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This study investigates the application of single vector hydrophones in underwater acoustic signal 

processing for Direction of Arrival (DOA) estimation. Addressing the limitations of traditional 

DOA estimation methods in multi-source environments and under noise interference, this research 

proposes a Vector Signal Reconstruction (VSR) technique. This technique transforms the covariance 

matrix of single vector hydrophone signals into a Toeplitz structure suitable for gridless sparse 

methods through complex calculations and vector signal reconstruction. Furthermore, two sparse 

DOA estimation algorithms based on vector signal reconstruction are introduced. Theoretical 

analysis and simulation experiments demonstrate that the proposed algorithms significantly improve 

the accuracy and resolution of DOA estimation in multi-source signals and low Signal-to-Noise 

Ratio (SNR) environments compared to traditional algorithms. The contribution of this study lies in 

providing an effective new method for DOA estimation with single vector hydrophones in complex 

environments, introducing new research directions and solutions in the field of vector hydrophone 

signal processing.   
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I. INTRODUCTION AND FIRST-LEVEL HEADINGS 

In array signal processing, the estimation of the Direction of Arrival (DOA) is a crucial 

component of underwater acoustic signal processing. It forms the foundation for the identification, 

localization, and tracking of underwater acoustic targets, aiming to acquire the directional 

information of targets from signals received by spatially distributed array elements. Unlike scalar 

hydrophones, which can only measure acoustic pressure, vector hydrophones are capable of 

simultaneously measuring acoustic pressure and particle velocity at the same point. Single vector 

hydrophones exhibit frequency-independent dipole directivity and a certain resistance to isotropic 

noise, enabling unambiguous full-space direction finding and effectively solving the problem of 

limited aperture in small underwater platform arrays. Therefore, in recent years, the research and 

application of single vector hydrophones in underwater acoustic DOA estimation have received 

widespread attention1–4. 

Common DOA estimation methods such as the Multiple Signal Classification (MUSIC) 5 

algorithm and the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) 6 

algorithm have been proven to have high resolution and accuracy. These algorithms have laid the 

theoretical foundation for the application of DOA estimation using single vector hydrophones. 

Researchers have extensively explored this area: G.L. D'Spain analyzed and compared the 

beamforming results of single vector and vector arrays7; Wang et al. discussed the application of the 

Minimum Variance Distortionless Response (MVDR) beamforming technique to single differential 

vector hydrophone signal processing8; Tichavsky et al. proposed an ESPRIT algorithm based on a 

single vector hydrophone9; Levin proposed a DOA estimation method based on maximum 

likelihood estimation10; Liang et al. applied the MUSIC algorithm to single vector hydrophones and 

made improvements11; to solve the inconsistency problem of noise power between pressure and 

velocity channels, Liu et al. proposed a MUSIC algorithm that eliminates false sources12; Chen 
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applied matrix filters to single vector hydrophones, enhancing the performance of the MUSIC 

algorithm13. 

Traditional methods rely on single vector hydrophones to measure the components of acoustic 

pressure and particle velocity for estimating the position of sound sources. However, these methods 

often face numerous challenges in complex environments, especially in multi-source environments 

and under noise interference. Due to the unique array orientation vector structure of single vector 

hydrophones and the fact that, even without channel amplitude errors, the noise power received by 

the pressure and velocity channels in isotropic noise environments is still different, the existing 

algorithms widely used for array DOA estimation are difficult to apply directly to single vector 

hydrophones10–12. 

Currently, sparse algorithms have demonstrated their superiority in the DOA domain by 

leveraging the sparse characteristics of spatial signals14–18, effectively enhancing the accuracy and 

resolution of estimates even when the sparse distribution of signals is unknown19–21. In recent years, 

researchers have begun to explore the application of these algorithms to single vector hydrophones. 

Wang et al. applied the Sparse Asymptotic Minimum Variance (SAMV) algorithm to single vector 

hydrophones, achieving accurate estimation of target directions22. In recent years, gridless sparse 

methods such as atomic norm minimization19,23–25 and gridless sparse iterative covariance-based 

estimation 16  method have proven their significant application potential in the field of array signal 

processing. The application of these methods has mainly been limited to Uniform Linear Arrays 

(ULAs) and Sparse Linear Arrays (SLAs), a limitation stemming from the specific mathematical 

structures they rely on, such as the Vandermonde decomposition of Toeplitz covariance matrices, 

which are readily satisfied in ULAs and SLAs23–27. The signal processing model of single vector 

hydrophones does not conform to this structure, leading to limitations in the application of such 

algorithms for DOA estimation with single vector hydrophones. 
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This paper aims to facilitate the application of such algorithms in single vector hydrophones by 

drawing on the practice of combined pressure and velocity channel processing in vector 

hydrophones. It investigates a Vector Signal Reconstruction (VSR) method for single vector 

hydrophones, which, through complex calculations and vector signal reconstruction, transforms the 

covariance matrix of single vector hydrophone signals into a Toeplitz structure suitable for gridless 

sparse methods. Furthermore, two sparse DOA estimation algorithms are proposed: the VSR 

Atomic Norm Minimization Based on Singular Value Decomposition (VSRANMSVD) algorithm 

and the VSR Structured Covariance Estimation (VSRSCE) algorithm. Compared to traditional 

methods, the proposed algorithms effectively improve the estimation accuracy and resolution in 

multi-source signals and low signal-to-noise ratio environments. 

The main focus of this paper is to introduce the theoretical foundation and implementation 

details of the vector signal reconstruction method, and to verify its effectiveness in practical 

applications through simulation results. It further compares the significant advantages of the 

proposed algorithms over traditional DOA estimation methods in terms of directional estimation 

accuracy and resolution, especially highlighting their application potential in multi-source and low 

signal-to-noise ratio environments. 

II. SINGLE VECTOR HYDROPHONE SIGNAL MODEL 

Consider a mathematical model of a two-dimensional single vector hydrophone, which includes 

one acoustic pressure sensor and two vector velocity sensors that are perpendicular to each other on 

the horizontal plane, located along the  and  axes, respectively. Assume there are  

far-field spatially uncorrelated narrowband signals  impinging on the single 

vector hydrophone. The direction vector of the th signal  is a  

dimensional vector. Then, the received signal model can be represented as follows: 
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  (1) 

 represents the signal received by the hydrophone at time . Define the direction vector of the 

th signal , which is a three-dimensional column vector. The matrix 

 represents the direction vectors of all signals. The signal vector 

, and  is a three-dimensional noise vector, which is assumed to be 

additive Gaussian white noise with zero mean. Furthermore, the signals and noise are assumed to be 

independent of each other. For DOA estimation, multiple snapshots (assuming  snapshots) are 

typically used, and thus the received signal model can be described as follows: 

  (2) 

,  and . 

The covariance matrix of  can be represented as follows: 

  (3) 
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 refers to the power of the th signal source. Meanwhile, , , and  

represent the power of the noise in the acoustic pressure channel, velocity  channel, and velocity 

 channel, respectively. The covariance matrix of the signals  and the covariance matrix of the 

noise  can be represented accordingly as: 

  (4) 

III. SPARSE DOA METHOD BASED ON VSR 

A. VSR Method 

Upon reexamining the structure of the signal covariance matrix , it is observed that this 

matrix does not fully meet all the requirements of a Toeplitz structure. A key characteristic of 

Toeplitz matrices is that the elements on each diagonal should be identical, which is not entirely the 

case with . The definition of  is as follows: 

  (5) 

In , although the off-diagonal elements are equal to the elements at symmetrical positions along 

the diagonals, showing a certain level of symmetry, the diagonal elements (such as , , and 

) are not consistent and do not fully comply with the definition of a Toeplitz matrix. In this 

study, a vector signal reconstruction algorithm is proposed, which processes the covariance matrix 

of signals received by a single vector hydrophone to satisfy the Toeplitz structure through a specific 
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transformation process. The transformation is given by the following equation, where  

represents the reconstructed signal: 

  (6) 

Equation(6) can be obtained by left multiplying  by the vector signal reconstruction matrix , 

which can be specifically represented as: 

  (7) 

By applying Euler's formula  and  to 

Equation (6), the equation can be further simplified to obtain the following expression: 

  (8) 

Through vector signal reconstruction, the covariance matrix of data received by a single vector 

hydrophone can be represented as: 
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  (9) 

Furthermore,  can be simplified as: 

  (10) 

Where,  and  represent the power vectors of 

signals and noise respectively.  is the steering vector of the single vector signal after vector 

signal reconstruction, which can be represented by  as: 

  (11) 

In this processing step, by performing vector signal reconstruction on the single vector received 

data, the steering vector is approximated as a three-element uniform linear array. This method not 

only retains the core characteristics of the original signal but also provides an appropriate 

mathematical framework for subsequent signal processing and analysis tasks. When using  

snapshots for Direction of Arrival (DOA) estimation, the vector signal reconstruction model of the 

received signal  can be represented as follows: 

  (12) 
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B. Atomic Norm Minimization Based on Singular Value Decomposition 

The previous section introduced the basic principles and implementation methods of VSR. This 

method ensures that the covariance matrix of the single vector received signals possesses a Toeplitz 

structure, which is a prerequisite for employing atomic norm minimization. Atomic norm 

minimization(ANM) aims to achieve DOA estimation by minimizing the number of atoms that 

constitute the signal. The regularized optimization problem can be formulated as: 

  (13) 

Where,  represents the regularization parameter, and  denotes the sparsity measure. 

By minimizing , we aim to reduce the number of atoms constituting . In the presence of 

noise, the ANM problem further transforms into the following Semidefinite Programming (SDP) 

problem: 

  (14) 

To select an appropriate  parameter, set . When there are 

many snapshots, the computational load of ANM is significant. In such cases, Singular Value 

Decomposition (SVD) is used to simplify the data: 

  (15) 

A  dimensional data matrix  is defined, where  contains most of 

the signal energy. Here, , and  is a -order identity matrix. Therefore, the 

optimization problem can be reformulated as: 
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  (16) 

By solving Equation (16), the optimized covariance matrix  is obtained, which 

further allows the estimation of the target direction to be addressed through the MUSIC algorithm. 

C. Structured Covariance Estimation 

Under noise-free conditions, the covariance matrix of the $\boldsymbol{y}(t)$ signal in 

Equation (9) can be represented as: 

  (17) 

 is a positive semidefinite (PSD) Hermitian Toeplitz matrix. This matrix exhibits low-rank 

characteristics, with its rank . At this point, the sparsity of the target bearings 

translates into the low-rank property of the covariance matrix. When the number of snapshots is , 

the covariance matrix of the single vector received data can be given by the following formula: 

  (18) 

The next step involves finding a low-rank positive semidefinite (PSD) Hermitian Toeplitz 

matrix. The optimization problem can be represented as: 

  (19) 

Where  is a regularization parameter used to balance the data fitting term and the rank 

regularization term. Since directly minimizing the rank is an NP-hard problem, a convex relaxation 
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on the positive semidefinite (PSD) cone of the rank minimization problem is required. This involves 

replacing rank minimization with trace minimization, resulting in: 

  (20) 

, the SCE algorithm utilizes the sample covariance matrix  

instead of directly using . In the case of a two-dimensional single vector hydrophone, it does not 

require storing the  matrix , but only the  matrix , reducing computational load 

when there are a large number of snapshots. By solving the semidefinite programming problem, the 

optimized matrix  of the structured covariance matrix algorithm is obtained, with 

, where  is solved by (20). Further, the target bearings are solved using the 

MUSIC algorithm. 

IV. SIMULATION ANALYSIS 

In the scenario where a single vector hydrophone receives signals from  far-field targets, the 

signal-to-noise ratio (SNR) for the th source in a Gaussian noise environment is defined as 

follows: 

  (21) 

The Root Mean Square Error (RMSE) regarding the accuracy of DOA estimation is defined as: 

  (22) 

Here,  represents the true DOA of the th source in the th Monte Carlo simulation, while  

is the estimated value of . Assuming the number of sources  is known, the positions of the  
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largest peaks are selected as the estimated DOA values , and the RMSE is calculated based 

on the average results from  runs. 

A. Single-Target Simulation 

In this section, a single-target scenario is considered, where the incident angle of the target is 

, with the background noise being complex Gaussian white noise unrelated to the signal. In 

the simulation, the number of snapshots is set to 1000, with SNR designated at 10dB and 0dB 

respectively. The azimuth search step is set to . This simulation compares the performance of 

Conventional Beamforming (CBF), Minimum Variance Distortionless Response (MVDR), MUSIC, 

the Iterative Adaptive Approach (IAA) 28, SParse Iterative Covariance-based Estimation (SPICE) 29, 

SPICE+ 29algorithms, VSRANMSVD algorithm, and the VSRSCE algorithm, as illustrated in Figure 

1. The vertical red dashed line represents the actual direction of incidence of the target, and all 

algorithms effectively estimated the target's bearing. Particularly, the CBF algorithm shows the 

widest main lobe width, while the VSRANMSVD and VSRSCE algorithms demonstrate narrower 

main lobe widths relative to other algorithms, with lower sidelobe levels. The VSRSCE algorithm 

exhibits the lowest sidelobe level, showing the sharpest peak, which is more pronounced at an SNR 

of 0dB. 
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(a)                                                 (b) 

FIG. 1.Spatial Spectrum Graphs of Different DOA Algorithms for a Single Target:(a) SNR=10dB 

(b) SNR=0dB) 

Figure 2 displays the RMSE curves of different DOA estimation algorithms at various SNRs. In 

the context of a single target, the RMSE of azimuth estimation for all the mentioned algorithms 

decreases with an increase in the SNR. Below an SNR of -5dB, the RMSE rapidly increases with the 

improvement of signal SNR. When the SNR is greater than -5dB, except for the SPICE algorithm, 

the RMSE of azimuth estimation for the mentioned algorithms is less than . When the SNR is 

above 0dB, excluding the SPICE algorithm, the RMSE of azimuth estimation for other methods is 

essentially consistent. Below an SNR of 0dB, the RMSEs of CBF, MVDR, IAA, SPICE+, 

VSRANMSVD, and VSRSCE algorithms are basically the same, with the MUSIC algorithm's RMSE 

slightly higher than these algorithms. 

 

FIG. 2.Comparative Analysis of RMSE Performance for a Single-Target Scenario 

B. Dual-Target Simulation 
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Next, consider a scenario with two targets, where the incident angles of the targets are 

 and , with the background noise being complex Gaussian white noise 

unrelated to the signal. In the simulation, the number of snapshots is set to 1000, with Signal-to-

Noise Ratios (SNRs) of 10dB and 0dB. The azimuth search step is . As shown in Figure 3, in the 

dual-target scenario, the azimuth spectra of CBF, MVDR, IAA, SPICE, and SPICE+ algorithms 

only display a single peak, indicating that under these simulation conditions, these algorithms cannot 

differentiate between the two targets. However, under the condition of an SNR of 10dB, the 

MUSIC, VSRANMSVD, and VSRSCE algorithms are all capable of accurately estimating the 

bearings of the targets, and the VSRSCE algorithm exhibits sharper peaks. When the SNR drops to 

0dB, the estimation results of the MUSIC algorithm show a significant deviation, which significantly 

differ from the preset target bearings. Meanwhile, the VSRANMSVD and VSRSCE algorithms are 

still able to accurately estimate the bearings of the targets. 

 

(a)                                                 (b) 

FIG. 3.Spatial Spectrum Estimation Comparison of Various Algorithms:(a) SNR=10dB (b) 

SNR=0dB 
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From the spatial spectra mentioned above, it is observed that the CBF, MVDR, MUSIC, IAA, 

SPICE, and SPICE+ algorithms cannot differentiate between the two targets. Therefore, the 

following images will not compare with the aforementioned algorithms. Figure 4 illustrates the 

relationship between the Root Mean Square Error (RMSE) of azimuth estimation and Signal-to-

Noise Ratio (SNR) for the MUSIC, VSRANMSVD, and VSRSCE algorithms in a dual-target 

scenario. The MUSIC algorithm is represented by a blue dashed line. Below an SNR of -2dB, the 

MUSIC algorithm cannot differentiate between the two targets, hence the curve is not plotted below 

SNR=-2dB. As the SNR increases, its RMSE significantly decreases, indicating an improvement in 

estimation accuracy. Especially when the SNR increases from -10 dB to about 2 dB, the RMSE of 

the MUSIC algorithm drops rapidly, then the decline trend slows down but continues to 

decrease.The VSRANMSVD and VSRSCE algorithms overall exhibit lower RMSE across all SNR 

levels compared to the MUSIC algorithm, indicating better performance within this test range. With 

the increase of SNR, the RMSE of both VSRANMSVD and VSRSCE algorithms also shows a 

declining trend, and their RMSE drops to near 0° at high SNR values, showing higher localization 

accuracy. The VSRSCE algorithm performs better across the entire SNR range relative to the 

VSRANMSVD and MUSIC algorithms. 

 

FIG. 4.Comparative Analysis of RMSE Performance for a Dual-Target Scenario 
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Figure 5 shows the performance of MUSIC, VSRANMSVD, and VSRSCE algorithms in terms 

of resolution probability at different Signal-to-Noise Ratio (SNR) levels. The horizontal axis 

represents the SNR, measured in decibels (dB), ranging from -10 dB to 10 dB. The vertical axis 

represents the resolution probability, from 0 to 1. In the figure, the MUSIC algorithm is represented 

by a blue dashed line, and its performance improves with an increase in SNR, but the performance 

growth is slower under low SNR conditions. Compared to the MUSIC algorithm, the 

VSRANMSVD and VSRSCE algorithms exhibit higher resolution probabilities across the entire 

SNR range. Furthermore, the VSRSCE algorithm shows superior performance, especially when 

SNR is greater than -4dB, approaching 1, indicating better performance than the MUSIC algorithm. 

 

FIG. 5.Comparative Analysis of Resolution Probability for a Dual-Target Scenario 

V. CONCLUSION 

In this study, we explored the application of single vector hydrophones in underwater acoustic 

DOA estimation. Addressing the challenges posed by multi-source signals and noise interference 

faced by traditional DOA estimation methods, this research proposed two sparse DOA algorithms 

based on single vector hydrophones, namely VSRANMSVD and VSRSCE algorithms. Through 

theoretical analysis and simulation experiments, we demonstrated that these two algorithms could 
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effectively enhance the accuracy and resolution of DOA estimation, particularly outperforming 

traditional methods in low SNR and multi-source environments. 
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