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Abstract. In the past two decades, since the discovery of the figure-8 orbit by Chenciner and Mont-

gomery, the variational method has became one of the most popular tools for constructing new solutions

of the N-body problem and its extended problems. However, finding solutions to the restricted three-body

problem, in particular, the two primaries form a collision Kepler system, remains a great difficulty. One

of the major reasons is the essential differences between two-body collisions and three-body collisions.

In this paper, we consider a similar three-body system with less difficulty, i.e. the restricted one-center-

two-body system, that is involving a massless particle and a collision Kepler system with one body fixed.

It is an intermediate system between the restricted three-body problem and the two-center problem. By

an in-depth analysis of the asymptotic behavior of the minimizer, and an argument of critical and infliction

points, we prove the Sundman-Sperling estimates near the three-body collision for the minimizers. With

these estimates, we provide a class of collision-free solutions with prescribed boundary angles. Finally,

under the extended collision Kepler system from Gordon, we constructed a family of periodic and quasi-

periodic solutions.
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4. Asymptotic properties of minimizer near the three-body collision 14

4.1. Asymptotic behavior of |z| near the three-body collision 14

4.2. Asymptotic behavior of argz near the three-body collision 21

4.3. Sundman-Sperling estimates 23

5. Application: Classical solutions with prescribed boundary angles 31

6. Appendix: Periodic and quasi-periodic solutions 34

References 36

2020 Mathematics Subject Classification. 70F07, 70F15, 70F16, 70G75, 70M20.

E-mail: s9921803@m99.nthu.edu.tw, liulei30@email.sdu.edu.cn.

Keywords: variational method, restricted one-center-two-body problem, asymptotic estimates, three-body collision.

1

http://arxiv.org/abs/2404.13572v1


2 ON THE S-S ESTIMATES FOR THE RESTRICTED ONE-CENTER-TWO-BODY PROBLEM

1. Introduction

In 2000, Chenciner and Montgomery [6] showed the existence of a remarkable periodic solution (called

figure-eight solution) of three-body problem. Since then, inspired by this work, various new solutions of

the N -body problems and N -center problems are constructed by variational methods, see [2, 3, 7, 8, 15, 22]

and the references therein. The most crucial step to prove the existence of solutions for N -body problems

through variational methods is to exclude the collisions of the minimizers.

The currently known methods are mainly the level estimates and the local deformation method. The

former is to estimate the minimal action of all the collision paths, then find a test path with action lower

than the previous minimal action. The latter is to locally perturb the collision paths near the colliding

moments, such that their actions strictly decrease. It is well-known that, the local deformation method is

based on the asymptotic estimates of the paths near their collisions.

The asymptotic estimates of multi-body collisions have been studied by Sundman [18] since 1913, who

provided estimates of the moment of inertia for the collision clusters. Another analogous estimates for

two-body collisions was proved by Sperling [16, 17] in 1969, independently. Venturelli [20], Ferrario and

Terracini [7] provided a general criterion for the Sundman estimates, which also fits the two-body collision.

Unfortunately, in restricted multi-body problem, acquiring asymptotic behaviors of multi-body collisions

might create more technical difficulties. To our best knowledge, there are no such estimates of multi-body

collisions in the restricted multi-body problems. This might be the main reason that only few results regard

the restricted multi-body problems by using variational methods, see [11, 12, 13].

The simplest restricted N -body problem is the restricted one-center-one-body problem (or the Kepler

problem). It involves a fixed particle c (called a center) at the origin with mass µ and a moving particle

q ∈ C (called a primary) with mass m. The motion of q is subjected to Newton’s universal gravitational

law:

q̈ = −
µq

|q|3
.(1)

The solutions of (1) are either conics or straight lines, and the latter are the only solutions with collision.

According to the results in [18], every solution of (1) satisfies the Sundman-Sperling estimates near their

collision. We refer some well-known applications of the Sundman-Sperling estimates to [4, 7, 11, 19, 20, 21]

and the references theirin.

However, the restricted three-body problems include huge complexities, especially in the analysis of

asymptotic behavior near the three-body collisions. There are several difficulties for this. Firstly, it is

unclear that the massless particle satisfies Sundman-Sperling estimates. Secondly, the solutions might spin

infinitely or with an oscillation near the three-body collisions. Thirdly, there are two singularities that

close to one another, and it remains unclear whether such singularities in a restricted multi-body system

can be regularized.

In this paper, to reduce the difficulties, we consider the Sundman-Sperling estimates of the three-body

collisions in a simplified restricted three-body problems, which involves a collision Kepler system (q, c) and

a massless particle z ∈ C. The motion of z is governed by the following equation:

z̈ = −
µz

|z|3
−
m(z − q(t))

|z − q(t)|3
=

∂

∂z
U(z, t),(2)
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where U(z, t) is the time-dependent potential defined by

U(z, t) =
µ

|z|
+

m

|z − q(t)|
.(3)

In fact, this is an intermediate problem between the restricted three-body problem and the Euler’s problem

with two fixed centers. Since it involves the interaction of one center, one primary and one massless particle,

we refer to it as the restricted one-center-two-body problem.

According to the fact (see [9]) that the collision moments of the collision Kepler system (q, c) are isolated,

without loss of generality, for some T > 0, we set

(Q1) q collides with c at moment 0, i.e. q(0) = 0.

(Q2) q doesn’t collide with c on [−T, 0) ∪ (0, T ], i.e. q(t) 6= 0 on [−T, 0) ∪ (0, T ].

(Q3) q lies on the negative real axis on [−T, T ], i.e. q|[−T,T ] ⊂ R− := (−∞, 0].

In this setting, we allow |q̇| to be nonzero at moment ±T so that the energy of q could be even zero or

positive. Moreover, one can see that the system (1) with conditions (Q1)− (Q3) is symmetric with respect

to

q(t) = q(−t), for all [−T, T ],(4)

and (2) is symmetric with respect to the complex conjugation. Therefore, z(t), z̄(t), z(−t) and z̄(−t) solve

the equation (2) at the same time. In fact, for any a < b, the equation (2) is the Euler-Lagrange equation

of the action functional

Aa,b(z) =

∫ b

a

1

2
|ż|2 + U(z, t)dt.(5)

Consider the path space Ωa,bA,B = {x ⊂ H1([a, b],C) : x(a) ∈ A, x(b) ∈ B}, where A,B ⊂ C+ = {x+ iy ∈

C : y ≥ 0} are closed disjoint subsets. If the minimizer z(t) of Aa,b exists on Ωa,bA,B, then z(t) is a weak

solution of the restricted one-center-two-body problem (2) for t ∈ [a, b]. We note that the minimizer z(t)

becomes a classical solution if it does not include any collision. Now, we introduce our main theorem as

follows.

Theorem 1.1. Given T > 0, a collision Kepler system (q, c) satisfying (1) and (Q1) − (Q3), and an

action functional A−T,0 (A0,T ) as in (5). Assume z(t) = r(t)eθ(t)i is a minimizer of A−T,0 (A0,T ) on

Ω−T,0
A,A0

(Ω0,T
A0,A

) with 0 ∈ A0. If z admits a three-body collision, i.e. z(0) = 0, then

(a) The argument θ(t) is either a constant function θ(t) ≡ {0, π} or a strictly decreasing function on

(−T, 0) (strictly increasing function on (0, T )). Moreover, the limit angles θ±∗ := limt→0± θ(t) exist

and θ±∗ ∈ {0, π}.

(b) As t→ 0±, there exists an α∗ > 0 such that

(6)

r(t) = α∗|q(t)|+ o(|t|
2
3 ) = α∗λµ|t|

2
3 + o(|t|

2
3 ),

ṙ(t) = α∗
d

dt
|q(t)|+ o(|t|−

1
3 ) = ±

2

3
α∗λµ|t|

− 1
3 + o(|t|−

1
3 ),

r̈(t) = α∗
d2

dt2
|q(t)|+ o(|t|−

4
3 ) = −

2

9
α∗λµ|t|

− 4
3 + o(|t|−

4
3 ),

where λµ = (9µ/2)1/3.
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(b1) If θ−∗ = 0 (θ+∗ = 0), then α∗ = α2 > 1, which is the unique solution of

(7) a3 − 1−
m

µ

a2

(a+ 1)2
= 0 on a ∈ [0,+∞).

(b2) If θ−∗ = π (θ+∗ = π), then α∗ = α1 ∈ (0, 1) or α∗ = α3 ∈ (1,+∞), where α1, α3 are the unique

two solutions of

(8) a3 − 1−
m

µ

a2

(a− 1)2
= 0 on a ∈ [0,+∞).

Moreover, the former case occurs if z(t) ∈ (q(t), 0) and the latter case occurs if z(t) ∈

(−∞, q(t)), for any t ∈ [−T, 0) (t ∈ (0, T ]).

This theorem mainly characterizes the asymptotic behaviours of the minimizer z(t) near the three-

body collision. Term (a) describes the behaviour of the argument function θ(t). Term (b) describes the

behaviours of the norm r(t), which is so-called the Sundman-Sperling estimates for the minimizer z(t).

The main technique of the proof is the analysis of critical and inflection points together with the properties

of the minimizer.

Generally, for any restricted multi-body system, we believe that the Theorem 1.1 remains valid, provided

the collision involves one center, one primary, and one massless particle. This is because when the massless

particle approaches the three-body collision, the effect of the other non-colliding particles is negligible.

Notice that, the montonicity of θ(t) for the minimizer z(t) is the most fundamental property in the

restricted one-center-two-body problem. It highly relies on the monotonicity of the potential function

U(z, t), i.e. the potential U is strictly decreasing from θ = π to θ = 0 for any fixed r > 0. However,

the potential function possesses no such monotonicity in the restricted three-body problem, which leads to

great difficulties in the analysis.

As an application, we consider the existence of collision-free solutions in the restricted one-center-two-

body problem for all precribed boundary angles (φ1, φ2) ∈ [0, π]× [0, π] with φ1 6= φ2, which is a solution

z(t) jointing from the ray eφ1iR+ to eφ2iR+ in t ∈ [−T, 0] (t ∈ [0, T ]). In the one center problem, it is

well-known that the collision-free solutions exist for all (φ1, φ2) with |φ1 − φ2| ∈ (0, π), see [1], [2, Prop.3].

In this paper, by using the natures of the minimizers and Theorem 1.1, we obtain the following results.

Theorem 1.2. Given T > 0 and a collision Kepler system (q, c) which satisfies (1) and (Q1)− (Q3). For

any (φ, φ0) ∈ [0, π)× [0, π/2] with φ 6= φ0, the restricted one-center-two-body problem (2) with system (q, c)

possesses a solution z(t) = r(t)eθ(t)i satisfying the following properties:

(a) z is collision-free on [−T, 0].

(b) θ(−T ) = φ and θ(0) = φ0.

(c) There is a unique t∗ ∈ [−T, 0] such that θ(t∗) ∈ [0,min{φ, φ0}] and θ(t) is strictly decreasing on

[−T, t∗] and strictly increasing on [t∗, 0]. Especially, if min{φ, φ0} = 0, θ(t) is strictly monotone

on [−T, 0].

(d) ż is orthogonal to the ray eφiR+ at z(−T ) and orthogonal to the ray eφ0iR+ at z(0).

According to the symmetry (4), a similar result as Theorem 1.2 holds after the collision moment t = 0

between q and c.
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Theorem 1.3. Given T > 0 and a collision Kepler system (q, c) which satisfies (1) and (Q1)− (Q3). For

any (φ, φ0) ∈ [0, π)× [0, π/2] with φ 6= φ0, the restricted one-center-two-body problem (2) with system (q, c)

possesses a solution z(t) = r(t)eθ(t)i satisfying the following properties:

(a) z is collision-free on [0, T ].

(b) θ(0) = φ0 and θ(T ) = φ.

(c) there is a unique t∗ ∈ [0, T ] such that θ(t∗) ∈ [0,min{φ, φ0}] and θ(t) is strictly decreasing on [0, t∗]

and strictly increasing on [t∗, T ]. In particular, if min{φ, φ0} = 0, then θ(t) is strictly monotone

on [0, T ].

(d) ż is orthogonal to eφ0iR+ at z(0) and orthogonal to eφiR+ at z(T ).

As a conclusion, we have the following corollaries.

Remark 1.4. When φ0 = 0, it follows from Theorem 1.2, 1.3 that the argument θ(t) of the collision-free

solution z(t) is strictly decreasing on [−T, 0] and strictly increasing on [0, T ].

Theorem 1.2, 1.3 show the existence of the collision-free solution of (2) for any choice of masses µ,m > 0

and boundary angles (φ, φ0) ∈ [0, π)× [0, π/2] with φ 6= φ0. In the classical restricted three-body problem,

different energy on the two primaries will alter the nature of the problem, significantly. It is worth noting

that Theorem 1.2, 1.3 are independent of the choice of energy on the two-body system (q, c).

Notice that, in restricted multi-body problem, almost all two-body collisions of minimizers can be

excluded by local deformation. However, there is also a lack of asymptotic estimates for the three-body

collisions, such as the Sundman-Sperling estimates. This makes the exclusion of the three-body collisions

much more challenging.

In Theorem 1.2, 1.3, as an application of Theorem 1.1, we successfully exclude the three-body collision

for the minimizer in the restricted one-center-two-body problem. Unfortunately, there is no regularization

to the three-body collisions in our problem, unlike the Levi-Civita regularization in the two-body collisions.

This causes that the action of the local deformation paths are highly difficult to estimate under the behavior

of the two singularities, and then the boundary angle φ0 can only be choosed in [0, π/2] rather than [0, π].

More specifically, the regularization method requests more regularity than we have.

Based on our results above, although the restricted one-center-two-body problem is not the classical

restricted three-body problem, the authors believe that the methods in this paper and the extension of

Sundman-Sperling estimates for three-body collisions will be useful in advancing the study of collisions in

celestial mechanics, and provides a promising direction for future investigations into general three-body

collisions or even multi-body collisions.

Remark 1.5. For the sake of intuition, several numerical examples of the solution z(t) are listed in Figure 1

including different masses (µ,m) and boundary angles (φ, φ0), in which the collision Kepler system (q, c)

satisfies the boundary conditions q(±T ) = −1 and q̇(±T ) = 0. In Figure 2, we also provide an example

for Theorem 1.2(c), 1.3(c), where the argument θ(t) of the solution is not monotonic.

This paper is organized as follows. In Section 2, we recall the Sundman-Sperling estimates for the

two-body collisions, and introduce a classical approach for the exclusion of the two-body collisions. In

Section 3, we show some important monotonicities for both potential function U and action minimizers of
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the restricted one-center-two-body problem. In Section 4, by analysing the asymptotic behaviors for the

three-body collision, we prove the Sundman-Sperling estimates for the action minimizers (Theorem 1.1).

In Section 5, as an application of Theorem 1.1, we prove the existence of the collision-free solutions with

prescribed boundary angles in the restricted one-center-two-body problem (Theorem 1.2, 1.3). Finally, in

Appendix 6, we construct a class of periodic and quasi-periodic orbits under the extended collision Kepler

system.
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2. Preliminaries

2.1. Asymptotic behavior near two-body collision. This subsection will review the asymptotic anal-

ysis near a two-body collision. Given a collision Kepler system (q, c) which satisfies (1) and (Q1)− (Q3),

and let z be a solution of the restricted one-center-two-body problem (2). In this problem, there are three

possibilities of two-body collisions: collisions between q and c, z and c, and z and q. The collision moments

between q and c are clearly isolated, and the following lemma shows that the collision moments are isolated

for the other two types of two-body collisions. The proof is based on the regularization method, which we

refer to [5, Sec.3.3], [20, Sec.4.1] and the proof is omitted here.

Lemma 2.1. The sets of two-body collision moments △c(q) = {t ∈ R : q(t) = 0 and z(t) 6= 0}, △c(z) :=

{t ∈ R : z(t) = c and z(t) 6= q(t)} and △q(z) := {t ∈ R : z(t) = q(t) and z(t) 6= c} are isolated.

Next, we introduce a famous work of Sperling [16], in which the asymptotic behaviors of a particle

near two-body collisions are given in the perturbed Kepler problem. As an application, we can obtain the

asymptotic behaviors of the aforementioned three types of two-body collisions in the restricted one-center-

two-body problem.

Proposition 2.2. [16] Consider the perturbed Kepler problem

ü = −µ̂
u

|u|3
+ P (u, t),(9)

where µ̂ > 0 and P (u, t) is a bounded and continuous function near 0. Assume the solution u of (9) has a

collision at τ , that is u(τ) = 0, then there exist λ = (9µ̂/2)1/3 and η± ∈ S := {x ∈ C : |x| = 1} such that

(a) |u(t)| = λ|t− τ |
2
3 + o(|t− τ |

2
3 ) as t→ τ±.

(b) d
dt |u(t)| = ± 2

3λ|t− τ |−
1
3 + o(|t− τ |−

1
3 ) as t→ τ±.

(c) d2

dt2 |u(t)| = − 2
9λ|t− τ |−

4
3 + o(|t− τ |−

4
3 ) as t→ τ±.

(d) limt→τ±
u(t)
|u(t)| = η± exist.

The properties (a) - (c) demonstrate that the asymptotic positions, velocities and accelerations of col-

liding particles satisfy the Sundman-Sperling estimates (see [16, 17, 18]); the property (d) further reveals

the existence of the asymptotic angles for colliding particles.

In system (q, c), the motions of q, z and z − q satisfy the equations (1), (2) and

d2

dt2
(z − q) = −

m(z − q)

|z − q|3
+

µq

|q|3
−

µz

|z|3
,

respectively. We can also rewrite these equations as the perturbed Kepler systems (9):

q̈ = −
µq

|q|3
+ P0(q, t), where P0(u, t) ≡ 0,

z̈ = −
µz

|z|3
+ P1(z, t), where P1(u, t) = −

m(u− q(t))

|u− q(t)|3
,

d2

dt2
(z − q) = −

m(z − q)

|z − q|3
+ P2(z − q, t), where P2(u, t) = −

µ(u+ q(t))

|u+ q(t)|3
+

µq(t)

|q(t)|3
.
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Since P0, P1, P2 are bounded and continuous near the collision moment sets △c(q), △c(z) and △q(z), as

an application of Proposition 2.2, we obtain the Sundman-Sperling estimates for q, z and z − q as follows.

Proposition 2.3. There exists λµ = (9µ/2)1/3 such that

(a) |q(t)| = λµ|t|2/3 + o(|t|2/3) as t→ 0±.

(b) d
dt |q(t)| = ± 2

3λµ|t|
−1/3 + o(|t|−1/3) as t→ 0±.

(c) d2

dt2 |q(t)| = − 2
9λµ|t|

−4/3 + o(|t|−4/3) as t→ 0±.

Proposition 2.4. Assume τ ∈ △c(z), there exist λµ = (9µ/2)1/3 and θ±c,τ ∈ R such that

(a) |z(t)| = λµ|t− τ |2/3 + o(|t− τ |2/3) as t→ τ±.

(b) d
dt |z(t)| = ± 2

3λµ|t− τ |−1/3 + o(|t− τ |−1/3) as t→ τ±.

(c) d2

dt2 |z(t)| = − 2
9λµ|t− τ |−4/3 + o(|t− τ |−4/3) as t→ τ±.

(d) limt→τ±
z(t)
|z(t)| = eiθ

±
c,τ exist.

Proposition 2.5. Assume τ ∈ △q(z), there exist λm = (9m/2)1/3 and θ±q,τ ∈ R such that

(a) |z(t)− q(t)| = λm|t− τ |2/3 + o(|t− τ |2/3) as t→ τ±.

(b) d
dt |z(t)− q(t)| = ± 2

3λm|t− τ |−1/3 + o(|t− τ |−1/3) as t→ τ±.

(c) d2

dt2 |z(t)− q(t)| = − 2
9λm|t− τ |−4/3 + o(|t− τ |−4/3) as t→ τ±.

(d) limt→τ±
z(t)−q(t)
|z(t)−q(t)| = eiθ

±
q,τ exist.

2.2. Exclusion of two-body collisions for minimizers. In this subsection, we follow the local de-

formation method, which is one of the main approaches to excluding two-body collisions for minimizers,

see [3, 15, 22]. More precisely, under the blow-up technique, we can construct a new path without any

two-body collision, and its action is strictly below the original colliding path, so that the minimizer does

not involve any two-body collision.

We first list some useful results. For details of the proofs, we refer to [8, 10, 14, 22].

Given an action functional Aa,b on Ωa,bA,B as in (5). Consider a colliding path z(t) of the restricted

one-center-two-body problem (2) with ∆ξ(z) ∩ (τ − δ, τ + δ) = {τ}, ξ ∈ {c, q}, for some δ > 0.

Proposition 2.6. If |θ+ξ,τ − θ−ξ,τ | < 2π where θ±ξ,τ is given by Proposition 2.4, 2.5, then for any δ∗ > 0

sufficiently small, there exists an ǫ = ǫ(δ∗) > 0 with limδ∗→0 ǫ(δ
∗) = 0 and a collision-free path η ∈

H1([τ − δ, τ + δ],C) such that

(a) η(t) = z(t) for any t ∈ [τ − δ, τ + δ]\[τ − δ∗, τ + δ∗].

(b) |η(t)− ξ(t)| ≤ ǫ for any t ∈ [τ − δ∗, τ + δ∗].

(c) Arg(η(τ ± δ∗)− ξ(τ ± δ∗)) = Arg(z(τ ± δ∗)− ξ(τ ± δ∗)).

(d) Aτ−δ,τ+δ(η) < Aτ−δ,τ+δ(z).

For a colliding path z(t) of (2) with ∆ξ(z) ∩ [τ, τ + δ) = {τ} or ∆ξ(z) ∩ (τ − δ, τ ] = {τ}, ξ ∈ {c, q}, for

some δ > 0, we have the following results.

Proposition 2.7. Given θ0 ∈ R. If |θ+ξ,τ − θ0| < π, where θ+ξ,τ is given by Proposition 2.4, 2.5, then for

any δ∗ > 0 sufficiently small, there exists an ǫ = ǫ(δ∗) > 0 with limδ∗→0 ǫ(δ
∗) = 0 and a collision-free path

η ∈ H1([τ, τ + δ],C) such that
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(a) η(t) = z(t) for any t ∈ [τ + δ∗, τ + δ].

(b) |η(t)− ξ(t)| ≤ ǫ for any t ∈ [τ, τ + δ∗].

(c) Arg(η(τ) − ξ(τ)) = θ0 and Arg(η(τ + δ∗)− ξ(τ + δ∗)) = Arg(z(τ + δ∗)− ξ(τ + δ∗)).

(d) Aτ,τ+δ(η) < Aτ,τ+δ(z).

Proposition 2.8. Given θ0 ∈ R. If |θ−ξ,τ − θ0| < π, where θ−ξ,τ is given by Proposition 2.4, 2.5, then for

any δ∗ > 0 sufficiently small, there exists an ǫ = ǫ(δ∗) > 0 with limδ∗→0 ǫ(δ
∗) = 0 and a collision-free path

η ∈ H1([τ − δ, τ ],C) such that

(a) η(t) = z(t) for any t ∈ [τ − δ, τ − δ∗].

(b) |η(t)− ξ(t)| ≤ ǫ for any t ∈ [τ − δ∗, τ ].

(c) Arg(η(τ) − ξ(τ)) = θ0 and Arg(η(τ − δ∗)− ξ(τ − δ∗)) = Arg(z(τ − δ∗)− ξ(τ − δ∗)).

(d) Aτ−δ,τ(η) < Aτ−δ,τ(z).

As an application, we prove the following result.

Theorem 2.9. Given T > 0, a collision Kepler system (q, c) satisfying (1) and (Q1) − (Q3). Let

A−T,0 (A0,T ) be an action functional on Ω−T,0
A,A0

(Ω0,T
A0,A

) as in (5) and assume z(t) is an associated mini-

mizer. Then z(t) possesses no two-body collision on (−T, 0] (or [0, T )).

Proof. According to the reversibility of (2), it sufficient to prove for any t ∈ (−T, 0]. Since (2) is also

symmetric with respect to the real axis, without loss of generality, we assume z(t) = r(t)eiθ(t) satisfies

θ(t) ∈ [0, π] for all t ∈ [−T, 0].

Suppose ∆q(z)∪∆c(z) 6= ∅. Choose a collision moment τ ∈ ∆ξ(z) with ξ ∈ {c, q}. We first observe that

z is impossible to experience a two-body collision with ξ at t = 0 since q = c = 0 at t = 0. This tells us

that τ 6= 0.

If τ ∈ (−T, 0), by Proposition 2.4, 2.5 and the assumption θ ∈ [0, π], the limit angles θ±ξ,τ ∈ [0, π] exist.

According to Proposition 2.6, we get a contradiction to the assumption that z is a minimizer. �

3. Monotonicities in restricted one-center-two-body problem

In restricted one-center-two-body problem, we explore several monotonicities for both the potential

function U and the action minimizer z. Based on these important properties, it is available to prove

Sundman-Sperling estimates for the action minimizer of this problem, i.e. Theorem 1.1.

3.1. Monotonicity of the potential function U . In this subsection, to characterize the restricted one-

center-two-body problem (2), we firstly reveal the monotonicity of the potential U(z, t), which is one of

the fundamental property in this problem. With this monotonicity, a series of nontrivial conclusions can

be proven in the later sections.

Lemma 3.1. Given potential U as in (3). For any fixed t ∈ R and r ∈ R+, we have

U(reiθ1 , t) < U(reiθ2 , t), ∀ 0 ≤ |θ1| < |θ2| ≤ π.

In particular, for any η ∈ [−π, π]\{0}, we have U(r, t) < U(reiη , t).
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Proof. Let t ∈ R and u = reiθ with r ∈ R+ and θ ∈ [−π, 0] (resp. [0, π]), then we can write U(u, t) as

U(u, t) =
µ

|u|
+

m

|u− q(t)|
=
µ

r
+

m

(r2 + |q(t)|2 + 2r|q(t)| cos θ)1/2
.

We see that U(u, t) is strictly increasing (resp. strictly decreasing) on [0, π] (resp. [−π, 0]) with respect to

θ. Hence, the lemma holds. �

3.2. Monotonicity of the arguments for an action minimizer z and ż. Based on the monotonicity

of the potential function U in Lemma 3.1, we can further explore the monotonicity of the argument for the

action minimizer.

Given T > 0. Assume z(t) is the action minimizer ofA−T,0 (5) on the path space Ω−T,0
A,A0

⊂ H1([−T, 0],C).

By Lemma 2.1, there exists a t0 ∈ (0, T ) such that z(t) is smooth on [−t0, 0) (resp. (0, t0]). Next, we

consider the following two cases: z(0) 6= 0 and z(0) = 0. For the later case, we need to assume 0 ∈ A0. The

former means there is no three-body collision at moment 0. Therefore, we can write θ(0) = limt→0− θ(t)

(resp. θ(0) = limt→0+ θ(t)). The latter means there is a three-body collision at moment 0. Since these two

cases have different nature, in this subsection, we will deal with them separately.

Firstly, we assume z(0) 6= 0. Since the restricted one-center-two-body problem (2) satisfies the symmetry

(4), we only need to consider z(t) in t ∈ [−t0, 0]. Moreover, since the potential U is symmetric with respect

to the real axis, without loss of generality, we also assume θ(−t0) ∈ [0, π], that is z(−t0) ∈ C+
∗ := {x+ iy ∈

C : y ≥ 0} \ {0}. Then we prove the monotonicity of the argument θ(t) as follows.

Lemma 3.2. Given a t0 ∈ (0, T ] and an action minimizer z(t) = r(t)eθ(t)i of A−T,0 on Ω−T,0
A,A0

. Assume

z(t) is smooth on (−t0, 0), z(0) 6= 0 and z(−t0) ∈ C+
∗ , then

(a) the argument θ(t) has no local maximum in {t ∈ (−t0, 0) : θ(t) ∈ (0, π)}. In particular, θ̈(t) ≥ 0 if

θ̇(t) = 0.

(b) the argument θ(t) has no local minimum in {t ∈ (−t0, 0) : θ(t) ∈ (−π, 0)}. In particular, θ̈(t) ≤ 0

if θ̇(t) = 0.

(c) if there exists a moment t̃ ∈ (−t0, 0) such that θ̇(t̃) = 0 and θ̈(t̃) = 0, then the argument θ(t) ≡ 0

or θ(t) ≡ π.

Proof. To prove (a). By contradiction, there exists t̂, t̂1, t̂2 ∈ (−t0, 0) and ǫ > 0 with t̂1 < t̂ − ǫ < t̂ <

t̂+ ǫ < t̂2 such that θ(t̂1) = θ(t̂2) < θ(t) for t ∈ (t̂− ǫ, t̂+ ǫ). Define θ̂(t) := θ(t̂1) on [t̂1, t̂2] and θ̂(t) := θ(t)

on [−T, 0]\[t̂1, t̂2], and let ẑ(t) = r(t)eiθ̂(t). Note that, by Lemma 3.1, U(z, t) ≥ U(ẑ, t) and
˙̂
θ(t) = 0 on

(t̂1, t̂2), and U(z, t) > U(ẑ, t) on (t̂− ǫ, t̂+ ǫ). Then

A−T,0(z)−A−T,0(ẑ) =

∫ t̂2

t̂1

r2θ̇2(t)− r2
˙̂
θ2(t) + U(z, t)− U(ẑ, t)dt

≥

∫ t̂+ǫ

t̂−ǫ

r2θ̇2(t) + U(z, t)− U(ẑ, t)dt > 0.

This gives a contradiction to the minimizer z, (a) holds. Since A−T,0 is invariant under the complex

conjugation, we can also prove (b), similarly.

To prove (c). If the moment t̃ ∈ (−t0, 0) satisfies θ̇(t̃) = θ̈(t̃) = 0, then we have

z̈(t̃) =
(

r̈(t̃)− r(t̃)θ̇(t̃)2
)

eiθ(t̃) +
(

2ṙ(t̃)θ̇(t̃) + r(t̃)θ̈(t̃)
)

ei(θ(t̃)+
π
2 ) = r̈(t̃)eiθ(t̃).
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This implies θ(t̃) ∈ {0, π} since the force of z(t̃) never points to the original unless z(t̃) ∈ R \ {0}. By the

existence and uniqueness theorem, the minimizer z lies on the real axis on [−T, 0]. This implies (c). �

Corollary 3.3. Given a t0 ∈ (0, T ] and an action minimizer z(t) = r(t)eθ(t)i of A−T,0 on Ω−T,0
A,A0

. Assume

z(t) ∈ C+
∗ is smooth on (−t0, 0), then one of the following situations must happen.

(a) the argument θ(t) ≡ 0 on [−t0, 0].

(b) there is a unique t∗ ∈ [−t0, 0] such that θ(t∗) ≥ 0, θ is strictly decreasing on [−t0, t∗] and strictly

increasing on [t∗, 0].

(c) the argument θ(t) ≡ π on [−t0, 0].

Proof. By assumption, for any t̃ ∈ (−t0, 0) with θ̇(t̃) = 0, Lemma 3.2(a) implies that θ̈(t̃) ≥ 0. If there is a

t̃0 such that θ̈(t̃0) = 0, then by Lemma 3.2(c), (a) or (c) must happen. Otherwise, θ̈(t̃) > 0 for all critical

point t̃. If there exists two moments t̃1 < t̃2 ∈ (−t0, 0) such that θ̈(t̃i) > 0, i = 1, 2, then by continuity,

there must be a moment t̂ ∈ (t̃1, t̃2) such that θ̇(t̂) = 0 and θ̈(t̂) ≤ 0, which contradicts the argument above.

Therefore, the number of the critical points is at most one, which is a local minimum. This implies (b). �

Now, we assume 0 ∈ A0 and z(0) = 0, i.e. the three-body collision occurs at moment 0. Due to the

same reason, it is sufficient to consider z(t) with z(−t0) ∈ C+
∗ in t ∈ [−t0, 0). Then we prove the following

monotonicity for the argument θ(t).

Lemma 3.4. Given a t0 ∈ (0, T ) and an action minimizer z(t) = r(t)eθ(t)i of A−T,0 on Ω−T,0
A,A0

. Assume

z(t) is smooth on (−t0, 0), z(0) = 0 and z(−t0) ∈ C+
∗ , then one of the following situations must happen.

(a) the argument θ(t) ≡ 0 on [−t0, 0).

(b) the argument θ(t) is strictly decreasing on [−t0, 0) and the limit angle θ−∗ = limt→0− θ(t) exists in

[0, π).

(c) the argument θ(t) ≡ π on [−t0, 0).

Proof. Let I = {t ∈ (−t0, 0) : θ(t) ∈ (−π, 0)}. We define θ̂1(t) = 0 on I and θ̂1(t) = θ(t) on [−T, 0) \ I

and let ẑ1(t) = r(t)eiθ̂1(t). By Lemma 3.1, U(z, t) > U(ẑ1, t) and
˙̂
θ1(t) = 0 on I. Similar to the proof of

Lemma 3.2(a), we obtain A−T,0(z) > A−T,0(ẑ1), which is a contradiction to minimizer z. Then z(t) ∈ C+
∗

on [−t0, 0).

Applying the approaches in Lemma 3.2 and Corollary 3.3, we can similarly show that if both (a) and (c)

do not happen on (−t0, 0), then there exists t∗ ∈ [−t0, 0], such that θ(t) is strictly decreasing in [−t0, t∗]

and strictly increasing in [t∗, 0]. Define another path ẑ2(t) = r(t)eiθ̂2(t) with θ̂2(t) = θ(t) on [−T, t∗] and

θ̂2(t) = θ(t∗) on [t∗, 0]. If t∗ < 0, by using Lemma 3.1 again, U(z, t) > U(ẑ2, t) and
˙̂
θ2 = 0 on (t∗, 0). Then

we have

A−T,0(z)−A−T,0(ẑ2) ≥

∫ 0

t∗

r2 θ̇2(t) + U(z, t)− U(ẑ2, t)dt > 0.

This leads to a contradiction to minimizer z and implies (b), i.e. t∗ = 0. The proof is completed. �

Under the assumption z(0) = 0, we can further prove the monotonicity of the argument for the velocity

ż(t). We first put ż in the polar coordinates, ż(t) = rd(t)e
θd(t)i, with rd ∈ R+ and θd ∈ [−π, π). Before we

explore the monotonicity of θd, we introduce the following lemma.
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Lemma 3.5. The derivative of argument θd(t) is

(10) θ̇d(t) =
1

rd(t)
z̈(t) · ei(θd(t)+

π
2
).

Moreover,

(a) if θd(t) ∈ (arg(z̈(t)), arg(z̈(t)) + π), then θ̇d(t) < 0.

(b) if θd(t) ∈ (arg(z̈(t))− π, arg(z̈(t))), then θ̇d(t) > 0.

Proof. Since eiθd(t) = ż(t)
rd(t)

, by differentiating t on both sides, we have

θ̇d(t)e
i(θd(t)+

π
2
) =

z̈(t)

rd(t)
−

ṙd(t)

rd(t)2
ż(t).

Then taking the inner product with ei(θd(t)+
π
2
) on both sides, we obtain (10). Moreover, (a) and (b) follow

from the fact that θ̇d(t) < 0 (resp. > 0) if and only if

θd(t) +
π

2
∈

(

arg z̈(t) +
π

2
, arg z̈(t) +

3π

2

)

(

resp.
(

arg z̈(t)−
π

2
, arg z̈(t) +

π

2

))

.

�

Now we are ready to prove the following lemma.

Lemma 3.6. Given a t0 ∈ (0, T ) and an action minimizer z(t) = r(t)eθ(t)i of A−T,0 on Ω−T,0
A,A0

. Assume

z(t) is smooth on (−t0, 0), z(0) = 0, and z(−t0) ∈ C+
∗ . Then the argument θd(t) satisfies the following

properties:

(a) if θ(−t0) = 0, then there exists an ǫ ∈ (0, t0) such that the argument θd(t) ≡ π for all t ∈ (−ǫ, 0).

(b) if θ(−t0) ∈ (0, π), there exists an ǫ ∈ (0, t0) such that the argument θd(t) is strictly decreasing on

(−ǫ, 0).

(c) if θ(−t0) = π, then the argument θd(t) either satisfies θd(t) ∈ {0, π} on {t ∈ (−t0, 0) : ż(t) 6= 0} or

there exists an ǫ ∈ (0, t0) such that θd(t) is strictly decreasing on (−ǫ, 0).

Moreover, if θ(t) 6≡ π on (−t0, 0), then the limit limt→0− |θ(t) − θd(t)| = π for any θ(−t0) ∈ [0, π].

Proof. Firstly, (a) follows from Lemma 3.4 and the assumption z(0) = 0 directly.

To prove (b). By Lemma 3.5 (a), it is sufficient to show that there exists an ǫ > 0 sufficiently small such

that θd(t) ∈ (arg(z̈(t)), arg(z̈(t)) + π) for all t ∈ (−ǫ, 0). From Lemma 3.4(b), θ(t) is strictly decreasing to

θ−∗ ≥ 0 on (−t0, 0), which implies that

(11) θ(t) ∈ (0, π) and θd(t) ∈ (θ(t)− π, θ(t)), ∀t ∈ (−t0, 0).

We see that y(t) > 0 (z(t) = x(t)+ iy(t)) for any t ∈ (−t0, 0). Since the force is always pointing downward,

then we have

(12) arg z̈(t) ∈ (−π, θ(t) − π), ∀t ∈ (−t0, 0).

Moreover, there exists an ǫ ∈ (0, t0) such that y(t) is strictly decrease to 0 during t ∈ (−ǫ, 0), i.e.

(13) θd(t) ∈ (−π, 0), ∀t ∈ (−ǫ, 0),
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Combining (11), (12) and (13), we have

θd(t) ∈ (θ(t)− π, 0) ⊂ (arg z̈(t), arg z̈(t) + π), ∀t ∈ [−ǫ, 0),

and prove that θ̇d(t) < 0 on (−ǫ, 0).

To prove (c). By Lemma 3.4, θ(t) is either identically π or strictly decreasing to θ−∗ ≥ 0. The former

case implies that θ(t) ∈ {0, π} on {t ∈ (−t0, 0) : ż 6= 0}. For the latter case, we have θ(t) ∈ (0, π) for any

t ∈ (−t0, 0). Then the proof is similar to the case (b).

To see limt→0− |θ(t) − θd(t)| = π. According to the assumption z(0) = 0, for any sequence of moments

tk → 0−, there exists a sequence t′k ∈ (tk, 0) such that

ż(t′k) = |tk|
−1(z(0)− z(tk)) = −|tk|

−1z(tk) =
r(tk)

|tk|
ei(θ(tk)+π).

By Lemma 3.4, the argument θ(t) is always non-increasing and converging to θ−∗ ≥ 0 as t → 0−, then

we have limk→+∞ θd(t
′
k) = limk→+∞ θ(tk) + π = θ−∗ + π. Finally, by the assumption θ(t) 6≡ π and

(a) − (c), there exists an ǫ ∈ (0, t0) such that the argument θd(t) is monotonic in (−ǫ, 0), then we have

limt→0− θd(t) = limk→+∞ θd(t
′
k) = θ−∗ + π. The proof is now complete. �

From the previous lemmas, we obtain some monotonicities for the minimizer of A−T,0 on Ω−T,0
A,A0

. By

the reversibility of (2), we have the following analog results for the minimizer of A0,T on Ω0,T
A0,A

.

Lemma 3.7. Given a t0 ∈ (0, T ) and an action minimizer z(t) = r(t)eθ(t)i of A0,T on Ω0,T
A0,A

. Assume

z(t) ∈ C+
∗ is smooth on (0, t0), then one of the following situations must happen.

(a) the argument θ(t) ≡ 0 on [0, t0].

(b) there is a unique t∗ ∈ [0, t0] such that θ(t∗) ≥ 0, θ is strictly decreasing on [0, t0] and strictly

increasing on [t∗, t0].

(c) the argument θ(t) ≡ π on [0, t0].

Lemma 3.8. Given a t0 ∈ (0, T ) and an action minimizer z(t) = r(t)eθ(t)i of A0,T on Ω0,T
A0,A

. Assume

z(t) is smooth on (0, t0), z(0) = 0 and z(t0) ∈ C+
∗ , then one of the following situations must happen.

(a) the argument θ(t) ≡ 0 on (0, t0].

(b) the argument θ(t) is strictly increasing on (0, t0] and the limit angle θ+∗ = limt→0+ θ(t) exists and

non-negative.

(c) the argument θ(t) ≡ π on (0, t0].

Lemma 3.9. Given a t0 ∈ (0, T ) and an action minimizer z(t) = r(t)eθ(t)i of A0,T on Ω0,T
A0,A

. Assume z(t)

is smooth on (0, t0), z(0) = 0, and z(t0) ∈ C+
∗ . Then the argument θd(t) satisfies the following properties:

(a) if θ(t0) = 0, then the argument θd(t) ≡ π for all t ∈ (0, t0).

(b) if θ(t0) ∈ (0, π), there exists an ǫ ∈ (0, t0) such that the argument θd(t) is strictly increasing on

(0, ǫ).

(c) if θ(t0) = π, then the argument θd(t) is either θd(t) ≡ 0 on (0, t0) or there exists an ǫ ∈ (0, t0) such

that θd(t) is strictly increasing on (0, ǫ).

Moreover, the limit limt→0+ |θ(t) − θd(t)| = π for any θ(t0) ∈ [0, π].
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4. Asymptotic properties of minimizer near the three-body collision

Given T > 0 and a collision Kepler system (q, c) which satisfies (1) and (Q1)−(Q3). Since the restricted

one-center-two-body problem (2) is reversible, it is sufficient to consider our problem on [−T, 0]. Let

z(t) = r(t)eiθ(t) be the action minimizer of A−T,0 on Ω−T,0
A,A0

with 0 ∈ A0. In this section, we aim to prove

the Theorem 1.1, i.e. the Sundman-Sperling estimates of the minimizer z near the three-body collision.

The proof includes the following three steps:

• By using the technique of critical and infliction points, we first show that the ratio a(t) = r(t)/|q(t)|

admits both positive upper and lower bound, see Section 4.1.

• By using the properties of a(t), we prove that the asymptotic limit θ−∗ of θ(t) can only be 0 or π

near the three-body collision, see Section 4.2.

• Based on the result θ−∗ ∈ {0, π} above, we can further improve the estimates of a(t) by using the

technique of critical and infliction points again. This enhanced estimates are enough for us to

complete the proof of Theorem 1.1, see Section 4.3.

Throughout this section, we assume z(0) = 0. Without loss of generality, we further assume z(t) is

smooth on [−t0, 0) and z(−t0) ∈ C+
∗ for some t0 ∈ (0, T ], since A−T,0 is invariant under the complex

conjugation.

4.1. Asymptotic behavior of |z| near the three-body collision. In this section, we aim to prove

Theorem 4.1, i.e. the ratio a(t) = r(t)/|q(t)| is both bounded from above and below by two positive

numbers near t = 0.

Theorem 4.1. Let z(t) = r(t)eiθ(t) be an action minimizer of A−T,0 on Ω−T,0
A,A0

. If z(0) = 0, then there

exist an ǫ ∈ (0, T ) and 0 < ca < Ca < +∞ such that ca < a(t) < Ca for all t ∈ (−ǫ, 0).

The following lemma is immediately obtained from Proposition 2.3, and provides more convenience to

the later discussions.

Lemma 4.2. There exist a δ > 0 small and 0 < cq < Cq < +∞ such that for any t ∈ (−δ, 0), we have

|q(t)| ∈ (cq|t|
2
3 , Cq|t|

2
3 ), |q̇(t)| ∈ (cq|t|

− 1
3 , Cq|t|

− 1
3 ) and |q̈(t)| ∈ (cq|t|

− 4
3 , Cq|t|

− 4
3 ).(14)

We first show the positive upper bound for a(t) near t = 0.

Lemma 4.3. There exist δ > 0 and Ĉ > 0 such that r(t) ≤ Ĉ|t|
2
3 for all t ∈ (−δ, 0). Moreover, a(t) < Ĉ/cq

for all t ∈ (−δ, 0).

Proof. We prove this lemma in two situations: θ(t) ≡ π and θ(t) 6≡ π for any t ∈ [−t0, 0).

To the former case, if r(−t0) ∈ (0, |q(−t0)|), then by Lemma 4.2, we have r(t) ≤ |q(t)| < Cq|t|
2
3 for all

t ∈ [−t0, 0), then this lemma follows.

If r(−t0) ∈ (|q(−t0)|,+∞), then we define a (ẑ, q̂)-system, where q̂(t) := q(t) on (−t0, 0) with mass

m+ µ, and ẑ(t) satisfies ˙̂z(−t0) = ż(−t0) and ẑ(0) = 0. Since (ẑ, q̂) also forms a Kepler system, relatively,

according to Proposition 2.3, we have

|ẑ(t)| = |ẑ(t)− q(t)|+ |q(t)| < (λm+µ + λµ)|t|
2/3 + o(|t|2/3),
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where λm+µ = (9(m+µ)/2)1/3. We claim that |ẑ(t)| > |z(t)| for any t ∈ [−t0, 0). Otherwise, assume there

exists a moment t̂ ∈ [−t0, 0) such that ẑ(t̂) = z(t̂) and ˙̂z(t̂) ≥ ż(t̂). Since the total force of ẑ in (ẑ, q̂)-system

is always greater than the total force of z in (q, c)-system, whenever they are at the position, then ẑ(t)

reaches 0 earlier than z(t). This contradicts to the assumption that ẑ(0) = 0. Therefore, this claim holds.

Finally, combing the arguments above, we conclude that |z(t)| < |ẑ(t)| < (λm+µ + λµ)|t|2/3 + o(|t|2/3) for

any t ∈ (−t0, 0).

To prove the latter case. Fix any t1 ∈ (0, t0). Since θ(t) 6≡ π, then by Lemma 3.4 (b), θ(−t1) ∈ (θ−∗ , π)

and θ(t) ≤ θ(−t1) for any t ∈ (−t1, 0). Since z · ż = rṙ, then rr̈ − z · z̈ = |ż|2 − ṙ2 ≥ 0, which implies that

rr̈ ≥ z · z̈ ≥ −r|z̈|. By (2), we have

(15) −r̈(t) ≤ |z̈(t)| ≤
µ

|z(t)|2
+

m

|z(t)− q(t)|2
≤ 2max

{

µ

|z(t)|2
,

m

|z(t)− q(t)|2

}

.

If r(t) ≤ |q(t)|, then we obtain the desired result immediately by Lemma 4.2.

If r(t) > |q(t)|, then due to the facts that a2(t) + 1 + 2a(t) cos θ(t) ≥ 1 for any θ(t) ∈ [0, π/2] and

a2(t) + 1 + 2a(t) cos θ(t) ≥ sin2 θ(−t1) > 0 for any θ(t) ∈ (π/2, θ(−t1)), providing θ(−t1) > π/2. Then we

have

(16)
m

|z(t)− q(t)|2
=

m

(a(t)2 + 1 + 2a(t) cos θ(t))|q(t)|2
≤

m

sin2 θ(−t1)|q(t)|2
.

According to Lemma 4.2, (15) and (16), there exists a δ ∈ (0, t0) such that

(17) −r̈(t) ≤ C|t|−
4
3 , ∀t ∈ (−δ, 0),

where C = 2max{µ/c2q, m/(cq sin θ(−t1))
2, Cq}.

Denote ∆ := {t ∈ (−δ, 0), r(t) > |q(t)|}. Since ∆ ⊂ (−δ, 0) is open, then we can write ∆ = ∪k≥1(ak, bk),

where r(ak) = |q(ak)| and r(bk) = |q(bk)|. Since r(ak) = |q(ak)| and r(t) > |q(t)| for any t ∈ (ak, bk) and

k, by (14), we have

0 < −ṙ(ak) ≤ −
d

dt
|q(ak)| ≤ Cq|ak|

− 1
3 .(18)

By integration, for any t ∈ (ak, bk), from (17) and (18), we compute that

r(t) = r(bk) +

∫ bk

t

(

−ṙ(ak)−

∫ s

ak

r̈(τ)dτ

)

ds

≤ Cq|bk|
2
3 +

∫ bk

t

(

Cq|ak|
− 1

3 +

∫ s

ak

C|τ |−
4
3 dτ

)

ds

= Cq|bk|
2
3 + (bk − t)Cq|ak|

− 1
3 +

∫ bk

t

3C
(

|s|−
1
3 − |ak|

− 1
3

)

ds

= Cq|bk|
2
3 + (bk − t)Cq|ak|

− 1
3 + 3C

(

3

2

(

|t|
2
3 − |bk|

2
3

)

− (bk − t)|ak|
− 1

3

)

=
9

2
C|t|

2
3 −

(

9

2
C − Cq

)

|bk|
2
3 − (3C − Cq) (bk − t)|ak|

− 1
3

<
9

2
C|t|

2
3 ,

the last inequality is obtained by C ≥ 2Cq. Hence, by taking Ĉ = 9C/2, the lemma follows. �
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Next, we show that a(t) also possesses a positive lower bound. We first introduce the following function

(19) hm/µ(a, θ) := a3 − 1−
m

µ

a2(a+ cos θ)

(a2 + 1 + 2a cos θ)
3
2

, ∀ (a, θ) ∈ R+ × [0, π],

and study the relation between hm/µ(a(t), θ(t)) and ä(t).

Lemma 4.4. Assume t̂ ∈ (−t0, 0) is a critical point of a(t), then ä(t̂) > 0 (resp. < 0) if and only if

hm/µ(a(t̂), θ(t̂)) +
1

µ
tan2(η(t̂))ṙ2(t̂)r(t̂) > 0 (resp. < 0),

where η(t) denotes the angle from z(t) to ż(t). In particular, ä(t̂) = 0 is equivalent to the case with equality.

Proof. By definition of a(·), we have

(20) ȧ(t̂) =

(

ṙ(t̂)− a(t̂)
d

dt
|q(t̂)|

)

1

|q(t̂)|
= 0, ä(t̂) =

(

r̈(t̂)− a(t̂)
d2

dt2
|q(t̂)|

)

1

|q(t̂)|
.

According to identities |ż|2 = ṙ2 + r2θ̇2 and |ż|2 + z · z̈ = ṙ2 + rr̈, one can show that

r̈ = −
µ

r2
−
mz · (z − q)

r|z − q|3
+ θ̇2r = −

µ

r2
−

m(a+ cos θ)

(a2 + 1 + 2a cos θ)
3
2 |q|2

+ θ̇2r.(21)

Then we have

(22)

r̈(t)− a(t)
d2

dt2
|q(t)| = −

µ

r2(t)
−

m(a(t) + cos θ(t))

(a2(t) + 1 + 2a(t) cos θ(t))
3
2 |q(t)|2

+ θ̇2(t)r(t) + a(t)
µ

|q(t)|2

=

(

a(t)−
1

a2(t)
−
m

µ

(a(t) + cos θ(t))

(a2(t) + 1 + 2a(t) cos θ(t))
3
2

)

µ

|q(t)|2
+ θ̇2(t)r(t)

=

(

hm/µ(a(t), θ(t)) +
1

µ
θ̇2(t)r3(t)

)

µ

r2(t)

=

(

hm/µ(a(t), θ(t)) +
1

µ
tan2(η(t))ṙ2(t)r(t)

)

µ

r2(t)
.

The last equality follows from tan η(t) = r(t)θ̇(t)
ṙ(t) , since cos(η(t))|z(t)||ż(t)| = z(t) · ż(t) = r(t)ṙ(t) and

sin(η(t))|z(t)||ż(t)| = z(t)× ż(t) = r2(t)θ̇(t). The lemma holds. �

The following lemma introduces the zero set S of hm/µ(a, θ). See Figure 3 for the simulation of S with

m/µ = 1.

Lemma 4.5. Given hm/µ(a, θ) as in (19). Let S := {(a, θ) : hm/µ(a, θ) = 0}, we have

(a) if θ = π, there exist unique two α1, α3 with α1 < 1 < α3 such that (α1, π), (α3, π) ∈ S.

(b) if θ = 0, there exists a unique α2 with 1 < α2 < α3 such that (α2, 0) ∈ S.

(c) for each a ∈ [α1, 1) ∪ [α2, α3], there are exactly one zero θa such that (a, θa) ∈ S.

(d) for any a ∈ [0, α1) ∪ [1, α2) ∪ (α3,+∞), (a, θ) /∈ S for all θ ∈ [0, π].

Proof. First of all, we compute the partial differential with respect to θ of function hm/µ(a, θ),

∂

∂θ
hm/µ(a, θ) :=

m
µ a

2 sin θ(1− 2a2 − a cos θ)

(a2 + 1 + 2a cos θ)
5
2

.(23)
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Figure 3. The white area and the gray area indicate the collection of (a, θ) satisfying

hm/µ(a, θ) > 0 and hm/µ(a, θ) < 0 respectively, and the intersection curve between them is

the zero set S of h(a, ·). The arrows are pointing to the direction in which h(a, ·) increases.

Finally, h has a singular point (1, π).

Next, according to the range of a, we divide the proof into 3 cases:

Case 1: a = 1.

Since

hm/µ(1, θ) = −
m

µ

1 + cos θ

(2 + 2 cos θ)
3
2

= −
m

µ

1

2(2 + 2 cos θ)
1
2

is decreasing on [0, π] from −m/(4µ) to −∞ with respect to θ, we know that {(a, θ) ∈ S : a = 1} = ∅.

Case 2: 0 ≤ a < 1.

We first assume (a∗, θ∗) ∈ S and 0 ≤ a∗ < 1, then θ∗ ∈ (π/2, π] and a∗ ∈ (0,− cos θ). This implies the

set {(a, θ) ∈ S : 0 ≤ a < 1} ⊂ D1 where D1 denotes the area surrounded by the lines a = 0, θ = π and

curve {(a, θ) ∈ [0, 1]× [0, π] : a = − cos θ} (see the upper left part of Figure 3).

In the area D1, we have 1 − 2a2 − a cos θ > 0 and then, by (23), ∂
∂θhm/µ(a, θ) > 0. This means that,

when a is fixed, the function hm/µ(a, ·) is strictly increasing.

On the line θ = π. The equations

hm/µ(a, π) = a3 − 1−
m

µ

a2

(1− a)2
and

d

da
hm/µ(a, π) = 3a2 +

m

µ

2a

(1− a)3
> 0
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imply that hm/µ(·, π) is strictly increasing on [0, 1] from −1 to +∞. Then there is a unique α1 satisfying

hm/µ(α1, π) = 0, hm/µ(a, π) < 0 if a ∈ [0, α1) and hm/µ(a, π) > 0 if a ∈ (α1, 1).

On the curve {(a, θ) ∈ [0, 1]× [0, π] : a = − cos θ}, it is easy to check that hm/µ(a, θ) < 0.

According to the monotonicity of hm/µ(a, ·) and the signs of hm/µ(a, θ) on line θ = π and on curve

{(a, θ) ∈ [0, 1] × [0, π] : a = − cos θ}, we demonstrate that, for each a ∈ [α1, 1), there exists exactly

one θa ∈ [π/2, π] satisfying (a, θa) ∈ S and, for any a ∈ [0, α1), (a, θa) /∈ S for all θ ∈ [0, π], that is

{(a, θ) ∈ S : 0 ≤ a < 1} = {(a, θa) : α1 ≤ a < 1}.

Case 3: a > 1.

Let D2 := {(a, θ) : 1 < a < +∞, 0 ≤ θ ≤ π}, similar to Case 2, we discuss the monotonicity of hm/µ(a, ·)

in D2 and the signs of hm/µ(a, θ) on lines θ = 0 and θ = π.

In the area D2, we have 1 − 2a2 − a cos θ < 0 and then, by (23), ∂
∂θhm/µ(a, θ) < 0. This means that,

when a is fixed, the function hm/µ(a, ·) is strictly decreasing.

On the line θ = 0. The equations

hm/µ(a, 0) = a3 − 1−
m

µ

a2

(a+ 1)2
and

d

da
hm/µ(a, 0) =

2a

(a+ 1)3

(

3

2
a(a+ 1)3 −

m

µ

)

implies that hm/µ(·, 0) is either strictly increasing from −m/(4µ) to +∞ or strictly decreasing from

−m/(4µ) to some negative value −C < 0 and then strictly increasing to +∞. For both of these cases,

there are only one α2 > 1 such that hm/µ(α2, 0) = 0, hm/µ(a, 0) < 0 if a ∈ (1, α2) and hm/µ(a, 0) > 0 if

a ∈ (α2,+∞).

On the line θ = π. The equations

hm/µ(a, π) = a3 − 1−
m

µ

a2

(a− 1)2
and

d

da
hm/µ(a, π) = 3a2 +

m

µ

2a

(a− 1)3
> 0

imply that hm/µ(·, π) is strictly increasing on (1,+∞) from −∞ to +∞. Then there is a unique α3

satisfying hm/µ(α3, π) = 0, hm/µ(a, π) < 0 if a ∈ (1, α3) and hm/µ(a, π) > 0 if a ∈ (α3,+∞). Note that

α2 < α3 because hm/µ(α2, π) < hm/µ(α2, 0) = 0.

Summarize the above discussions, we demonstrate that, for each a ∈ [α2, α3], there exists exactly one

θa ∈ [0, π] satisfying (a, θa) ∈ S and, for any a ∈ (1, α2) ∪ (α3,+∞), (a, θ) /∈ S for all θ ∈ [0, π] (see the

right part of Figure 3), that is {(a, θ) ∈ S : a > 1} = {(a, θa) : α2 ≤ a ≤ α3}. This completes the proof. �

By using Lemma 4.5, we further obtain the following properties for hm/µ(a, θ).

Lemma 4.6. Given α1, α2, α3 as in Lemma 4.5. Then we have

(a) if a > α3, hm/µ(a, θ) > 0 for any θ ∈ [0, π].

(b) if a < α1, hm/µ(a, θ) < 0 for any θ ∈ [0, π].

(c) if a < α2 (resp. a > α2), hm/µ(a, 0) < 0 (resp. hm/µ(a, 0) > 0).

(d) if a ∈ [0, α1) ∪ (1, α3) (resp. a ∈ (α1, 1) ∪ (α3,+∞)), hm/µ(a, π) < 0 (resp. hm/µ(a, π) > 0).

Based on the results above, we now delve into the study of asymptotic behavior of a(t) as t → 0−. Let

a− = lim inft→0− a(t) and ā
− = lim supt→0− a(t).

Proposition 4.7. Given α1 as in Lemma 4.5, we have

(a) if ā− ≤ α1, then ā
− = a− =: a∗, i.e. a(t) is convergent as t→ 0−.
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(b) if ā− > α1, then a
− ≥ α1.

Proof. To show (a). Assume ā− > a−. From a− < α1, there exists a sequence tk → 0− such that

(24) a(tk) < α1, ȧ(tk) = 0 and ä(tk) ≥ 0.

By (20) and Lemma 4.4, (24) implies that ṙ(tk) = a(tk)
d
dt |q(tk)| and

(25) hm/µ(a(tk), θ(tk)) +
tan2 η(tk)

µ
a3(tk)

(

d

dt
|q(tk)|

)2

|q(tk)| ≥ 0,

where η(t) denotes the angle from z(t) to ż(t). Up to a subsequence, we assume the sequence {a(tk)} is

convergent and â := limk→+∞ a(tk) ≤
α1+a

−

2 < α1. Then by Lemma 4.6(b), we have

lim
k→+∞

hm/µ(a(tk), θ(tk)) = hm/µ(â, θ
−
∗ ) < −ǫ,

for some ǫ > 0 sufficiently small. Since a(tk) and
(

d

dt
|q(tk)|

)2

|q(tk)| ≤ C2
q |tk|

− 2
3Cq|tk|

2
3 = C3

q

are bounded by (14) and (24), and tan2 η(tk) is converging to 0 by Lemma 3.6, the left side of (25) is

negative when k is large enough, which is a contradiction. Hence, (a) follows.

To show (b). If ā− > α1, but a
− < α1, then there also exist a sequence tk → 0− with satisfying (24).

By following the argument in (a), we obtain a similar contradiction. The proof is completed. �

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. According to Lemma 4.3 and Proposition 4.7, it is sufficient to prove a∗ > 0, where

a∗ = limt→0− a(t) providing ā
− = a− ≤ α1. By contradiction, we assume a∗ = 0. The proof is separated

in two cases: θ(t) 6≡ π and θ(t) ≡ π on [−t0, 0).

To the former case, we first introduce the following two claims.

Claim 1: There exists a sequence {t′k} with t′k → 0− as k → +∞ such that 0 < |ṙ(t′k)| < Ĉ|t′k|
− 1

3 , for all

k, where Ĉ > 0 is given in Lemma 4.3.

Indeed. Recall that η(t) is the angle between z(t) = r(t)eiθ(t) and ż(t) = rd(t)e
iθd(t). From Lemma 3.4

and Lemma 3.6, as t→ 0−, we have

(26)
η(t) → π, tan η(t) → 0 and ṙ(t) < 0, if θ(t) 6≡ 0;

η(t) ≡ π, tan η(t) = 0 and ṙ(t) < 0, if θ(t) ≡ 0.

Given δ, Ĉ > 0 as in Lemma 4.3 and a convergent sequence {tk} ⊂ (−δ, 0) with tk → 0− as k → +∞. For

each k, by mean value theorem, there exists a moment t′k ∈ (tk, 0) such that

|ṙ(t′k)| =
|r(tk)− r(0)|

|tk − 0|
=

|r(tk)|

|tk|
< Ĉ|tk|

− 1
3 < Ĉ|t′k|

− 1
3 .(27)

By (26) and (27), {t′k} is the desired sequence in Claim 1.

Claim 2: There exists an ǫ > 0 small, such that 0 < |ṙ(t)| < Ĉ|t|−
1
3 , for all t ∈ (−ǫ, 0).

Write β(t) = |ṙ(t)| · |t|
1
3 . It is sufficient to prove β(t) < Ĉ for any t ∈ (−ǫ, 0). If not, there is a

sequence of moments t̄k → 0− such that β(t̄k) ≥ Ĉ. For each t′k as in Claim 1, there exists jk such that
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t′k ∈ (t̄jk , t̄jk+1), then the inequalities β(t′k) < Ĉ, β(t̄jk ) ≥ Ĉ and β(t̄jk+1) ≥ Ĉ imply that there is a

moment sk ∈ (t̄jk , t̄jk+1) such that β(sk) < Ĉ and β̇(sk) = 0. On the one hand, we can conclude that

(28) r̈(sk) = −β̇(sk)|sk|
− 1

3 −
1

3
β(sk)|sk|

− 4
3 = −

1

3
β(sk)|sk|

− 4
3 > −

1

3
Ĉ|sk|

− 4
3 .

On the other hand, combining (2), |ż|2 = ṙ2 + θ̇2r2, |ż|2 + z · z̈ = ṙ2 + rr̈ and tan η(t) = r(t)θ̇(t)
ṙ(t) , one can

show that

(29) r̈ = −
µ

r2
−
mz · (z − q)

r|z − q|3
+ θ̇2r = −

µ

r2
−

m(a+ cos θ)

(a2 + 1 + 2a cos θ)
3
2 |q|2

+ tan2 η
ṙ2

r
.

By using (29), we can further conclude that, for k sufficiently large,

(30)

r̈(sk) =

(

−
µ

a2(sk)
−

m(a(sk) + cos θ(sk))

(a2(sk) + 1 + 2a(sk) cos θ(sk))
3
2

+ tan2 η(sk)
β2(sk)|q(sk)|

a(sk)|sk|
2
3

)

1

|q(sk)|2

≤

(

−
µ

a2(sk)
+

m

|a2(sk) + 1 + 2a(sk) cos θ(sk)|
+ tan2 η(sk)

Ĉ2Cq
a(sk)

)

1

|q(sk)|2

< −
µ

2a2(sk)

1

|q(sk)|2
< −

µ

2a2(sk)C2
q

|sk|
− 4

3 .

The last two inequalities above follow by (14), β(sk) < Ĉ, limk→+∞ a(sk) = a∗ = 0 and limt→0− tan η(t) =

0, since the term −µa−2(sk) is the dominate term in (30), for k sufficiently large. From (28) and (30), we

observe

−
1

3
Ĉ < r̈(sk)|sk|

4
3 < −

µ

2a2(sk)C2
q

,

which gives a contradiction since the right hand side is smaller than the left hand side, as k → +∞. Hence,

Claim 2 holds.

Now to the latter case, i.e. θ(t) ≡ π on [−t0, 0), we prove a similar claim as before.

Claim 3: There exists an ǫ > 0 small, such that |ṙ(t)| < Ĉ|t|
1
3 for any t ∈ (−ǫ, 0).

By contradiction, we assume there exists a sequence t̄k → 0− such that β(t̄k) = |ṙ(t̄k)| · |t̄k|
1
3 ≥ Ĉ.

Similar to Claim 1, by taking δ > 0 as in Lemma 4.3 and a sequence tk → 0−, there exists another

sequence t′k → 0 such that |β(t′k)| < Ĉ for any k. Similar to Claim 2, due to the properties of t̄k and t′k,

there also exists a sequence sk → 0− such that β(sk) < Ĉ and β̇(sk) = 0. On the one hand, by (28), we

have r̈(sk) > − 1
3 Ĉ|sk|

− 4
3 . On the other hand, since a∗ = 0, for any t ∈ (−ǫ, 0) sufficiently small, by (14),

we have

(31) r̈ = −
µ

r2
−
mz · (z − q)

r|z − q|3
= −

µ

r2
+

m

(1− a)2|q|2
= (−

µ

a2
+

m

(1 − a)2
)
1

|q|2
≤ −

µ

2a2C2
q

|t|−
4
3 .

This contradicts to r̈(sk) > − 1
3 Ĉ|sk|

− 4
3 for k sufficiently large. Therefore, Claim 3 holds.

Now we complete the proof for both two cases. Since a∗ = limt→0− a(t) = 0, then there is a sequence

{tk} with tk → 0− as k → +∞ such that ȧ(tk) < 0 and a(tk) → 0 as k → +∞, then

ṙ(tk) = ȧ(tk)|q(tk)|+ a(tk)
d

dt
|q(tk)| < a(tk)

d

dt
|q(tk)|.
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Write fk(t) = r(t)− a(tk)|q(t)|, then fk(0) = fk(tk) = 0 and ḟk(tk) < 0. Similar to (30) and (31), we have

r̈(t) < − µ
2a2(t)C2

q
|t|−

4
3 . Together with (14), we have

f̈k(t) = r̈(t)− a(tk)
d2

dt2
|q(t)| ≤

(

−
µ

2a2(t)C2
q

+ a(tk)Cq

)

|t|−
4
3 < 0.

Furthermore, if k is large enough, we have ḟk(t) = ḟk(tk) +
∫ t

tk
f̈k(s)ds < 0, ∀t ∈ (tk, 0). This means that

fk is strictly decreasing on (tk, 0). However, this is impossible since fk(tk) = fk(0) = 0, contradiction.

This completes the proof. �

4.2. Asymptotic behavior of argz near the three-body collision. In this subsection, we devote our

attention to proving Theorem 4.8.

Based on Lemma 3.4, we know that when the minimizer z = reiθ experiences the three-body collision,

the asymptotic angle θ−∗ := limt→0− θ(t) exists. In the following, we further reveal that the asymptotic

angle θ−∗ must be 0 or π.

Theorem 4.8. Let z(t) = r(t)eiθ(t) be the action minimizer of A−T,0 on Ω−T,0
A,A0

. If z(0) = 0, then the

limit angle θ−∗ ∈ {0, π}. More precisely, if θ(t) 6≡ π (resp. θ(t) ≡ π), then we always have θ−∗ = 0 (resp.

θ−∗ = π).

Firstly, we recall that z(0) = 0, z(t) is smooth on [−t0, 0) and z(−t0) ∈ C+
∗ for some t0 ∈ (0, T ]. By

Lemma 3.4, we have θ(t) ∈ [0, π] on [−t0, 0]. To prove this theorem, we need to estimate the angular

momentum J(t) := z(t)× ż(t) = r2(t)θ̇(t), which is non-positive since θ̇(t) ≤ 0 on t ∈ [−t0, 0).

Lemma 4.9. Assume θ−∗ ∈ (0, π). Then there exists an ǫ > 0 small and a pair of constants cJ , CJ > 0

such that cJ |t|
1
3 < |J(t)| < CJ |t|

1
3 for all t ∈ (−ǫ, 0).

Proof. To show the upper bounded of J(t). According to Lemma 4.2 - 4.3, we can choose a δ > 0 which

makes (14) and Lemma 4.3 hold simultaneously. By Lemma 4.3, we have

(32) J(t)2 = r4(t)θ̇2(t) ≤ r2(t)|ż(t)|2 ≤ Ĉ2|t|
4
3 |ż(t)|2, for all t ∈ (−δ, 0).

To estimate |ż(t)|2, we consider the following. By (2), for t ∈ (−δ, 0), we have

(33)

1

2
|ż(t)|2 =

1

2
|ż(−δ)|2 +

∫ t

−δ

ż(s) · z̈(s)ds

=
1

2
|ż(−δ)|2 +

∫ t

−δ

ż(s) ·

(

−
µz(s)

|z(s)|3
−
m(z(s)− q(s))

|z(s)− q(s)|3

)

ds

=
1

2
|ż(−δ)|2 +

∫ t

−δ

−

(

ż(s) ·
µz(s)

|z(s)|3

)

−

(

(ż(s)− q̇(s) + q̇(s)) ·
m(z(s)− q(s))

|z(s)− q(s)|3

)

ds

= C1,δ +
µ

r(t)
+

m

|z(t)− q(t)|
−

∫ t

−δ

m cosψ(s)|q̇(s)|

|z(s)− q(s)|2
ds,
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where C1,δ =
1
2 |ż(−δ)|

2 − ( µ
r(−δ) +

m
|z(−δ)−q(−δ)| ) and ψ(s) denotes the angle between z(s)− q(s) and q̇(s).

By Theorem 4.1, we know that a(t) > ca for some constant ca > 0. Then, applying (14) and (16), we have

(34)

µ

r(t)
+

m

|z(t)− q(t)|
=

(

µ

a(t)
+

m

(a2(t) + 1 + 2a(t) cos θ(t))
1
2

)

1

|q(t)|

<

(

µ

cqca
+

m

cq sin θ(−δ)

)

|t|−
2
3 .

For the last term of (33), by (14) and (16) again, we can further obtain that

(35)

∣

∣

∣

∣

∫ t

−δ

m cosψ(t)|q̇(t)|

|z(t)− q(t)|2
dt

∣

∣

∣

∣

≤

∫ t

−δ

m|cosψ(t)| |q̇(t)|

(a2(t) + 1 + 2a(t) cos θ(t))|q(t)|2
dt

≤

∫ t

−δ

mCq

c2q sin
2 θ(−δ)

|t|−
5
3 dt

=
3mCq

2c2q sin
2 θ(−δ)

|t|−
2
3 − C2,δ,

where C2,δ =
3mCq

2c2q sin2 θ(−δ) |δ|
− 2

3 .

Then, combining (33), (34) and (35), we obtain that

(36) |ż(t)|2 ≤ C3,δ|t|
− 2

3 + C4,δ,

where

C3,δ = 2

(

µ

cacq
+

m

cq sin θ(−δ)

)

+
3mCq

c2q sin
2 θ(−δ)

> 0 and C4,δ = 2C1,δ − 2C2,δ.

Therefore, by (32) and (36), we have

(37) J(t)2 ≤ Ĉ2
(

C3,δ + 2C4,δ|t|
2
3

)

|t|
2
3 .

Hence, CJ > 0 exists.

To show the lower of J(t). From (2), (14) and Theorem 4.1, for t ∈ (−δ, 0), we have

J̇(t) = z(t)× z̈(t) =
mz(t)× q(t)

|z(t)− q(t)|3
=

ma(t)|q(t)|2 sin θ(t)

(a2(t) + 1 + 2a(t) cos θ(t))
3
2 |q(t)|3

≥
ma(t) sin θ(t)

(a(t) + 1)3Cq
|t|−

2
3 ≥

mca sin θ(t)

(Ca + 1)3Cq
|t|−

2
3 ,

which is always positive. Then due to the assumption θ−∗ ∈ (0, π), there exists ǫ ∈ (0, δ) sufficiently small

such that, for t ∈ (−ǫ, 0),

J̇(t) ≥ Č|t|−
2
3 , where Č =

mcamin{sin θ−∗ , sin θ(−ǫ)}

2(Ca + 1)3Cq
> 0.

Moreover, we observe that J(t) < 0 since θ−∗ ∈ (0, π) and θ̇(t) < 0 by Lemma 3.4. Then, for t ∈ (−ǫ, 0),

|J(t)| = −J(t) = −J(0) +

∫ 0

t

J̇(s)ds ≥

∫ 0

t

Č|s|−
2
3 ds = 3Č|t|

1
3 ,

where J(0) = 0 by (37). Hence, cJ > 0 exists and the lemma holds. �

Now we are ready to prove Theorem 4.8.
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Proof of Theorem 4.8. By contradiction, we assume θ−∗ ∈ (0, π). Since z(0) = 0, by using Lemma 4.9 and

Theorem 4.1, we see that

cJC
−2
q |t|−1 < |θ̇(t)| < CJc

−2
q |t|−1, ∀t ∈ (−ǫ, 0).(38)

Combining (38) with the monotonicity of θ(t), see Lemma 3.4, we conclude that

θ(−ǫ)− θ(0) =

∫ 0

−ǫ

−θ̇(t)dt =

∫ 0

−ǫ

|θ̇(t)|dt = ∞.

This provides a contradiction, since the left hand side is finite. Therefore, θ−∗ ∈ {0, π}. Moreover, if

θ(t) 6≡ π, by Lemma 3.4 and the conclusion above, θ−∗ = 0 must happens. Hence, the proof is done. �

4.3. Sundman-Sperling estimates. In this section, we aim to prove Theorem 1.1 completely, which

involves the Sundman-Sperling estimates near the three-body collision in the restricted one-center-two-

body problem. For general restricted multi-body problem, once there exists a three-body collision, which

is composed of a fixed particle, a moving primary and a massless particle, we believe the minimizer will

also satisfy the Sundman-Sperling estimates near the three-body collision, since the impact of non-colliding

particles is negligible.

The main steps of this proof is as follows:

• We first prove Lemma 4.10, i.e. the limit a∗ = limt→0− a(t) exists, by using Theorem 4.1 and

Theorem 4.8. The technique of inflection and critical points is needed.

• By using Lemma 4.6, together with the technique of inflection and critical points, we prove that

a∗ ∈ {α1, α2, α3}, see Lemma 4.12, 4.13.

• To complete the proof of Theorem 1.1, it is sufficient to show that both b(t) = ṙ(t)/ ddt |q(t)| and

c(t) = r̈(t)/ d
2

dt2 |q(t)| are converging into {α1, α2, α3} as t → 0−. We prove the former case in

Lemma 4.14 and left the latter in the proof of Theorem 1.1.

Recall that z(t) = r(t)eiθ(t) is the action minimizer ofA−T,0 on Ω−T,0
A,A0

. By assumption, we have z(0) = 0,

z(t) is smooth on [−t0, 0) and z(−t0) ∈ C+
∗ for some t0 ∈ (0, T ]. Based on the previous results, we have

the following lemma.

Lemma 4.10. a∗ := limt→0− a(t) ∈ (0,+∞).

Proof. According to Theorem 4.8, the proof will be divided into two cases: θ−∗ = 0 and θ−∗ = π. We first

denote that a = lim inft→0− a(t) and a = lim supt→0− a(t). By Theorem 4.1, we see that ca < a ≤ a < Ca

for some ca, Ca ∈ (0,+∞).

By contradiction, we assume a < a.

Case 1: Assume θ−∗ = 0.

If a < α2, on the one hand, there exists a sequence of moments {tk} with tk → 0− such that

a(tk) < (a+ α2)/2, ȧ(tk) = 0 and ä(tk) ≥ 0.(39)

By (20) and Lemma 4.4, (39) implies that ṙ(tk) = a(tk)
d
dt |q(tk)| and

(40) hm/µ(a(tk), θ(tk)) +
tan2 η(tk)

µ
a3(tk)

(

d

dt
|q(tk)|

)2

|q(tk)| ≥ 0,

where η(t) denotes the angle from z(t) to ż(t).
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On the other hand, up to a subsequence, we assume the limit limk→ a(tk) = â exists. Then, since

â ≤ (a+ α2)/2 < α2, together with Lemma 4.6(c) and θ−∗ = 0, we have

lim
k→+∞

hm/µ(a(tk), θ(tk)) = hm/µ(â, 0) < −ǫ,

for some ǫ > 0 sufficiently small. Moreover, by Theorem 4.1 and (14), we conclude that both a(tk) and
(

d
dt |q(tk)|

)2
|q(tk)| ≤ C2

q |tk|
− 2

3Cq|tk|
2
3 = C3

q are bounded. As k → +∞, by using Lemma 3.6, that is

tan2 η(tk) → 0, we conclude that the left side of (40) is strictly negative when k is large enough, which

gives a contradiction.

If a ≥ α2. Then we see that ā > α2. Analog to the situation before, there exists a sequence {sk} with

sk → 0− such that

a(sk) > (a+ ā)/2, ȧ(sk) = 0 and ä(sk) ≤ 0.(41)

By (20) and Lemma 4.4 again, (41) implies that ṙ(sk) = a(sk)
d
dt |q(sk)| and

(42) hm/µ(a(sk), θ(sk)) +
tan2 η(sk)

µ
a3(sk)

(

d

dt
|q(sk)|

)2

|q(sk)| ≤ 0.

Up to a subsequence, we assume the limit limk→+∞ a(sk) = ǎ exists. Then, since ǎ ≥ (a+a)/2 > α2, same

as the situation before, we can conclude that the left side of (42) is strictly positive when k is large enough,

which leads to another contradiction. Hence, the limit a∗ exists. The proof of Case 1 is completed.

Case 2: Assume θ−∗ = π. By Lemma 3.4, the solution satisfies z(t) ∈ (−∞, q(t)) or z(t) ∈ (q(t), 0) for

any t ∈ [−t0, 0). For the former case, we see that a(t) > 1 for any t ∈ [−t0, 0). This implies that a > a ≥ 1.

Same as in Case 1, when a ∈ [1, α3), one can find a sequence tk such that (40) holds for any k. However,

as k sufficiently large, one can choose a subsequence, also denote by tk, such that a(tk) → â ∈ [1+, α3).

Since Lemma 4.6, we see that hm/µ(a, π) < 0 for any a ∈ (1, α3) and hm/µ(a, π) > 0 for any a ∈ (α3,+∞).

In particular, as a → 1+, hm/µ(a, π) → −∞. Therefore, for sufficiently large k, (40) become negative,

which is a contradiction. Moreover, when a ∈ (α3,+∞), by following the previous argument, we also

obtain a contradiction. Hence, the limit a∗ exists. Similarly, by using the same strategy for a ∈ (0, α1) and

a ∈ (α1, 1), the latter case also lead to a contradiction. The proof of Case 2 is completed.

�

In order to characterize the limit a∗, we first provide the following asymptotic estimates of ṙ.

Lemma 4.11. Assume θ−∗ ∈ {0, π}. There exist ǫ > 0 and 0 < cd < Cd <∞ such that

cd|t|
1
3 < |ṙ(t)| < Cd|t|

1
3 , ∀ t ∈ (−ǫ, 0).

Proof. Firstly, we introduce the following useful identity

r̈(t) =

(

−
µ

a2(t)
−

m(a(t) + cos θ(t))

(a2(t) + 1 + 2a(t) cos θ(t))
3
2

)

|q(t)|−2 + tan2 η(t)
ṙ2(t)

r(t)
,(43)

where η(t) denotes the angle from z(t) to ż(t). The computation can be found in (21) and (22). We split

the proof in two cases.

Case 1: Assume θ−∗ = 0.
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By Lemma 4.10, for any ǫ > 0, we see that

∣

∣

∣

∣

(

−
µ

a2(t)
−

m(a(t) + cos θ(t))

a2(t) + 1 + 2a(t) cos θ(t)
3
2

)

−

(

−
µ

(a∗)2
−

m

(a∗ + 1)2

)∣

∣

∣

∣

< ǫ,(44)

for |t| > 0 sufficiently small.

On the one hand, fixing a t0 < 0 near 0. By using (14), (43) and (44), we have

ṙ(t)− ṙ(t0) =

∫ t

t0

r̈(s)ds ≥

∫ t

t0

(

−
µ

a2(s)
−

m(a(s) + cos θ(s))

(a2(s) + 1 + 2a(s) cos θ(s))
3
2

)

|q(s)|−2ds

≥

∫ t

t0

(

−
µ

(a∗)2
−

m

(a∗ + 1)2
− ǫ

)

c−2
q |s|−

4
3 ds

= −C′
d

(

|t|−
1
3 − |t0|

− 1
3

)

,

where C′
d := 3c−2

q

(

µ
(a∗)2 + m

(a∗+1)2 + ǫ
)

> 0. Then, by slightly enlarging C′
d, we derive the lower bound for

ṙ: for some Cd > C′
d,

ṙ(t) ≥ −C′
d|t|

− 1
3 + C′

d|t0|
− 1

3 + ṙ(t0) > −Cd|t|
− 1

3 ,(45)

for |t| sufficiently small.

On the other hand, due to inequalities (14), (45), Lemma 3.6 and Lemma 4.10, as t tends to 0−,

ṙ2(t)|q(t)|a−1(t) is bounded and tan2 η(t) tends to 0. Then, fixing a t0 < 0 near 0 again, by a similar

computation as above, we have

ṙ(t)− ṙ(t0) =

∫ t

t0

(

−
µ

a2(s)
−

m(a(s) + cos θ(s))

(a2(s) + 1 + 2a(s) cos θ(s))
3
2

+ tan2 η(s)
ṙ2(s)

a(s)
|q(s)|

)

|q(s)|−2 ds

≤

∫ t

t0

(

−
µ

(a∗)2
−

m

(a∗ + 1)2
+ 2ǫ

)

C−2
q |s|−

4
3 ds

= −c′d

(

|t|−
1
3 − |t0|

− 1
3

)

,

where c′d := 3C−2
q

(

µ
(a∗)2 + m

(a∗+1)2 − 2ǫ
)

> 0. Finally, after reducing c′d slightly, we derive the upper bound

of ṙ: for some cd < c′d,

ṙ(t) ≤ −c′d|t|
− 1

3 + c′d|t0|
− 1

3 + ṙ(t0) < −cd|t|
− 1

3 ,

for |t| sufficiently small. This proves the lemma in Case 1.

Case 2. Assume θ−∗ = π.

By Lemma 3.4, we know that θ(t) ≡ π for any t ∈ (−t0, 0). Since the angle η(t) between z(t) and ż(t) is

either 0 or π if ṙ 6= 0, then tan η(t) ṙ(t)r(t) ≡ 0 for every t ∈ (−t0, 0). By Lemma 4.10, for any ǫ > 0, we have

∣

∣

∣

∣

(

−
µ

a2(t)
−

m(a(t) + cos θ(t))

a2(t) + 1 + 2a(t) cos θ(t)
3
2

)

−

(

−
µ

(a∗)2
−

m

(a∗ − 1)2

)∣

∣

∣

∣

< ǫ,(46)
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for |t| sufficiently small. Following the previous strategy. Fixing a t0 < 0 near 0. By using (14), (43) and

(46), we have

ṙ(t)− ṙ(t0) =

∫ t

t0

r̈(s)ds =

∫ t

t0

(

−
µ

a2(s)
−

m(a(s) + cos θ(s))

(a2(s) + 1 + 2a(s) cos θ(s))
3
2

)

|q(s)|−2ds

≥

∫ t

t0

(

−
µ

(a∗)2
−

m

(a∗ − 1)2
− ǫ

)

c−2
q |s|−

4
3 ds

= −C′′
d

(

|t|−
1
3 − |t0|

− 1
3

)

,

where C′′
d := 3c−2

q

(

µ
(a∗)2 + m

(a∗−1)2 + ǫ
)

> 0. Moreover, same as before, we also obtain that

ṙ(t)− ṙ(t0) =

∫ t

t0

(

−
µ

a2(s)
−

m(a(s) + cos θ(s))

(a2(s) + 1 + 2a(s) cos θ(s))
3
2

)

|q(s)|−2 ds

≤

∫ t

t0

(

−
µ

(a∗)2
−

m

(a∗ − 1)2
+ ǫ

)

C−2
q |s|−

4
3 ds

= −c′′d

(

|t|−
1
3 − |t0|

− 1
3

)

,

where c′′d := 3C−2
q

(

µ
(a∗)2 + m

(a∗−1)2 − ǫ
)

> 0. By choosing ǫ > 0 sufficiently small, both C′′
d and c′′d are

positive. Then by enlarging C′′
d and reducing c′′d as before, we obtain the lower and upper bound for ṙ, no

matter α∗ = α1 or α3. This proves the lemma in Case 2 and the proof is now completed. �

Now we introduce the following lemma, i.e. when the limiting angle θ−∗ = 0, then r and |q| tend to

be proportional near the three-body collision. Moreover, the limiting ratio can be determined only by the

mass ratio m/µ.

Lemma 4.12. Assume θ−∗ = 0, then a∗ = α2, where α2 is the unique zero of (7) in (1,+∞).

Proof. To show a∗ ≤ α2. Assume not, that is a∗ > α2. Let ǫ > 0 and aǫ = a∗ − ǫ. Since a(t) is convergent

at t = 0, see Lemma 4.10, we know that a(t) − aǫ > 0 for |t| > 0 sufficiently small. Moreover, combining

(14), Lemma 3.6, Lemma 4.6(c) and Lemma 4.10, 4.11, we have

lim
t→0−

hm/µ(a(t), θ(t)) = hm/µ(a
∗, 0) > 0 and lim

t→0−
tan2 η(t)

ṙ2(t)

a(t)
|q(t)| = 0.

Then by (22) and d2

dt2 |q(t)| = − µ
|q(t)|2 , we compute that, for |t| > 0 sufficiently small,

(47)

r̈(t)− aǫ
d2

dt2
|q(t)| =

(

r̈(t)− a(t)
d2

dt2
|q(t)|

)

+ (a(t)− aǫ)
d2

dt2
|q(t)|

=

(

hm/µ(a(t), θ(t)) +
tan2 η(t)

µ
ṙ2(t)r(t) − a2(t)(a(t) − aǫ)

)

µ

r2(t)

≥
(

hm/µ(a
∗, 0)− ǫ− a2(t) · 2ǫ

) µ

r2(t)

>

(

1

2(a∗)2
hm/µ(a

∗, 0)−
2ǫ

(a∗)2
− 2ǫ

)

µ

|q(t)|2
= cǫ|q(t)|

−2,
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where cǫ :=
(

1
2(a∗)2 hm/µ(a

∗, 0)− 2ǫ
(a∗)2 − 2ǫ

)

µ. Since ǫ > 0 is arbitrary, we choose ǫ > 0 sufficiently small

such that cǫ > 0.

Fix a t0 < 0 near 0. By integration and Lemma 4.2, we have, for t ∈ (t0, 0),

ṙ(t)− aǫ
d

dt
|q(t)| = c0 +

∫ t

t0

r̈(s)− aǫ
d2

dt2
|q(s)| ds ≥ c0 +

∫ t

t0

cǫ|q(s)|
−2 ds

≥ c0 +
3cǫ
C2
q

(

|t|−
1
3 − |t0|

− 1
3

)

=
3cǫ
C2
q

|t|−
1
3 + c1,

where c0 := ṙ(t0)− aǫ
d
dt |q(t0)| and c1 := c0 −

3cǫ
C2

q
|t0|−

1
3 . By integration again, we obtain

0 > −(a(t)− aǫ)|q(t)| = −(r(t) − aǫ|q(t)|)

=

∫ 0

t

ṙ(s)− aǫ
d

dt
|q(s)| ds ≥

∫ 0

t

3cǫ
C2
q

|s|−
1
3 + c1 ds =

(

9cǫ
2C2

q

+ c1|t|
1
3

)

|t|
2
3 > 0,

for |t| > 0 sufficiently small. Then, we obtain a contradiction and we conclude that a∗ ≤ α2.

To prove a∗ ≥ α2. By contradiction, we assume a∗ < α2. Let ǫ > 0 and aǫ = a∗ + ǫ. By Lemma 4.10

again, we have a(t)− aǫ ∈ (−2ǫ, 0) for |t| > 0 sufficiently small. Similar to the previous case, we have

lim
t→0−

hm/µ(a(t), θ(t)) = hm/µ(a
∗, 0) < 0 and lim

t→0−
tan2 η(t)

ṙ2(t)

a(t)
|q(t)| = 0,(48)

Then similar to the estimates in (47), for |t| > 0 sufficiently small, we compute that

(49)

r̈(t)− aǫ
d2

dt2
|q(t)| =

(

hm/µ(a(t), θ(t)) +
tan2 η(t)

µ
ṙ2(t)r(t) − a2(t)(a(t) − aǫ)

)

µ

r2(t)

≤
(

hm/µ(a
∗, 0) + 2ǫ+ a2(t) · 2ǫ

) µ

r2(t)

<

(

1

2(a∗)2
hm/µ(a

∗, 0) +
3ǫ

(a∗)2
+ 2ǫ

)

µ

|q(t)|2
= −Cǫ|q(t)|

−2,

where Cǫ := −
(

1
2(a∗)2 hm/µ(a

∗, 0) + 3ǫ
(a∗)2 + 2ǫ

)

µ. Since ǫ > 0 is also arbitrary, we can choose ǫ > 0

sufficiently small such that Cǫ > 0.

Next, we fix a t0 < 0 near 0. By integration and Lemma 4.2, for any t ∈ (t0, 0), we have

ṙ(t)− aǫ
d

dt
|q(t)| = C0 +

∫ t

t0

r̈(s)− aǫ
d2

dt2
|q(s)| ds ≤ C0 −

∫ t

t0

Cǫ|q(s)|
−2 ds

≤ C0 −
3Cǫ
C2
q

(

|t|−
1
3 − |t0|

− 1
3

)

= −
3Cǫ
C2
q

|t|−
1
3 + C1,

where C0 := ṙ(t0)− aǫ
d
dt |q(t0)| and C1 := C0 +

3Cǫ

C2
q
|t0|−

1
3 . By integration again, we obtain

0 < −(a(t)− aǫ)|q(t)| = −(r(t) − aǫ|q(t)|)

=

∫ 0

t

ṙ(s)− aǫ
d

dt
|q(s)| ds ≤

∫ 0

t

−
3Cǫ
C2
q

|s|−
1
3 + C1 ds =

(

−
9Cǫ
2C2

q

+ C1|t|
1
3

)

|t|
2
3 < 0,

for |t| > 0 sufficiently small. Then, we obtain a contradiction and prove that a∗ ≥ α2. The proof is now

completed. �
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Near the three-body collision, the ratio of |z| and |q| has been characterized in the case θ−∗ = 0. Now

we consider the case θ−∗ = π.

Lemma 4.13. Assume θ−∗ = π, then a∗ ∈ {α1, α3}, where α1 < 1 < α3 are the unique two zeros of (8) in

(0, 1) ∪ (1,+∞).

Proof. Since θ(t) ≡ π on (−t0, 0), there are only two possibilities, i.e. z(t) ∈ (−∞, q(t)) and z(t) ∈ (q(t), 0).

We aim to show that, a∗ = α1 for the form case, and a∗ = α3 for the latter case. Since the proof is similar

to Lemma 4.12, then we only sketch the proof for a∗ = α1 and omit the proof for a∗ = α3.

We split the proof in two situations: to show the contradictions for a∗ ∈ (0, α1) and a
∗ ∈ (α1, 1].

Assume a∗ ∈ (α1, 1]. Let ǫ > 0 and aǫ = a∗ − ǫ. By Lemma 4.10, we know that a(t)− aǫ > 0 for |t| > 0

sufficiently small. Moreover, since θ(t) ≡ π, the angle η(t) from z(t) to ż(t) is 0 or π if ṙ(t) 6= 0. Then by

Lemma 4.6(c), we have

lim
t→0−

hm/µ(a(t), θ(t)) = hm/µ(a
∗, 0) > 0 and tan2(η(t))ṙ2(t)r(t) = 0, ∀t ∈ (−t0, 0).

By the computation in (47), for |t| > 0 sufficiently small, we have

r̈(t)− aǫ
d2

dt2
|q(t)| =

(

hm/µ(a(t), θ(t)) − a2(t)(a(t) − aǫ)
) µ

r2(t)

>

(

1

2(a∗)2
hm/µ(a

∗, 0)−
2ǫ

(a∗)2
− 2ǫ

)

µ

|q(t)|2
= cǫ|q(t)|

−2,

where cǫ :=
(

1
2(a∗)2 hm/µ(a

∗, 0)− 2ǫ
(a∗)2 − 2ǫ

)

µ. Since ǫ > 0 is arbitrary, we choose ǫ > 0 sufficiently small

such that cǫ > 0. On the other hand, fix a t0 < 0 near 0. By following exactly the argument in Lemma 4.12,

we obtain a contradiction that 0 > −(a(t)− aǫ)|q(t)| > 0 and we have a∗ ≤ α1.

Assume a∗ ∈ (0, α1). Let ǫ > 0 and aǫ = a∗ + ǫ. By Lemma 4.10 again, we have a(t)− aǫ ∈ (−2ǫ, 0) for

|t| > 0 sufficiently small. Similar to the previous case, we have

lim
t→0−

hm/µ(a(t), θ(t)) = hm/µ(a
∗, 0) < 0 and tan2 η(t)ṙ2(t)r(t) = 0,

Similar to the estimates (49), for |t| > 0 sufficiently small, we compute that

r̈(t)− aǫ
d2

dt2
|q(t)| =

(

hm/µ(a(t), θ(t)) − a2(t)(a(t) − aǫ)
) µ

r2(t)

<

(

1

2(a∗)2
hm/µ(a

∗, 0) +
3ǫ

(a∗)2
+ 2ǫ

)

µ

|q(t)|2
= −Cǫ|q(t)|

−2,

where Cǫ := −
(

1
2(a∗)2 hm/µ(a

∗, 0) + 3ǫ
(a∗)2 + 2ǫ

)

µ. Since ǫ > 0 is also arbitrary, we can choose ǫ > 0

sufficiently small such that Cǫ > 0. Next, we fix a t0 < 0 near 0. By using the same strategy as in Lemma

4.13, we obtain a similar contradiction, 0 < −(a(t)− aǫ)|q(t)| < 0. This means a∗ ≥ α1. The proof is now

completed. �

To further prove the Sundman-Sperling estimates for the three-body collision, we study the ratio of

velocities for z and q, based on the characterization of the ratio of positions.

Lemma 4.14. Let b(t) = ṙ(t)/ ddt |q(t)|. Then we have b∗ := limt→0− b(t) exists. Moreover,

(a) if θ−∗ = 0, then b∗ = α2,
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(b) if θ−∗ = π, then b∗ ∈ {α1, α3},

where α2 solves (7) and α1, α3 solve (8).

Proof. To show (a). Following the strategy of Lemma 4.12. We first prove the existence of b∗, then prove

b∗ = α2. Denote b− = lim inft→0− b(t) and b
−

= lim supt→0− b(t). Unlike behavior of a(t), b− and b
−

might be ±∞.

To show b∗ exists. By contradiction, we assume b− < b
−
.

Case 1: Assume b− < α2. There exists an ǫ > 0 small and a sequence of moments {tk} with tk → 0−

such that

b(tk) < α2 − ǫ, and ḃ(tk) =
r̈(tk)− b(tk)

d2

dt2 |q(tk)|
d
dt |q(tk)|

≤ 0,(50)

for any k sufficiently large.

From Lemma 4.12, it is clear that a(tk) − b(tk) ≥ ǫ/2 for sufficiently large k. By similar arguments in

(48) and (49), together with the fact that hm/µ(α2, 0) = 0, we conclude that

(51)

r̈(tk)− b(tk)
d2

dt2
|q(tk)|

=

(

hm/µ(a(tk), θ(tk)) +
tan2 η(tk)

µ
ṙ2(tk)r(tk)− a2(tk)(a(tk)− b(tk))

)

µ

r2(tk)

≤
(

hm/µ(α2, 0)−
ǫ

4
a2(tk)

) µ

r2(tk)
< 0,

for k sufficiently large. This contradicts to (50) since ḃ(tk) ≤ 0 and d
dt |q(tk)| < 0.

Case 2: Assume b− ≥ α2. There also exists an ǫ > 0 and a sequence {sk} with sk → 0− such that

b(sk) > α2 + ǫ, and ḃ(sk) =
r̈(sk)− b(sk)

d2

dt2 |q(sk)|
d
dt |q(sk)|

≥ 0,(52)

for k sufficiently large.

From Lemma 4.12 again, it is clear that a(tk) − b(tk) ≤ −ǫ/2 for sufficiently large k. By a similar

argument in (51), for k sufficiently large, we have

r̈(tk)− b(tk)
d2

dt2
|q(tk)| ≥

(

hm/µ(α2, 0) +
ǫ

4
a2(tk)

) µ

r2(tk)
> 0,

which leads to a contradiction with (52). Therefore, the limit b− = b
−
= b∗ exists.

To show b∗ = α2. By contradiction, we assume b∗ 6= α2. Let ǫ =
1
2 |b

∗ − α2| > 0, then for |t| sufficiently

small, we have

(53)

|a(t/2)− a(t)| =

∣

∣

∣

∣

∣

∫ t/2

t

ȧ(s)ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t/2

t

ṙ(s)|q(s)| − r(s) ddt |q(s)|

|q(s)|2
ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t/2

t

(b(s)− a(s)) ddt |q(s)|

|q(s)|
ds

∣

∣

∣

∣

∣

≥

∫ t/2

t

(|b∗ − α2| − ǫ)
d
dt |q(s)|

|q(s)|
ds

≥
|b∗ − α2|

2

∫ t/2

t

cq
Cq

|s|−1ds =
cq
2Cq

|b∗ − α2| ln 2 > 0.
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The first inequality above follows from the fact that (b(s) − a(s)) ddt |q(s)| does not change the sign when

|s| is sufficiently small, and the second inequality follows from (14). However, from the fact that a(t)

is convergent, we observe that limt→0− |a(t/2) − a(t)| = 0, which contradicts (53). The proof of (a) is

completed.

To show (b). By Lemma 3.4, we know that θ(t) ≡ π for any t ∈ (−t0, 0). Since the angle η(t) between

z(t) and ż(t) is either 0 or π if ṙ 6= 0, then tan η(t) ṙ(t)r(t) ≡ 0 for every t ∈ (−t0, 0). Similar to Lemma 4.13,

we first prove that b∗ exists, then prove b∗ = α1 or b∗ = α3.

Since the proof of b∗ = α1 and b
∗ = α3 are similar, we only sketch the proof for b∗ = α1. By contradiction,

assume b− < b
−
, where b− and b

−
might be ±∞. Similar as (a), we will show that both b− < α1 and

b− ≥ α1 will lead to a contradiction.

Case 1: When b− < α1, there exists an ǫ > 0 small and a sequence of moments {tk} with tk → 0− such

that, for k sufficiently large, we have

b(tk) < α1 − ǫ, and ḃ(tk) =
r̈(tk)− b(tk)

d2

dt2 |q(tk)|
d
dt |q(tk)|

≤ 0.(54)

From Lemma 4.13, it is clear that a(tk)− b(tk) > ǫ/2. Same as the proof of (a), together with the fact that

hm/µ(α1, 0) = 0, we have

(55)
r̈(tk)− b(tk)

d2

dt2
|q(tk)| =

(

hm/µ(a(tk), θ(tk))− a2(tk)(a(tk)− b(tk))
) µ

r2(tk)

≤
(

hm/µ(α1, 0)−
ǫ

4
a2(tk)

) µ

r2(t)
< 0,

for k sufficiently large. This contradicts to (54) since ḃ(tk) ≤ 0 and d
dt |q(tk)| < 0.

Case 2: When b− ≥ α1, there exists an ǫ > 0 small and a sequence {sk} with sk → 0− such that, for k

sufficiently large, we have

b(sk) > α1 + ǫ, and ḃ(sk) =
r̈(sk)− b(sk)

d2

dt2 |q(sk)|
d
dt |q(sk)|

≥ 0.(56)

This means that a(sk)− b(sk) < −ǫ/2. Similar to the argument in (55), we have

r̈(tk)− b(tk)
d2

dt2
|q(tk)| ≥

(

hm/µ(α1, 0) +
ǫ

4
a2(tk)

) µ

r2(t)
> 0,

for k sufficiently large. This also leads to a contradiction with (56). Hence, the limit b− = b
−
= b∗ exists.

To show b∗ = α1. By contradiction, we assume b∗ 6= α1. Let ǫ = 1
2 |b

∗ − α1| > 0, then same as the

computation in (a), we conclude that, for |t| sufficiently small,

(57) |a(t/2)− a(t)| =
cq
2Cq

|b∗ − α1| ln 2 > 0.

However, limt→0− |a(t/2) − a(t)| = 0, since a(t) is convergent. This contradicts to (57). Therefore, (b)

holds as we expected. The proof is now completed. �

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Recall that the restricted one-center-two-body problem (2) is symmetric with re-

spect to the real axis, and the action functional A is invariant under the complex conjugation. Therefore,

it is sufficient to prove this theorem on [−T, 0]. Moreover, by Lemma 2.1, there exists a moment t0 ∈ (0, T ],

such that z(t) is smooth on (−t0, 0), z(−t0) ∈ C+
∗ and z(0) = 0.

To prove (a). By Theorem 2.9, since z(t) is a minimizer, there exists no two-body collision on [−T, 0).

Then by taking t0 = T , we see that (a) is a direct conclusion of Lemma 3.4 and Lemma 4.8.

To prove (b). The first two estimates of (6) follow from Lemma 4.12 - 4.14. To show the third estimate.

Let c(t) = r̈(t)/ d
2

dt2 |q(t)|. According to (22) and (1), we have

c(t)− a(t) = −
1

a2(t)

(

hm/µ(a(t), θ(t)) +
1

µ
tan2(η(t))ṙ2(t)r(t)

)

.(58)

Combing Lemma 4.12, 4.13, Lemma 4.6 and Lemma 3.6, we have a∗ = limt→0− a(t) ∈ {αi}3i=1,

lim
t→0−

hm/µ(a(t), θ(t)) = hm/µ(α∗, 0) = 0 and lim
t→0−

tan2 η(t)
ṙ2(t)

a(t)
|q(t)| = 0.

Then as t→ 0−, we obtain from (58) that limt→0− c(t) = a∗ ∈ {αi}3i=1. In particular, (b1) and (b2) follow.

The proof is now completed. �

5. Application: Classical solutions with prescribed boundary angles

In this section, as an application of Theorem 1.1, i.e. the Sundman-Sperling estimates to the restricted

one-center-two-body problem (2), we aim to prove Theorem 1.2, i.e. the existence of the collision-free

solutions z(t) jointing from the ray eφiR+ to eφ0iR+ in t ∈ [−T, 0], where (φ, φ0) ∈ [0, π] × [0, π] with

φ 6= φ0. Similar in [0, T ] with φ, φ0 switched. The strategy of this proof is first to apply Theorem 2.9 to

exclude the two-body collisions, then apply Theorem 1.1 and the local deformation method to exclude the

three-body collision for prescribed boundary angles φ, φ0.

Recall from (5) that the action functional

Aa,b(z) =

∫ b

a

1

2
|ż|2 + U(z, t)dt, ∀z ∈ H1([a, b],C),

where the potential U(z, t) is given in (3). It is well-known that for any a < b, Aa,b is a weakly lower

semi-continuous on H1([a, b],C) and the equation (2) is the Euler-Lagrange equation of Aa,b. This implies

that the critical points of Aa,b in H1([a, b],C) are weak solutions of the restricted one-center-two-body

problem (2) on t ∈ [a, b].

Consider the path space

Ωa,bφ1,φ2
= {x = reθi ∈ H1([a, b],C) : r ∈ R+, θ(a) = φ1, θ(b) = φ2}.

We can obtain the following lemma.

Lemma 5.1. Given T > 0 and a collision Kepler system (q, c) which satisfies (1) and (Q1) − (Q3). For

any φ, φ0 ∈ [0, π) with φ 6= φ0, the action functional A−T,0 (resp. A0,T ) attains its infimum on Ω−T,0
φ,φ0

(resp. Ω0,T
φ0,φ

).
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Proof. Here, because of the reversibility of (2), we only show the existence of minimizer of A−T,0 on Ω−T,0
φ,φ0

and omit the case for A0,T on Ω0,T
φ0,φ

.

Since A−T,0 is weakly lower semi-continuous on H1([a, b],C), it is sufficient to show A−T,0 is coercive

in Ω−T,0
φ,φ0

, that is A−T,0(z) → +∞ as ‖z‖L2([−T,0],C) → +∞.

Let z = reθi ∈ Ω−T,0
φ,φ0

. Since θ(−T ) = φ and θ(0) = φ0, we have

|sin(φ − θ(t))| · |z(t)| ≤ |z(t)− z(−T )| and |sin(φ0 − θ(t))| · |z(t)| ≤ |z(t)− z(0)|,

for t ∈ [−T, 0].

By Holder’s inequality, we further obtain that

|sin(φ− θ(t))|2|z(t)|2 ≤ |z(t)− z(−T )|2 ≤

(
∫ t

−T

|ż(s)|ds

)2

≤ (t+ T )

∫ t

−T

|ż(s)|2ds,

|sin(φ0 − θ(t))|2|z(t)|2 ≤ |z(t)− z(0)|2 ≤

(
∫ 0

t

|ż(s)|ds

)2

≤ (−t)

∫ 0

t

|ż(s)|2ds.

for t ∈ [−T, 0]. Then we compute that

‖ż‖2L2([−T,0],C) ≥

(

|sin(φ − θ(t))|2

t+ T
+

|sin(φ0 − θ(t))|2

−t

)

|z(t)|2

≥
1

T

(

|sin(φ− θ(t))|2 + |sin(φ0 − θ(t))|2
)

|z(t)|2

≥
2

T
Cφ,φ0

|z(t)|2,

where

Cφ,φ0
:= min

{

sin2
(

φ− φ0
2

)

, cos2
(

φ− φ0
2

)}

> 0, ∀φ, φ0 ∈ [0, π),

and the last inequality can be checked by using direct computation. Therefore, we have

‖z‖L2([−T,0],C) ≤
T

√

2Cφ,φ0

‖ż‖L2([−T.0],C).

Since A−T,0(z) ≥
1
2‖ż‖

2
L2([−T,0]), we conclude that

A−T,0(z) → +∞ as ‖z‖L2([−T,0],C) → +∞.

This completes the proof. �

As previously stated, the minimizer obtained in Lemma 5.1 is a weak solution of the restricted one-center-

two-body problem (2). It becomes a classical solution if it does not encounter any collisions. Therefore, to

prove Theorem 1.2, it is sufficient to exclude the two-body and three-body collisions in the minimizer of

A−T,0 on Ω−T,0
φ,φ0

. The proof on t ∈ [0, T ] is similar.

We first exclude the two-body collisions in the following theorem.

Theorem 5.2. Given T > 0 and a collision Kepler system (q, c) satisfying (1) and (Q1) − (Q3). Let

A−T,0 (A0,T ) be an action functional on Ω−T,0
φ,φ0

(Ω0,T
φ,φ0

) as in (5) and assume z(t) is an associated minimizer.

Then z(t) possesses no two-body collision on [−T, 0] (or [0, T ]).



ON THE S-S ESTIMATES FOR THE RESTRICTED ONE-CENTER-TWO-BODY PROBLEM 33

Proof. We only prove this theorem for A−T,0 on Ω−T,0
φ,φ0

. By applying Theorem 2.9, it is sufficient to consider

the case τ = −T .

Firstly, without loss of generality, we can assume z(t) ∈ C+
∗ is smooth on (−T, 0) by using conjugation

and Theorem 2.9. By assumption that φ ∈ [0, π), the two-body collision at t = −T must be between z and

c. When the situation φ 6= 0 or the situation φ = 0 with θ+c,−T 6= π occurs, we have |θ(−T )− θ+c,−T | < π.

Then by using Proposition 2.7, we get a contradiction to the assume that z is a minimizer.

When the situation φ = 0 with θ+c,−T = π occurs, the particle z will lie on the negative real axis until

next collision happens (at τ ′ ∈ (−T, 0]). By Theorem 2.9, we only need to consider the case τ ′ = 0. In this

situation, z(−T ) = z(0) = 0 and z(t) ∈ (q(t), 0) ⊂ (−∞, 0) on (−T, 0). It is clear that −z ∈ Ω−T,0
φ,φ0

and

A−T,0(−z) < A−T,0(z) since −z has same kinetic energy with z and less potential energy than z. This

causes a contradiction and the proof now is completed. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. According to Lemma 5.1 and Theorem 5.2, we know that A−T,0 admits a minimizer

z(t) on Ω−T,0
φ,φ0

with no two-body collision on [−T, 0]. By the properties of minimizer, it is sufficient to prove

(a), (c) and (d).

As in the proof of Theorem 5.2, we can assume z(t) ∈ C+
∗ is smooth for all t ∈ (−T, 0).

To show (a). It is sufficient to exclude the three-body collision of z, i.e. z(0) 6= 0. Assume z(0) = 0 by

contradiction. Since φ0, φ 6= π, by Theorem 1.1 (c.f. Theorem 4.8), we have θ−∗ = 0. Consider the following

two cases.

Case 1: φ0 = 0. Write z(t) = x(t) + iy(t). Choose an ǫ > 0 sufficiently small. We define a new path

ẑǫ(t) = x̂ǫ(t) + iŷǫ(t) by

x̂ǫ(t) :=







x(t), if t ∈ [−T,−ǫ],

x(−ǫ), if t ∈ [−ǫ, 0],
ŷǫ(t) = y(t), for all t ∈ [−T, 0],

see the left picture in Figure 4. It is easy to check that ẑǫ ∈ Ω−T,0
φ,0 . Since θ−∗ = 0, for any ǫ > 0 sufficiently

small, we have 0 < x(t) < x(−ǫ) for every t ∈ (−ǫ, 0). Then for any t ∈ (−ǫ, 0), we conclude that

|ż(t)|2 − | ˙̂zǫ(t)|
2 = ẋ2(t) ≥ 0,

µ

|z(t)|
−

µ

|ẑǫ(t)|
=

µ
√

x2(t) + y2(t)
−

µ
√

x2(−ǫ) + y2(t)
> 0,

and

m

|z(t)− q(t)|
−

m

|ẑǫ(t)− q(t)|
=

µ
√

(x(t) − q(t))2 + y2(t)
−

µ
√

(x(−ǫ)− q(t))2 + y2(t)
> 0.

These inequalities show that A−T,0(z) − A−T,0(ẑǫ) > 0. This leads to a contradiction to the minimizer.

Case 1 is proved.
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Case 2: φ0 ∈ (0, π/2]. Choose an ǫ > 0 sufficiently small and define z̃ǫ(t) = x̃ǫ(t) + iỹǫ(t) by

x̃ǫ(t) :=



















x(t), if t ∈ [−T,−ǫ],

x(t), if t ∈ (−ǫ, tǫ],

x(tǫ), if t ∈ (tǫ, 0],

ỹǫ(t) :=



















y(t), if t ∈ [−T,−ǫ],

y(−ǫ), if t ∈ (−ǫ, tǫ],

y(−ǫ), if t ∈ (tǫ, 0],

see the right picture in Figure 4. where tǫ ∈ (−ǫ, 0] is a moment with x(tǫ) + iy(−ǫ) ∈ eφ0iR+. Since

θ−∗ = 0, for ǫ > 0 sufficiently small, we have θ(−ǫ) < φ0, then the moment tǫ exists. We see that z̃ǫ ∈ Ω−T,0
φ,φ0

.

Moreover, for ǫ > 0 sufficiently small, we have

0 < x(t) ≤ x̃ǫ(t) and 0 < y(t) < ỹǫ(t), for all t ∈ (−ǫ, 0).

Then for t ∈ (−ǫ, 0), we conclude that

|ż(t)|2 − | ˙̃zǫ(t)|
2 ≥ ẏ2(t) ≥ 0,

µ

|z(t)|
−

µ

|z̃ǫ(t)|
=

µ
√

x2(t) + y2(t)
−

µ
√

x̃2ǫ (t) + ỹ2ǫ (t)
> 0,

and

m

|z(t)− q(t)|
−

m

|z̃ǫ(t)− q(t)|
=

µ
√

(x(t) − q(t))2 + y2(t)
−

µ
√

(x̃ǫ(t)− q(t))2 + ỹ2ǫ (t)
> 0.

These inequalities implies that A−T,0(z)−A−T,0(z̃ǫ) > 0. This leads to a contradiction to the minimizer.

Case 2 is proved and the proof of (a) is completed.

To show (c). Recall that z(t) is smooth on (−T, 0). By Corollary 3.3, if (c) is false, then either z(t) ∈ R+

or z(t) ∈ R−. However, since z(−T ) 6= 0 6= z(0) by (a), φ ∈ [0, π) and φ 6= φ0, neither of them happens.

This gives a contradiction. Moreover, if min{φ, φ0} = 0, then θ(t) must be strictly monotone on [−T, 0],

i.e. t∗ ∈ {0, π}. Otherwise, if t∗ ∈ (−T, 0), then θ(t∗) = 0, which contradicts to the strictness of the

monotonicity for θ(t) on [−T, t∗] and [t∗, 0]. Hence, (c) holds.

Finally, (d) follows directly from the variational computation of A−T,0 on Ω−T,0
φ,φ0

at the collision-free

minimizer z|[−T,0]. �

Remark 5.3. When φ0 ∈ (π/2, π), the three-body collision is difficult to exclude. In fact, unlike the case

of two-body collisions, the three-body collision involving two different singularities, which are asymptotic

to each other as t → 0±. The behavior of these two singularities highly impact the action of the local

deformation pathes. This causes a huge difficulty to the exclusion of the three-body collision.

6. Appendix: Periodic and quasi-periodic solutions

In one of the pioneer work [9] of variational method to the N -body problem, Gordon mentioned a class

of extended Kepler collision solution with negative energy which allow the bodies bounce towards arbitrary

directions after collisions.

Let ψ ∈ (−π, π) and c ≡ 0. In this appendix, we consider a special class of extended Kepler collision

solution qψ of (1) which has negative energy and reflect a fixed angle ψ after each collision. Notice that qψ
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Figure 4. Local deformation paths.

is periodic (ψ/π ∈ Q) or quasi-periodic (ψ/π /∈ Q) since the energy of qψ is constant except the moment

of collision [5, Sec.3.3].

More precisely, without loss of generality, we assume the extended Kepler collision orbit qψ satisfies the

following conditions:

(Q1ψ) qψ collides with c at moment t = 2kT for each k ∈ Z.

(Q2ψ) qψ is smooth on (2kT, 2(k + 1)T ), that is qψ 6= 0 on (2kT, 2(k + 1)T ), for each k ∈ Z.

(Q3ψ) qψ|(2kT,2(k+1)T ) lies on the ray e(π−kψ)iR+, for each k ∈ Z.

According to assumptions (Q1ψ)− (Q3ψ), we obtain the following properties:

(Q4ψ) qψ((2k + 1)T − t) = qψ((2k + 1)T + t) on [0, T ], for each k ∈ Z.

(Q5ψ) q̇ψ((2k + 1)T ) = 0, for each k ∈ Z.

Consider the extended Kepler collision system (qψ, c) which satisfies (Q1ψ) − (Q3ψ). According to

Theroem 1.2 and 1.3, there exists two collision-free solutions zψ|[0,T ] ∈ Ω0,T
ψ/2,0 and zψ|[T,2T ] ∈ ΩT,2T0,−ψ/2 of

the restricted one-center-two-body problem (2) satisfying (see Figure 5)

• zψ(t) = z̄ψ(2T − t) on [0, T ] and zψ is smooth at t = T .

• zψ(0) ∈ eψi/2R+, zψ(T ) ∈ R+ and zψ(2T ) ∈ e−ψi/2R+.

• zψ is orthogonal to eψi/2R+, R+ and e−ψi/2R+ at moment t = 0, T, 2T , respectively.

Moreover, by the symmetry of qφ, the domain of solution zψ|[0,2T ] can be extended to R by choosing zψ

as following (see Figure 5)

zψ(t) = zψ(t̂)e
−kψi, where k ∈ Z, t̂ ∈ [0, 2T ) with t = 2kT + t̂.
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Figure 5. Extended Kepler collision orbit q−4π/5 and the solution z−4π/5.

Note that zψ(t) is well-defined on R. For each k ∈ Z, zψ is smooth and orthogonal to e(1/2−k)ψiR+ at

t = 2kT . In particular, the three bodies (zψ, qψ, c) form a periodic (ψ/π ∈ Q) or quasi-periodic (ψ/π /∈ Q)

of the restricted one-center-two-body system.
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