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Abstract—Word embedding has become an essential means for
text-based information retrieval. Typically, word embeddings are
learned from large quantities of general and unstructured text
data. However, in the domain of music, the word embedding
may have difficulty understanding musical contexts or recog-
nizing music-related entities like artists and tracks. To address
this issue, we propose a new approach called Musical Word
Embedding (MWE), which involves learning from various types
of texts, including both everyday and music-related vocabulary.
We integrate MWE into an audio-word joint representation
framework for tagging and retrieving music, using words like
tag, artist, and track that have different levels of musical
specificity. Our experiments show that using a more specific
musical word like track results in better retrieval performance,
while using a less specific term like tag leads to better tagging
performance. To balance this compromise, we suggest multi-
prototype training that uses words with different levels of musical
specificity jointly. We evaluate both word embedding and audio-
word joint embedding on four tasks (tag rank prediction, music
tagging, query-by-tag, and query-by-track) across two datasets
(Million Song Dataset and MTG-Jamendo). Our findings show
that the suggested MWE is more efficient and robust than the
conventional word embedding.

Index Terms—Word Embedding, Music Tagging, Music Infor-
mation Retrieval

I. INTRODUCTION

The rise of online music streaming services has led to a
significant increase in the number of music tracks that are
available to users. For instance, Spotify, a popular music
streaming service, has a catalog of over 100 million songs1.
Users typically access songs by listening to playlists that are
recommended based on their listening history or by searching
for specific songs using a text query. Music tagging is one
of the many computational methods used to recommend or
retrieve songs and has been extensively studied in the field of
Music Information Retrieval (MIR). This method is popular
as it can easily scale up text annotation to encompass diverse
musical semantics, and it compensates for problems associated
with collaborative filtering, such as popularity bias and cold-
start [1]–[3].

Music tagging is usually approached as a classification task
that uses supervised learning to predict multiple tag labels
based on the acoustic features of music tracks. Over the
last decade, researchers have focused on developing better
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1https://newsroom.spotify.com/company-info/ accessed on Mar 1, 2023.

classification models, primarily based on Convolutional Neu-
ral Networks (CNNs), such as fully-connected CNNs [4],
Musicnn [5], SampleCNNs [6], Harmonic CNNs [7], and
Short-chunk CNNs [8]. These models have shown progressive
improvements in performance on large-scale datasets such as
the Million Song Dataset (MSD) [9]. However, the previous
work has a limitation in that the classification models can only
predict a fixed set of tag labels that are seen in the training
phase. For instance, the models are often trained using the
most frequently used 50 tags in benchmark evaluations [8].
This may not be sufficient for real-world scenarios, which may
require even more tags that account for the diverse aspects of
music.

One way to address this limitation is by representing the tag
output using semantically distributed vectors created through
a word embedding and associating the dense tag vector with
audio embedding through metric learning [10], [11]. This
embedding-mapping approach enables the model to annotate
songs with unseen tags or enables users to retrieve songs using
an arbitrary text query within the large vocabulary that the
word embedding contains. Typically, the word embedding is
pre-trained using a large-scale word corpus such as Common
Crawl or Wikipedia. Although such general corpora provide
a large set of vocabulary, they may lack musical context. For
instance, the word “jungle” is more likely to be understood
as a tropical forest than as a genre of dance music in a
general context. To address this issue, Won et al. attempted
to train the word embedding using text sources specific to the
music domain [11]. They demonstrated that domain-specific
word embeddings capture musical context better than general
word embeddings. However, this approach did not necessarily
improve the retrieval performance, likely because the domain-
specific word embedding may be too strongly biased towards
musical context and may lack an understanding of the general
context in music listening, such as mood or user activity. This
suggests that a balanced word embedding that incorporates
both general and domain-specific contexts is necessary to
encompass diverse semantics.

In this paper, we present a customized word embedding for
music tagging called Musical Word Embedding (MWE), by
using a broad spectrum of text corpora ranging from general
to music-specific words in a systematic manner. We define the
musical specificity of the corpora as a measure of how specific
the semantics of the words is to the songs or how general it
is. Using various combinations of text corpora with low to
high specificity, we first train the musical word embedding
and evaluate it with the tag rank prediction task on both seen
and unseen tag datasets. We then incorporate the musical word
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embedding into an audio-word metric learning framework for
music tagging and examine how different setups of supervision
between audio and words affect the tagging performance
on both seen and unseen datasets. Finally, we demonstrate
that the audio-word metric learning model, jointly supervised
by tags, artist ID, and track ID through the musical word
embedding, outperforms previous work based on a general
word embedding.

The remainder of this paper is structured as follows: Section
II reviews related work on audio-word joint representation,
domain-specific word embedding, and metric learning in the
music domain. Section III explains the training of the musical
word embedding using both general and music corpora. Sec-
tion IV describes the audio-word metric learning framework.
Section V discusses the experimental results. Finally, Section
VI presents our conclusions and outlines future work.

II. RELATED WORKS

A. Word Embedding

Classic word embedding methods, such as Word2Vec [12]
and GloVe [13], use large-scale text corpora (e.g., Google
news, Common Crawl) to capture general semantics in a vector
space for natural language processing or other downstream
tasks. However, since the meaning of words often changes
in different domains, and some domains use highly technical
terms or jargon, customized word embeddings have been
developed for specific domains. For instance, Zhang et al.
introduced BioWord2Vec, a biomedical word embedding that
combines subword information from unlabeled biomedical text
with a widely-used biomedical controlled vocabulary called
Medical Subject Headings (MeSH) [14]. In the music domain,
Won et al. trained a word embedding using music-domain
text data, including Amazon reviews, music biographies, and
Wikipedia pages about music theory and genres [11]. They
observed that the domain-specific word embedding facilitates
capturing musical contexts, particularly sub-genre names with
bigrams (e.g., deep house’, western swing’). In this work, we
train word embeddings using different combinations of general
and music-domain corpora to investigate their effect on music
tagging and retrieval tasks.

B. Audio-Word Joint Embedding

There are various approaches to learning a joint embed-
ding space between audio and words for music tagging and
retrieval. One approach is to learn a latent space of tags
within the training set and then associate the latent space
with the audio embedding using metric learning. For instance,
Schindler and Knees used Latent Semantic Indexing (LSI) to
project the tags onto a vector space and mapped the vectorized
tag to the audio embedding using a triplet network [15].
Another approach is to learn a single word embedding in
which audio and words are directly mapped. For instance,
Watanabe and Goto represented a song using words from lyrics
and “audio words” from K-means clustering of Mel-Frequency
Cepstral Coefficients (MFCCs) of the audio track [16]. They
also added the artist ID to the word corpus, considering the
difficulty of conceiving appropriate words as a query from the

user side. By considering words, audio words, and artist ID
within a song as being in the same context, they learned a
multi-modal word embedding and called the music retrieval
approach Query-by-Blending. The last approach is to use a
word embedding trained with a large vocabulary to learn an
audio-word joint embedding. For instance, Choi et al. used
the GloVe model trained with a large corpus of general words
and associated the word embedding of tags with the audio
embedding using metric learning [10], [13]. Our work follows
this approach but customizes the word embedding using both
a general corpus and a music corpus.

C. Supervision in Metric Learning

The key to metric learning is to learn an embedding space
in which the embedded vectors of similar samples are close
to each other, while those of dissimilar samples are far apart.
In the field of MIR, an important issue in metric learning is
how to supervise the similarity between two music samples.
One readily available source of supervision is the metadata
of music tracks. Early work by Slaney et al. used album ID,
artist ID, and blog IDs to linearly transform acoustic features
of songs into a Euclidean metric space [17]. Later, Park et
al. used a triplet loss formed with artist ID to learn a CNN-
based embedding space [18], and Lee et al. extended the model
by jointly training it with artist ID, album ID, and track ID
[19]. Another source of similarity is from human data, such as
surveys or listening history. McFee and Lanckriet trained an
embedding model using rank-based artist similarity measured
by a web-based survey [20] or song similarity derived from
collaborative filtering based on users’ listening data [21]. Wolff
et al. compared several embedding models using rank-based
song similarity obtained from the TagATune game [22]. Lastly,
tag labels can also be used to form similar or dissimilar pairs
in metric learning. Lee et al. explored disentangled embedding
space using genre, mood, and instrument tags [23], [24]. In
this work, we use multiple similarity notions, such as artist,
track, and tags, for supervision in audio-word metric learning.
Additionally, unlike previous work, we use these similarity
notions for audio-word joint embedding learning.

III. METHODS

This section presents the detail of training word embedding
and audio-word joint word embedding.

A. Word Embedding

We trained the word embedding using a wide spectrum of
word corpora distributed along the axis of musical specificity.
Figure 1 illustrates the overview of how we trained the
musical word embedding. The corpora are mainly divided into
a general corpus and a music corpus. The general corpus
consists of text documents with a very large vocabulary,
such as Wikipedia or Common Crawl. Since the words in
the general corpus (i.e., general words) have no specific
musical context, they have the lowest musical specificity. The
music corpus is a collection of review documents, tags, and
artist/track IDs. Review documents describe the backgrounds
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Fig. 1. An illustration of training the musical word embedding. Word
embedding vectors within a context window are shown with the same color
(pink or blue).

or musical quality about an artist’s album or tracks, covering
a large vocabulary while retaining musical semantics. Review
words have the second lowest musical specificity on the axis
of musical specificity. Tags are categorical labels directly
annotated to individual tracks, which we divided into context
tags and content tags. Context tags include mood, theme, and
usage categories that account for song characteristics from
the listeners’ perspective. Content tags include genre and
instrument categories that are more related to the acoustic
characteristics of the songs themselves. Comparing the two
types of tags, content tags have higher musical specificity.
Artist IDs and track IDs are metadata of music tracks used
for music services. Although artist IDs and track IDs have
corresponding names, such as ”Oasis” (artist name) or ”Won-
derwall” (track name), we used the index code (or hash code),
such as ”TRHLXWK128EF35DF13” 2, to avoid confusion
with general words that have the same spellings. In the MWE,
the IDs are regarded as part of the vocabulary. The notion of
the artist is generally more specific than that of genre, and
therefore, we positioned artist IDs next to content tags. Lastly,
track IDs have the highest musical specificity.

Table I presents the statistics of the word corpora used to
train the MWE in our experiment. The general corpus we used
is Wikipedia 2020, which covers approximately 9.8M unique
words in the vocabulary. The music corpus is obtained from
three publicly available datasets: MuMu, Last.fm, and All-
Music. The MuMu dataset includes music review documents,
covering about 660K unique words and 45K artist/track IDs.
The Last.fm and AllMusic datasets contain tags and artist/track
IDs, with about 1,100 and 1,400 tags, and 32K and 25K
artist IDs, and 428K and 507K track IDs, respectively. About
31% of review words and about 73% of tags are included
in the vocabulary of the general corpus. This overlap enables
the bridging of word semantics across the different levels of
musical specificity.

2This is an example of an MSD track ID.

TABLE I
STATISTICS OF WORD CORPORA USED TO TRAIN THE MUSICAL WORD

EMBEDDING

General Music
Corpus Corpus

Data Source Wikipedia 2020 MuMu Last.fm AllMusic

Entity Type Document Review, ID Tag, ID Tag, ID

Entity Number 4,848,680 447,406 428,408 507,435
Unique Track - 31,471 428,408 507,435
Unique Artist - 14,013 32,752 25,203
Unique Tag - - 1,147 1,402
Unique Word 9,868,901 660,014 - -
Vocabulary 9,868,901 705,498 462,307 534,040

Total Tokens 2,746,156,881 78,263,644

To train the word embedding, we calculate the affinity
among general words, review words, tags, and IDs within a
context window. In the general corpus, the context window
is taken directly over sentences in the documents, which is a
standard technique in word embedding. For the music corpus,
we create a paragraph that is tied to a particular music track
by combining the corresponding review document with the
tags and artist/track IDs. To balance the data size and blend
the review words and artist/track IDs uniformly, we randomly
shuffle the paragraph. Specifically, since the total tokens of
the general corpus are four times greater than those of the
music corpus, as shown in Table I, we repeat each sentence in
the review document four times and randomly shuffle the word
order before combining them with the tags and artist/track IDs
to form a paragraph. Next, we take a context window over the
shuffled paragraph and learn the affinity among review words,
tags, and IDs.

The task of learning dense representations of words is typ-
ically achieved through the use of models such as Word2Vec
[12] or GloVe [13]. Word2Vec has two implementations:
continuous bag-of-words (CBOW) and skip-gram. CBOW
combines the embeddings of context words to predict the target
word, while skip-gram uses the embedding of each target
word to predict its context words. In contrast, GloVe trains
word embeddings on the non-zero elements in a global word
co-occurrence matrix, which can improve the representation
of less frequent words. In our work, we used skip-gram to
train MWE since it is better at representing less frequent
words [25], which is beneficial for capturing musical word
semantics. Specifically, given a sequence of training tokens
w1, w2, ..., wT , the objective of skip-gram is to maximize the
average log probability, where c is the size of the context
window.

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

As mentioned earlier, a significant proportion of review
words and tags also appear in the Wikipedia corpus and co-
occur with artist/track IDs during the training phase. These
common words serve as a bridge between general and music-
specific semantics.
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Fig. 2. An illustration of the losses for supervision in the audio-word metric learning. Embedding vectors associated with the anchor are colored in pink if
they are of the same class of the anchor (i.e., positive) and in blue otherwise (i.e., negative).

B. Audio-Word Joint Embedding

After training the word embedding, we establish a connec-
tion to audio embedding by learning a joint embedding space
between the two modalities. We adopt a metric learning frame-
work, similar to previous work [10], which learns a similarity
score between audio and semantic prototype vectors. Each
prototype vector is categorized by tag, artist, and track. We use
a triplet network format, where we use two different encoders
for each modality. The audio encoder f(x) learns to map the
audio mel-spectrogram to the joint embedding space, while the
semantic encoder g(x) learns to map semantic information to
the joint embedding space. The input to the framework is a
triplet of music content items: a query track (anchor), a similar
prototype (positive), and a dissimilar prototype (negative) to
the anchor. To optimize the network, we use a max-margin
hinge loss function, as shown below:

L(A,P ) = max[0,∆− Sim(A,P+) + Sim(A,P−)] (2)

where ∆ is the margin, P+ denotes the positive prototype vec-
tor for the audio input, and P− denotes the negative prototype
vector, which is randomly sampled from a set of prototypes
without the positive prototype. The cosine similarity of the
audio and semantic encoders is used as a similarity function.

Sim(A,P ) =
f(A)T · g(P )

||f(A)|| · ||g(P )||
(3)

We conduct audio-word metric learning on labeled audio
datasets. In contrast to prior work [10], our approach allows
for the use of both tags and artist/track IDs in the semantic
branch. Thus, the total loss function can be expressed as a
weighted sum of three loss functions, corresponding to tags,
artist IDs, and track IDs, as shown below:

L = λTagL(A,PTag) + λArtistL(A,PArtist) + λTrackL(A,PTrack) (4)

Figure 2 depicts the joint learning process that combines
multiple sources of supervision. We evaluate the performance
of the model on music tagging tasks using various combina-
tions of supervisory signals. The audio-word metric learning
enables zero-shot learning, since the pre-trained MWE can
handle a rich vocabulary beyond the tags and artist/track IDs
used during training. This means that the model can accurately

predict previously unseen tags and retrieve songs based on
arbitrary tags. In our experiments, we also evaluate the model’s
performance in such a zero-shot learning scenario.

IV. EXPERIMENT

A. Datasets

1) Word Embedding: Table I presents the sources of the
different types of word corpora used to train our musical word
embedding. We obtained the general corpus from Wikipedia
20203, and the music corpus from publicly available datasets:
MuMu, Last.fm, and AllMusic. The MuMu dataset4 includes
album reviews from Amazon that provide consumer opinions
about music [26], [27]. For tag data, we use annotations from
AllMusic and Last.fm. The AllMusic dataset includes content
tags (genre, style) and context tags (mood and theme) that
were annotated by music experts [15]. The Last.fm dataset
contains large crowdsourced tags covering genre, instrumen-
tation, moods, and era. The artist and track ID names were
based on those from the Million Song Dataset (MSD) [9].
For the music corpus, we clustered the review texts, tags,
and artist/track IDs for each audio track using the MSD track
ID 5. We converted all characters to lowercase and tokenized
sentences using whitespace. After pre-processing, our merged
corpus contains 9.8M unique words, 37K artist IDs, and 0.7M
track IDs.

2) Audio-Word Joint Embedding: We conducted experi-
ments using the audio-word joint embedding in two different
scenarios. The first scenario is music tagging, where the same
set of tags is used in both the training and test phases. For this
scenario, we used 241,889 audio clips from the MSD dataset
and the top 50 tags from Last.fm that were annotated on the au-
dio clips, following the common practice in the music tagging
task [24]. The second scenario is zero-shot learning, where the
test phase includes tags that were unseen in the training phase.
Following the experiment setting in the previous work [10],
we used 406,409 audio clips from MSD and 1,126 tags. We
split the tags into 900 seen tags and 226 unseen tags. In our
experiment, we used the generalized zero-shot learning test,
which evaluates the retrieval performance with all tracks and
unseen tags and evaluates the tagging performance with test

3https://dumps.wikimedia.org/enwiki/20200601/
4https://www.upf.edu/web/mtg/mumu
5http://millionsongdataset.com/

https://dumps.wikimedia.org/enwiki/20200601/
https://www.upf.edu/web/mtg/mumu
http://millionsongdataset.com/
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Fig. 3. A summary of evaluation tasks for word embeddings and audio-word joint embeddings. The embedding vectors associated with the input (or query)
are colored in pink if they are of the same class (i.e., positive) or in blue otherwise (i.e., negative).

TABLE II
DATA SPLIT FOR AUDIO-WORD METRIC LEARNING

Entity Types Zero-Shot Learning [10] Music Tagging [24]

Audio
Train 349,516 201,680
Valid 38,836 11,774
Test 18,057 28,435

Tag Seen 900 50Unseen 226

tracks and all tags [28]. Table II summarizes the data split
schemes for the two different experiment scenarios.

B. Compared Models and Training Details

1) Word Embedding: We trained the word embedding using
three different configurations: with the general corpus, the
music corpus, and both. The last configuration corresponds
to the proposed MWE. For all configurations, we used a
vector size of 300 and a context window size of 15, and
applied the skip-gram method with 15 epochs and 20 negative
samples. To preserve track IDs and artist IDs, which typically
appear only once or twice, we did not apply frequency-cut-
off. Additionally, we compared the three configurations of
word embedding with two pretrained word embeddings trained
with Common Crawl: one trained using GloVe [13] with 42B
tokens, and the other using skip-gram [29] with 58B tokens.

2) Audio-Word Joint Embedding: For the audio encoder
f(x), we used 3-second audio excerpts represented as a log-
scaled mel-spectrogram with 128 mel bins as input. The spec-
trogram was calculated with a window size of 1024 samples
using the Hanning window and a hop size of 512 samples at
a sampling rate of 22,050 Hz. The 3-second excerpts were
randomly selected from each audio track.

We used the 1D-CNN model developed by Choi et al.
[10] as the baseline and changed only the word embedding
part to evaluate its effect. We used the same hyper-parameter
settings, with the audio encoder f(x) consisting of five 1D
convolutional layers followed by a batch normalization layer,
a rectified linear unit (ReLU) activation, and a max pooling
layer. A fixed-size audio embedding vector compatible with
the semantic encoder was constructed using an average pooling
layer on top of the convolutional layers. The semantic encoder
g(x) was constructed using the pre-trained MWE and a
fully-connected linear layer. We trained the networks using

stochastic gradient descent with a batch size of 128 for 200
epochs, with a 0.9 Nesterov momentum, 1e−3 learning rate,
and 1e−6 learning rate decay.

In order to benchmark our approach against the current
state-of-the-art, we employed the Music Tagging Transformer
[30]. The Transformed model comprises a CNN front-end and
a transformer back-end. The CNN front-end captures local
spectro-temporal features, while the transformer globally sum-
marizes the sequence of the extracted features. We removed
the last classifier layer and used the model as an embedding
extractor, replacing temporal pooling with the special token
embedding ⟨CLS⟩ at the first part of the embedding sequence.
We trained the transformer networks using the Adam optimizer
with a cosine annealing scheduler, with a batch size of 128
for 200 epochs and 1e−3 learning rate.

C. Evaluation Tasks

Figure 3 depicts the music tagging and retrieval tasks we
performed in our experiments, using both word embeddings
and audio-word joint embeddings. It is worth noting that the
latter type of task involves not only tags, track ID, and artist
ID, but also audio data.

1) Word Embedding: We evaluate the quality of the word
embeddings by measuring the similarity between tags, between
tags and tracks, and between tracks themselves, where the
tracks are identified by their corresponding track IDs.

• Tag rank prediction (tag-to-tag): The quality of word
embeddings can be assessed by examining similarity
scores for pre-defined relevant word pairs [12], [14], but
in the music domain, there are no established word pairs.
To address this, we used the co-occurrence of tags within
an audio track as a proxy for manually-annotated word
pairs, assuming that tags that share similar semantics tend
to appear together on the same track (e.g., electronic,
party). We measured the normalized discounted cumula-
tive gain at 30 (nDCG@30) between the sorted tag co-
occurrence (ground-truth) and the tag-to-tag similarity of
word embeddings (prediction).

• Query-by-tag (tag-to-track): We evaluated the ability of
the musical word embedding to retrieve track IDs match-
ing a given tag. This task is specific to the musical
domain, where track IDs are part of the corpus. We
computed the cosine similarity between track IDs and the
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TABLE III
TAG RANK PREDICTION SCORES ON VARIOUS WORD EMBEDDINGS. CTN AND CTX STANDS FOR CONTENT TAGS AND CONTEXT TAGS, RESPECTIVELY.

THE LEFT SIDE OF THE ARROW IS THE QUERY TAG CATEGORY AND THE RIGHT SIDE IS THE TARGET TAG CATEGORY.

Corpus (Size) AllMusic (nDCG@30) MTG-Jamendo (nDCG@30)
Ctn→Ctn Ctn→Ctx Ctx→Ctn Ctx→Ctx Average Ctn→Ctn Ctn→Ctx Ctx→Ctn Ctx→Ctx Average

Musical Word Embeddings - SkipGram
Wiki (Baseline) 0.135 0.133 0.071 0.259 0.150 0.416 0.474 0.321 0.566 0.444
Wiki + Review 0.165 0.140 0.043 0.263 0.153 0.480 0.505 0.397 0.566 0.487
Wiki + Tag + IDs 0.281 0.420 0.078 0.462 0.310 0.542 0.485 0.384 0.563 0.494
Wiki + Review + Tag + IDs 0.411 0.516 0.190 0.487 0.401 0.553 0.504 0.390 0.541 0.497
w/ Shuffling Augmentation 0.529 0.460 0.261 0.498 0.437 0.492 0.509 0.380 0.542 0.481

Large-Scale Corpus Word Embeddings
Common Crawl-GloVe 0.196 0.108 0.047 0.275 0.157 0.460 0.499 0.339 0.595 0.473
Common Crawl-SkipGram 0.210 0.134 0.053 0.268 0.166 0.440 0.482 0.358 0.599 0.470

corresponding tags in the word embedding and treated
it as the prediction score. We used the area under
the receiver operating characteristic curve for each tag
ROCAUCtag as an evaluation metric.

• Query-by-track (track-to-track): We evaluated the perfor-
mance of our model on the task of retrieving track IDs
similar to a given track ID, which can be applied only
to musical word embedding where track IDs are part
of the corpus. We used recall@K (R@K) based on the
tags annotated to the audio tracks [24]. Specifically, we
first calculated track-to-track similarity using the word
embedding and retrieved similar tracks to a given query
track. If at least one of the top K retrieved tracks has the
same tag labels (e.g., genre, mood, instrument, era) as the
query song, the recall@K is set to 1; otherwise, it is set
to 0.

2) Audio-Word Joint Embedding: Unlike word embeddings,
audio-word joint embeddings incorporate audio data and map
them to the joint embedding space via the audio encoder.
To evaluate the audio-word joint embeddings, we measure
the similarity between audio and tag, and between audio and
audio.

• Music tagging (audio-to-tag): a multi-label classifica-
tion task that annotates audio tracks with tags. We
used clip-wise area under the receiver-operator curve
(ROCAUCclip) as the evaluation metric for this task. To
make predictions, we calculated the cosine similarity
between the track-level audio embedding and tag embed-
ding, averaged over the audio embedding vectors for a
given track.

• Query-by-tag (tag-to-audio): the task of retrieving audio
tracks that match a given tag. For this task, we measured
the cosine similarity between the tag embedding and
the track-level audio embedding, and used tag-wise area
under the receiver-operator curve (ROCAUCtag) as the
evaluation metric.

• Query-by-track (audio-to-audio): the task of retrieving
audio tracks similar to a given track. We calculated the
similarity between two tracks in the track-level audio
embedding space, and used the recall@K (R@K) metric
to evaluate performance.

3) Zero-Shot Transfer Learning: To evaluate the zero-
shot transfer performance [31], we used the audio-word joint
embedding for a special case of the query-by-tag task. Unlike

the zero-shot split query-by-tag task that splits seen and unseen
tags from the same dataset (MSD), the zero-shot transfer
method uses a different dataset to evaluate the generalization
performance. Once the networks were trained, we computed
the feature embedding of the audio and tag by their respective
encoders. We then calculated the cosine similarity of these
embeddings and compared them with the ground truth anno-
tation. The zero-shot transfer evaluation was performed using
the MTG-Jamendo [32] datasets, which were fully unseen in
the training stage and contained contents and context tags.
The MTG-Jamendo dataset includes audio for 55,701 songs
and was annotated by 183 different tags covering genres,
instruments, and mood/themes. We used the public genre,
instrument, and mood/theme splits (split-0) for testing, which
included 87 genre tags, 40 instrument tags, and 56 mood/theme
tags.

V. RESULTS: WORD EMBEDDINGS

This section presents experimental results with word em-
beddings in various training settings.

A. Tag Rank Prediction

Table III presents the results of tag rank prediction on two
different datasets: AllMusic and MTG-Jamendo. The former
is a tag dataset used in training the musical word embedding,
and thus was used for verifying the training. The latter is
an unseen tag dataset used to evaluate the generalization
capability of the word embeddings. Both of the tag corpora
include several categories, which we divided into content
tags and context tags. We then broke down the tag rank
prediction into four categories: within-content (Ctn→Ctn),
within-context (Ctx→Ctx), content-to-context (Ctn→Ctx), and
context-to-content (Ctx→Ctn). Ctn→Ctn measures tag simi-
larity under high musical specificity, and we expect this tag
rank prediction to be higher for the musical word embedding.
Ctx→Ctx measures tag similarity in a more general sense,
and thus we expect this tag rank prediction to not differ much
between musical and general word embeddings. Ctx→Ctn and
Ctn→Ctx reflect how well the context captures musical content
and vice versa, and we expect these tag rank predictions to also
be higher for the musical word embedding. In AllMusic, we
regarded genre and style categories as content tags, and mood
and theme categories as context tags. In MTG-Jamendo, we
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regarded genre and instrument categories as content tags, and
mood/theme categories as context tags.

The upper part of Table III compares the tag rank prediction
scores on customized word embeddings trained with different
combinations of general and music corpus. The word em-
bedding trained with the general corpus (Wiki) serves as the
baseline, and we incrementally add reviews, tags, and IDs to
the training set. We then apply shuffling augmentation to the
entire training set. Adding the music corpus with higher mu-
sical specificity (reviews, tags, and IDs) consistently increases
the performance in Ctn→Ctn on both AllMusic and MTG-
Jamendo, and the best results are achieved when the entire
music corpus is used. However, the shuffling augmentation is
not effective on the unseen tag dataset. In Ctx→Ctx, adding
the music corpus with higher musical specificity does not
necessarily increase the performance. The tag rank prediction
score significantly increases on AllMusic, as expected, but
consistently decreases on MTG-Jamendo. This suggests that
the word embedding trained with the general corpus already
captures the tag similarity in the musical context level well,
and thus the information with higher musical specificity (es-
pecially tags and IDs) is not beneficial. For Ctn→Ctx, adding
the music corpus improves the overall performance, but adding
the tags and ID corpus does not improve the performance
on MTG-Jamendo. Interestingly, the review corpus is more
beneficial than the tags and ID corpus on MTG-Jamendo,
suggesting that the review corpus bridges the semantic gap
between content and context well. In Ctx→Ctn, the perfor-
mance trend on MTG-Jamendo is similar to that in Ctn→Ctx.
The review corpus plays a role in filling the semantic gap,
whereas the tags and ID corpus does not help much. How-
ever, the performance trend on AllMusic is different from
the other three cases. Adding either the review corpus or
the tag/ID corpus to the training set does not significantly
affect the performance, but adding both of them creates a
synergy that boosts the performance. The average tag rank
prediction scores summarize the overall effect of the music
corpus. On AllMusic, the score increases proportionally to
adding a music corpus with higher musical specificity, and
the shuffling augmentation also improves the performance. On
MTG-Jamendo, we observe the same trend, but the increment
is moderate, and the shuffling augmentation is not beneficial
on the unseen tag dataset.

The lower part of Table III presents the tag rank prediction
scores obtained with pretrained word embeddings. We used
two publicly available embeddings trained on Common Crawl,
a large-scale general word corpus, with the GloVe and skip-
gram methods. The overall performance trends are similar to
those obtained with the customized word embeddings trained
on the Wiki corpus. The pretrained embeddings capture the
similarity of context tags well, particularly on the unseen
dataset. However, as the evaluation involves content tags, the
tag rank prediction scores are lower than those obtained with
the musical word embedding.

Figure 4 presents examples of tag similarity on various word
embeddings. It demonstrates that word embeddings trained
with a general word corpus, such as Common Crawl and
Wiki, have lower cosine similarity in the ‘house/club’ pair

Fig. 4. Comparison of tag cosine similarity between word embedding models.

TABLE IV
A COMPARISON OF QUERY-BY-TAG PERFORMANCE. ‘AUG’ STANDS FOR

THE SHUFFLING AUGMENTATION.

Corpus Aug ROCAUCtag

Tag+ID (Upper bound) 0.851
✓ 0.930

Wiki+Tag+ID 0.673
✓ 0.892

Wiki+Review+Tag+ID 0.800
✓ 0.901

than the musical word embedding, since ‘house’ is interpreted
as a building rather than a music genre. Conversely, in the
‘house/home’ pair, the musical word embedding has a lower
similarity score than the general corpus embeddings. Similarly,
the general corpus word embedding exhibits lower cosine
similarity in the ‘rock/metal’ pair than the musical word
embedding, as ‘metal’ is interpreted as a material rather than
a music genre, whereas in the ‘rock/stone’ pair, the opposite
result is observed.

B. Query-by-Tag

Musical word embeddings enable retrieval of music tracks
as track IDs are included as part of the corpus used to
train the word embeddings. Table IV compares the retrieval
performance of word embeddings trained with different com-
binations of general and music corpora. The upper bound of
retrieval performance is set by using tags and artist/track IDs
in the music corpus, as the word embeddings are concentrated
in the region of high musical specificity, resulting in high
accuracy in the tag-to-track retrieval task. Adding a general
corpus (Wiki) to tags and IDs increases the vocabulary size,
but it dilutes musical specificity, which is evident from the
reduced performance in tag-to-track retrieval, as shown in
Table IV. However, adding the review corpus mitigates the
performance drop, even with a further increase in the vocab-
ulary size. This suggests that the review corpus effectively
bridges the semantic gap between low and high musical
specificity. Moreover, the shuffling augmentation technique
exhibits significant performance improvement in all cases, as
expected, because it increases the sampling frequency of the
musical corpus.
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TABLE V
A COMPARISON OF QUERY-BY-TRACK PERFORMANCE. ‘AUG’ STANDS FOR

THE SHUFFLING AUGMENTATION.

Corpus Aug R@1 R@2 R@4 R@8

Tag+ID (Upper bound) 74.3 82.8 88.8 92.8
✓ 73.9 82.7 88.8 92.9

Wiki+Tag+ID 66.0 76.7 84.7 90.3
✓ 73.3 82.1 88.2 92.4

Wiki+Review+Tag+ID 70.4 79.9 86.2 90.7
✓ 73.5 82.2 88.5 92.8

C. Query-by-Track

Table V compares the performance of track-to-track retrieval
using the same sets of word embeddings as in the previous
subsection. Once again, we set the upper bound performance
using tags and artist/track IDs in the music corpus. We observe
that the addition of a general corpus dilutes the retrieval
performance, while the subsequent addition of the review
corpus alleviates the performance drop. The shuffling aug-
mentation consistently increases the performance for all cases.
Interestingly, the recall scores with the shuffling augmentation
are similar among the different combinations of corpora. This
is likely because the shuffling augmentation ensures that the
tags and track IDs are adequately sampled, even when the
Wiki or review corpus are added.

VI. RESULTS: AUDIO-WORD JOINT EMBEDDING

Pre-trained word embeddings serve as supervision for train-
ing audio-word joint embeddings and as side information
for transferring knowledge between seen and unseen classes.
The audio-word joint embedding overcomes the limitations
of musical word embeddings, which cannot retrieve newly
released music, and the limitations of music tagging models,
which can only retrieve music with up to 50 tags. This section
presents experimental results using audio-word joint embed-
dings in various training settings (different word embeddings
and supervision). In this section, we denote MWE as the
customized word embedding trained with the general corpus
(Wiki) and the entire music corpus (review, tags, and IDs)
along with the shuffling augmentation.

A. Music Tagging and Query-by-Tag

We first conducted an evaluation of music tagging and
query-by-tag (retrieval) performance on MSD using the top 50
tags. Table VI compares various audio-word joint embedding
models to a classification-based music tagging model [30].
While the classification-based model outperforms all audio-
word joint embedding models, it can only predict the 50
supervised tags. On the other hand, audio-word joint em-
bedding models can predict not only the 50 tags but also
all the vocabularies used in training the word embedding. In
our audio-word joint embedding models, we used GloVe as
a word embedding and 1D-CNN as an audio encoder as the
baseline [10]. Replacing GloVe with our MWE increased both
ROCAUCclip and ROCAUCtag, indicating that the musically
customized word embedding is more effective than GloVe. We
also observed that replacing the 1D-CNN with the Transformer

TABLE VI
MUSIC TAGGING RESULTS ON MSD

Audio Model Word Model Supervision ROCAUCclip ROCAUCtag

1D-CNN
GloVe Tag 0.890 0.823
MWE Tag 0.912 0.854
MWE (Aug) Tag 0.918 0.863

Transformer

GloVe Tag 0.927 0.869
MWE Tag 0.926 0.867
MWE (Aug) Tag 0.932 0.874
MWE Artist ID 0.894 0.860
MWE (Aug) Artist ID 0.888 0.858
MWE Track ID 0.892 0.868
MWE (Aug) Track ID 0.892 0.870
MWE Tag, Artist ID 0.929 0.869
MWE (Aug) Tag, Artist ID 0.933 0.875
MWE Tag, Track ID 0.930 0.869
MWE (Aug) Tag, Track ID 0.932 0.873
MWE Artist ID, Track ID 0.907 0.866
MWE (Aug) Artist ID, Track ID 0.896 0.872
MWE Tag, Artist ID, Track ID 0.932 0.872
MWE (Aug) Tag, Artist ID, Track ID 0.935 0.879

Classification Model
Transformer [30] - 0.892

TABLE VII
QUERY-BY-TRACK RESULTS ON MSD

Audio Model Word Model Supervision R@1 R@2 R@4 R@8

1D-CNN
GloVe Tag 29.6 42.9 57.2 70.7
MWE Tag 35.9 49.7 63.9 75.5
MWE (Aug) Tag 38.6 52.4 65.8 76.6

Transformer

GloVe Tag 44.1 57.9 70.2 80.0
MWE Tag 41.8 55.7 68.7 78.9
MWE (Aug) Tag 44.0 57.5 70.3 79.9
MWE Artist ID 44.0 57.7 70.1 80.2
MWE (Aug) Artist ID 43.7 57.2 70.0 80.0
MWE Track ID 44.5 58.0 70.4 80.2
MWE (Aug) Track ID 44.0 57.7 70.2 80.0
MWE Tag, Artist ID 43.9 57.8 70.2 80.2
MWE (Aug) Tag, Artist ID 45.8 59.4 71.5 80.9
MWE Tag, Track ID 45.0 58.7 70.7 80.1
MWE (Aug) Tag, Track ID 45.2 58.8 70.8 80.5
MWE Artist ID, Track ID 46.8 60.4 72.3 81.4
MWE (Aug) Artist ID, Track ID 46.6 59.8 71.9 81.2
MWE Tag, Artist ID, Track ID 45.7 59.5 71.8 80.9
MWE (Aug) Tag, Artist ID, Track ID 47.1 60.2 71.9 81.2

Audio Representation Learning Model
Disentangle Proxy-based Model [24] 45.0 58.5 71.0 80.9

architecture significantly improved the performance. Finally,
we used artist/track IDs as additional supervisions for MWE,
which includes the IDs as words. Our results show that they
consistently increase the tagging performance for both 1D-
CNN and Transformer encoders.

B. Query-by-Track

Table VII presents the results of the task of retrieving audio
tracks similar to a given query track, comparing various audio-
word joint embedding models to audio representation models
based on the disentangled classification model [24]. For the
audio-word joint embedding models, we only used the audio
encoder since both the query and retrieved results are audio
tracks. The overall performance trend is very similar to that
in Table VI. MWE consistently outperforms GloVe for both
1D-CNN and Transformer audio encoders.

C. Evaluation on Zero-Shot Tags

Comparison with Different Word Embeddings The upper
section of Table VIII presents the zero-shot tagging and
retrieval results for three different audio-word joint embedding
spaces. Compared to GloVE, MWE shows better performance
in the tagging task for unseen audio and the retrieval task for
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TABLE VIII
ZERO-SHOT TAGGING AND RETRIEVAL PERFORMANCE ON MSD.

Audio Model Word Model Supervision ROCAUCclip ROCAUCtag

1D-CNN
GloVe Tag 0.904 0.679
MWE Tag 0.941 0.747
MWE (Aug) Tag 0.943 0.768

Transformer

GloVe Tag 0.906 0.688
MWE Tag 0.954 0.780
MWE (Aug) Tag 0.955 0.790
MWE Artist ID 0.911 0.813
MWE (Aug) Artist ID 0.926 0.843
MWE Track ID 0.889 0.814
MWE (Aug) Track ID 0.884 0.847
MWE Tag, Artist ID 0.958 0.819
MWE (Aug) Tag, Artist ID 0.961 0.841
MWE Tag, Track ID 0.953 0.826
MWE (Aug) Tag, Track ID 0.959 0.839
MWE Artist ID, Track ID 0.875 0.825
MWE (Aug) Artist ID, Track ID 0.896 0.859
MWE Tag, Artist ID, Track ID 0.954 0.831
MWE (Aug) Tag, Artist ID, Track ID 0.959 0.853

unseen tags. This indicates that the word embedding models
trained with a high degree of musical specificity provide better
quality supervision for training audio encoders.

Comparison with Supervisions The lower part of Table
VIII compares the zero-shot tagging and retrieval performance
using tag, artist, track, and multiple supervisions. The level of
musical specificity increases in the order of tag, artist, and
track. When comparing the results between single supervi-
sions, the models trained with track supervision show higher
retrieval performance than those trained with tag supervision
(0.790 −→0.847 in ROCAUCtag). On the other hand, the models
with tag supervision show higher tagging performance than
those with track supervision (0.884−→0.955 in ROCAUCclip).
This is due to the difference in task and musical specificity.
The tagging task distinguishes each tag with the given audio,
while the retrieval task distinguishes the audio with the given
tag. Therefore, when training an audio encoder, tag supervision
that discriminates similar and dissimilar tags is suitable for the
tagging task, and supervision with high musical specificity,
such as artist and track, is suitable for the retrieval task,
by discriminating audio more specifically. The model trained
by multiple supervisions shows a balanced performance in
tagging and retrieval tasks. Comparing both scores, the joint
loss model using all three supervisions outperformed the single
supervision models.

D. Zeroshot Transfer Evaluation

To evaluate the real-world query-by-tag scenario, we present
the ROCAUCtag performance using the MTG-Jamendo dataset
in Table IX. When using tag supervision, GloVe outperforms
MWE in the 1D CNN audio encoder over the genre and
instrumental categories, but MWE outperforms in the deeper
transformer audio encoder overall categories. In terms of
supervisions, the use of track information, which provides
high musical specificity, resulted in higher generalization
performance. Notably, the joint supervision with the musi-
cal word embedding showed higher performance than the
current zero-shot retrieval model using BERT [33] in the
genre (0.818−→0.849 in ROCAUCtag) and mood/theme cate-
gory (0.610−→0.672 in ROCAUCtag), which demonstrates the
effectiveness of our proposed method in real-world scenarios.

TABLE IX
ZERO-SHOT RETRIEVAL PERFORMANCE ON MTG-JAMENDO

Audio Model Word Model Supervision Content Context
Genre Inst Mood/Theme

1D-CNN
GloVe Tag 0.794 0.564 0.618
MWE Tag 0.782 0.504 0.626
MWE (Aug) Tag 0.789 0.515 0.636

Transformer

GloVe Tag 0.816 0.569 0.622
MWE Tag 0.828 0.520 0.644
MWE (Aug) Tag 0.821 0.537 0.638
MWE Artist ID 0.827 0.556 0.662
MWE (Aug) Artist ID 0.832 0.564 0.649
MWE Track ID 0.830 0.596 0.647
MWE (Aug) Track ID 0.838 0.590 0.661
MWE Tag, Artist ID 0.840 0.524 0.660
MWE (Aug) Tag, Artist ID 0.845 0.547 0.666
MWE Tag, Track ID 0.838 0.543 0.669
MWE (Aug) Tag, Track ID 0.847 0.555 0.672
MWE Artist ID, Track ID 0.829 0.571 0.664
MWE (Aug) Artist ID, Track ID 0.838 0.594 0.657
MWE Tag, Artist ID, Track ID 0.839 0.549 0.669
MWE (Aug) Tag, Artist ID, Track ID 0.849 0.571 0.670

Audio-Text Representation Learning Model
TTMR [33] 0.818 0.669 0.601

VII. RESULTS: QUALITATIVE ANALYSIS

This section provides a qualitative analysis of the musical
word embedding and audio-word joint embedding by visual-
ization techniques and example-based case studies to broaden
the understanding.

A. Embedding Visualization

We analyzed the embedding spaces by projecting them
into a 2D space using uniform manifold approximation and
projection (UMAP) [34]. To visualize the word embeddings,
we selected 2,201 tag embedding vectors and projected the
300-dimensional vectors into the 2D space. The first row of
Figure 5 shows the UMAP visualizations of GloVE and MWE.
We selected several tags and annotated them with a colored
dot and text label. The same color indicates a tag cluster with
high similarity in music. For example, ‘relax’, ‘lofi’, and ‘chill’
belong to the same cluster. The two general word embeddings
(Fig 5-(a,b)) capture general word similarity well. For instance,
emotion tags such as ‘romantic’ and ‘intimate’ are close to
each other. However, the majority of tags are more or less
scattered, and the same-colored tags are not clustered well. In
contrast, the musical word embeddings (Fig 5-(c,d)) show that
the same-colored tags are closely located and the clusters are
well separated.

To visualize the audio-word joint embedding, we projected
the transformer-based joint embedding vectors of all MSD
tracks and the 2,201 tag embeddings onto a 2D space. Due
to space constraints, we only visualized embeddings trained
using GloVe and MWE with augmentation ((d) in the upper
row). We selected a few genres and annotated them with
colored dots to represent different clusters. The genres related
to ‘electronic’, ‘house’, ‘club’, ’edm’, and ‘workout’ are
colored by blue dots, and those related to ‘country’, ‘folk’,
and ‘cowboy’ are colored by magenta dots. Comparing the
joint embedding space model using tag supervision (Fig 5-
(e,f)), the MWE-audio joint embedding space showed stronger
cohesion with respect to listening context words such as ‘club’
or ‘workout’ than the GloVe-audio joint embedding space.
Additionally, when comparing different supervisions, the artist
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Fig. 5. The UMAP embedding visualization of word embedding (first row) and audio-word joint embedding (second row). Each color represents a similar
semantic cluster. We note that (d) is a proposed musical word embedding.

TABLE X
MULTI QUERY RETRIEVAL RESULTS USING MUSICAL WORD

EMBEDDING.

Query (Word) Top3 Similar Track (MSD id) Track’s Annotated Tag

deep house
in miami ocean

Do Ya Like It - Blue 6 electronica
(TRHXJOS128F426C2D7) house

Trespassers - Newworldaquarium electronic
(TRHJNPI128F934C2B4) club/dance

Mama Coca - Jay Haze electronic(TRRGRTL12903CB1F33)

meditation
in the forest

Saguaro - Dean Evenson relax, newage, healing
(TRVIWIC128F92F9DA8) ambient, healing..

Ice Castle - Kirsty Hawkshaw ambient(TRHXTEK128F930F2DD)

InTROsacro - Bruno Sanfilippo chillout, calm/peaceful
(TRHLXWK128EF35DF13) relaxation, ambient...

and track supervision showed stronger cohesion for unseen
words such as ‘cowboy’ than the tag supervision (Fig 5-(g,h)).
This indicates that the joint embedding space trained with
strong musical specificity using artist and track supervision
has better generalization than the tag supervision (Fig 5-(i)).

B. Music Tagging and Retrieval

MWE is trained on a combination of Wikipedia, Amazon
album review, AllMusic tags, Last.fm tags, and artist/track
IDs from MSD. This collection comprises 9.8 million unique
general words, 2,201 tags, and 0.7 million tracks for the
embedding space. We can retrieve all track items in this space
by measuring the similarity score between the text query and
the track. If the query contains multiple words, we average
the embedding vectors of the words and calculate a similarity
score between the query and track. Table X presents multi-
query retrieval results using MWE. For instance, when a query
such as ‘deep house in Miami ocean’ or ‘meditation in the

TABLE XI
TOP 5 AUTO-TAGGING RESULTS FOR MUSICAL AND CONTEXTUAL TAG

INCLUDING UNSEEN TAGS DURING TRAINING.

Nirvana - Smells like teen spirit BTS - Dynamite
Content Tag Context Tag Content Tag Context Tag

alternativerock heavy dancepop sexy (unseen)
hardrock (unseen) aggressive(unseen) disco dance

grunge raucous (unseen) pop club (unseen)
punkrock rowdy (unseen) rnb clubdance

rock (unseen) angstridden (unseen) eurodance party

forest’ is given, MWE interprets ‘house’ as a music genre
rather than ‘home’, and understands ‘forest’ or ‘meditation’ as
semantically similar to ‘ambient’ or ‘relax’. Table XI reports
zero-shot tagging results using the joint embedding space. The
results are reasonable even if we did not use seen tags in both
musical and contextual domains. Further details and demos
are available on the website 6.

VIII. CONCLUSIONS

This paper introduces the Musical Word Embedding (MWE)
model for music tagging and retrieval. MWE leverages a
wide range of text corpora, from general to music-specific
words, and incorporates the concept of musical specificity to
measure the level of word semantics related to songs. Our
word embedding and joint embedding evaluation demonstrate
that the model effectively connects words with varying degrees
of musical specificity to songs. Moreover, we have shown
potential applications of MWE for music search, including
zero-shot music tagging and retrieval. However, our study is
currently limited to English language music. Therefore, future
work should address multi-lingual music retrieval.

6https://seungheondoh.github.io/musical word embedding demo/

https://seungheondoh.github.io/musical_word_embedding_demo/
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