pettitt (2011) in the precondi-

tioning step for all experiments. We set the tuning parameters as a = 0.5, c = 0.01 and

use 1k particles for the algorithm. As the stopping rule, we set the target MCMC accep-

tance rate at 10%, unless otherwise specified. For the unconditional density estimator, we

employ unconditional normalizing flows using the Pyro package Bingham et al. (2019),

with a spline coupling layer using the transformation:

Y1:d = gθ̃(X1:d) (B.1)

Y(d+1):D = hϕ(X(d+1):D;X1:d) (B.2)

where X are the inputs, Y are the outputs, e.g., X1:d represents the first d elements of

the inputs, gθ̃ is either the identity function or an elementwise rational monotonic spline

with parameters θ̃, and hϕ, where ϕ is element-wise bijection parameter, is a conditional

elementwise spline, conditioning on the first d elements. Regarding the neural networks,

we use four fully-connected layers and set the count bins to 16. Furthermore, if the

dimensions of the parameter space are less than three, indicating a low-dimensional case,

we also consider kernel density estimation with a Gaussian kernel as the unconditional

density estimator, as implemented in the Scikit-learn package Pedregosa et al. (2011).

For APT and TSNPE, we use the implementation of the sbi package Tejero-Cantero et al.

(2020) with default settings.

For SNPE and TSNPE, we use conditional neural spline flows Durkan et al. (2019).

We use five coupling layers, with each coupling layer using a multilayer perceptron of

two layers with 50 hidden units. The flow is trained using the Adam optimiser with a

learning rate of 5 × 10−4 and a batch size of 256. Flow training is stopped when either

the validation loss, calculated on 10% of the samples, has not improved over 50 epochs or

when the limit of 500 epochs is reached.

B.1 High-dimensional SVAR model

We consider our illustrative example in a high-dimensional setting with k = 20, which

leads to 21 parameters that need to be estimated. We set the true parameter values as

follows:

θ = (−0.2764,−0.7765, 0.8231,−0.1972,−0.2254, 0.6334, 0.4495,

0.4465,−0.8961, 0.0647,−0.1791, 0.0795,−0.5464,−0.9354,

− 0.4639,−0.7851,−0.6833,−0.1408, 0.7032, 0.8321, 0.1000),
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and use these values to simulate the observation dataset. We employ the same summary

statistics as in the low-dimensional example and use a uniform distribution as the prior,

constrained between -1 and 1 for the k parameters and between 0 and 1 for σ.

Since the BSL method is the gold standard for this example, we use the standard BSL

method proposed by Price et al. (2018), with the total number of simulations set to 20

million.

B.2 BVCBM

The BVCBM simulation begins by initializing a square domain with cells arranged in

a hexagonal lattice. The cell at the center of the domain is identified as a cancer cell,

while the others are designated as healthy cells. The simulation proceeds until the tumor

reaches a volume of 100mm2, in accordance with experimental measurements (Wade,

2019; Kim et al., 2011). When this volume is attained, the distribution of healthy and

cancerous cells within the lattice is recorded. This configuration then serves as the starting

point to simulate tumor growth over the desired number of days. The model progresses

by determining whether a cancer cell proliferates at each timestep, as described by the

equation:

pd = p0

(
1− d

dmax

)
, (B.3)

where pd is the probability of cell division, p0 is the initial division rate, d is the current

cell density, and dmax is the maximum density. For cancer cells that do not proliferate, the

model assesses their potential to transition into invasive cells, governed by the probability

ppsc. Subsequently, the positions of all cells, both healthy and cancerous, are updated

using Hooke’s law:

ri(t+∆t) = ri(t) +
1

µ
Fi(t)∆t = ri(t) + λ

∑
∀j

ri,j(t)

∥ri,j(t)∥
(si,j(t)− ∥ri,j(t)∥). (B.4)

Here, ri(t + ∆t) denotes the updated position of cell i, µ is the cell motility coefficient,

Fi(t) is the force on cell i, λ is a mechanical interaction coefficient, ri,j(t) is the vector

between cells i and j, and si,j(t) is the natural length of the spring connecting the two

cells. The parameters for the mechanical interactions, such as λ and µ, are sourced from

prior studies in the literature Meineke et al. (2001). See Jenner et al. (2020); Wang et al.

(2024) for more detailed model simulation.

Four parameters θ = (p0, ppsc, dmax, gage) control the tumor growth during a single

phase, which is a period when the tumor grows based on fixed values for these four

parameters. For the biphasic model, an additional parameter τ is introduced, representing

the time at which the tumor growth pattern changes, that is, the values for θ change.

Therefore, for BVCBM, we need to estimate nine parameters for two pancreatic cancer

26



datasets, denoted as θ1 = (p10, p
1
psc, d

1
max, g

1
age), θ2 = (p20, p

2
psc, d

2
max, g

2
age), and τ , so that

θ = (θ1, θ2, τ).

The parameter ppsc, which is the probability of tumor cell invasion into healthy cells,

significantly affects the simulation time. The value of ppsc should be around 10−5, indi-

cating that an increase in probability will require more cells to be simulated. Moreover,

a smaller value of ppsc results in simulation time. For PNPE, the total simulation time

for 15k simulations (26-day dataset) and 17k simulations (32-day dataset) for the precon-

ditioning step is approximately 13 and 15 minutes, respectively, whereas SNPE requires

around 1 hour for the first round (i.e. based on samples from the prior) of 10k simulations.

This is because the preconditioning step is effective at quickly eliminating values of ppsc

that lead to longer model simulation times.
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C Further experimental results

In this section, we present prior predictive distributions of tumour volumes in (a) and

(b) for two pancreatic datasets (in (c) and (d) we show the same plots but on the log

scale). We also show the posterior predictive distributions on the log scale obtained

with different methods in Figure 9. Then we present the bivariate posterior density and

marginal posterior density plots for the BVCBM as additional results. It is evident from

Figures 10 and 11 that PNPE provides more precise estimation than SNPE for both

pancreatic cancer datasets.

Figure 8: Prior predictive distribution for BVCBM. We sample 10k parameter
values from prior distribution and plot the prior predictive distribution for two pancreatic
datasets. In (a) and (b), the plots are in regular scale, and in (c) and (d), the plots are
in log scale.
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Figure 9: Posterior predictive distributions for two pancreatic cancer datasets
in log scale. 90% Posterior predictive interval plots for SNPE (a), preconditioning step
(b) and PNPE (c) for the 26-day dataset; 90% Posterior predictive interval plots for
SNPE (d), preconditioning step (e) and PNPE (f) for the 32-day dataset.
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Figure 10: Bivariate density plots for the pancreatic dataset with 26-day measurements for
(a) SNPE and (b) PNPE. The diagonal entries represent the marginal posterior densities
for (p1psc, g

1
age, τ, p

2
psc, g

2
age).
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Figure 11: Bivariate density plots for the pancreatic dataset with 32-day measurements for
(a) SNPE and (b) PNPE. The diagonal entries represent the marginal posterior densities
for (p1psc, g

1
age, τ, p

2
psc, g

2
age).
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