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Trapping macromolecules is impoartant for the study of their conformations, interactions, dynam-
ics and kinetic processes. Here, we develop a variational approach which self-consistently introduces
a mean force that controls the center-of-mass position and a self-adjustable harmonic potential that
counters the center-of-mass fluctuation. The effectiveness and versatility of our approach is verified
in three classical yet not fully understood problems in polymer physics: (1) single-chain conforma-
tion in the entire solvent regimes, (2) globule-pearl necklace-coil transition of a polyelectrolyte and
(3) inter-chain interaction by simultaneously trapping two polymers. The scaling relationships and
θ behaviors are well captured. Conformations with large shape anisotropy appearing in charged
polymers are clearly depicted. Our theoretical predictions are in quantitative agreement with ex-
perimental results reported in the literature.

Trapping and manipulating individual macromolecules
is not only an outstanding challenge in fundamental poly-
mer, soft matter and biophysics, but also an ultimate task
in nanotechnology [1–6]. It is always desired to counter
Brownian motion and manage the position and orienta-
tion of macromolecules in a well-controlled manner when
placing them in an environment of interest or bringing
them into contact with each other [7, 8]. The trap of
a single molecule enables the probe of its response to
external stimuli, e.g. measuring the force-extension of
DNA through optical tweezers and detecting protein in
nanochannels via electroosmotic flow [9–14]. Quantify-
ing the intermolecular interaction requires simultaneous
trap of two molecules. It plays a vital role in determin-
ing a wealth of structural and dynamic behaviors, such
as stability of colloids, solubility of polymers, and affin-
ity of proteins [15–19]. Trapping can also be performed
on larger molecular assemblies to uncover key features of
complex kinetic processes. The energy barrier and tran-
sient state in the kinetic pathway of polyelectrolyte coac-
ervation, protein aggregation, micelle exchange, vesicle
fission/fusion, and etc. can thus be identified [20–26].

The trap of macromolecules has been successfully
achieved in experiments by confining them in electromag-
netic or flow fields [1–8, 14]. It has also been realized in
simulations via imposing a biased potential [20, 27–29].
However, a robust control of macromolecules through a
theoretical approach remains a great challenge. Edward
studied the excluded volume effect on the conformation
of a single polymer by tethering one chain end, which in-
evitably introduces a bias and breaks the equivalence of
the two ends [30]. Based on Lifshitz’s Theory, Grosberg
and Kuznetsov confined a polymer via the boundary con-
dition of its density field [31, 32]. However, this method
is only effective in poor solvent regime when the poly-
mer forms a compact globule, whereas the trap fails in
good solvents due to the large density fluctuation of the
coil state [33, 34]. To enhance the confinement, Xu and
Wang introduced a harmonic spring between the mid-

dle segment and the center-of-mass (c.m.) in the self-
consistent field theory (SCFT) [35]. Since the spring con-
stant is adopted by assuming the monomer distribution
to be Gaussian with spherical symmetry, this approach
becomes less accurate away from the θ regime. The effec-
tiveness of this approach to capture non-spherical confor-
mations or trap two chains simultaneously also has not
been verified yet [26, 36–39]. Similar problem of presum-
ing the chain conformation also exists in other methods
like integral equation approach and renormalized group
theory [40–42]. To date, there is no unified theory to our
knowledge that can quantitatively describe single poly-
mer conformation in the entire solvent regimes, one of
the most basic problems in polymer science.

To achieve a robust trap of macromolecules, we develop
a variational approach which naturally leads to a force
controlling the position of the c.m. and a harmonic po-
tential self-adjusted based on the non-perturbative feed-
back from the fluctuation of the c.m. To verify the effec-
tiveness and versatility of our approach, we apply it to
three classical yet not fully understood problems in poly-
mer physics: (1) single-chain conformation in the entire
solvent regimes, (2) globule-pearl necklace-coil transition
of a polyelectrolyte, and (3) inter-chain interaction by
simultaneously trapping two polymers. Scaling relation-
ships and θ behaviors are well captured. Our theoretical
predictions are in quantitative agreement with experi-
mental results reported in the literature.

Without loss of generality, we use an example of trap-
ping a single neutral polymer to illustrate the essence
of our variational approach. Applications to a charged
polymer and the simultaneous trap of multiple chains
are shown in Sec. I in the Supplementary Materials. We
consider a system of one polymer immersed in ns solvent
molecules which are connected with a pure solvent reser-
voir to maintain the chemical potential of solvent µs. The
polymer is modeled by a continuous Gaussian chain of N
Kuhn segments with Kuhn length b. To trap this poly-
mer, we fix its c.m. at a specific position ξξξ , giving rise
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to the semicanonical partition function

Z = ∑
ns

eβ µsns

ns!vN+ns

∫
D̂{RRR}

ns

∏
γ=1

∫
drrrγ exp(−βH)

∏
rrr

δ [1− φ̂p(rrr)− φ̂s(rrr)]δ [
1
N

∫ N

0
dsRRR(s)−ξξξ ]

(1)

where
∫

D̂{RRR} denotes the integration over all configura-
tions weighted by Gaussian-chain statistics. The Hamil-
tonian βH = v−1χ

∫
drrrφ̂p(rrr)φ̂s(rrr) includes the polymer-

solvent interaction in terms of the Flory χ parameter,
with φ̂p and φ̂s the instantaneous volume fractions of the
polymer and solvent, respectively. For simplicity, the
volumes of polymer segments and solvent molecules are
taken to be the same v. The first δ -functional accounts
for the incompressibility whereas the second one enforces
the constraint on the c.m. of the polymer.

We follow the standard field-theoretical derivations [43]
by performing identity transformations to obtain a field
representation of the partition function as Z = Z0ZF . Z0
denotes the contribution irrelevant to the trap and also
exists in other constraint-free systems. ZF comes from
the constraint of the c.m.:

ZF =
∫

dFFF exp(−LF) (2)

where FFF is the force field conjugate to the deviation of
c.m. from the targeted position. The “action” LF =
− lnQ, with Q the single-chain partition function in the
auxiliary fields Wp (conjugate to polymer density) and FFF :

Q=
1

vN

∫
D̂{RRR}exp

{
−
∫ N

0
ds
[

iWp(RRR(s))−i
FFF
N
·(RRR(s)−ξξξ )

]}

(3)
The lowest-order approximation as used in previous

treatment corresponds to taking the saddle-point contri-
bution of FFF [26, 32, 39]. It fails to capture the fluctu-
ation of the c.m. which cannot be ignored as the poly-
mer takes a coil state in θ and good solvents. To self-
consistently account for this fluctuation effect, we per-
form a non-perturbative variational approach using the
Gibbs-Bogoliubov-Feynman bound [44] to evaluate ZF :

ZF = Zref⟨exp[−(LF −Lref)]⟩ref ≈ Zref exp[−⟨LF −Lref⟩ref]
(4)

where the average ⟨...⟩ref is taken in the reference ensem-
ble with action Lref. Zref =

∫
dFFF exp(−Lref) is the nor-

malization factor. Here we take Lref to be a 2n-power
modified Gaussian:

e−Lref = ∏
κ=x,y,z

(Fκ + i fκ)
2n exp

[
− (Fκ + i fκ)

2

2Aκ

]
(5)

where the average force fff and coefficients Aκ are taken
to be the variational parameters. This construction of
Lref assumes the independence of the c.m. fluctuations

in the three directions. Note that a general 2n-power
modified Gaussian is adopted here instead of a standard
(0th-power) Gaussian to reinforce the confinement of the
c.m. Although the variational approach using the stan-
dard Gaussian [45–47] can also lead to the correct scaling,
this reinforcement is necessary for an accurate prediction
of the coil size in θ and good solvents as we show later.
To focus on the effect of the c.m. fluctuation, we ap-

proximate ZF by the right-hand side of Eq. 4, while tak-
ing the saddle-point approximation to evaluate the func-
tional integrals of other fields included in Z0. Minimizing
Z with respect to fff , Aκ and other fields, we obtained the
following constrained self-consistent equations (see Sec.
I in the Supplementary Materials)

wp(rrr)−ws(rrr) = χ[1−2φp(rrr)] (6a)

φp(rrr) =
1
Q

∫
dsq(rrr,N − s)q(rrr,s) (6b)

1−φp(rrr) = exp[β µs −ws(rrr)] (6c)
∫

drrr(rrr−ξξξ )φp(rrr) = 000 (6d)

Aκ = λ/R2
g,κ (6e)

wp and ws are the saddle-point values of the fields con-
jugate to polymer and solvent densities, respectively.
The single-chain partition function Q = v−1 ∫ drrrq(rrr,N −
s)q(rrr,s), where the chain propagator q satisfies:

∂q
∂ s

=
b2

6
∇2q(rrr,s)−Up(rrr)q(rrr,s) (7)

The total field experienced by the polymer is now:

Up(rrr) = wp(rrr)−
1
N

fff · (rrr−ξξξ )+ ∑
κ=x,y,z

λ (κ −ξκ)
2

2NR2
g,κ

(8)

The resulting free energy of the system is

W =− lnQ− eβ µsQs +λ ∑
κ=x,y,z

ln(Rg,κ/b)

+
1
v

∫
drrr
[

χφp(rrr)φs(rrr)−wp(rrr)φp(rrr)−ws(rrr)φs(rrr)
] (9)

Eq. 8 clearly indicates that the trap is realized via two
mechanisms: (1) a mean force fff to control the c.m. po-
sition, and (2) a harmonic potential with the spring con-
stant λ/(NR2

g,κ) to counter the c.m. fluctuation. R2
g,κ is

the component of the square radius of gyration in the κ-
direction. λ is a function of the power index n, which will
further be calibrated using the criterion R2

g = Nb2/6 at
χ = 0.5 as N → ∞ (see Sec. II in the Supplementary Ma-
terials). We want to emphasize that both the force and
the harmonic potential are applied to all chain segments,
demonstrating the unbiased feature of our approach. The
appearance of R2

g,κ in the spring constant reflects the non-
perturbative feedback of the c.m. fluctuation, enabling
a self-adjustable constraint that is only applied on the
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c.m. without imposing any unnecessary interference on
the chain conformation. Differentiating the spring con-
stant in the three directions is necessary to capture con-
formations beyond spherical symmetry. These are the
essential improvements to existing theories. In contrast,
a non-variational method using a fixed reference of ideal
coil makes the spring constant unchangeable [35]. The
absence of feedback control in such method leads to a
wrong scaling of Rg in good solvents (see Sec. III in the
Supplementary Materials).

Single-chain conformation of a neutral polymer.— We
first apply the general theory to trap a single neutral
polymer to study its conformation in different solvents.
The expected conformations have spherical symmetry,
leading to fff = 000 and the same spring constants in all three
directions. Figure 1a plots the radius of gyration Rg as a
function of χ for different chain lengths. As χ increases,
the solvent quality changes from good to poor, reducing
polymer size from a swollen coil to a collapsed globule
passing the ideal coil state in the θ regime. The transi-
tion becomes sharper as N increases. It is worth noting
that the self-adjustable spring constant obtained in our
variational approach is the key to effectively counter the
c.m fluctuation of the coil and predict the correct density
profile and scaling. This is the first time to our knowl-
edge that the single-chain conformation is captured in
the entire solvent regimes by a unified theory.

Figure 1b plots the scaling relationship between Rg and

N. While for χ = 0.5, Rg shows a single scaling of N1/2;
for both good (χ = 0.4) and poor (χ = 0.6) solvents, two
scaling regimes exist. Ideal coil scaling of N1/2 appears
for short chains, which turns to either N3/5 (swollen coil)
or N1/3 (collapsed globule) depending on solvent quality.
The turning point signifies the thermal blob size ξT below
which the excluded volume interaction is weaker than the
thermal energy kBT . ξT/b ≈ 8 for χ = 0.6. Our results
not only confirm the picture of thermal blob but also
provide the first identification of its actual size [16].

The χ-dependence of Rg allows us to probe the θ
regime. The boundary of the θ regime for finite chain
length, χconf

θ (N), is identified by the onset of the rapid
size change where ∂ 2Rg/∂ χ2 reaches its extremums. Fig-
ure 1c plots χconf

θ (N) on the globule and coil sides of the
θ regime, respectively, both showing a linear relationship
with N−1/2. The intercepts of the two lines coincide at
χconf

θ (∞) = 0.5, indicating that the width of the θ regime
reduces to 0 as N →∞. The transition becomes discontin-
uous for infinitely long chain. It also provides a criterion
for the calibration of the coefficient λ in the spring con-
stant (Eq. 8) using R2

g = Nb2/6 at χ = 0.5 as N → ∞. λ
only depends on chain stiffness b3/v, uniquely determined
for a given polymer regardless of the chain length. For
example, λ = 3.61 for b3/v = 1 as used in our calculation.

To further validate our theory, we directly compare
our predictions with the experimental measurements by
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Figure 1. Single-chain conformation of a neutral polymer.
(a) The radius of gyration Rg as a function of χ for different
N. (b) The scaling relationship between Rg and N in different

solvent conditions. (c) The boundary of the θ regime χconf
θ (N)

on the globule and coil side, respectively, versus N−1/2, where
lines represent the linear fit. (d) Comparison of our theoretical
prediction with experimental measurements by Wang and Wu
[48] on Rg of PNIPAM. λ = 1.34 for the best fit.

Wang and Wu on the size of poly(N-isopropylacrylamide)
(PNIPAM) [48]. As shown in Fig. 1d, our theoretical
predictions of Rg are in quantitative agreement with the
experimental data in a wide temperature range. Model
parameters N, v, b and the temperature dependence of χ
are directly taken from the literature (see Sec. IV in the
Supplementary Materials) [48–50].

Globule-pearl necklace-coil transition of a
polyelectrolyte.— It is more challenging to trap a
polyelectrolyte chain because of its large c.m. fluctu-
ation and shape anisotropy induced by the Coulomb
repulsion between charged monomers [51]. Although
the mean force fff remains 000 since the conformation is
symmetric with respect to the c.m., the spring constants
vary in different directions due to the anisotropic
shape change. Figure 2a plots the conformation of a
single polyelectrolyte with hydrophobic backbone in a
dilute salt solution. As the backbone charge density
α increases, the polyelectrolyte exhibits a cascade
conformational transition in the following sequence:
spherical globule → cylindrical globule → a series of
pearl-necklace with increasing number of pearls →
extended coil. It has been argued whether cylindrical
globule or pearl-necklace is a more stable structure,
because each has been observed in simulations and
experiments [37, 38, 52–56]. Our results indicate that
both of these two structures can be stable, but in
different parameter regimes. In addition, our theory
provides a clear depiction of the pearl-necklace structure,
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Figure 2. Structure of a single polyelectrolyte in a dilute
monovalent salt solution. (a) 2D visualizations of the poly-
mer density for the cascade transition from spherical globule
(Sph), to cylindrical globule (Cyl), to pearl-necklace with m
pearls (PNm), and to extended coil (EC). λ = 3.61, χ = 1.0,
and N = 200. Dielectric constant ε = 80 and bulk salt concen-
tration cb = 10−4M. The length Lz of PN structure is plotted
against (b) the backbone charge density α and (c) chain length
N, respectively.

able to capture the pearls of the electrostatic-blob size
and the necklace of the thermal-blob size at the same
time [36, 57]. We also find that pearl-necklace exhibits
odd-even effect: structures with some odd numbers (5
and 7) of pearls are only metastable, whose energy is
higher than the adjacent structures with even numbers
of pearls. Furthermore, our variational approach re-
mains effective even for structures with extremely high
anisotropy, e.g. extended coil with an aspect ratio larger
than 100.

Figures 2b and 2c plot the length Lz of the pearl-
necklace against the backbone charge density α and
the chain length N, respectively. A scaling relationship
Lz ∼ αN is revealed, where the linearity gets more accu-
rate as the number of pearls increases. Our predictions
confirms the result by Dobrynin and Rubinstein using
scaling analysis [36, 57].

Inter-chain interaction between two polymers.— The
quantification of the interactions between polymers re-
quires a simultaneous trap of multiple chains. For a
targeted polymer, the conformational symmetry breaks
along the inter-chain axis, which leads to a non-zero mean
force fff in such direction. The anisotropic deformation
as polymers approach each other also makes spring con-
stants vary in different directions. We apply our varia-
tional approach to trap two neutral polymers at a tar-
geted c.m. separation distance L. By tracking the poly-
mer density profile and the associated free energy, we
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Figure 3. Inter-chain interactions between two neutral poly-
mers. (a) Potential of mean force as a function of c.m. separa-
tion distance for N = 200. (b) 2D visualization of the polymer
density as two polymers get into contact. (c) Second virial
coefficient B2 as a function of χ. (d) θ point χ int

θ (N) as a func-

tion of N−1/2. The dashed line denotes a linear fit.

obtain the potential of mean force (PMF) U(L) which is
defined by U(L) = W (L)−W (∞) as the free energy ex-
cess to two infinitely separated polymers (L = ∞). Figure
3a plots U(L) for different χ. The inter-chain interac-
tion turns from pure repulsive in good solvent (χ = 0.3)
to pure attractive in poor solvent (χ = 1.0). Near the
θ point, U(L) exhibits long-range attraction and short-
range repulsion. This non-monotonic behavior originates
from the competition between the monomer two-body
attraction and three-body repulsion. The latter becomes
dominant at small L where the density of the two poly-
mers largely overlaps, enhancing the excluded volume ef-
fect and the resulting three-body repulsion. The non-
monotonic shape of PMF predicted by our theory is
consistent with the previous simulation results [28, 58–
60] but cannot be captured by existing theories built
upon a fixed Gaussian distribution of chain conformation
[32, 40, 61, 62].

The feedback mechanism of our trapping approach en-
ables us to self-consistently capture the evolution of the
chain conformation as polymers get into contact. The
visualization in Fig. 3b illustrates how the polymers in-
terfere with each other. The inter-chain repulsion in good
solvent compresses the polymers to an oblate shape, sim-
ilar to squeezing two “fuzzy balls”. In contrast, the inter-
chain attraction in poor solvent elongates the polymers
and generates a neck between them, analogous to the fu-
sion of two liquid droplets. Very close to θ point (e.g.
χ = 0.6 for N = 200), the shape of each chain is nearly a
perfect sphere, almost unaffected by the existence of the
other polymer.

The accurate quantification of the PMF facilitates the
evaluation of the second virial coefficient B2, an im-
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portant quantity that characterizes the effective inter-
chain interaction. B2 is calculated by 2π

∫ ∞
0 [1 −

exp(−βU(L))]L2dL. Figure 3c plots B2 as a function of
χ, where the θ point χ int

θ (N) is identified at B2 = 0. Note
that the previous trapping method using the boundary
condition of the polymer density field only works in the
deep globule regime such that the determination of the θ
point relies on extrapolation [39]. In contrast, our vari-
ational approach provides the first theoretical quantifi-
cation of the inter-chain interaction in the entire solvent
regimes, enabling a more accurate identification of the θ
point.

Figure 3d plots χ int
θ (N) as a function of N−1/2, which

shows a good linear relationship consistent with results
reported in previous theories and simulations [28, 39, 63].
The intercept of the line yields χ int

θ (∞) = 0.5 for infinitely
long chain. This result coincides with the χconf

θ (∞) ob-
tained via the single-chain conformation (Fig. 1c), which
highlights the self-consistency of our theory.

In this Letter, we developed a variational approach to
trap macromolecules, which self-consistently introduces
a mean force that controls the c.m. position of the
chain and a harmonic potential resulting from the non-
perturbative feedback of the c.m. fluctuation. Our ap-
proach has made significant improvements over existing
theories in the following aspects. (1) The decoupling of
the mean force and the harmonic potential enables the
trap of a single chain and multiple chains to be achieved
in one framework, which facilitates a unified study of
both chain conformation and inter-chain interaction. (2)
The mean force and the harmonic potential are applied
to all monomers in an unbiased way such that the trap is
only performed on the c.m without imposing any unnec-
essary interference on the chain conformation. (3) The
self-adjustable feature of the harmonic potential guaran-
tees a feedback control of the conformational response to
a variety of solvent conditions and external stimuli. (4)
The differentiation of the spring constants in the three di-
rections allows us to trap conformations with large shape
anisotropy. (5) Being a field-theoretical formulation, our
trapping approach can be systematically incorporated
into the polymeric SCFT as a constraint, which not only
enables us to visualize the conformational response and
kinetic process, but also facilitates the generalization to
macromolecules with various chain architectures, copoly-
mer compositions and charge patterns.

Our approach provides the first quantification of both
the single-chain conformation and inter-chain interaction
in the entire solvent regimes. The scaling relationships
and θ behaviors are well captured. We confirm the pic-
ture of the thermal blob and first identify its actual size.
Applied to charged polymers, our approach effectively
captures the full scenario of the globule-pearl necklace-
coil transition. Particularly, the two exact different char-
acteristic lengths of the pearl-necklace structure, i.e. elec-
trostatic blob and thermal blob, are clearly depicted. Our

theoretical predictions are in quantitative agreement with
the experimental results reported in the literature. We
verified the effectiveness and versatility of our approach
in various systems, from globule to coil, from neutral
polymers to polyelectrolytes, and from trapping a single
chain to the simultaneous trap of multiple chains. We are
now able to put the macromolecules wherever we want,
successfully achieving the goal of robust control.
Acknowledgment is made to the donors of the Ameri-

can Chemical Society Petroleum Research Fund for par-
tial support of this research. This research used the com-
putational resources provided by the Kenneth S. Pitzer
Center for Theoretical Chemistry.
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I. DERIVATION OF THE VARIATIONAL APPROACH FOR TRAPPING THE CENTER-OF-MASS OF POLYMERS

In this section, we provide a detailed derivation of the variational approach for trapping the center of mass (c.m.)
of polymers. The formulation for a single neutral polymer is in given Sec. 1.1. The generalization of the approach
to a charged polymer is provided in Sec. 1.2, and the generalization to the simultaneous trap of two polymers is
provided in Sec. 1.3.

1.1. Variational Approach for a Single Neutral Polymer

We consider a system of one polymer immersed in ns solvent molecules which are connected with a pure solvent
reservoir to maintain the chemical potential of solvent µs. The polymer is modeled by a continuous Gaussian chain
of N Kuhn segments with Kuhn length b. To trap this polymer, we fix its c.m. at a specific position ξ, giving rise to
the semicanonical partition function

Z =
∑

ns

eβµsns

ns!vNp v
ns
s

∫
D̂{R}

ns∏

j=1

∫
drj exp(−βH)

∏

r

δ[1− ϕ̂p(r)− ϕ̂s(r)]δ

[
1

N

∫ N

0

dsR(s)− ξ

]
(S1)

where
∫
D̂{R} =

∫
D{R}exp[−(3/2b2)

∫ N
0
ds(∂R/∂s)2] denotes the integration over all configurations weighted by

Gaussian-chain statistics. The Hamiltonian

βH =
χ

v

∫
drϕ̂p(r)ϕ̂s(r) (S2)

includes the polymer-solvent interaction in terms of the Flory χ parameter, with ϕ̂p and ϕ̂s the instantaneous volume
fractions of the polymer and solvent, respectively. For simplicity, the volumes of polymer segments and solvent
molecules are taken to be the same, vp = vs = v. The first δ-functional accounts for the incompressibility whereas the
second one enforces the constraint on the c.m. of the polymer.

The transformation from the particle-based to the field-based representation is achieved by inserting the following
identities into the partition function:

1 =

∫
Dϕκ

∏

r

δ[ϕκ(r)− ϕ̂κ(r)] =

∫
DϕκDWκ exp

{
i

∫
drWκ(r)[ϕκ(r)− ϕ̂κ(r)]

}
(κ = p, s) (S3)

where the right-hand side of the equation arises from the Fourier representation of the δ-function with Wκ(r) being
the Fourier conjugate field to ϕκ(r). Similarly, the Fourier representations of the incompressibility condition and
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constraint of the polymer c.m. are

δ[1− ϕ̂p(r)− ϕ̂s(r)] =

∫
DΓexp

{
i

∫
drΓ(r)

[
1− ϕ̂p(r)− ϕ̂s(r)

]}
(S4)

δ

[
1

N

∫ N

0

dsR(s)− ξ

]
=

∫
dF exp

{
iF ·

[
1

N

∫ N

0

dsR(s)− ξ

]}
(S5)

By performing the identity transformations, we obtain the field-based partition function as

Z =

∫
DϕpDϕsDWpDWsDΓdF

∑

ns

eβµsns

ns!vN+ns

∫
D̂{R}

ns∏

j=1

∫
drj

· exp
{
1

v

∫
dr
[
−χϕp(r)ϕs(r) + iWp(r)

(
ϕp(r)− ϕ̂p(r)

)
+ iWs(r)

(
ϕs(r)− ϕ̂s(r)

)
+ iΓ(r) (ϕp(r) + ϕs(r)− 1)

]}

· exp
{
iF ·

[
1

N

∫ N

0

dsR(s)− ξ

]}
(S6)

Here, Eq. S6 can be decomposed as Z = Z0ZF , where Z0 denotes the contribution irrelevant to the trap and also
exists in other constraint-free systems. ZF comes from the constraint of the c.m. They are given by

Z0 =

∫
DϕpDϕsDWpDWsDΓexp

{
eβµsQs +

1

v

∫
dr [−χϕpϕs + iWpϕp + iWsϕs + iΓ (ϕp + ϕs − 1)]

}
(S7a)

ZF =

∫
dF exp(−LF ) (S7b)

where Qs =
∫
dre−iWs(r) is the partition function of solvents. The “action” LF = − lnQP, with QP the single-chain

partition function in the auxiliary fields Wp and F :

Qp =
1

vN

∫
D̂{R} exp

{
−
∫ N

0

ds

[
iWp(R(s))− i

F

N
· (R(s)− ξ)

]}
(S8)

To focus on the effect of the c.m. fluctuation, we perform a variational treatment on ZF while taking the saddle-
point approximation to evaluate the functional integrals of fields included in Z0 [S1]. For the latter case, Wp, Ws, and
Γ will be replaced by their saddle-point values −iwp, −iws, and −iγ. The free energy corresponding to Z0 is given by

W0 = − lnZ0

≈ −eβµsQs +
1

v

∫
dr {χϕp(r)ϕs(r)− wp(r)ϕp(r)− ws(r)ϕs(r) + γ(r) [ϕp(r) + ϕs(r)− 1]} (S9)

For ZF , the saddle-point contribution of F , as used in previous work [S2–S4], fails to capture the fluctuation of the
c.m. which cannot be ignored as the polymer takes a coil state in θ and good solvents. To self-consistently account
for this fluctuation effect, the Gibbs-Feynman-Bogoliubov variational approach is used to estimate the integral of F
for evaluating ZF [S5]:

ZF = Zref⟨exp[−(LF − Lref)]⟩ref ≈ Zref exp[−⟨LF − Lref⟩ref ] (S10)

where the average ⟨...⟩ref is taken in the reference ensemble with action Lref . We take the reference action to be the
2n-power modified Gaussian form centered around the average force −if :

e−Lref [F ,f ,A] =
∏

κ=x,y,z

(Fκ + ifκ)
2n exp

[
− (Fκ + ifκ)

2

2Aκ

]
(S11)

Zref =
∫
dF exp(−Lref) =

∏
κ(2π)

1/2(2n−1)!!A
n+1/2
κ is the normalization factor. The average force f and coefficients

Aκ are taken to be the variational parameters. This construction of Lref assumes the independence of the c.m.
fluctuations in the three directions. Note that a general 2n-power modified Gaussian is adopted here instead of a
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standard (0th-power) Gaussian to reinforce the confinement of the c.m. Although the variational approach using the
standard Gaussian [S6–S8] can also lead to the correct scaling (see Fig. S2), this reinforcement is necessary for an
accurate prediction of the coil size in θ and good solvents (see Fig. S1). Evaluation of e−⟨LF ⟩ref gives an approximation
of the variational single-chain partition function Qvar as follows:

Qvar =
1

vN

∫
D{R} exp

{
− 3

2b2

∫ N

0

ds

[
∂R(s)

∂s

]2
−
∫ N

0

dswp[R(s)] + f ·∆R

}
⟨exp

(
ig ·∆R

)
⟩ref (S12)

where g = F + if , and ∆R = N−1
∫ N
0

ds[R(s) − ξ] is the difference of the instantaneous c.m. from the targeted
position ξ. The average in the last term can be evaluated via the Hubbard-Stratonovich transform [S1] as

⟨exp
(
ig ·∆R

)
⟩ref =

1

Zref

∏

κ=x,y,z

∫
dgκg

2n
κ exp

(
igκ∆Rκ −

g2κ
2Aκ

)

=
∏

κ=x,y,z

exp

(
−Aκ∆R

2

κ

2

)
n∑

m=0

Cn,m(Aκ∆R
2

κ)
m (S13)

with the coefficient Cn,m = (−1)m[(2n)!(2n − 2m − 1)!!]/[(2m)!(2n − 1)!!]. The variational single-chain partition
function Qvar in Eq. S12 can then be written as

Qvar =
1

vN

∫
D{R}e−H[R]

[ ∏

κ=x,y,z

(
n∑

m=0

Cn,mA
m
κ ∆R

2m

κ

)]
(S14)

with the Hamiltonian H[R] defined by

H[R] =
3

2b2

∫ N

0

ds

[
∂R(s)

∂s

]2
+

∫ N

0

dswp[R(s)]− f ·∆R+
∑

κ=x,y,z

Aκ
2

∆R
2

κ (S15)

Note that the complete variational single-chain Hamiltonian in Qvar should be H[R]−∑κ ln(
∑n
m=0 Cn,mA

m
κ ∆R

2m

κ ).
Here, we separate H[R] from the complete Hamiltonian to facilitate the evaluation of Qvar. In this sense, Qvar can
be re-expressed as an ensemble average based on H[R]:

Qvar =
v−N

∫
D{R}e−H[R]

[∏
κ=x,y,z

(∑n
m=0 Cn,mA

m
κ ∆R

2m

κ

)]

v−N
∫
D{R}e−H[R]

1

vN

∫
D{R}e−H[R]

=

[ ∏

κ=x,y,z

(
n∑

m=0

Cn,mA
m
κ ⟨∆R2m

κ ⟩H
)]

QH (S16)

where QH is the single-chain partition function with the Hamiltonian H[R]

QH =
1

vN

∫
D{R}e−H[R] (S17)

A common way to evaluate QH requires replacing the complicated functional integral with the product of chain
propagators. The chain propagators satisfy the modified diffusion equation [S1]. However, this becomes difficult

here due to the nonlinear term appeared in Aκ∆R
2

κ in H[R] (Eq. S15) which contains 2-body contributions. To
circumvent this difficulty, we decompose the Hamiltonian H[R] into a 1-body term H(1)[R(s)] and a 2-body term
H(2)[R(s),R(t)]:

H(1)[R(s)] =

∫ N

0

ds

{
3

2b2

[
∂R(s)

∂s

]2
+ wp[R(s)]− f

N
· [R(s)− ξ] +

∑

κ=x,y,z

Aκ
2

[Rκ(s)− ξκ]
2

}
(S18)

H(2)[R(s),R(t)] =

∫ N

0

ds

∫ N

0

d′t

{ ∑

κ=x,y,z

Aκ
2

[Rκ(s)− ξκ][Rκ(t)− ξκ]

}
(S19)
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where the prime in
∫ N
0

d′t indicates the case of t = s is excluded in the integral. Then we can approximate QH
by evaluating the 2-body part H(2)[R(s),R(t)] via an averaging under the reference ensemble with 1-body part
H(1)[R(s)]:

QH =

∫
DRe−H

(1)[R(s)]−H(2)[R(s),R(t)] = Q
(1)
H ⟨e−H(2)[R(s),R(t)]⟩H(1) (S20)

with Q
(1)
H =

∫
DRe−H

(1)[R(s)]. To evaluate the two-body Hamiltonian in the one-body reference in the right-hand
side of Eq. S20, we first fix the position of the s-th monomer R(s) and calculate the average with respect to the

position of the t-th monomer R(t) to obtain ⟨e−H(2)[R(s),R(t)]⟩H(1) . We then take the average with respect to R(s) as:

QH =

∫
DRe−H

(1)[R(s)]⟨e−H(2)[R(s),R(t)]⟩H(1) ≈
∫

DRe−H
(1)[R(s)]−⟨H(2)[R(s),R(t)]⟩

H(1) (S21)

where the second equality assumes that higher order 2n-body correlations (n ≥ 2) are neglected. Then QH can be
evaluated via the forward and backward chain propagators q(r; s), q†(r; s)

QH =
1

v

∫
drq†(r; s)q(r; s) (S22)

∂q(r; s)

∂s
=
b2

6
∇2q(r; s)− Up(r; s)q(r; s) (S23a)

− ∂q†(r; s)
∂s

=
b2

6
∇2q†(r; s)− Up(r; s)q

†(r; s) (S23b)

where the total interaction field experienced by the s-th monomer Up(r; s) = U
(1)
p (r) + U

(2)
p (r; s) with the 1-body

interaction

U (1)
p (r) = wp(r)−

f

N
· (r − ξ) +

∑

κ=x,y,z

Aκ
2N

(κ− ξκ)
2 (S24)

and the 2-body interaction

U (2)
p (r; s) =

∑

κ=x,y,z

Aκ
2N2

(κ− ξκ)

{∫ s

0

dt
1

q(1)(r; s)

∫
dr′(κ′ − κ)q(1)(r

′; t)g(1)(r
′, r; t, s)

+

∫ N

s

dt
1

q†(1)(r; s)

∫
dr′(κ′ − κ)g(1)(r, r

′; s, t)q†(1)(r
′; t)

}
(S25)

where the chain propagator q(1)(r; s) (q†(1)(r; s)) and intra-chain correlation function g(1)(r, r
′; s, t) (g(1)(r

′, r; t, s))

are subject to the same recurrence relation (Eq. S23a (Eq. S23b)) as q(r; s) (q†(r; s)) but with interaction field U
(1)
p .

Then the variational free energy corresponding to ZF is then given by

WF = − lnZF

≈ − lnQH − 1

2

∑

κ=x,y,z

lnAκ −
∑

κ=x,y,z

ln

(
n∑

m=0

Cn,mA
m
κ ⟨∆R2m

κ ⟩H
)

(S26)

where the second term in the second equality comes from − lnZref = −(n+1/2)
∑
κ lnAκ and −⟨Lref⟩ref = n

∑
κ lnAκ.

Note that we ignore the constants independent of the variational parameters. The last term is from the 2n-
power in the modified Gaussian reference. Using ⟨x2m⟩ =

∫
dxx2me−ax

2/2+bx/
∫
dxe−ax

2/2+bx =
∑m
l (−1)l(2m −

1)!!Cm,lb
2la−(m+l), the moments ⟨∆R2m

κ ⟩H can be estimated by neglecting the elastic energy and interaction field wp

in Eq. S15. Thereafter, the last term in Eq. S26 becomes a logarithm of linear superposition of power functions for
the variational parameter Aκ, in the form of −∑κ ln(

∑n
p=0 dκ,pA

−p
κ ). dκ,p are prefactors independent of A−p

κ .
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Minimizing WF with respect to Aκ, we obtain

− 1

QH

∂QH
∂Aκ

=
1

Aκ

[
1

2
+

∑n
p=0(−p)dκ,pA−p

κ∑n
p=0 dκ,pA

−p
κ

]
(κ = x, y, z) (S27)

with the help of Eq. S15, the left-hand side yields

− 1

QH

∂QH
∂Aκ

=
1

2

[
R2
g,κ + δ(2)κ

]
(S28a)

R2
g,κ =

∫
dr(κ− ξκ)

2ϕp(r)∫
drϕp(r)

(S28b)

δ(2)κ =
1∫

drϕp(r)

∫
dr(κ− ξκ)ϕp(r)

{∫ s

0

dt
1

q(1)(r; s)

∫
dr′(κ′ − κ)q(1)(r

′; t)g(1)(r
′, r; t, s)

+

∫ N

s

dt
1

q†(1)(r; s)

∫
dr′(κ′ − κ)g(1)(r, r

′; s, t)q†(1)(r
′; t)

}
(S28c)

where δ
(2)
κ comes from the 2-body interaction U

(2)
p (r; s) in Eq. S25. For the right-hand side of Eq. S27, we neglect

the Aκ-dependence of the ratio r =
∑n
p=0(−p)dκ,pA−p

κ /
∑n
p=0 dκ,pA

−p
κ , and treat r as a general fitting parameter for

simplicity. Then Eq. S27 becomes

Aκ =
λ

R2
g,κ + δ

(2)
κ

(κ = x, y, z) (S29)

with λ = 1+2r. Similarly, WF ≈ − lnQH−(λ/2)
∑
κ lnAκ. Especially, if we take the standard (0-th power) Gaussian

reference, we have λ = 1. While the ratio r arising from the 2n-power modified Gaussian makes λ adjustable, so that
we can calibrate its value based on the criterion of the known size of the infinitely long ideal chain: R2

g = Nb2/6 at
χ = 0.5 as N → ∞.

Taking the saddle-point approximation for the density of polymer and solvents ϕp(r), ϕs(r), conjugate fields wp(r),
ws(r), incompressibility field γ(r), and optimizing WF with respect to the average force f , we obtain

wp(r) = χϕs(r) + γ(r) (S30a)

ws(r) = χϕp(r) + γ(r) (S30b)

ϕp(r) =
1

QH

∫
dsq†(r; s)q(r; s) (S30c)

ϕs(r) = exp[βµs − ws(r)] (S30d)

ϕp(r) + ϕs(r)− 1 = 0 (S30e)∫
dr(r − ξ)ϕp(r) = 0 (S30f)

The resulting free energy of the system is

W =W0 +WF = − lnQH − eβµsQs −
λ

2

∑

κ=x,y,z

lnAκ

+
1

v

∫
dr {χϕp(r)ϕs(r)− wp(r)ϕp(r)− ws(r)ϕs(r) + γ(r) [ϕp(r) + ϕs(r)− 1]} (S31)

In most cases, we can safely assume that the two-body contribution is negligible compared to the one-body term such

that U
(2)
p (r; s) ≪ U

(1)
p (r) and δ

(2)
κ ≪ R2

g,κ. Under this assumption, Eqs. S29, S23a, S24, and S31 become Eqs. 6e-9
in the main text.

1.2. Generalization to a Charged Polymer



6

We consider a semicanonical ensemble consisting of one polyelectrolyte (PE) chain connected to a reservoir of a salt
solution with bulk ion concentration cb± that maintains the chemical potentials of solvent µs and ions µ±. The PE is
assumed to be a homogeneous Gaussian chain with smeared backbone charge density α [S9]. Mobile ions are taken
as point charges with valency z±. The semicanonical partition function can be written as

Z =
1

vNp

∫
D̂{R}

∏

ζ=s,±

∑

ns

eβµζnζ

nζ !v
nζ

ζ

nζ∏

j=1

∫
drj exp(−βH)

∏

r

δ[1− ϕ̂p(r)− ϕ̂s(r)]δ

[
1

N

∫ N

0

dsR(s)− ξ

]
(S32)

with the Hamiltonian

H =
χ

v

∫
drϕ̂p(r)ϕ̂s(r) +

1

2

∫
drdr′ρ̂e(r)C(r, r

′)ρ̂e(r
′) (S33)

where ρ̂e(r) = z+ρ̂+(r) + z−ρ̂−(r) +αϕ̂p(r)/v is the net charge density. Note that z± and α contain the sign of their
charges, and we have assumed vP = vS = v. C(r, r′) is the Coulomb operator which satisfies

−∇ · [ϵ(r)∇C(r, r′)] = δ(r − r′) (S34)

where ϵ(r) = kTϵ0ϵr(r)/e
2 is the scaled permittivity with ϵ0 the vacuum permittivity and ϵr(r) the local dielectric

constant which depends on the local composition of the system [S9].
We follow a similar procedure as Sec. 1.1, which involves: (1) identity, Fourier and Hubbard-Stratonovich trans-

formations to decouple the interacting system into noninteracting polymer ϕp(r), solvents ϕs(r), and ions in the
fluctuating fields Wp(r), Ws(r), Γ(r), Ψ(r) and force F . Ψ(r) is the electrostatic potential field conjugate to the net
charge; (2) the saddle-point approximation to simplify the evaluation of the functional integral over the fluctuating
fields, i. e., (Wp,Ws,Γ,Ψ) → (−iwp,−iws,−iγ,−iψ); and (3) a variational treatment to account for the fluctuation
of force that controls the c.m. position of polymer chain. Then similar self-consistent field equations as those in Eqs.
S30 can be obtained with the electrostatics relevant modification to the conjugate field of polymer

wp(r) = χϕs(r) + γ(r)− v

2

∂ϵ(r)

∂ϕp(r)
[∇ψ(r)]2 + αψ(r) (S35)

where the electric potential ψ satisfies the Poisson equation:

−∇ · [ϵ(r)∇ψ(r)] = z+c+(r) + z−c−(r) +
α

v0
ϕp(r) (S36)

with ion concentration

c±(r) = λ±e
−z±ψ(r) (S37)

where λ± = eβµ±/vK is the fugacity of the salt ion.
Finally, the resulting free energy of the system becomes

W = − lnQH − eβµsQs −
λ

2

∑

κ=x,y,z

lnAκ

+
1

v

∫
dr {χϕp(r)ϕs(r)− wp(r)ϕp(r)− ws(r)ϕs(r) + γ(r) [ϕp(r) + ϕs(r)− 1]}

+

∫
dr

{
α

v
ϕp(r)ψ(r)−

ϵ(r)

2
[∇ψ(r)]2 − c+(r)− c−(r)

}
(S38)

1.3. Generalization to the Simultaneous Trap of Two Polymers

Generalization of the variational approach for trapping two polymers is straightforward by independently fixing the
c.m. positions of the two indivdidual polymers. For simplicity, without loss of generality, we consider two identical
neutral polymers with their c.m. fixed at position ξ1 and ξ2, respectively. The semicanonical partition function
becomes

Z =
∏

ζ=1,2

1

vNp

∫
D̂{Rζ}δ

[
1

N

∫ N

0

dsRζ(s)− ξζ

]
ns∏

j=1

∑

ns

eβµsns

ns!v
ns
s

∫
drj exp(−βH)

∏

r

δ[1− ϕ̂p(r)− ϕ̂s(r)] (S39)
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Following the same procedure as in Sec. 1.1, the polymer density becomes

ϕp(r) =
∑

ζ=1,2

ϕζ(r) =
∑

ζ=1,2

1

Qζ

∫
dsq†ζ(r; s)qζ(r; s) (S40)

where propagators qζ(r; s) and q†ζ(r; s) are subject to the same recurrence relation in Eq. S23a and Eq. S23b as

q(r; s) (q†(r; s)) with the average force fζ , variational parameter Aζ and c.m. position ξζ . Similarly, Qζ and Aζ can
be evaluated the same as QH in Eq. S22 and A in Eq. S29, respectively. fζ can be determined from

∫
dr(r − ξζ)ϕζ(r) = 0 (S41)

Finally, the semi-canonical free energy is given by

W = −
∑

ζ=1,2

(
lnQζ +

λ

2

∑

κ=x,y,z

lnAζ,κ

)
− eβµsQs

+
1

v

∫
dr {χϕp(r)ϕs(r)− wp(r)ϕp(r)− ws(r)ϕs(r) + γ(r) [ϕp(r) + ϕs(r)− 1]} (S42)
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II. THE CALIBRATION OF λ

In this Section, we present the details of the calibration of λ. Figure S1a plots Rg as a function of χ for different λ.
The reference action Lref using a standard Gaussian corresponds to λ = 1, which largely overestimates Rg at χ = 0.5

as Rg ≈ 2.5
√
Nb2/6. This deviation indicates that it is necessary to calibrate λ for a quantitative prediction of Rg.

Rg decreases as λ increases. For the case of N = 200 and b3/v = 1, Rg exactly equals
√
Nb2/6 at χ = 0.5 when

λ = 3.77. Further increasing λ leads to an underestimation of Rg. Therefore, the first step of the calibration is to

determine the λ value at a finite chain length N , λ(N), which satisfies Rg =
√
Nb2/6 at χ = 0.5.

0 0.5 1
0.5

1

1.5

2

2.5

 R
g/
(N

b2
/6
)1
/2

λ = 0

λ = 1λ = 2

λ = 3.77

λ = 4.5

χ

(a) (b)

0 0.02 0.04 0.06 0.08

3.6

3.8

4

4.2

N -2/3
λ(

N
)

Figure S1. Calibration of λ. (a) Rg plotted as a function of χ for different λ. N = 200 and b3/v = 1. (b) The plot of λ(N)

satisfying Rg =
√

Nb2/6 at χ = 0.5 for finite N . The limiting value yields λ(∞) = 3.61.

The next step is to extrapolate λ(N) to N → ∞. As plotted in Fig. S1b, λ(N) has a linear relationship with
N−2/3:

λ(N) = λ(∞) + αN−2/3 (S43)

The intercepts tells λ(∞) which satisfies the well-known criterion R2
g = Nb2/6 at χ = 0.5 as N → ∞. λ only depends

on chain stiffness b3/v, uniquely determined for a given polymer regardless of the chain length. For example, λ = 3.61
for b3/v = 1 as used in our calculation.

It should be noted that, while taking Lref to be a standard Gaussian (i.e. λ = 1) fails to accurately predict Rg, it
can still predict the correct scaling relationship between Rg and N in good, θ and poor solvent regimes, as shown in
Fig. S2.

1000 6000
 N

101

102

 R
g/

b

N 1/2

N 1/3

N 3/5

χ = 0.3

χ = 0.5

χ = 0.7

Figure S2. Scaling relationship between Rg and N in good, θ and poor solvents for λ = 1.
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III. COMPARISON WITH THE NON-VARIATIONAL METHOD USING A FIXED REFERENCE OF IDEAL COIL

In this section, we compare our variational approach with Xu’s method of constraining the middle segment via a
harmonic spring [S10]. As shown in Fig. S3, our variational approach predicts the N3/5 scaling, consistent with the
well-known result in the absence of density fluctuation. In contrast, the application of Xu’s method to polymers in
good solvent yields a wrong scaling as Rg ∼ N∼0.55. In Xu’s method, the spring constant is derived from a fixed
reference of the ideal coil conformation (where Rg ∼ N1/2), which fails to capture the feedback of the actual polymer
conformation. The application of this spring constant to polymers in the swollen coil conformation leads to such
deviation in the scaling exponent.

102 103 104
 N

101

102

 R
g/

b

N ~0.55
N 3/5

Our theory

Xu’s method

Figure S3. Comparison between our variational approach and Xu’s method of constraining the middle segment via a harmonic
spring [S10]. The radius of gyration Rg is plotted against N for both methods. b3/v = 1. λ = 3.61 is used in our theory.
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IV. PARAMETERIZATION FOR COMPARISON IN FIG. 1D

In this Section, we provide the details of the parameterization for the comparison with experiments in Fig. 1d in
the main text. Ahmed et al. studied the kinetics of PNIPAM hydrophobic collapsing with a UV resonance Raman
spectroscopy [S11]. Their results indicate that one Kuhn monomer of PNIPAM contains ≈ 10 chemical monomers,
leading to the molecular weight of a Kuhn monomer Mk = 1131.6g/mol. Using the single-chain molecular weight of
M = 1.3 ∗ 107g/mol in Wu and Wang’s work [S12], the chain length in terms of the number of Kuhn monomers is
given by N = M/Mk ≈ 11488. The volume of a Kuhn segment v can be calculated from its molecular weight and
density (ρ = 1.1g/cm3) as v =Mk/ρ ≈ 1.7nm3.

We calculate the Kuhn length b from the radius of gyration of PNIPAM at its ideal coil state, Rg,id. This state is
estimated to be the position where Rg has the most rapid change with temperature. Rg,id is estimated to be ≈ 80nm

from Wu and Wang’s work [S12], giving the Kuhn length b = Rg,id/
√
N/6 ≈ 1.8nm.

The temperature dependence of χ is obtained from fitting the experimental data by Nakamoto et al. [S13] The
experimental data was measured from the swelling equilibrium of PNIPAM gel. As shown in Fig. S4, χ is fitted to
two linear regimes as a function of inverse temperature 1/T (T in Kelvin), given by

χ(T ) =

{
−5.5371 ∗ 1000

T + 18.6588 for 1000
T ⩽ 3.276 (T ⩾ 32.1oC)

−0.6528 ∗ 1000
T + 2.6566 for 1000

T > 3.276 (T < 32.1oC)
(S44)

3.1 3.2 3.3 3.4 3.5
1000/T

0.2

0.4

0.6

0.8

1

1.2

χ(
T)

Experiment

Linear fitting

Figure S4. The fitting of χ as a function of inverse temperature into two linear regimes. Temperature T is in Kelvin. The
experimental data is adopted from the work by Nakamoto et al. [S13]
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