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Abstract 
 The interrelation between the concepts of self-consistency, relativism and many-particle 
systems is considered within the framework of a unified consideration of classical and quantum 
physics based on the first principle of the probability conservation law. The probability 
conservation law underlies the Vlasov equation chain. From the first Vlasov equation, the 
Schrödinger equation, the Hamilton-Jacobi equation, the equation of motion of a charged particle 
in an electromagnetic field, the Maxwell equations, the Pauli equation and the Dirac equation are 
constructed. The paper shows with mathematical rigor that quantum systems with a time 
independent function of quasi-density probability in phase space are not capable to emit 
electromagnetic radiation.  

It is shown that at the micro-level a quantum object may be considered rather as an 
«extended» object than a point one. And the hydrodynamic description of continuum mechanics 
is applicable for such an object. 

A number of exact solutions of quantum and classical model systems is considered, 
demonstrating a new insight at the quantum mechanics representation. 
 
Key words: quantum mechanics, Dirac equation, Pauli equation, Schrödinger equation, 
electromagnetic radiation, Maxwell equations, Vlasov equation, rigorous result 
 
 
Introduction 
 The historical retrospective of the paper’s topic goes back to time when the Maxwell 
system of equations was written: 
 

     0
0

φ , A J,ρ μ
ε

= =
 

       (i.1) 

     2
1 φdiv A 0,r c t
∂+ =
∂


     (i.2) 

 

where 
2

2 2
1

rс t
∂= −Δ
∂

 , 2
0 0 1 сμ ε = ; ρ  is the density of electric charges; J


 is the density of 

electric currents; φ,A


 are the scalar and vector potential of the electromagnetic field E,B
 

 
respectively: 
 

     AE φ, B curl A.r rt
∂= − −∇ =
∂

  
   (i.3) 

 
 The Maxwell equations have the form (i.1) subject to the condition (i.2). Since there is 
some freedom in the choice of potentials φ, A


, the Lorentz gauge condition (i.2) is acceptable. In 
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the limiting case c →∞ , the condition (i.2) goes into the Coulomb gauge div A 0r =


, and the 
d’Alembert’s operator transforms into the Laplace operator →−Δ . 
 The natural question of the invariance of the Maxwell equations when transforming a 
coordinate system led to an update of the very concept of a coordinate system. Time t  had to be 
introduced as coordinate axis ct  (the Minkowski space-time). The Lorentz transformation was 
the simplest linear transformation of the coordinates in 4-dimensional space-time xμ , conserving 
the invariance of the d’Alembert’s operator μ

μ= ∂ ∂ . In fact, the Maxwell equations (i.1) can be 

represented as a single oscillation equation in which the d’Alembert’s operator 
2

2 2
1
с t

∂= −Δ
∂

  

contains a non-Euclidean metric ( ), , ,gμν + − − − . The replacement of the Galilean 
transformations with the Lorentz transformations served as the starting point for the construction 
of the special theory of relativity (STR), in which Einstein postulated the maximum velocity c  
(the velocity of light in a vacuum) of the propagation of interaction in the Universe. 
 The finiteness of the velocity of interaction propagation directly follows from the 
Maxwell equations (i.1). Indeed, the solution to the equations (i.1) can be constructed from the 
solutions to the Poisson equation, where the change of variable rett t r r c′= − − 

 is made. Time 

rett  takes the retarded time r r c′− 
 of the interaction into account. At c →∞ , there is no 

retarded time and the interaction propagates instantly. Taking into account the retarded time 
leads to the Lienard–Wiechert potentials for ( )φ ,r t  and ( )A ,r t

  . It turned out that time-

dependent electric ( )E ,r t
   and magnetic ( )B ,r t

   fields arise when a point particle (using the 
Dirac δ -function representation) with charge q  moves along a classical trajectory, determined 
at each moment of time rett  by the radius vector ( )s retr t

 and velocity ( )s retv t : 
 

( )
( ) ( ) ( )2

32
0

1E , β 1 β β β β ,
4 1 β

s s
s s s s s s s s s

s s s

r r r rqr t n n n n
c cr r nπε

  −  −
= − − + ⋅ − ⋅ −  

  − −  

            
     

( ) ( )1B , E , ,sr t n r t
c

= ×
             (i.4) 

 
where βs sv c=

  , ( )s sn r r r r= − −     . Note that the information on coordinate ( )s retr t  is 
included in scalar potential ( )φ ,r t , and the information on velocity ( )s retv t  is included in vector 

potential ( )A ,r t
  . Knowing potentials ( )φ ,r t  and ( )A ,r t

  , using the formulas (i.3) one can 
obtain expressions (i.4).  

The terms in expression (i.4) can be divided into two groups: with coefficients 21 sr r− 
 

and 1 sr r−  . At large distances 1sr r−   , the main contribution to expression (i.4) will be 
made by terms with the factor 1 sr r−  . In the nonrelativistic approximation ( 1sβ  ), 

expression (i.4) for field ( )E ,r t
   will take the form ( )

0

1E β
4 s s s

s

q n n
с r rπε

= × ×
−

   
  , which 

indicates orthogonality E sn⊥
  . Thus, the vectors B


, E


 and sn  are mutually orthogonal. The 

particle will emit electromagnetic energy, characterized by the Poynting vector S E B
4
c
π

= ×
  

, 

which in the indicated approximations will take the form 
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( )2 2

S β
4

s
s s s

s

q n n n
c r rπ

= × ×
−

    
  .    (i.5) 

 
This result is known as the Larmor formula, which relates the power of electromagnetic 

radiation to particle acceleration βs

 . The Larmor formula turned out to be the «cornerstone» in 
the construction of the theory of the atom. After the works of Rutherford, which showed the 
presence of a nucleus in an atom, a question arose about the stability of the movement of an 
electron around the atomic nucleus. According to the Larmor formula (especially in the general 
(i.4) case), an electron moving with acceleration should radiate electromagnetic energy. The 
electron's loss of energy would lead to its «fall» onto the atomic nucleus. However, experimental 
data indicate the stability of the atom. 

Bohr first attempted to «save» the classical model of the atom. His approach made it 
possible to describe the spectrum of the hydrogen atom, but the spectra of the following atoms 
from the Mendeleev table caused serious difficulties.  

The second attempt was the formulation of a probability model of the micro-world laws, 
which led to the introduction of the concept of the wave function Ψ  and the Schrödinger 
equation for it. The Heisenberg uncertainty principle 2, 1..3k kx p kΔ Δ ≥ =  removed the very 
concept of a trajectory in the micro world from consideration. The absence of the concept of a 
deterministic classical trajectory ( ,s sr v  ) in the micro world made the acceleration βs

  and 
electromagnetic radiation in the Larmor formula (i.5) unnecessary to be considered. 

The Larmor formula (i.5), expressions (i.4) and the Maxwell equations themselves (i.1) 
were a macroscopic description. The very concept of charge density ρ , current density J


, 

included in the Maxwell equations, are macroscopic quantities. Charge density ρ  requires the 
introduction of the operation of averaging the charge over a certain small volume δω . A similar 
procedure is required for current density J vρ=

  . Quantum mechanics describes micro-world 
systems and the averaging operation must be introduced in a different way. Another problem is 
the Heisenberg uncertainty principle, according to which it is impossible to measure the 
coordinate and velocity simultaneously with proper accuracy. From the standpoint of the 
Maxwell equations, the coordinate corresponds to the macroscopic parameter of density ρ , and 
the momentum (velocity) corresponds to current density J vρ=

  . Thus, the Heisenberg 
uncertainty principle leads to the fundamental impossibility of solving Maxwell equations (i.1) 
for quantum systems, since the input data , Jρ


 are both immeasurable/non-existent.  

Note that at the micro level it is impossible to describe a particle through a δ − function, 
since in this case its coordinate and momentum would be strictly defined, which would 
contradict the uncertainty principle and the presence of a wave function, which indicates the 
probability distribution of coordinates and momentum. 

Thus, in the micro world a particle is rather an «extended» object than a point one, having 
uncertainty by the coordinate and momentum. In a sense, the particle becomes a «macro» object. 
For example, an electron in an atom may be represented by an s − orbital which is the probability 
density 2Ψ  of observing the electron at certain points in space. Mass qm  and charge q  of the 

electron can be represented as the density of mass/charge 2m Ψ / 2q Ψ  distributed in coordinate 
space. The question naturally arises about the electric field of such a macro object. From the 
position of the Maxwell macroscopic equations, electric field EΨ


 must correspond to charge 

density 2q Ψ . But density 2q Ψ  is not the classical charge density. Density 2q Ψ  is a 
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probabilistic/statistical quantity. In macroscopic electrodynamics, charge density ρ  is formed by 
a large number of particles. Electric field Eρ


 of such a system is a superposition of the fields of 

all charged particles from distribution ρ . At the micro level, the statistical density of distribution 
2q Ψ  is the density of the same particle, the coordinate of which is not determined.  

In a sense, due to uncertainty qrδ  of the electron coordinate q qr rδ± , value div E 0r Ψ =


 at 

some point r . Indeed, ( )0 div Er q qq r r rε δ δΨ  = − ± 
    and the probability that we accidentally 

hit the electron itself, which has a «zero» size [1, 2], by choosing an arbitrary point r  is zero. 
Let us clarify that the electron is a point particle, but at the micro level it is described by a wave 
function, and the measurement of its coordinate is subject to the Heisenberg uncertainty 
principle. Speaking about an electron as a macro object we mean rather its probabilistic size – for 
example, 2 rσ±  ( rσ  is the standard deviation of function 2Ψ ) than its geometric size (in this 
case it is infinitely small). 

The eigenfield EΨ


 of such a macro object does not have to obey the Maxwell 

macroscopic equations. As a result, there is a need to construct a statistical analogue of the 
Maxwell equations at the micro level, in which the values of the density of charge ρ  and current 
J


 are of a statistical/probabilistic nature ( 2 , Jq vρ ρΨ Ψ Ψ= Ψ =
  ). The procedure for averaging 

the Maxwell statistical equations should lead to the known macroscopic Maxwell equations. 
From the above it follows that the question of the existence or absence of electromagnetic 

radiation in an atom cannot be resolved from the standpoint of the Maxwell macroscopic 
equations and classical electrodynamics. The answer to this question requires the construction of 
field equations on probability principles.  

In this paper, the construction and analysis of statistical field equations is carried out 
based on the first principle – the probability conservation law. The probability conservation law 
underlies the infinite self-linking chain of the Vlasov equations for probability density function 

( ), , ,..,f r v v t∞
    in infinite-dimensional generalized phase space ∞Ω  (GPS) [3]. 

The work has the following structure. Section 1 briefly provides basic information on 
distribution functions, mean kinematical values and the Vlasov equation chain. The laws of 
conservation of motion and energy are written for the first two equations of the Vlasov chain. In 
§2 we consider the first and second Vlasov equations. From the first equation of the chain the 
Schrödinger equation taking into account the Lorentz gauge, the equation of motion of a charged 
particle in an electromagnetic field as well as the Hamilton-Jacobi equation are obtained. The 
concept of the self-consistent system is introduced, which makes it possible to construct the 
Maxwell equations both for external fields and for probabilistic (quantum) fields of a particle. 
The connection is shown between the second Vlasov equation and the Moyal equation for the 
Wigner function of the quasi-density probabilities of a quantum system in phase space. 
Paragraph 3 is devoted to obtaining the Pauli equation and the Dirac equation from the first 
Vlasov equation by increasing the amount of kinematic information about the quantum system. 
The basis is the Helmholtz decomposition (§1) for the vector field of probability flow, in which 
the transition is made from a complex function to a spinor and a bispinor. An analogue of the 
Helmholtz theorem for a vector field defined in 4D space-time is considered. In §4 we consider 
self-consistent and many-particle systems and the methods of their description in the relativistic 
and non-relativistic limit. A theorem is proven about the absence of electromagnetic radiation in 
a self-consistent, time-independent (in phase space) quantum system. The exact solutions of self-
consistent, non-relativistic quantum and classical model systems are analyzed in detail. The 
interrelation between the self-consistency and the many-particle system is described. The 
Conclusions paragraph contains a description of the main work results. The proofs of the 
theorems are given in Appendix A, B and C.  
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§1 First principle 
 In the middle of the 20th century Vlasov invented the first principle – the probability 
conservation law in the generalized phase space ∞Ω  [4]: 
 

     ( )div 0,f f u
t ξ ξ∞ ∞
∂ + =
∂

     (1.1) 

 

where 
det

div div div div div ...r v v vξ = + + + +  ; ( ),f tξ∞


 is a distribution function or probability 

density function; { }, , , , ,...
T

r v v v vξ ∞= ∈Ω
        ; { }det

, , , ,...
T

u v v vξ =
      is a generalized velocity. For 

each point { }0 0 0 0, , ,...
T

r v vξ ∞= ∈Ω
     there is a corresponding generalized phase trajectory [5]: 

 
     ( ) ( )ˆ

0 0 ,tDt e M tξ ξ ξ∞= =
  

    (1.2) 

    
0 0 0

ˆ ˆ ˆ, , ,...tD tD tDu e u u e u u e uξ ξ ξ ξ ξ ξ= = =            (1.3) 

 ( )

2 3

2
det

1 2 3!..
0 1 2...

,0 0 1 ...
... ... ... ....
0 ... ... 0 1

aN

t t t
t t

M t t

 
 
 
 =
 
 
 
 

 lim
a

a
NN

M M∞ →+∞
= ,   det 1,M∞ =   (1.4) 

 
where M∞  is the Taylor evolutional matrix in GPS, and 

aNM  is an evolutional matrix a aN N×  

with order of approximation or averaging aN ; D̂  is the differentiation operator along the 

generalized phase trajectory { }det detˆ , , ,...
T

u D v v vξ ξ= =
     . Note that point 0ξ ∞∈Ω


 defines the one-

parameter group of the Lie transformations. 
Continual integration of equation (1.1) over phase subspaces leads to the infinite self-

linking chain of  the Vlasov equations: 
 

  

( )

( ) ( )
( ) ( ) ( )

1 1
1

1,2 1,2 1,2

1,2

1,2,3 1,2,3 1,2,3 1,2,3

1,2,3

div 0,

div div 0,

div div div 0,

....

r

r v

r v v

f f v
t

f f v f v
t

f f v f v f v
t

∂ + =
∂
∂ + + =
∂
∂ + + + =
∂ 



 

   

  (1.5) 

where 
 

( ) ( ) ( ) ( )
1 1 2 1 2 3

0 1 3 1,2 3 3 1,2,3 3 3 3, , , , , , ...f N t f r t d r f r v t d rd v f r v v t d rd vd v
Ω Ω Ω Ω Ω Ω

= = = = =     
         
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( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2

3

2

1 1,2 3
1

1,2 1,2,3 3

1,2

1 1,2 3

1 1,2

, , , , ,

, , , , , , , ,

, , ,...

f r t v r t f r v t vd v

f r v t v r v t f r v v t vd v

f r t v r t f v d v

Ω

Ω

Ω

=

=

=







     

           

    

   (1.6) 

 
 Integration in (1.6) is carried out over the corresponding phase subspaces

1 2 ...∞Ω = Ω ×Ω × . Value ( )N t  corresponds to the number of particles in the system when f  
stands for the distribution function and it corresponds to a normalization factor when f  is the 
probability density. Depending on the interpretation of function f , the average vector field 

( )1
,v r t 

 determines the velocity of the continuous medium in point r  at time t  or alternatively 

the velocity of the probability flow. Similarly, 
1,2

v  is the acceleration field, and 
1,2,3

v  is the 

second-order acceleration field. Note that the integration of the third Vlasov equation (1.5) over 
acceleration space 3d v   will give the second equation (1.5) for the function 1,2f , and integration 

of the second equation over velocity space 3d v  will lead to the first equation for function 1f .  
 If one multiplies the second Vlasov equation by the velocity v  and integrate over space 

2Ω , we obtain the equation of motion in the hydrodynamic approximation: 
 

   1 1
1

1ˆ ,k
k k kk k

Pv v v v
t x f x

λ
λπ ∂∂ ∂ = + = − + ∂ ∂ ∂ 

    (1.7) 

    ( )( )
2

1,2 3 ,k k kP f v v v v d vλ λ λ
Ω

= − −    (1.8) 

 
where kP λ  is a pressure tensor. Multiplying the second Vlasov equation by 2v , and integrating it 
over velocity space 2Ω , we obtain the law of conservation of energy for continuum mechanics: 
 
 

2

1 1
2 2 1,2 31 1 1Tr Tr Tr ,

2 2 2 2 2kk kk k k kk k k
f fv P v v v P v P P f v v d v

t x λ λ λ λλ
Ω

   ∂ ∂+ + + + + =   ∂ ∂   


  

   ( )( )( )
2

det
1,2 3

1 1 1 .k s k k s sP v v v v v v f d vλ λ λ
Ω

= − − −    (1.9) 

 
 The first term in (1.9) determines the change in energy density over time, the second term 
corresponds to the divergence of the energy current density, and the right-hand side represents 
the work of external forces. 
 The chain of equations (1.5) can be written in a compact and physically clear form [6]: 
 
     1...

1... 1...ˆ , ,n
n nS Q nπ = − ∈     (1.10) 

where 

    1
1... 1...

ˆ ... ,n
n

n r v n
v v

t ξπ ξ +∂= + ∇ + ∇ + + ∇
∂

     (1.11) 

    
det

1,.., 1,..,Lnn nS f= , 
det

1
1,.., 1,..,

div .n
n

n n
Q ξ ξ +=


   (1.12) 
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 Operator (1.11) corresponds to the total derivative with respect to time in phase subspace 
of n  kinematical values. Values 1,..,nQ  (1.12) determine the density of dissipation sources. As a 
result, from equations (1.10) it follows that the change in the probability density along the phase 
trajectory (1.2) is equal to the sources of dissipation. The first Vlasov equation ( 1n = ) is known 
as the continuity equation in continuum mechanics and the field theory. If there are no sources of 

dissipation 
det

1 1div 0rQ v= = , then the probability density 1f const=  along the trajectory of 
motion (1.2) in the coordinate space. The second equation ( 2n = ) is used in plasma physics, 
astrophysics, solid state physics, statistical physics [7-13] and is known as the Vlasov equation. 
If there are no sources of dissipation 1,2 1,2

divvQ v=  , 1,2 0Q = , then the second Vlasov equation 

turns into the Liouville equation [14]. Therefore, density function 1,2f const=  along the phase 
trajectory (1.2). 
 The chain of Vlasov equations (1.10) can be written via the Boltzmann 1,..,nH –functions: 
 

  ( ) ( ) ( )
1

det
1,.., 1,.., 1,.., 1,.., 3 1,..,

0 0
1

1 ... , ,s

n

n
kn n n n n

s

H t f t S d S t
f

ξ ξ
=Ω Ω

= =∏ 


  (1.13) 

 
which satisfy the evolutionary equations: 
 
    0 1... 0

0 1... 0
ˆ , ,n

nf H f Q nπ   = − ∈       (1.14) 
 
where operator 0ˆ d dtπ = . In statistical physics, the most known is the Boltzmann H -function 
corresponding to (1.13) 1,2H . According to equation (1.14), the evolution of Boltzmann 1,..,nH -
function is determined by the average sources of dissipation 1... 0nQ .  
 
 
§2 Schrödinger equation 
 The Schrödinger equation was known to be originally obtained using a phenomenological 
method [15]. In [16] the Schrödinger equation, the Hamilton-Jacobi equation, the equation of 
motion of a charged particle in an electromagnetic field and the Maxwell system of equations are 
obtained from the first Vlasov equation (1.10), which is based on the first principle of the 
probability conservation law (1.1).  
 When obtaining the Schrödinger equation for a scalar particle in an electromagnetic field 
[16], the Coulomb gauge was used div 0r A =


. Note that an analogue result may be obtained for 

the Lorentz gauge divr A χ=


, where 2qс U tχ = −∂ ∂ . For clarity of notation, we omit the 
indices of functions and fields indicating the type of phase subspace.  
 The first Vlasov equation (1.5) contains two unknown functions ( )1 ,f f r t=   and 

( )1
,v v r t=  . Such an equation is possible to be solved in two cases: either function v  or f  

is known, or there is a mathematical relationship between functions v  and f . From a physical 
point of view, the Vlasov equation describes a certain physical object, therefore functions v  
and f  must correspond to the same object. Therefore, it is logical to consider the second case, 
when there is a mathematical relationship between v  and f  in addition to the Vlasov 
equation. As the simplest mathematical object that combines two quantities, one can take a 
complex function. A complex function is known to have two components: a real and an 
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imaginary part. On the complex plane it is convenient to work with the Euler representation of a 
complex number in the form of its modulus and phase.   
 Based on the above, we will use complex function Ψ∈  as a representation that 
combines two real functions f  and v  included in the first Vlasov equation. Let us set the 

modulus of complex number Ψ  equal to 2 0fΨ = ≥ . The positivity property of probability 
density f  will be satisfied automatically. We relate scalar phase argϕ = Ψ  with vector field v  

via the Helmholtz theorem [17] on the decomposition of the vector field (1.6) into vortex AΨ


 

and potential r∇ Φ  fields: 
 
   ( ) ( ) ( ), , A , , div A ,r rv r t r t r tα γ χΨ Ψ= − ∇ Φ + =

       (2.1) 
 
where ,α γ  are some constant values, and χ  is some free function. Let us transform expansion 
(2.1)  
 

 ( )2
*A 0 A ln A ,r r rv i i i i iα γ α γ α γΨ Ψ Ψ

 Ψ = ∇ Φ + = ∇ + Φ + = ∇ + Φ + Ψ 

    (2.2) 

   ( ) ( )
det

2
* *Arg 2 , 2 , , .ie r t k r t kϕ ϕ πΨ Ψ =  = + = Φ ∈ Ψ Ψ 

     (2.3) 

 
 Taking into account definition (2.3), the representation (2.2) of average velocity takes the 
form: 
 

  ( ) * * *, ln Arg A Ln A ,r rv r t i i iα γ α γΨ Ψ
 Ψ Ψ  Ψ   = ∇ + + = ∇ +    Ψ Ψ Ψ    

     

or 

  ( ) ( ) ( )
det

* * *J , , , A ,r rr t f r t v r t iα γ Ψ = = Ψ ∇ Ψ −Ψ∇ Ψ + Ψ Ψ 
       

    * *J A , 1...3,k k k kα γ Ψ= − Ψ ∂ ΦΨ + Ψ Ψ =    (2.4) 
 
where ( )J ,r t

   is the current density and it is taking into account that 2 fΨ = . 
 
Definition 1 Representation (2.4) of vector field ( ),v r t 

 or field ( )J ,r t
   for Ψ∈  will be 

called the Helmholtz Ψ − decomposition with gauge div Ar χΨ =


. 
 
Theorem 1 If the vector field ( ),v r t   of the probability flow admits a Helmholtz Ψ −

decomposition with gauge div Ar χΨ =


, then the first Vlasov equation (1.5) for function 
1 *f = ΨΨ  becomes the Ψ -equation: 

 

    
2

p̂ A ,
2

i U
t

γαβ
β αβ Ψ

 ∂Ψ = − − Ψ + Ψ ∂  


   (2.5) 

 where 
det

p̂ r
i
β

=− ∇  and 0β ≠ , β ∈ , is a constant value; ( ),U r t ∈   is some function.  
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The proof of Theorem 1 is given in Appendix A. 
 

If constant values , ,α β γ  are chosen as: 
 

    1, , ,
2

q
m m

α β γ= − = = −


    (2.6) 

 
then equation (2.5) will take the form of the Schrödinger equation for a scalar particle in an 
electromagnetic field  
 

    ( )21 p̂ A ,
2

i q U
t m Ψ

∂Ψ = − Ψ + Ψ
∂


     (2.7) 

 
where p̂ ri= − ∇  corresponds to the momentum operator. Note that, despite the presence of free 
function χ , the equation (2.5)/(2.7) does not depend on it explicitly. Let us show that function 
U  corresponds to the potential energy.  
 
Theorem 2 Function ( ),U r t ∈   from equation (2.5) corresponds the equation: 
 

    
det21 1 V H,

4
v

t
ϕ

β αβ
∂− = − + =
∂

     (2.8) 

where 

    V Q, Q ,rU α
β
Δ Ψ

= + =
Ψ

     (2.9) 

 
and vector field ( ),v r t   of the probability flow satisfies the equation of motion: 
 

    ( )1ˆ E B ,dv v v
dt

π γ Ψ Ψ= = − + ×
        (2.10) 

where 

    
det A 2E V,rt

αβ
γ

Ψ
Ψ

∂=− − ∇
∂


    

det
B curl A .rΨ Ψ=


  (2.11) 

 
 The proof of Theorem 2 is given in Appendix A. 
 
 When replacing (2.6), equation (2.8) becomes the Hamilton-Jacobi equation

2
V H

2
m v

t
ϕ∂− = + =
∂

 , and expression (2.9) determines the quantum potential 
2

Q
2

r

m
Δ Ψ

= −
Ψ

  from the de Broglie-Bohm «pilot-wave» theory [18-20]. Note that potential V

in the Hamilton function H  differs from potential U  in the Schrödinger equation by the value of 
the quantum potential Q . In classical limit 1   we can assume that V U≈ . Value Sϕ =  
determines the action.  
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Definition 2 We will call the relationship between vortex field AΨ


 component (2.4) and scalar 

potential V  (2.9) using the equation (2.9) 
 

     2
2 1 Vdiv A 0,r c t
αβ
γΨ

∂+ =
∂


    (2.12) 

 
Lorentz Ψ -gauge.  
 

Without loss of generality, vortex field AΨ


 can be represented as the sum of classical 

vector potential A


 and some «quantum» vector potential AQ


, that is, (2.11) 

 

   
det

A A A , B curl A curl A B B .Q r r Q QΨ Ψ= + = + = +
      

   (2.13) 
 

In the classical approximation ( 1  ) for Q 0=  and AQ θ=
 

 according to (2.11), (2.12) 
and (2.6), the Lorentz Ψ -gauge (2.12) turns into the usual Lorentz gauge 
 

     2
1div A 0,r

U
qc t

∂+ =
∂


      (2.14) 

or 

     2
1 φdiv A 0.r c t
∂+ =
∂


  

 
 In the general case, when taking into account quantum potential Q  and the vector 
potential AQ


, Ψ−gauge (2.12) splits into Lorentz gauge (2.14) and quantum gauge 

 

     2
1 Qdiv A 0.r Q qc t

∂+ =
∂


    (2.15) 

 
Electric field EΨ


 (2.11) takes the form: 

 

   
AA 1 1E Q E E ,Q

r r QU
t q t qΨ

∂∂= − − ∇ − − ∇ = +
∂ ∂

  
   (2.16) 

 
where E,B

 
 are classical electromagnetic fields; and EQ


, BQ


 are electromagnetic fields caused by 

the probability distributions of the quantum system. The charge ρ  and current J


 densities are 
determined for classical fields E,B

 
. For a quantum system located in external classical fields, 

according to the uncertainty principle, charge density qf  (related to the coordinate) and current 
density qfv  (related to velocity v ) are not determined. The indicated densities are not classical 
electrodynamics characteristics, they are probabilistic by nature. For example, field EQ


 (2.16) 

includes the quantum potential Q , expressed in terms of density f = Ψ  as (2.9). Dependence 
(2.9), in the general case, does not agree with the Coulomb representation 0Qr qf εΔ = − .  
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Definition 3 We will say that the system is self-consistent if the condition (2.17) is satisfied for
det det

0 div E div Dr rρ εΨ Ψ Ψ= =
 

  
 
      .qfρΨ =      (2.17) 
 
Lemma 1 For a self-consistent system, the following field equations are valid: 
 
    div D , div B 0,r rρΨ Ψ Ψ= =

 
     (2.18) 

   Bcurl E ,r t
Ψ

Ψ
∂= −
∂


 D J curl H ,rt Ψ Ψ Ψ

∂ + =
∂
  

   (2.19) 

 

where 
det

J vρΨ Ψ=
  , а HΨ


 are some field, for example, 

det

0 H Bμ Ψ Ψ=
 

. In this case, the Lorentz 
Ψ−gauge condition (2.12) brings the system of equations (2.18)-(2.19) to the form: 
 

    
0

φ ,ρ
ε
Ψ

Ψ =  0A J ,μΨ Ψ=
 
      (2.20) 

    φ = φ φ ,QΨ +  J J J ,QΨ = +
  

     (2.21) 

   
det det

V φ , Q φ , φ,Qq q U qΨ= = =   ,Qρ ρ ρΨ = +    (2.22) 
 

where 
det det

0 div E div DQ r Q r Qρ ε= =
 

. 
 

The proof of Lemma 1 is given in Appendix A. 
 
Remark 1 In the classical limit ( 1  ) at Q 0=  and AQ θ=

 
 equations (2.18)-(2.19) for a self-

consistent system transform into the well-known Maxwell equations for classical 
electromagnetic fields E,B

 
: 

 
    div D , div B 0,r rρ= =

 
     (2.23) 

   Bcurl E ,r t
∂= −
∂


 D J curl H,rt

∂ + =
∂
  

    (2.24) 

 
where J vρ=

   and 0 H Bμ =
 

. In this case, the Lorentz gauge (2.14) can be performed. In the 

general case, when taking into account «quantum» fields EQ


, BQ


, and having classical Maxwell 

equations (2.23)-(2.24) being true for fields E,B
 

, we obtain an analogue of the Maxwell 
equations for fields EQ


, BQ


: 

 
    div D , div B 0,r Q Q r Qρ= =

 
     (2.25) 

   
B

curl E ,Q
r Q t

∂
= −

∂




 D J curl H ,Q Q r Qt
∂ + =
∂
  

   (2.26) 
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where JQ Q vρ=
   and 0 H BQ Qμ =

 
. In this case, for equations (2.25)-(2.26) quantum gauge 

(2.15) can be performed. 
 
Remark 2 Note that field equations (2.18)-(2.19) for self-consistent systems are obtained only 
on the basis of the first Vlasov equation (1.5), which is a consequence of the first principle – the 
probability conservation law. Equations (2.18)-(2.19) in the form (2.20) are representable 
through 4-potential , 0...3Aμ μ =   
 
      0 ,A Jμ μμ=      (2.27) 

    φ ,A ,A
c

μ Ψ
Ψ

 =  
 


 ( ), J ,J cμ ρΨ Ψ=


  

 

where μ
μ= ∂ ∂ , 

xμ μ
∂∂ =
∂

, gμ μν
ν∂ = ∂ . Metric tensor ( ), , ,g μν = + − − −  corresponds to the 

d’Alembert operator (2.27). Equation (2.27) is invariant under the Lorentz transformation, thus it 
is a relativistic equation. The problem of integration (averaging) over the velocity space (1.3) is 
solved rather by momentum than velocity. Indeed, with v c→  momentum p →∞ . In this case, 
equation (2.27) is uniquely related to the «Schrödinger equation» (2.7). Note that equation (2.7) 
is not invariant under Lorentz transformations, since it contains derivatives of different orders. 
The question arises: «How can a relativistic theory follow from the non-relativistic Schrödinger 
equation?» The answer to this question has two points. 

First, equation (2.27) was obtained for self-consistent systems (2.17). Condition (2.17) is 
very rigorous. As it is shown below in §4, nonrelativistic quantum systems, as a rule, do not 
satisfy this condition, although there are exceptions (depending on the type of gauge). The 
problem is that density ρΨ  contains both classical charge density ρ  and quantum (probability) 
density Qρ . Density Qρ  is not the charge density in the usual sense. It is the classical 

«equivalent» of the charge density that induces field EQ


 (2.16). Field EQ


 is determined by 

quantum potential Qr−∇ , which is related to probability density 2f = Ψ  not by the Coulomb 

law ( ) 3,f r t
d r

r r
′

′
′−


  , but by expression (2.9) rΔ Ψ

Ψ
. A somewhat similar situation arises in the 

Dirac equation (see §3, 4). 
Secondly, equation (2.7) is not exactly the Schrödinger equation. In the general case, 

there is a vector potential AΨ


 that differs, according to (2.13), from the classical vector potential 

A


. A similar remark concerns the field equation itself (2.27), in which, in addition to vector 
potential AΨ


, there is a scalar potential φΨ  (2.21) associated with the quantum potential Q  

(2.9). In the nonrelativistic approximation, only external fields E,B
 

 that satisfy the Maxwell 
equations remain, and the relation with particle fields (quantum fields) EQ


, BQ


 disappears. The 

classical Schrödinger equation does not contain the particle’s own fields. There are only external 
potentials A


 and φU q= . The influence of the particle’s own «field», for example, in the form 

of spin, is manifested in the equations of Pauli and Dirac (see §3). 
 
Let us consider in more detail the physical meaning of probabilistic («quantum») fields, 

EQ


, BQ


. For this we will compare the two equations of motion (1.7) and (2.10). Equation (1.7) is 

obtained from the second Vlasov equation (see § 1). A special case of the second Vlasov 
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equation (1.5) for function 1,2f  is the Moyal equation for the Wigner function ( ), ,W r p t   of a 
quantum system in phase space [21, 22] 
 

  ( )
( ) 3

* 3
3

1, , , , ,
2 22

i s ps sW r p t r t r t e d s
π

− ⋅   = Ψ − Ψ +   
   

 




    


   (2.28) 

 
where function ( ), ,W r p t   is written for the coherent state. The chain of equations (1.5) is self-
linking, so to solve it a cut-off at some equation is necessary. The chain can be cut off by 
dynamic approximation of the average kinematical value (1.6). In [23, 24] the Vlasov-Moyal 
approximation was proposed 
 

   ( ) ( )
( ) ( )
1 2

21,2 1,2
2 11,2

0

1 2
,

2 1 !

l l
l

k r vl k
l

Uf v f
m l x

++∞

+
=

− ∂= ∇ ⋅∇
+ ∂

     (2.29) 

 
where ( ) ( )1,2 3, , , ,f r v t m W r p t=    . Substituting approximation (2.29) into the second Vlasov 
equation (1.5), we obtain the Moyal equation for the quasi-density probabilities [25]  
 

  ( ) ( )
( ) ( )

2
2 1

1

1 21 .
2 1 !

l l
l

r r p r p
l

W p W U W U W
t m l

+∞ +

=

−∂ + ⋅∇ −∇ ⋅∇ = ∇ ⋅∇
∂ +

    (2.30) 

 
 Note that the probability conservation law (1.1) does not impose conditions on the sign of 
function f . Consequently, negative values of the Wigner function ( ), ,W r p t   do not contradict 
the presented approach.  
 Averaging the Vlasov-Moyal approximation (2.29) over the space of velocities leads to 
an analogue of Newton’s second law, which is present in the hydrodynamic equation of motion 
(1.7): 
 

     1

1 .k k
Uv

m x
∂= −
∂

      (2.31) 

 
 Approximation (2.31) was originally used in a phenomenological manner by Vlasov in 
his theory. Here it is obtained using the quantum mechanics in the phase space. The peculiarity 
of expression (2.31) is the presence of Schrödinger potential U instead of V  (2.9) from the 
Hamilton-Jacobi equation. Let us discuss this peculiarity in more detail. Since the Moyal 
equation (2.30) was obtained without taking into account the magnetic field, the corresponding 
equation of motion (2.10) will take the form 
 

   1 V 1 1 Q .k k k k
Uv v

t x m x m x m xλ
λ

 ∂ ∂ ∂ ∂ ∂+ = − = − − ∂ ∂ ∂ ∂ ∂ 
   (2.32) 

 
Equation (2.32) is an analogue of the equation of motion (1.7), therefore, taking into 

account (2.31), we obtain 
 

     
1

1 Q 1 .k
k

P
m x f x

λ
λ

∂∂ =
∂ ∂

     (2.33) 
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 Expression (2.33) shows that quantum potential Q  creates quantum pressure. That is, a 
quantum system allows for a «macroscopic» description.  

Indeed, pressure tensor kP λ  determines the covariance matrix when averaged over 
velocity space (1.8). On the one hand, a quantum system is a microscopic description, and on the 
other hand, it is a macroscopic description when averaged over higher kinematical values. 

If we assume that function f  corresponds to the distribution function of particles of the 
same type, then in the macroscopic description qf  this is the charge density ρ  and equations 
(2.18)-(2.19) transform into the classical Maxwell equations (2.23)-(2.24). Let us illustrate this 
statement using the example of single-velocity distribution function 1,2f : 
 
    ( ) ( ) ( )1,2 , , , , ,f r v t r t v u r tρ δ= −  

         (2.33) 
 
where ( ),u r t   is the vector velocity field of the continuous medium. Substituting (2.33) into 
(1.6), we obtain 

1
u v=   and 1f ρ= . Pressure tensor (1.8) 0kP λ =  corresponds to distribution 

function (2.33), that is, pressure force 
1

1 k
k

P
f x

λ∂−
∂

 in equation (1.7) is absent and the quantum 

pressure according to (2.33) is equal to zero Q 0= . The absence of quantum potentials Q  and 
AQ


, according to equations (2.13) and (2.16), gives a trivial solution to equations (2.25)-(2.26) 

for quantum fields EQ


, BQ


. As a result, the hydrodynamic equation of motion (1.7) transforms 

into the usual Euler equation, in which there is only an external force (2.31). Such a system is 
self-consistent (2.17) and corresponds to the Maxwell electrodynamics (2.23)-(2.24), but each 
particle is a point particle, which is acted upon by an external force (2.31). The intrinsic 
microscopic nature of the particle in the form of quantum pressure (2.33) is absent here.  
 Let us consider distribution (2.33) in more detail. If a phase volume of the phase space 
{ },r p mv=    corresponds to the physical system, then for each point with coordinate r  there is 
an uncertainty by velocity v , described by the probability density function

( ) ( )
1

2 1,2 3, , ,f v t f r v t d r
Ω

= 
   . The same consideration is true for GPS, in which the infinite set of 

kinematical values { }, , ,...
T

u v v vξ =
      corresponds to point r , and these kinematical values 

determine the form of the generalized phase trajectory (1.2). The uncertainty by velocity uξ
  (due 

to the probability density) leads to the uncertainty by trajectory ( )tξ


 (1.2), which is consistent 
with the Heisenberg uncertainty principle. Due to the uncertainty by velocity, for some small 
volume δω  (macroscopic description) there is a spread of velocities (determined by 2f ), 
leading to pressure 0kP λ ≠  and Q 0≠ . 

If the physical system is represented by a phase hypersurface (not by a phase volume) in 
the phase space then each point r  has its certain velocity v . This situation is described by 
distribution (2.33). In this case the system consists of streams of particles interacting through the 
self-consistent potential U .  
 
Remark 3 It should be noted that distribution (2.33) in the general case is not a solution to the 
Moyal equation (2.30). At 0ρ ≥  (or 0ρ ≤ ), the distribution (2.33) will be either positive or 
negative, which contradicts the Hudson theorem for the Wigner function (2.28). According to the 
Hudson theorem and its generalization to the 3D case [26, 27], the only positive (negative) 
Wigner function is the Gaussian distribution in the phase space. Nevertheless, it is possible to 
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construct a limiting transition from the Wigner function, which contains information about 
quantum pressure, to distribution (2.33), in which this information no longer exists. As an 
example, let us take the Wigner function for the ground state of a quantum harmonic oscillator 
with frequency ω  [28]: 
 

   ( ) ( ) ( )
2 2

,
0 2 2 2

1, , , ,
2 2

x p

v x

p xW x p e x p
m

ε ε
π σ σ

−= = +


   (2.34) 

     , .
2

v
x v

xm
σσ σ ω
σ

= =      (2.35) 

 
 Expression (2.35) corresponds to the Heisenberg uncertainty principle. In the case of 
(2.34), potential 2 2 2U m xω=  in the Vlasov-Moyal approximation (2.29) gives only one non-

zero term, that is 1,2

1 Uv
m x
∂= −
∂

 . As a result, the Moyal equation (2.30) and the second Vlasov 

equation (1.5) will take the form: 
 

     0 0,t x x p
p U W
m

 ∂ + ∂ − ∂ ∂ = 
 

    (2.36) 

 
where ( ) ( )1,2 , ,f x v mW x mv= . According to (2.33) and (1.8), the quantum pressure has the form  
 

  ( ) ( ) ( )
2

2 1 2
04, 0, Q ,

8v
x

P x f x v x x
m

σ
σ

= = = − +
    (2.37) 

    ( )
2

221 1 ,
2

x

x

x

f x e σ

πσ

−

=   

 
where 0 2ω=   is the energy of the ground state. Equation of motion (2.32) corresponds to the 
equilibrium system: 
 

     Q 0,U
x x

∂ ∂− − =
∂ ∂

     (2.38) 

 

that is, external force U
x

∂−
∂

 is balanced by force of quantum pressure Q
x

∂
∂

. In terms of 

hydrodynamics, a quantum particle is not a point particle. This particle is an object which is 
determined by a certain probability distribution density 1f , or a certain medium. Compression of 

this medium by an external field in the form U
x

∂−
∂

 leads to a reaction of this medium in the form 

of quantum pressure Q
x

∂
∂

.  

The limiting transition of distribution (2.34) to distribution (2.33) is possible at 0pσ → . 
Value pσ  characterizes the uncertainty by momentum. The reduction of this uncertainty by 
momentum 0pσ →  results in transition to a single-velocity distribution (2.33): 
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( ) ( ) ( ) ( )
22

22 22 1,2
00 0

1lim , lim , = ,
2

px

p p

px

x p

mW x p e e f x v x vσσ

σ σ
ρ δ

π σ σ

−−

→ →
= =  (2.39) 

    ( )
2

22lim 0,
2

x

x

x

x

mx e σ

σ
ρ

πσ

−

→+∞
= =     (2.40) 

 
where the Heisenberg uncertainty principle (2.35) plays the role of normalizing the probability 
density function. Passage to the limit 0pσ →  leads to an increase in xσ → +∞ , which is known 
as the dispersion of the wave packet (2.40). For a harmonic oscillator, this means that its 
frequency (2.35) 0v xω σ σ= → . Quantum potential Q  (2.37) and quantum pressure 

2Q m x
x

ω∂ = −
∂

 also tend to zero. Indeed, passage to the limit 0pσ →  leads to a weakening of the 

external potential 0U → , which localized the particle inside the potential well. As a result, 
according to (2.38), the force of quantum pressure decreases. From the position of continuum 
mechanics, passage to the limit 0pσ →  allows the following interpretation. The gas, localized in 
the pressure vessel, was released outside, which led to its distribution throughout the space 
(dispersion of the wave packet xσ → +∞ ) and a drop in pressure ( )P x  (2.37). 
 
 Now let us move from the physical interpretation of quantum potential Q  to quantum 
(probabilistic) vector potential AQ


 included in the «Schrödinger equation» (2.5). As mentioned 

above, equation (2.5) differs from the classical Schrödinger equation by the presence of term AQ


 

(2.13). If probabilistic vector-potential AQ


 сan be neglected, then A AΨ =

 
 and equation (2.5) 

transforms into the usual Schrödinger equation for a scalar particle in an electromagnetic field. 
Such an equation does not take into account the particle’s own «fields», such as spin effects. 
Note that the original equation (2.5) for self-consistent systems leads to the relativistic Lorentz 
transformations (see Lemma 1) and the Maxwell equations. Consequently, the presence of 
probabilistic potentials Q  and AQ


 may contain the interpretation of «relativistic» effects, for 

example, spin (note that the Pauli equation is not invariant).  
Indeed, equation of motion (2.10) contains an analogue of the Lorentz force for a particle 

in a magnetic field Bq v Ψ×
 . According to (2.13), field BΨ


 is a superposition of fields 

B B BQΨ = +
  

, where B


 is an external field, and BQ


 is a probabilistic field of a particle. 

Consequently, in the well-known experiment of Gerlach and Stern [29-31] on detecting the 
electron spin, in addition to the Lorentz force from external field Bq v ×

  according to (2.10), 

there will be additional force BQq v ×
  determined by the probabilistic vortex potential AQ


. 

Depending on vortex potential AQ


, there will be a different type of solution to equation (2.5), 

that is, the possibility of taking the spin effect into consideration. Thus, the right-hand side of 
equation of motion (2.10) can be represented in the form of a classical F


 and probabilistic 

(quantum) FQ


 force acting on the particle 

 
      F F F ,QΨ = +

  
     (2.41) 

    ( ) ( )F E B , F E B .Q Q Qq v q v= + × = + ×
         
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 Classical force F


 gives a non-probabilistic trajectory, and the probabilistic force FQ


 

specifies the quantum uncertainty of the trajectory in the Heisenberg principle. Term FQ


 gives a 

probabilistic trajectory, that is, the probability that the force has such a value. As a result, there is 
an infinite number of trajectories along which movement can occur, but each has its own 
probability. This interpretation is similar to the well-known formulation of quantum mechanics 
through the path integral by Feynman.  
 Recall that according to the Helmholtz Ψ − decomposition (2.4), the velocity of 
probability flow v  is related to phase ϕ  of the wave function Ψ . Probabilistic fields E ,BQ Q

 

provide probabilistic solutions to equation of motion (2.10) for flow v , and therefore also for 
phase ϕ , the incursion of which is present in Feynman’s path integrals.  
 
 
§3 Pauli and Dirac equations 
 Let us consider a possible option for taking into account additional kinematic information 
(vortex field AQ


) of the particle itself located in external fields. When obtaining an analogue of 

the Schrödinger equation (2.7), the system was described by a complex function Ψ∈ . 
Complex function ( )exp iϕΨ = Ψ  contains two free parameters: modulus Ψ  and phase ϕ . 
These two parameters were used to describe two unknown functions in the Vlasov equation 
(1.5): probability density 2f = Ψ  and probability flow velocity 2 Arv α ϕ γ Ψ= − ∇ +

 . At the 
same time, in order to describe the vortex field, it was necessary to introduce another free 
parameter AΨ


, which, according to (2.13), in addition to the vector-potential A


 (external 

magnetic field), contains the probabilistic vortex field of the particle AQ


. From equation (2.7) it 

is impossible to explicitly obtain the form of field AQ


, which is included there as a parameter. 

Of course, field AQ


 satisfies the gauge expression (2.15), but according to the Helmholtz 

theorem, the field cannot be reconstructed from divergence ( divr ) only [23]. Field AQ


 can be 

found from the system of equations (2.25)-(2.26), but for this it is necessary to know probability 
density Qρ  and current JQ


, which is expressed through field AQ


 itself.  

Thus, usual complex function Ψ∈  does not have a sufficient number of free 
parameters to describe the particle’s own kinematic characteristics. To solve this problem, we 
increase the number of free parameters by considering a 2D complex space 2  with elements ψ  
(spinors):  
 

  ( ) ( ) 21 2 † * * * †
1 2 1 2

2

, , , , .
T 

∈ = = ∈ 
 

ψψ = ψ ψ ψ ψ ψ = ψ ψ ψ ψψ     (3.1) 

 
 Spinor ψ , unlike complex function Ψ , has four instead of two free parameters. By 
analogy with the Helmholtz Ψ − decomposition (2.4) for the function Ψ∈ , we define the 
decomposition for spinor 2∈ψ  . 
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Definition 4 Let us denote the representation of current density field ( )J ,r t
   for 2∈ψ   

 
    ( )† * †J A ,T

r riα γ= ∇ − ∇ +ψ ψ ψ ψ ψ ψ


    (3.2) 
 
as the Helmholtz 2 −ψ decomposition with gauge div Ar χ=


. 

 
Theorem 3 Let the vector field of the current probability density J


 admit a Helmholtz 2 −ψ

decomposition, then the first Vlasov equation (1.5) will take the form: 
 

    
2

ˆI p A I ,
2

i U
t

γαβ σ
β αβ

  ∂ = − ⋅ −  ∂   

ψ ψ+ ψ
    (3.3) 

or 

   ( )
2

ˆI I p A I B ,
2 2

i U
t

γ γαβ σ
β αβ β

 ∂ = − − ⋅ ∂  

ψ ψ+ ψ+ ψ
    (3.4) 

 
where 2 1f=ψ ; ( )1 2 3, ,σ σ σ σ=  are the Pauli matrices; 0 Iσ =  is an identity matrix.

det
B curl Ar=


; p̂ r

i
β

= ∇ , U ∈  is some function, and , ,α β γ  are some constant values. 

 
 The proof of Theorem 3 is given in Appendix B. 
 
 When choosing constant values , ,α β γ  according to (2.6), equation (3.3)/(3.4) transforms 
into the well-known non-relativistic Pauli equation for a particle with spin in an external 
electromagnetic field [32].  
 

    ( ) ( )21 ˆI I p A I B .
2 2

qi q U
t m m

σ∂ = − ⋅
∂
ψ ψ+ ψ- ψ

     (3.5) 

 
 From a comparison of equations (2.7) and (3.5) one can see the appearance of a new term 

( )B
2
q
m

σ ⋅
   responsible for the spin of the particle.  

Equations (2.5) and (3.3) were obtained from the first Vlasov equation (1.5) using 
Helmholtz Ψ −  and 2 −ψ decomposition, respectively. Both equations (2.5) and (3.3) are not 
relativistic, since they do not have invariance under the Lorentz transformation. Note that the 
original Vlasov equation (1.5) is invariant. The first problem in invariance violation appears 
when using the Helmholtz decomposition for 3D vector field v  or in 3D coordinate space J


. 

Indeed, time t  is included in decompositions (2.1), (2.4) and (3.2) as a parameter. In the 
Helmholtz decomposition there are derivatives only along coordinate axes k∂ , and there are no 
derivatives along the time axis 0∂ . To solve this problem, it is necessary to extend the Helmholtz 
decomposition to 4D space-time.  
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Lemma 2 Let 3D vector field ( )F xμ
 be defined on a 4D space-time ( ) ( )0 TTx ct r x xμ = =   

and admit the representation 
 

    ( ) curl ,r rF x S R
t

μ ∂= −∇ Π + −
∂

 
    (3.6) 

 
then functions , RΠ


 and S


 satisfy the equations: 

 

   2
1 , div , curl ,r r

F R F F S
с t

∂− = = Π =
∂

   
      (3.7) 

with gauges: 

   2 2
1 1div 0, curl 0, div 0.r r r

SR R S
с t с t

∂Π ∂+ = + = =
∂ ∂

  
  

 (3.8) 
 
 The proof of Lemma 2 is given in Appendix B. 
 
 In the nonrelativistic limit at c →∞ , gauge conditions (3.8) give div 0r R =


, curl 0r R =


, 

and (3.7) leads to R θ=


 . Thus, field R


 is constant, that is, the term 0R θ∂ =


 in decomposition 
(3.6). As a result, expansion (3.6) transforms into the Helmholtz decomposition. A similar 
transformation occurs if we assume that the fields are time independent. In this case, all 
derivatives with respect to time are equal to zero.  

 Instead of two vector fields R


 and S


 we can introduce field 
det

S cR= −
  
 . According to 

(3.7), field 

  is represented in terms of quaternions: 

 

    ( )( )0
1 curl ; 0; .r k

F F F
с t
∂= + = ∂ ∂
∂

  
       (3.9) 

 
Scalar potential Π  and field 


  define four-vector ( ),μ = Π


   satisfying the equation 

 

    1div , curl .r r
FF F

с t
μ  ∂= + ∂ 

 
      (3.10) 

 
 Equation (3.10) is a 4D form of the Lemma 1. Knowing the right-hand side, we can write 
the solution to the d’Alembert equation (3.10) in terms of the Lienard-Wiechert potentials and 
find four-vector potential μ  from which it is possible to restore field F


 according to (3.6). In 

the non-relativistic case at c →∞ , the right-hand side of equation (3.10) contains only divr F


 
and curlr F


, and operator →−Δ , which reduces to the Helmholtz theorem for the 3D region. 

 Note that the right-hand side of decomposition (3.10) is similar to the Maxwell equations 
through the Riemann-Silberstein vector (RS-vector) 0 0F E Hiε μ= +

  
: 

 

   ( )0
1 F, J div F, curl F .r rc i
с t

μ ρ
 ∂− = + ∂ 

  
    (3.11) 
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 On the one hand, decomposition (3.6) gives hope for a transition to relativism, but on the 
other hand, when substituting it into the Vlasov equation, a second problem arises: different 
orders of derivatives with respect to coordinate and time. There are two ways to solve this 
problem. The first is to increase the order of the derivatives in term 0 f∂  from the Vlasov 
equation. This approach is actually implemented in the Klein-Gordon equation. The second way 
is to lower the order of derivatives in the first term of decomposition (2.4): 
 

      *J ,k k

m
ϕ= Ψ ∂ Ψ      (3.12) 

 
This expression (3.12) takes the relation (2.3) into account for the phase of wave function ϕ . 
The Helmholtz Ψ − decomposition (2.4) used a complex wave function ( )exp iϕΨ = Ψ  
characterized by modulus Ψ  and phase ϕ . For Ψ∈ the phase ϕ  specifies the angle of 
rotation in the complex plane. When transiting to the Helmholtz 2 −ψ decomposition (3.2), 
spinors 2∈ψ   were considered instead of Ψ∈ . Spinors ψ  can be acted upon by complex 
matrices M  of size 2 2× , that is Mψ . The indicated matrices can be decomposed into basis 
matrices – the Pauli matrices μσ , 0...3μ = . The Pauli matrices correspond to the four basis 
elements 1, , ,i j k  in the quaternion decomposition ( ) 1 2 3q ;a u a iu ju ku= = + + + : 
 

0 3 2 11 0 1 0 0 0 1
1 , , , .

0 1 0 1 0 1 0
i

i i i j i i k i i
i

σ σ σ σ
−       

= = = =       −       
     (3.13) 

 
Quaternion algebra ( ) was originally constructed by Hamilton and further developed 

by Clifford in the form of hypercomplex numbers [33], for example, octaves ( ) and sedenions 
( ). Quaternions can be represented in the form of complex matrices 2 2×  (3.13), or in the form 
of real matrices 4 4× . Each 3D vector ( )1 2 3, ,r x x x=  in Euclidean space can be associated with 
a 2 2×  matrix according to the rule 
 

    3 1 2

1 2 3

.k
k

x x ix
r x

x ix x
σ σ

− 
⋅ = =  + − 

      (3.14) 

 
 Representation (3.14) is used in the Pauli equation (3.3) for the momentum operator. 
According to spinor algebra, matrix (3.14) specifies the rotation of the spinor. Rotating a spinor 
from one position to another is an ambiguous operation. There are two possible rotating 
operations, differing only in sign. Thus, it is logical to take rotation matrices rσ ⋅   as phase ϕ . 

Since it is necessary to take all axes of 4D space-time ( )0 T
x x xμ = 

 into account we define 

rotation matrix ϕ̂  for bispinor 4∈ψ   (two directions of rotation) as follows: 
 

  ( )
0 0

2 00 0
0 0

20 0

I 0
ˆγ ,

0 I

s s
s s

s s
s s

x x x x
x

x x x x μ
σ σ σ σ ϕ
σ σ σ σ
    

= =    − − −    
   (3.15) 

    ( )
0

0
0

0

ˆ .
x x

x
x x

μ σ σϕ
σ σ
 − ⋅

=  ⋅ − 

 
     
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 The rotation phase matrix (3.15) is defined at points of 4D space-time, that is, each point 
xμ  has its own rotation (phase). Note that from the Hamilton-Jacobi equation (2.8) the phase is 
related to the concept of action Sϕ = . From a geometric point of view, action S  corresponds to 
the length of the trajectory (in the case of quantum mechanics – the Feynman path integrals) in 
curved space with the indicatrix 1= , where  is the Lagrange [34]. Thus, for each point in 4D 
space-time the «trajectory length» S  is determined by rotation matrix (3.15). 

The Vlasov equation in 4-component form will take the form: 
 

    0 0,k
kcf f v J

ct x
μ

μ
∂ ∂  + =  ∂ = ∂ ∂

   (3.16) 

where 

    ( ) ( )2 J ,
TT

J cf f v cμ = = ψ   2 †=ψ ψ ψ . 

 
Let us transform representation of the current density (3.12) for bispinor 4∈ψ  and the 

phase matrix (3.15): 
 

    0 * † ,J c
m

= Ψ Ψ ψ ψ       (3.17) 

    * † 0 ˆγ ,k k kJ c
m

ϕ ϕ= Ψ ∂ Ψ ∂ψ ψ    

 
where, in contrast to (2.4), density 2f = ψ  is a dimensionless value. Let us calculate expression 

ˆkϕ∂  from (3.17). The following expression will be obtained: 
 

   20

2

I 00ˆ ˆ,
0 I0

k
k

k

σϕ ϕ
σ

   
∂ = ∂ =   −−   

, 

     ˆ γ ,μ μϕ∂ =       (3.18) 
 
where γμ  are the Dirac matrices. From a physical point of view, expression (3.18) can have the 
following interpretation. The partial derivative of the phase (action) with respect to time 0ϕ̂∂  in 
accordance with the Hamilton-Jacobi equation (2.8) determines the energy of the system. From 
expression (3.18) it follows that there are positive and negative values of the system energy (a 
particle and an antiparticle). In accordance with the Helmholtz decomposition (2.1) the 
derivative with respect to coordinate space from the phase (action) ˆkϕ∂  is associated with the 
potential component of the momentum rp ϕ= ∇  . From expression (3.18) it follows that the 
momentum is related to the Pauli matrices kσ , which corresponds to the Pauli equation (3.3) 

p̂σ ⋅ . 
Taking expression (3.18) into account the representation (3.17) for current density J μ  

will take the form: 
 
     γ ,J cμ μ= ψ ψ       (3.19) 
 

where 
det

† 0γ=ψ ψ  is a dual wave function and 0 0γ γ I=  is an identity matrix.   
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Theorem 4 Let the probability current density J μ  admit the (3.19) representation, then the 
Vlasov equation (3.16) will take the form: 
 
   ( )0 2

0 ˆγ γ p A I φ ,k
k ki c c q mc q ∂ − + ψ = ψ+ ψ    (3.20) 

or 
    ( )γ I 0,i qA mcμ

μ μ ∂ = - - ψ   

 
where , ,m q   are constant values, p̂k ki= − ∂ , and ( ),AA cμ ϕ=


 is some four-vector field.  

 
 The proof of Theorem 4 is given in Appendix B. 
 
 Equation (3.20) is known as the relativistic Dirac equation for a particle (and an 
antiparticle) in an electromagnetic field [35].  
 
 
§4 Self-consistency, relativism and many-particle system 

Let us consider the relationship between the concepts of self-consistency, relativism and 
many-particle system. We start with the concepts of self-consistency and many-particle system. 
Firstly, we should make it clear which systems satisfy and unsatisfy the condition (2.17). There 
are two types of systems described by the equations of mathematical physics. The first type is 
when there are external fields acting on the «particle», and the action of the «particle» on the 
external fields is negligible. The second type of the system is when there is self-consistency 
between the particle’s fields and external fields. In this case the equations describing the system 
contain the action of the entire system on itself.  
 
Lemma 3 For a self-consistent system with external potentials φU q= , A


, gauges (2.12), 

(2.14), (2.15) the solution to equation (2.7) can be represented as 
( ) ( ) ( ), , exp ,r t r t i r tϕΨ = Ψ   
   , where Ψ , ϕ  and AQ


 satisfy the equations: 

 

   
( )

( )
( ) ( )

2 3, , 1α , ,
2 ,

r rС
r t r t d r

U r t
r r сr t
′ ′Δ Ψ Ψ

+ =
′−Ψ 

 
 

  
   (4.1) 

    ( )2
1A A A Q,Q r Qq q

mc
ϕ = ∇ − + 

  
      (4.2) 

 
where rt t r r с′= − −  ; С mc=   is a reduced Compton wavelength, and ( )2

0α = 4q cπε   is 
the fine structure constant.  
 
 The proof of Lemma 3 is given in Appendix C. 
 
 The solution to equation (4.1) is Ψ , by which Q  is defined. Equation (4.2) contains two 

unknown quantities: phase ϕ  and probabilistic potential AQ


, so it cannot be solved. If we make 

some assumptions about the type of phase, then equation (4.2) can be written with one unknown 
value AQ


. Let us consider one of these options. Let the phase admit the following representation 
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      ,tϕ = −

      (4.3) 

 
where   is some constant value, then equation (4.2) will take the form: 
 
     ( )2 A A A Q 0.Q Qmc + + =

  
      (4.4) 

 
 Vector equation (4.4) breaks down into a system of three partial-differential linear 
equations with three unknown functions ( ) ( ) ( )A ,A ,Ax y z

Q Q Q . The Hamilton-Jacobi equation (2.8) 
under condition (4.3) allows us to find the value  : 
 

   ( )22 A A 2 VQq m+ = − 
 

  
2

4 A
V .

2 Q
Qmc= −





    (4.5) 

 
 Let us note once again that expressions (4.4) and (4.5) are valid under assumption (4.3), 
which in the general case is not satisfied. 
 
Theorem 5 Let 1,2

0 0f∂ = , then for a self-consistent system 0 A 0Q∂ =


 and 0 Q 0∂ = .  
 
 The proof of Theorem 5 is given in Appendix C. 
 
 It should be noted that the Wigner function (2.28) can be used for function 1,2f . 
 When the condition of Theorem 5 is met, it follows that “the system does not emit an 
electromagnetic wave”. Indeed, the time-independent nature of quantum potentials ( )Q r  and 

( )AQ r
   leads to solutions of the Maxwell equations (2.25)-(2.26) that do not contain radiation. 

For non-self-consistent systems the question of the presence of radiation disappears, since due to 
the failure of condition (2.17) it is impossible to construct a system of the Maxwell equations 
(2.20-2.22), allowing a solution in the form of an electromagnetic wave. 
 
 Note that for self-consistent systems with the Coulomb gauge, equation (2.20) becomes 

the Poisson equation 2

0

1φr q
εΨΔ = Ψ , where 2q Ψ  can be interpreted as the charge density. 

The use of charge density terminology leads to a connection with many-particle systems. We can 
give an example of a self-consistent system that has both a classical many-particle solution and a 
quantum one-particle solution.  

Let us consider a space charge problem for the initial charge density distribution
( ) ( )0 ,0r rρ ρ=  . In the Coulomb gauge the evolution of such a system is described by the 

equation [36]: 
 

 ( ) ( )
( )

( ) ( )
( )

( )
( ) ( )

0
2

0

0

1, , ,
1 3

2

r
R r t t

P r t P r t r
P r t t r

rP r t

ρ
ρ

ς ς γρ
ς ς

ε ςς

=     −      − +         

 (4.7) 

  ( ) ( )3 2 2 ,r r rς χ−=   ( ) ( )2
0

0 0

.
r

r x x dxγχ ρ
ε

= −    
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Function P  is the inverse of function G  
 

( ) ( )1 arcosh .G x x x x= − +     (4.8) 
 

The solution (4.7) is constructed under the assumption that the charged spherical layers 
do not intersect. The equation of motion of the charged layer is described by the characteristic 
equation 
 
     ( ) ( ), ,R r t rP r tς=         (4.9) 
 
where ( )0 1P = . The charge is conserved inside a sphere with radius ( ),R r t . Depending on the 
type of initial distribution ( )0 rρ , the characteristics (4.9) may intersect over time. The 
intersection of the characteristics (4.9) leads to a shock wave [37, 38] (the Coulomb explosion). 
Fig. 1 shows the characteristic equations for two types of initial distribution:  
 
     ( )0 ,r constρ =      (4.10) 

  ( ) ( ) ( ) ( ) 2
0 2 2

1 12 , exp ln ,
2 22

total
n n r

rr

qr r r r
r r

ρ ρ ρ μ
π σπσ

 
= = − −   

 
 (4.11) 

 
where rμ , rσ  are the mean value and the standard deviation of the lognormal distribution (4.11) 
respectively. Value totalq  specifies the total charge of the system. On the left, Fig. 1 shows the 
characteristics for distribution (4.10), and on the right – for the distribution (4.11). The 
characteristics equations have the form: 
 
    ( ) ( )0 , 1, 2,R t G tς κ= =         (4.12) 

( ) 0
1

0

2 ,
3

r γρς
ε

= −  ( ) ( )
2 3

0

ln 2
1 erf ,

4 2
rtotal

r

rqr
r

μγς
πε σ

  − = − +  
   

 ( ) ( )0 0, ,t R R t Rκ =   

 
where ( )0 0 ,0R R R= . In Fig. 1 it is seen that the characteristics for the distribution (4.10) do not 
intersect, but for the distribution (4.11) an intersection occurs at the moment of time ct , 
indicating a shock wave. 
 

  

  

 

Fig.1 Characteristic equations for the two types of initial distributions (4.10)-(4.11) 
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Indeed, Fig. 2 shows graphs of the evolution of density (4.7) at successive times 

, 0...4kt k =  for two initial distributions (4.10) and (4.11). In Fig. 2, on the right at moment of 
time ct  a «gradient catastrophe» occurs (the derivative of the solution goes to infinity). On the 
left in Fig. 2, the distribution density remains constant along the radius. For density 1ρ  
corresponding to (4.10), solution (4.7) has a simple form. 
 

     ( ) ( )
0

1 3
1

, .R t t
P t
ρρ
ς

=       (4.13) 

 

 
 Fig. 3 shows graphs of potential energy ( )2 ,U r t  from the Schrödinger equation (2.7) and 
graphs of quantum potential ( )2Q ,r t  (2.9). It can be seen that the quantum system is time-
dependent and a shock wave arises in it. The similarity of the graphs of potentials 2U  and 2Q  in 
Fig. 3 has a clear physical interpretation. A quantum particle is in external potential 2U , which 
exerts a force on it. Earlier (2.33) it was noted that a quantum particle, described by a wave 
function ( ) ( ) ( )2 2 2, , exp ,r t r t i r tρ ϕΨ =   

   , creates quantum pressure 2Q  that counteracts 
external potential 2U . Quantum pressure force Qr−∇ , according to (2.33), counteracts external 
force 2rU−∇ .  
 

 

Fig.2 Evolution of charge density for the two types of initial distributions (4.10)-(4.11) 

 
 

     

  

    
 

Fig.3 Evolution of potentials  and  
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At initial moments of time 0t  and 1t  the distance between the characteristics remains 
unchanged (see Fig. 1), therefore the quantum pressure is close to zero (see Fig. 3 on the right). 
At moment of time 2t  (and subsequent ones 3 4,t t ), the distance between the characteristics 
decreases sharply (see Fig. 1 on the right), which leads to an increase in density (see Fig. 2 on 
the right) and force of the external influence 2rU−∇  on the particle (see Fig. 3 on the left).  The 
particle tries to compensate for the pressure exerted on it by counteracting in the form of 
quantum pressure 2Qr−∇  (see Fig. 3 on the right). 
 

 
In Fig. 3, it can be seen that derivatives 2rU−∇  and 2Qr−∇  have the opposite signs on 

the interval ( )0.6;0.9 . The interval ( )0.6;0.9 clearly shows an abrupt jump in the derivatives at 
times 3 4,t t . These instants of time are close to instant of time ct  of the shock wave, so the force 
of external 2rU−∇  and quantum pressure 2Qr−∇  is great. 
 Quantum pressure force 2Qr−∇  does not completely compensate for external force 

rU−∇ , therefore resultant force ( )2 2 2 2V Qr r U F−∇ = −∇ + =


 is not zero (see Fig. 4 on the left) 
and the system expands with radial velocity v  (see Fig. 4 on the right) according to equation of 
motion (1.7) or (2.10). Fig. 4, the right side, shows that instant of time 4t  is close to the gradient 
catastrophe, indicating a shock wave.   
 Despite the fact that the problem statement was originally written for the space charge 
problem, its solution (4.7), due to the results of §2, is also a solution to the time-dependent 
Schrödinger equation (2.7). Phase 2ϕ  of the wave function has a more complex form than (4.3), 

since it contains information about the probability flow velocity (charge) ( )21 ,rv r t
m

ϕ= ∇  . 

Moreover, the energy of this system is not a constant value, that is 0с constϕ∂ ≠ , according to 
the Hamilton-Jacobi equation (2.8). The considered system is self-consistent (condition (2.17) is 
satisfied for it).  

The simplest case (4.13) with a constant initial density (4.10) will have zero quantum 
pressure 1Q 0=  inside the ball, since 1ρ  only depends on time (4.13). In this case, the external 
potential has a quadratic dependence 
 

     ( ) ( ) 2
1 1

0

, ,
6
qU r t t rρ
ε

= −     (4.14) 

and the phase 

Fig.4 Evolution of resultant force  скорости  
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  ( ) ( ) 2
1 , ,

2
mr t g t r constϕ = +


  2
1

03
qg g

m
ρ

ε
+ = .   (4.15) 

 
 Wave function ( ) ( ) ( )1 1 1, exp ,r t t i r tρ ϕΨ =     is a solution to the time-dependent 

Schrödinger equation (2.7) with the external potential (4.14) and zero vector potential A θΨ ≡
 

. 
 Note that solution (4.7) corresponds to a non-relativistic system, since equation of 
characteristics (4.8)-(4.9) reduces to the Cauchy problem for Newton’s second law: 
 

   ( ) ( ) ( )2
0 0

0

, 0 , 0 0.
4 total

qR R q R R R Rυ
πε

= = = =     (4.16) 

 
 In the relativistic case, the sphere expansion rate will be less, since radial currents J


 are 

attracted to each other under the action of the Ampere force. The Ampere force acts as a surface 
tension force on the sphere, slowing down its Coulomb expansion.  
 Since solution (4.7) for case (4.11) has non-zero quantum potential 2Q , then according to 

(2.22) it will have probabilistic (quantum) charges 0
0 2div E QQ r Q rq

ερ ε= = − Δ


, which induces a 

quantum pressure force counteracting the external pressure force induced by external charges 
0

0 2div Er rUq
ερ ε= = − Δ


. The emergence of quantum pressure is caused by the inhomogeneity 

of the initial density distribution (4.11), leading to an increase in the pressure of one layer on 
another and, as a consequence, quantum pressure.  

Solution (4.13) has a uniform initial distribution (4.10), which persists over time. The 
spherical layers do not press on each other and quantum pressure does not arise 1Q 0= . The 
density of probabilistic (quantum) charges is zero 0Qρ = , and there are only external charges 

( )0
1 1rU t

q
ερ ρ= − Δ =  (4.14), which determine the probability density 2Ψ for a quantum 

system.  
A specific feature of a self-consistent system is its many-particle nature. For a quantum 

system consisting of one particle in an external field, self-consistency is possible if the external 
field “feels” the field of the particle itself. In the example considered, external potential U  is the 
potential of a many-particle system. Such a many-particle system consists of particles of the 
same type, and each contributes to total potential U . Each particle “perceives” potential U  as 
external. If a self-consistent system consists of only one particle, then there are no external 
fields. Indeed, any external field has its sources – particles, which means such a system does not 
consist of one particle. Consequently, a self-consistent system of one particle is a free particle. 
As a rule, such a system resembles the system considered within the problem of the wave packet 
dispersion (see §2). 

 
Note that solution (4.13) is related to a non-self-consistent quantum system – a harmonic 

oscillator. Let us consider a one-dimensional quantum harmonic oscillator with variable 
frequency [39] ( )tΩ  and external potential 
 

     ( ) ( )2 2

3 , .
2

m t x
U x t

Ω
=     (4.17) 
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 Potential (4.17) differs from potential (4.14) in sign. Indeed, external potential 1U  
«expanded» the system, while potential (4.17), on the contrary, tries to keep the quantum system 
in the vicinity of the origin. The following wave function corresponds to potential (4.17) 
 

 ( )
( ) ( )

( )
( ) ( )

( )
2

2
2

1 1, exp ,
4 4 22 ! 2

n n nn

tx xx t i x i t H
t t tn t

σ
β

σ ασ σπσ

  
Ψ = − − −         


   

   ( )
2det

2
3

1t α σ
σ σ
 

Ω = − 
 

 ,  ( ) ( )
det

2
1 ,
2n t n

t
α

βσ
 =− + 
 

   (4.18) 

 
where n  is the number of the quantum state, nH  are the Hermitian polynomials. Function ( )tσ  

defines the mean-square deviation for probability density 
21

n nf = Ψ . Equation of motion (2.32) 
for this system has the form: 
 

 ( ) ( ) ( )
2

2 2
3 41

1 Q , Q , 2 1 2 .
8n nn

d v x U x t x n
dt m x m

σ σ
σ σ

∂  = = − + = − − + ∂
   (4.19) 

 

 From (4.19) it follows that the system is not self-consistent, since 
2

2
3

0

V n
q
ε

≠ Ψ . In the 

nonrelativistic limit, source density ρΨ  can be represented as: 
 

    ( )
2

0 0
32 V .mt

q x q
ε ε σρ

σΨ
∂= − =
∂


     (4.20) 

 
 Charge density (4.20) is an analogue of density (4.13). Both functions determine a 
density that is constant along the coordinate, the value of which changes with time. It turns out 
that the density of external sources (4.20) inducing field EΨ


in which the oscillator (4.19) is 

located is the same as the density in the self-consistent problem (4.13). 
 
 Note that the self-consistency (2.17) allows us to write the system of the Maxwell 
equations (2.20)-(2.22), which contains the Lorentz transformations for the relativistic theory. 
Moreover, equation (2.7) itself is not invariant. However, equation (2.7) contains additional 
information in the form of quantum density Qρ  and potential AQ


. For time-independent 

nonrelativistic self-consistent quantum systems, there is no radiation (see Theorem 5). Time-
dependent self-consistent quantum systems in the Coulomb gauge also cannot contain 
electromagnetic radiation. If the system is not self-consistent, then the system of the Maxwell 
equations (2.25)-(2.26) is not satisfied for probabilistic fields E ,BQ Q

 
. The Maxwell equations 

are satisfied only for the external fields (2.23)-(2.24). 
As was seen in §3, the invariance of the equation for the wave function is possible with 

an increase in the volume of kinematical information about the system. In the non-relativistic 
approximation, a quantum system (due to the Heisenberg uncertainty principle) does not have 
the concept of a trajectory, without which it is impossible to talk about producing 
electromagnetic radiation by the electric current. When transitioning to relativism, the 

Heisenberg uncertainty principle takes the form ~ cx
ε

Δ   (or ~x
p

λΔ =  is the de Broglie 
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wavelength, pcε = ), where ε  is the particle energy. As a result, at high energy the uncertainty 
along the trajectory decreases and we can talk about a trajectory (Dirac electric current) that 
produces electromagnetic radiation. In this case, current J μ  (3.19) in the Dirac equation 
becomes close to the electric current, since it has a smaller probabilistic contribution. The 
problem of describing compound particles by the Dirac equation is partly contained in the 
violation of the self-consistency of the system.   
 
 
Conclusions  

Quantum mechanics, like no other branch of physics, contains a large number of 
postulates, correspondence rules and principles that were introduced in a phenomenological 
manner. This construction of quantum theory is caused by the strong «dissimilarity» of the 
behavior of the micro and macro worlds. Historical attempts to “understand” the quantum world 
are well illustrated by the examples of dialogues between Einstein and Bohr, the EPR paradox, 
the theory with hidden parameters, and many others. The fatigue from fruitless attempts to 
understand the micro world nature called into existence Feynman’s famous phrase «I think I can 
safely say: no one understands quantum mechanics».  
 Over the last century, quantum theory has made significant progress, but despite this, the 
physical nature of the micro world remains unclear. From the position of theoretical physics, it is 
important not only to know the rules, laws and equations, but also to build a mathematical 
model, to find some first principle which can explain the behavior of the system. For example, 
Newton’s second law was obtained phenomenologically, but the principle of least action (PLA) 
made it possible to interpret it as the shortest distance between two positions of a system in some 
curved space, where the curvature is caused by an external influence. Feynman's path integral 
gave us a classical interpretation of the quantum dynamics of a system from the perspective of 
PLA.  
 The beauty of a theory is determined by the number of postulates, rules, and axioms 
contained in it. The more rules, the more hidden the principle of the physical system is. In this 
paper, an attempt is made to outline a method for constructing some equations of classical and 
quantum mechanics based on one single first principle – the probability conservation law. The 
central object of this approach is the function of distribution or density of probabilities that 
satisfies the probability conservation law. An expanded version of the theory presented is given 
in [40-43], herein its application to the description of quantum systems and their relation with 
classical systems is shown.  
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Appendix A 
 
Proof of Theorem 1 
 Let us make intermediate transformations 
 

  
*

* * * *div A 0.ri i
t t

γα
α Ψ

∂Ψ ∂Ψ  Ψ +Ψ + Ψ ∇Ψ −Ψ∇Ψ − ΨΨ = ∂ ∂  


  (A.1) 

taking into account that  
* * * *div ,r r r r r Ψ ∇ Ψ −Ψ∇ Ψ = Ψ Δ Ψ −ΨΔ Ψ   
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  * * * *div A A A ,r r r χΨ Ψ Ψ ΨΨ = Ψ ⋅∇ Ψ +Ψ ⋅∇ Ψ +ΨΨ 
  

   (A.2) 
we obtain 
 

* *A A 0,
2 2

i i
t t

γ γα γ χ α γ χΨ Ψ
∂ ∂   Ψ + Δ + ⋅∇ + Ψ +Ψ − Δ + ⋅∇ + Ψ =   ∂ ∂   

 
  (A.3) 

or 
* 2

*2 *

1 ˆ ˆp A p
2

1 ˆ ˆp A p 0.
2

i
t

i
t

γ γαβ χ
β αβ β

γ γαβ χ
β αβ β

Ψ

Ψ

  ∂Ψ − − ⋅ + Ψ +  ∂   
  ∂+Ψ + − ⋅ + Ψ =  ∂   




   (A.4) 

 
We take into account the ratios: 

 

  

2 2 22
2 2 2

2 2 2*2 * *
2 2 2

ˆ ˆ ˆp A p p A A ,
2 4 2

ˆ ˆ ˆp A p p A A .
2 4 2

i

i

γ γ γ γ χ
αβ αβ α β αβ

γ γ γ γ χ
αβ αβ α β αβ

Ψ Ψ Ψ

Ψ Ψ Ψ

 − ⋅ = − − − 
 

 − ⋅ = − − + 
 

  

  
  (A.5) 

 
 Substituting (A.5) into equation (A.4), we obtain 
 

2 2 2*

2 2 2* *

1 p̂ A A
2 4 2 2

1 p̂ A A 0,
2 4 2 2

i i
t

i i
t

γ γ γ γαβ χ χ
β αβ αβ β β

γ γ γ γαβ χ χ
β αβ αβ β β

Ψ Ψ

Ψ Ψ

  ∂Ψ − − + − + Ψ +  ∂    
  ∂+Ψ + − − − + Ψ =  ∂    

 

 
  

2 2
* * *1 1ˆ ˆp A p A 0,

2 2
i i

t t
γ γαβ αβ

β αβ β αβΨ Ψ

      ∂ ∂Ψ − − Ψ +Ψ + − Ψ =      ∂ ∂         

 
  (A.6) 

 
For convenience, we introduce operator L : 

 

  
2 2

* *1 1ˆ ˆp A , p A .
2 2

L i L i
t t

γ γαβ αβ
β αβ β αβΨ Ψ

   ∂ ∂= − − = + −   ∂ ∂   

 
  (A.7) 

 
Let us rewrite equation (A.6) using the operator (A.7): 

 
* * * * *0 0, .L L LΨ Ψ +Ψ Ψ =  Λ +Λ = Λ = Ψ Ψ    (A.8) 

from here 
    Re 0 , .iu uΛ =  Λ = ∈      (A.9) 
 
 From expressions (A.8) and (A.9), we obtain the equation 
 

  *
2 , ,u u uL iu L i i i iU UΨΨ Ψ =  Ψ = = = Ψ = − Ψ ∈

Ψ Ψ Ψ Ψ
   
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     .L iUΨ = − Ψ       (A.10) 
 
 Substituting the form of operator (A.7) into (A.10), we obtain the equation: 
 

    
2

p̂ A .
2

i U
t

γαβ
β αβ Ψ

 ∂Ψ = − − Ψ + Ψ ∂  


   (A.11) 

 
 Theorem 1 is proved 
 
Proof of Theorem 2 
 Using (A.11) and (A.5), we obtain an expression for function U : 
 

  
2 2

A A .
4 2r r

iU i i
t

α γ γ γ χ
β β β αβ βΨ
∂ΨΨ = − Δ Ψ + ⋅∇ Ψ + Ψ + Ψ
∂

 
  (A.12) 

 
Let us calculate rΔ Ψ  

 
  ( )2 2 .i

r r r r r re iϕ ϕ ϕ ϕ Δ Ψ = Δ Ψ − Ψ ∇ + ∇ ⋅∇ Ψ + Ψ Δ     (A.13) 

 
 We substitute (A.13) into (A.12), we obtain 
 

( ) ( )

2 2

2

2 2

A A
4 2

2 A

2A A
4 2

r
r

r r r r r r r

r r r r

i iU i i i
t t t

i i i

ii i i
t

α γ γ γ ϕχ
β β β αβ β β
α γϕ ϕ ϕ ϕ

β β

γ γ α γχ ϕ ϕ
αβ β β β β

Ψ Ψ

Ψ

Ψ Ψ

 ∂ Ψ Δ Ψ∂Ψ ∂= − + ⋅∇ Ψ + + = + Ψ − Ψ ∂ Ψ Ψ Ψ ∂ ∂ 

 − Δ Ψ − Ψ ∇ + ∇ ⋅∇ Ψ + Ψ Δ + ⋅ ∇ Ψ + Ψ ∇ + Ψ Ψ

 ∂ Ψ
+ + = − ∇ ⋅∇ Ψ + Δ + ⋅∇ Ψ +  Ψ ∂ Ψ Ψ 

 



 

 

2 221 A A .
2 4

r
r ri

t
γ ϕ α α γ γχ ϕ ϕ
β β β β β αβΨ Ψ

Δ Ψ∂+ − − + ∇ − ⋅∇ +
∂ Ψ

 
   (A.14) 

 
 From expression (A.10) it follows that the imaginary part (A.14) must be equal to zero. 
Indeed, expression (A.14) takes the form: 
 

  
22

ln ln A ln 0,

1 1 1 1A A 0,
4 2 4

r r r r

r
r

f f f
t

U
t

α α γ γχ

ϕ α α α γ γ
β β αβ αβ αβ

Ψ

Ψ

∂ − ∇ Φ⋅∇ − Δ Φ + ⋅∇ + =∂
 Δ Ψ∂− − + ∇ Φ − ∇Φ⋅ + − =
 ∂ Ψ



    

or 

  
( ) ( )

( )22

A div A 0,

1 1Q 2 A A 0.
4

r r r r

r r

f f f
t

U
t

α γ α γ

ϕ α α γ γ
β αβ

Ψ Ψ

Ψ Ψ

∂ + − ∇ Φ + ⋅∇ + − Δ Φ + = ∂
 ∂− − + ∇ Φ − ∇ Φ⋅ + − =

∂

 

    

from here 
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2

div 0,

1 1 Q.
4

r r
f v f f v
t

v U
t
ϕ

β αβ

∂ + ⋅∇ + = ∂
 ∂− = − + +

∂

 


    (A.15) 

 
 The first equation in (A.15) coincides with the first Vlasov equation, and the second leads 
to the Hamilton-Jacobi equation. 
 

    
21 1 V H,

4
v

t
ϕ

β αβ
∂− = − + =
∂

     (A.16) 

    V Q, Q .rU α
β
Δ Ψ

= + =
Ψ

     (A.17) 

 
 We obtain the equation of motion from equation (A.16): 
 

 ( ) 21 1 1A V,
2 2 2 4r r rv v

t t t
γα

αβ αβ αβ αβΨ
∂ ∂ ∂− ∇ Φ = − = − ∇ +∇
∂ ∂ ∂

    (A.18) 

 

taking into account that ( ) 21 curl A
2r r rv v v vγ Ψ⋅∇ = ∇ − ×

    , then (A.18) takes the form:  

 

( ) A B 2 V

A 2 V B ,

r r

r

v v v v
t t

v
t

γ γ αβ

αβγ
γ

Ψ
Ψ

Ψ
Ψ

∂∂ + ⋅∇ = − × + ∇ =
∂ ∂

 ∂= − − − ∇ + × ∂ 

    

 
 

   ( ) A 2E B , E V.r
d v v
dt t

αβγ
γ

Ψ
Ψ Ψ Ψ

∂= − + × = − − ∇
∂

      

 
 Theorem 2 is proved.  
 
Proof of Lemma 1 
 From the condition (2.17) and the first Vlasov equation (1.5) it follows that: 
 

  ( )div div 0 div J 0,r r rD v D
t t

ρΨ Ψ Ψ Ψ
∂ ∂ + =  + = ∂ ∂ 

     

     J curl H ,rD
t Ψ Ψ Ψ
∂ + =
∂
  

    (A.19) 

 
where HΨ


 is some field, since div curl H 0r r Ψ =


. The definition of vortex field BΨ


 (2.11) leads 

to the equation 
 
    div B div curl A 0.r r rΨ Ψ= =


     (A.20) 

 
Calculating operator curlr  from expression (2.11) EΨ


 gives (2.17): 
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   curl E curl A B .r rt tΨ Ψ Ψ
∂ ∂= − = −
∂ ∂

 
     (A.21) 

 
 Resulting equations (A.19)-(A.21) prove the validity of equations (2.16)-(2.17). We 
obtain equations (2.18)-(2.20) under the condition of Lorentz Ψ−gauge. Calculating the 
operator divr  from expression (2.11) and taking into account the gauge condition (2.12), we 
obtain 
 

 
2

2 2
0

2 2 1 V 1div E div A V V V.r r r rt c t q
ρ αβ αβ
ε γ γ
Ψ

Ψ Ψ
 ∂ ∂= = − − Δ = −Δ = ∂ ∂ 


  (A.22) 

 
 Using representations (2.11) in equation (2.17), we obtain the equation: 
 

   
2

0 02
0

1A V J curl curl A ,r r rt t
ε ε

μΨ Ψ Ψ
∂ ∂− − ∇ + =
∂ ∂

 
  

   
2

02 2 2
1 1A V div A A J ,r r rc t c t

μΨ Ψ Ψ Ψ
∂ ∂ − −∇ + + Δ = − ∂ ∂ 

   
  

     
2

02 2
1 A J .rc t

μΨ Ψ
 ∂ − Δ = ∂ 

 
    (A.23) 

 
 Expressions (A.22) and (A.23) are consistent with equations (2.18)-(2.20). Lemma 1 is 
completely proved.  
 
 
Appendix B 
 
Proof of Theorem 3  
 Substituting the Helmholtz 2 −ψ decomposition (3.2) into the first Vlasov equation 
(1.5), we obtain 
 

†
† † * †div I I 0,T

r r ri i A
t t

γα
α

∂ ∂  + + ∇ − ∇ − = ∂ ∂  
ψ ψψ ψ ψ ψ ψ ψ ψ ψ


 

det 0
I .

0
r

r
r

∇ 
∇ =  ∇ 

 (B.1) 

 
Let us perform intermediate transformations: 

 

 
( ) ( )

†
† * * * *

1 1 2 2 1 1 2 2

*
1 1* *

1 2 1 2 *
2 2

0 0
,

0 0

t t t t

t t

t t

t t
∂ ∂+ ∂ + ∂ ∂ + ∂ =
∂ ∂

 ∂ ∂    
= +       ∂ ∂      

ψ ψψ ψ = ψ ψ ψ ψ +ψ ψ ψ ψ

ψ ψψ ψ ψ ψψ ψ

 

    
†

† † *I I ,T
t tt t

∂ ∂+ ∂ + ∂
∂ ∂
ψ ψψ ψ = ψ ψ ψ ψ     (B.2) 

( ) ( )
*

1 1† * * *
1 2 1 2 *

2 2

0 0
I I ,

0 0
r rT

r r
r r

 ∇ ∇    
∇ − ∇ = −       ∇ ∇      

ψ ψψ ψ ψ ψ ψ ψ ψ ψψ ψ
 

  † * * * * *
1 1 2 2 1 1 2 2I I ,T

r r r r r r∇ − ∇ = ∇ + ∇ − ∇ − ∇ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ   (B.3) 
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( ) ( )

† * * * * *
1 1 1 1 2 2 2 2

* * * * * * * *
1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2

*
1 1* * †

1 2 1 2 *
2 2

div I I

0 0
0 0

T
r r r r r r r r r

r r r r r r r r r r

r r T
r r

r r

 ∇ − ∇ = ∇ ∇ + Δ +∇ ∇ + Δ − 
−∇ ∇ − Δ −∇ ∇ − Δ = Δ + Δ − Δ − Δ =

 Δ Δ    
= − = Δ − Δ      Δ Δ      

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψψ ψ ψ ψ ψ ψ ψ ψψ ψ
*,

 

( )† * † *div I I I I ,T T
r r r r r∇ − ∇ = Δ − Δψ ψ ψ ψ ψ ψ ψ ψ    (B.4) 

 
( ) ( )

( ) ( )

2† * * * * †
1 1 1 1 2 2 2 2

*
1 1* *

1 2 1 2*
22

div A div A A

A 0 A 0
,

0 A 0 A

r r r r r r

r r

r r

χ+ ⋅ ∇ + ∇ + ∇ + ∇ +

    ⋅∇ ⋅∇  
+ +          ⋅∇ ⋅∇      

ψ ψ = ψ ψ ψ ψ ψ ψ ψ ψ ψ = ψ ψ
ψ ψψ ψ ψ ψ ψψ

  

 
 

  

   ( )† † * †div A I A I A .T
r r rχ= + ⋅∇ + ⋅∇ψ ψ ψ ψ ψ ψ ψ ψ

  
   (B.5) 

 
Substituting expressions (B.2)-(B.4) into equation (B.1), we obtain: 

 
† * † * † * †I I I I I A I A 0,T T T

t t r r r ri iα α γ χ γ γ∂ + ∂ + Δ − Δ ⋅∇ ⋅∇ =ψ ψ ψ ψ ψ ψ ψ ψ + ψ ψ+ ψ ψ + ψ ψ
 

 

† *I A I A 0,
2 2

T
t r r t r ri iγ γα γ χ α γ χ   ∂ + Δ ⋅∇ + ∂ − Δ ⋅∇ + =   

   
ψ + + ψ ψ + ψ

 
  

or 
† 2 *2 * *1 1ˆ ˆ ˆ ˆI p A p I p A p 0,

2 2
Ti i

t t
γ γ γ γαβ χ αβ χ

β αβ β β αβ β
      ∂ ∂− − ⋅ + + + − ⋅ + =      ∂ ∂      

ψ ψ ψ ψ
 

 

            (B.6) 
 

Let us transform the terms in equation (B.5): 
 

 

( )

2 2 22
2 2 2

2 2 2

2 2 2

ˆ ˆ ˆI p A p I p A I A I
2 4 2

p̂ A curl A I I A ,
2 2 4r

i

i

γ γ γ γ χ
αβ αβ α β αβ

γ γ γσ σ χ
αβ αβ α β

   − ⋅ = − − − =   
   

  = ⋅ − + ⋅ − −  
  

  

   
 (B.7) 

 ( )
2 2 2*2 * * * *

2 2 2
ˆ ˆ ˆI p A p p A curl A I I A .

2 2 4r iγ γ γ γσ σ χ
αβ αβ αβ α β

    − ⋅ = ⋅ − + ⋅ + −    
    

       

 
where, in accordance with expression ( )( ) ( ) ( )Ia b a b i a bσ σ σ⋅ ⋅ = ⋅ + ⋅ ×

        , it is taken into 
account that 
 

2 2

2
ˆ ˆp A I p A curl A.

2 2 2 r
γ γ γσ σ
αβ αβ αβ

    ⋅ − = − − ⋅    
    

        (B.8) 

 
 Substituting (B.7) into equation (B.6), we obtain 
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2 2 2†

2 2 2* * * *

1 ˆI p A B I A
2 2 4

1 ˆI p A B I A 0,
2 2 4

T

i i i
t

i i i
t

γ γ γαβ σ σ
β αβ β αβ

γ γ γαβ σ σ
β αβ β αβ

   ∂ − ⋅ − − ⋅ + +   ∂    
   ∂ + ⋅ − + ⋅ − =   ∂    

ψ ψ

+ψ ψ

  

  
 

or 
2 2 2† 1 ˆI p A I A

2 4
i i

t
γ γαβ σ

β αβ αβ

   ∂ − ⋅ − + +   ∂    
ψ ψ

       (B.9) 

( ) ( )
2 2 2* * * * * †1 ˆI p A I A B B 0.

2 4 2
T Ti i i

t
γ γ γαβ σ σ σ

β αβ αβ β

   ∂   + ⋅ − − + ⋅ − ⋅ =     ∂    
+ψ ψ ψ ψ ψ ψ

       

 
 Let us simplify the third term in equation (B.9): 
 

1 2 3 *B B B B B B
B B B B , B ,

B B B B B B
z x y z x y

x y z
x y z x y z

i i
i i

σ σ σ σ σ
− +   

⋅ = + + = ⋅ =   + − − −   

     

( ) ( ) ( )
*
1* * †

1 2 *
2

B B B
B B

B B B
z x yT

x y z

i
i

σ σ
+   

⋅ − ⋅ −   − −  

ψψ ψ ψ ψ = ψ ψ
ψ

    

( ) ( )
( )

( )
* *
1 21* *

1 1 1 2 * *
2 1 1

B B BB B B
B B B B B B

z x yz x y

x y z x y z

ii
i i

 + +−    − = −  + −  − −    

ψ ψψψ ψ ψ ψψ ψ ψ
 

( ) ( )
( ) ( ) ( )1 2* * * * * *

1 2 1 1 2 2 1 2
1 2

B B B
B B B B B B

B B B
z x y

z x y x y z
x y z

i
i i

i

 + −
     − = + + + − − −    + − 

ψ ψ
ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ
 

( ) ( )
( ) ( ) ( ) ( )

* * * * * *
1 1 2 2 1 2 1 1 1 1 2 2 2 2

* * * *
1 2 1 2 1 2 1 2

B B B B B B B B B B

B B B B B B B B ,

z x y x y z z z z z

x y x y x y x y

i i

i i i i

   − + − + − = +   

+ + + + − −

ψ ψ ψ -ψ ψ ψ ψ ψ -ψ ψ -ψ ψ +ψ ψ
ψ ψ -ψ ψ ψ ψ -ψ ψ

    ( ) ( )* * †B B 0.T σ σ⋅ − ⋅ =ψ ψ ψ ψ       (B.10) 
 
 Taking into account expression (B.10), equation (B.9) will take the form 
 

 ( )
2 2 2† † *1 ˆI p A A I I

2 4
Ti i

t
γ γαβ σ

β αβ αβ

   ∂ − ⋅ − + −   ∂    
ψ ψ ψ ψ ψ ψ +

    

2
* * *1 ˆI p A 0.

2
T i

t
γαβ σ

β αβ

   ∂ + ⋅ − =   ∂    
+ψ ψ

      (B.11) 

 
 The second term in equation (B.11) is equal to zero, indeed 
 
   2 2† * † *I I 0,T T− = − − =ψ ψ ψ ψ ψ ψ ψ ψ = ψ ψ    
from here 
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2 2
† * * *1 1ˆ ˆI p A I p A 0.

2 2
Ti i

t t
γ γαβ σ αβ σ

β αβ β αβ

         ∂ ∂   − ⋅ − + + ⋅ − =         ∂ ∂         
ψ ψ ψ ψ

    (B.12) 

 
For convenience, we introduce operator L : 

 

 
2 2

det
* * *1 1ˆ ˆI p A , I p A .

2 2
L i L i

t t
γ γαβ σ αβ σ

β αβ β αβ
      ∂ ∂= − ⋅ − = + ⋅ −      ∂ ∂      

    (B.13) 

 
Let us rewrite equation (B.12) using operator (B.13) 

 
det

† * * * †0 0, .TL L L+ =  Λ +Λ = Λ =ψ ψ ψ ψ ψ ψ    (B.14) 
 

Since [ ]2 2×Λ∈ , from here * 2ReΛ+Λ = Λ  
 
    Re 0 , .iu uΛ =  Λ = ∈      (B.15) 
 
 From expressions (B.14) and (B.15) we obtain the equation 
 
  ( )2† † †I I 0, ,L i U i U L i U U= − = −  ⋅ = ∈ψ ψ ψ ψ ψ ψ ψ+ ψ    
     I .L i Uψ =- ψ       (B.16) 
 
 Substituting the form of operator (B.13) into (B.16) we arrive at the equation: 
 

    
2

ˆI p A I .
2

i U
t

γαβ σ
β αβ

  ∂ = − ⋅ −  ∂   

ψ ψ+ ψ
    (B.17) 

 
 Theorem 3 is proved. 
 
Proof of Lemma 2 
 Let us calculate the derivatives with respect to time and coordinates from expression (3.6) 
and take into account gauges in (3.8), we obtain: 
 

   2
1div div ,r r r rF R

t с t
∂ ∂Π= −Δ Π − = −Δ Π = Π
∂ ∂

 
    (B.18) 

  
2

2 2
1curl curl curl curl div ,r r r r r r r

SF S R S S S
t с t
∂ ∂= − = ∇ −Δ + =
∂ ∂

    
  (B.19) 

 
 From the first gauge in (3.8), we calculate r∇ , and from the second – curlr : 
 

 ( )
2

2

2

1 div 0, 1 curl 0,
1 curl div 0

r r r

r r r

r r r r

R
с t S R

с tS R R
с t

∂ ∇ Π +∇ = ∂ ∂  −∇ Π −Δ = ∂ ∂ +∇ −Δ =
 ∂


 

     
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   2 2
1 10 ,r

R FF R R
с t t с t

 ∂ ∂ ∂+ −Δ =  − = ∂ ∂ ∂ 

   
     (B.20) 

 
where the last equation takes into account expansion (3.6). Lemma 2 is proved. 
 
Proof of Theorem 4 
 Bispinor ψ  can be represented in terms of two spinors ϑ  and η : 
 
  ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4, , ,T T T Tϑ η ϑ η= = = =ψ ψ ψ ψ ψ ψ ψ ψ ψ    

     2 2 2† ,ϑ η= +ψ = ψ ψ     (B.21) 

  ( ) ( ) ( )2† 0 † † † † * * * *
1 2 3 4

2

I 0
γ .

0 I
ϑ η ϑ η 

= = − = − 
ψ = ψ ψ ψ -ψ -ψ   

 
 Let us write expressions for density of current J μ : 
 
 ( )0 0 † 0 0 † * * * *

1 1 2 2 3 3 4 4γ γ γ ,J c c c c= + + +ψ ψ = ψ ψ = ψ ψ = ψ ψ ψ ψ ψ ψ ψ ψ    (B.22) 

 ( ) ( )† 0 † † † †0J γ γ ,
0

kk
k k

k k
c с с

ϑ σ ησϑ η ϑ η
ησ σ ϑ

   
= − = −      − −    
ψ ψ =  

    ( )† †J .k k kc ϑ σ η η σ ϑ= +      (B.23) 
 
Hence, 
 

( ) ( ) ( )
( ) ( )

3 11 † 1 † 1 * * * *
1 2 3 4

24

* * * * * *
1 4 4 1 2 3 3 2 1 4 2 3

0 1 0 1
J

1 0 1 0

2 Re ,

с с с

с с

ϑ σ η η σ ϑ       
+ = + =      

     

= + + + = +

ψ ψ
= ψ ψ ψ ψ ψψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ
   

( ) ( ) ( )
( ) ( )

3 12 † 2 † 2 * * * *
1 2 3 4

24

* * * * * *
2 3 1 4 4 1 3 2 2 3 1 4

0 0
J

0 0

2 Im ,

i i
с с с

i i

iс с

ϑ σ η η σ ϑ
− −      

+ = + =      
     

= + = −

ψ ψ
= ψ ψ ψ ψ ψψ

ψ ψ -ψ ψ ψ ψ -ψ ψ ψ ψ -ψ ψ
  (B.24) 

( ) ( ) ( )
( ) ( )

3 13 † 3 † 3 * * * *
1 2 3 4

24

* * * * * *
1 3 4 2 3 1 2 4 1 3 4 2

1 0 1 0
J

0 1 0 1

2 Re .

с с с

с с

ϑ σ η η σ ϑ       
+ = + =      − −     

= + =

ψ ψ
= ψ ψ ψ ψ ψψ

ψ ψ -ψ ψ ψ ψ -ψ ψ ψ ψ -ψ ψ
   

 
 Let us substitute the expressions for bispinors (B.22) and currents (B.24) into the first 
Vlasov equation (3.16) 
 

 ( ) ( )
( )

* * * * * * * *
1 0 1 1 0 1 2 0 2 2 0 2 3 0 3 3 0 3 4 0 4 4 0 4

* * * * * * * *
1 4 4 1 2 3 3 2 2 3 1 4 4 1 3 2

* * * *
1 3 4 2 3 1 2 4 0,

x y

z

i

∂ + ∂ + ∂ + ∂ ∂ ∂ ∂ ∂ +

+∂ + + + + ∂ + +

+∂ + =

ψ ψ ψ ψ ψ ψ ψ ψ +ψ ψ +ψ ψ +ψ ψ +ψ ψ
ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ -ψ ψ ψ ψ -ψ ψ
ψ ψ -ψ ψ ψ ψ -ψ ψ

  

or 
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* * * * * * * *
1 0 1 1 0 1 2 0 2 2 0 2 3 0 3 3 0 3 4 0 4 4 0 4

* * * * * * * *
1 4 4 1 4 1 1 4 2 3 3 2 3 2 2 3

* * * * * * * *
2 3 3 2 1 4 4 1 4 1 1 4 3 2 2 3

x x x x x x x x

y y y y y y y yi i i i i i i i

∂ + ∂ + ∂ + ∂ ∂ ∂ ∂ ∂ +

+ ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂

+ ∂ ∂ ∂ ∂ + ∂ + ∂ ∂ ∂

ψ ψ ψ ψ ψ ψ ψ ψ +ψ ψ +ψ ψ +ψ ψ +ψ ψ
ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ
ψ ψ + ψ ψ - ψ ψ - ψ ψ ψ ψ ψ ψ - ψ ψ - ψ ψ

* * * * * * * *
1 3 3 1 4 2 2 4 3 1 1 3 2 4 4 2 0,z z z z z z z z

+

+ ∂ ∂ ∂ ∂ + ∂ + ∂ ∂ ∂ =ψ ψ +ψ ψ -ψ ψ -ψ ψ ψ ψ ψ ψ -ψ ψ -ψ ψ

  

 

 

( ) ( )
( ) ( )
( ) ( )
( )

* * * * *
1 0 1 4 4 3 1 0 1 4 4 3

* * * * *
2 0 2 3 3 4 2 0 2 3 3 4

* * * * *
3 0 3 2 2 1 3 0 3 2 2 1

* * * * *
4 0 4 1 1 2 4 0 4 1 1

x y z x y z

x y z x y z

x y z x y z

x y z x y

i i

i i

i i

i i

∂ + ∂ + ∂ + ∂ + ∂ + ∂ ∂ + ∂

+ ∂ + ∂ ∂ ∂ + ∂ + ∂ + ∂ ∂

+ ∂ + ∂ ∂ ∂ + ∂ + ∂ ∂ + ∂

+ ∂ + ∂ ∂ ∂ + ∂ + ∂ + ∂ ∂

ψ ψ ψ ψ ψ ψ ψ ψ - ψ ψ
ψ ψ ψ - ψ - ψ ψ ψ ψ ψ - ψ
ψ ψ ψ + ψ + ψ ψ ψ ψ - ψ ψ
ψ ψ ψ - ψ - ψ ψ ψ ψ ψ -( )2 0.z =ψ

  (B.25) 

 
We take into account that 
     J A J A 0,k k

k k− =   

 
( ) ( )
( ) ( )

* *
1 4 4 3 2 3 3 4

* *
3 2 2 1 4 1 1 2

1 J A A A A A A A

A A A A A A .

k
k x y z x y z

x y z x y z

i i
c

i i

+ + + +

+ + + +

=ψ ψ - ψ ψ ψ ψ ψ - ψ

ψ ψ - ψ ψ ψ ψ ψ - ψ
  (B.26) 

 
where Ak  is some vector field. Substituting (B.26) into equation (B.25), we obtain 
 

( ) ( )
( ) ( )
( )

* * * * *
1 0 1 4 4 3 1 0 1 4 4 3 4 4 3

* * * * *
2 0 2 3 3 4 2 0 2 3 3 4 3 3 4

* * * * *
3 0 3 2 2 1 3 0 3 2 2 1 2

A A A

A A A

A

x y z x y z x y z

x y z x y z x y z

x y z x y z x

i i i i

i i i i

i i i

κ κ κ

κ κ κ

κ

∂ + ∂ + ∂ + ∂ + ∂ + ∂ ∂ + ∂ − − −

+ ∂ + ∂ ∂ ∂ + ∂ + ∂ + ∂ ∂ − + +

+ ∂ + ∂ ∂ ∂ + ∂ + ∂ ∂ + ∂ − −

ψ ψ ψ ψ ψ ψ ψ ψ - ψ ψ ψ ψ ψ
ψ ψ ψ - ψ - ψ ψ ψ ψ ψ - ψ ψ ψ ψ
ψ ψ ψ + ψ + ψ ψ ψ ψ - ψ ψ ψ( )

( ) ( )
( ) ( ) ( )

2 1

* * * * *
4 0 4 1 1 2 4 0 4 1 1 2 1 1 2

* * *
1 4 4 3 2 3 3 4 3 2 2 1

A A

A A A

A A A A A A A A

y z

x y z x y z x y z

x y z x y z x y z

i

i i i i

i i A i i i i

κ κ

κ κ κ

κ κ κ

−

+ ∂ + ∂ ∂ ∂ + ∂ + ∂ + ∂ ∂ − + +

+ + + + + + +

ψ ψ
ψ ψ ψ - ψ - ψ ψ ψ ψ ψ - ψ ψ ψ ψ
ψ ψ - ψ ψ ψ ψ ψ - ψ ψ ψ - ψ ψ

 

( )*
4 1 1 2A A A 0,x y zi iκ+ + =ψ ψ ψ - ψ         (B.27) 

 
where iκ is some coefficient. Let us rearrange the terms in expression (B.26) 
 

 
( ) ( )
( ) ( )

* * * * * *
4 3 4 1 3 3 4 2

* * * * * *
1 2 2 3 1 1 2 4

1 J A A A A A A A

A A A A A A .

k
k y z x x y z

z y x x y z

i i
c

i i

= + + + +

+ + + +

ψ ψ ψ ψ ψ - ψ - ψ ψ

ψ ψ ψ ψ ψ - ψ - ψ ψ
  (B.28) 

 
We substitute expression (B.28) into equation (B.27) 

 
( )
( )

* * * * * * *
1 0 1 4 4 3 4 4 3

* * * * * * *
2 0 2 3 3 4 3 3 4

A A A

A A A

x y z x y z

x y z x y z

i i i

i i i

κ κ κ

κ κ κ

∂ + ∂ + ∂ + ∂ + − + +

+ ∂ + ∂ ∂ ∂ + + +

ψ ψ ψ ψ ψ ψ ψ ψ
ψ ψ ψ - ψ - ψ ψ ψ - ψ

 

( )
( )

* * * * * * *
3 0 3 2 2 1 1 2 2

* * * * * * *
4 0 4 1 1 2 1 1 2

A A A

A A A

x y z z y x

x y z x y z

i i i

i i i

κ κ κ

κ κ κ

+ ∂ + ∂ ∂ ∂ + − + +

+ ∂ + ∂ ∂ ∂ + + +

ψ ψ ψ + ψ + ψ ψ ψ ψ
ψ ψ ψ - ψ - ψ ψ ψ - ψ
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( )
( )

*
1 0 1 4 4 3 4 4 3

*
2 0 2 3 3 4 3 3 4

A A A

A A A

x y z x y z

x y z x y z

i i i

i i i

κ κ κ

κ κ κ

+ ∂ + ∂ ∂ + ∂ − − − +

+ ∂ + ∂ + ∂ ∂ − + + +

ψ ψ ψ - ψ ψ ψ ψ ψ
ψ ψ ψ ψ - ψ ψ ψ ψ

 

( )
( )

*
3 0 3 2 2 1 2 2 1

*
4 0 4 1 1 2 1 1 2

A A A

A A A 0,

x y z x y z

x y z x y z

i i i

i i i

κ κ κ

κ κ κ

+ ∂ + ∂ ∂ + ∂ − − − +

+ ∂ + ∂ + ∂ ∂ − + + =

ψ ψ ψ - ψ ψ ψ ψ ψ
ψ ψ ψ ψ - ψ ψ ψ ψ

   (B.29) 

 
 Let us write equation (B.29) in a quadratic form. The first four terms of equation (B.29) 
have the form 
 

 

( )
( )
( )

* * * * * * *
1 0 1 4 4 3 4 4 3

* * * * * * *
2 0 2 3 3 4 3 3 4

* * * * * * *
3 0 3 2 2 1 1 2 2

* * * * * *
4 0 4 1 1 2 1 1

A A A

A A A

A A A

A A A

x y z x y z

x y z x y z

x y z z y x

x y z x y z

i i i

i i i

i i i

i i i

κ κ κ

κ κ κ

κ κ κ

κ κ κ

∂ + ∂ + ∂ + ∂ + − + +

+ ∂ + ∂ ∂ ∂ + + +

+ ∂ + ∂ ∂ ∂ + − + +

+ ∂ + ∂ ∂ ∂ + +

ψ ψ ψ ψ ψ ψ ψ ψ
ψ ψ ψ - ψ - ψ ψ ψ - ψ
ψ ψ ψ + ψ + ψ ψ ψ ψ
ψ ψ ψ - ψ - ψ ψ ψ - ψ( )*

2 =

  

 ( ) ( ) ( )
* * * **

0 * * * * *

A
A

k k
k kT T T T T T

k k
k k

i
σ η σ ηϑ

ϑ η ϑ η κ ϑ η
η σ ϑ σ ϑ

     ∂
= ∂ + + =         ∂     

   

 ( )
** *

2 0
* * *

2 0

I A
.

A I

k k
T T k k

k k
k k

i
i

ϑσ κσϑ η
σ κσ η

  ∂ ∂ +
=    ∂ + ∂  

    (B.30) 

 
 Let us transform the second four terms of expression (B.29), we obtain 
 

 

( )
( )
( )
( )

*
1 0 1 4 4 3 4 4 3

*
2 0 2 3 3 4 3 3 4

*
3 0 3 2 2 1 2 2 1

*
4 0 4 1 1 2 1 1 2

A A A

A A A

A A A

A A A

x y z x y z

x y z x y z

x y z x y z

x y z x y z

i i i

i i i

i i i

i i i

κ κ κ

κ κ κ

κ κ κ

κ κ κ

∂ + ∂ ∂ + ∂ − − − +

+ ∂ + ∂ + ∂ ∂ − + + +

+ ∂ + ∂ ∂ + ∂ − − − +

+ ∂ + ∂ + ∂ ∂ − + + =

ψ ψ ψ - ψ ψ ψ ψ ψ
ψ ψ ψ ψ - ψ ψ ψ ψ
ψ ψ ψ - ψ ψ ψ ψ ψ
ψ ψ ψ ψ - ψ ψ ψ ψ

   

 
( ) ( ) ( )

( )

† † † † † †
0

† † 2 0

2 0

A
A

I A
.

A I

k k
k k

k k
k k

k k
k k

k k
k k

i

i
i

σ η σ ηϑ
ϑ η ϑ η κ ϑ η

η σ ϑ σ ϑ

ϑσ κσϑ η
ησ κσ

   ∂ 
= ∂ + − =        ∂     

 ∂ ∂ −  
=   ∂ − ∂   

   (B.31) 

 
 Taking into account expressions (B.30) and (B.31), equation (B.29) takes the form 
 

  
( )

( )

** *
2 0

* * *
2 0

† † 2 0

2 0

I A
A I

I A
0.

A I

k k
T T k k

k k
k k

k k
k k

k k
k k

i
i

i
i

ϑσ κσϑ η
σ κσ η

ϑσ κσϑ η
ησ κσ

  ∂ ∂ +
+   ∂ + ∂  

 ∂ ∂ −  
+ =  ∂ − ∂   

   (B.32) 

 
Let us introduce the matrix operator 
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det
2 0

2 0

2 02 0

2 2 0

I A
A I

I 0 I A
γ L.

0 I A I

k k
k k

k k
k k

k k
k k

k k
k k

i
L

i

i
i

σ κσ
σ κσ

σ κσ
σ κσ

 ∂ ∂ −
= = ∂ − ∂ 

 ∂ ∂ − 
= =  − − ∂ + − ∂  

   (B.33) 

 
Let us write equation (B.32) through operator (B.33) 

 
     * * † 0,T L L+ =ψ ψ ψ ψ      

   
det

† *, 0 Re 0 , .L iu uΛ = Λ +Λ =  Λ =  Λ = ∈ψ ψ    (B.34) 
 
 Real function u  can be represented as a quadratic form 
 

 ( ) ( )
det 2 211 2† † † † †

1 2
2 2 2

I 0
,

0 I
u V

λϑλ ϑ
ϑ η ϑ η λ ϑ λ η

λ η λ η
   

= = = = + ∈   
    

ψ ψ   (B.35) 

 
where 1,2λ ∈  are some functions. Substituting representation (B.35) into equation (B.34), we 
obtain 
 
   ( )† † † 0,L iu i V L iV= − = −  ⋅ =ψ ψ ψ ψ ψ ψ+ ψ   
     .L iVψ =- ψ       (B.36) 
 
 Taking into account (B.35), (B.33), equation (B.36) in the matrix form takes the form:  
 

 1 20 2 0

2 22 0

I 0I A
γ ,

0 IA I

k k
k k

k k
k k

i
i

i
λϑ ϑσ κσ

λη ησ κσ
 ∂ ∂ −     

= −      − ∂ + − ∂      
  

1 22 0

2 22 0

I 0I A
,

0 IA I

k k
k k

k k
k k

i
i

i
λϑ ϑσ κσ

λη ησ κσ
 ∂ ∂ −     

= −      −− ∂ + − ∂      
 

or 
0 1

0 2

A 0
,

0A

k k
k k

k k
k k

i i
i i

ϑ σ η κσ η λϑ
η σ ϑ κσ ϑ λ η

 ∂ + ∂ − +  
=    −∂ − ∂ + −   

 

2 1 2
0

2 2 2

I 0 I 0 00 0 A
0 I 0 I 00 A 0

k k
k k

k k
k k

i i
λϑ ϑ ϑ ϑσ σκ

λη η η ησ σ
   ∂            

∂ − + =               − −− ∂ −               
+

 
            (B.37) 
 
 Let us make a change of variables 
 

     ( )
det

2
1,2

1 ,U mc
c

λ = ±
      (B.38)

 

 
where , ,c m  are some constant values, and U ∈  is a function. Substituting (B.38) into 
equation (B.37), we 
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2 2

1 2 2 2 0

1 2 2 2

I 0 I 0 I 0
γ I

0 I 0 I 0 I
U mc U mc
c c c c

λ ϑ ϑ ϑ
λ η η η

          
= + = +          − −          

ψ ψ
   

  

or 
  0 0 2

0γ γ γ A γ I 0,k k
k ki c i c c U mcκ∂ ∂ =ψ+ ψ+ ψ- ψ- ψ     

   ( )0 0 2
0 ˆγ γ p A γ I .k

k ki c c U mcκ ∂  ψ = - + + ψ     (B.39) 
 

If φU q=  and qκ = , then the equation coincides with (B.39) and will take the form 
 
   ( )0 2

0 ˆγ γ p A I φ .k
k ki c c q mc q ∂ − + ψ = ψ+ ψ    (B.40) 

 
Let us write equation (B.40) in another form 

 

  ( )0 0 2
0

φγ γ γ γ A I 0,k k
k ki c qc mc

c
 ∂ ∂ = 
 

+ ψ- - ψ- ψ   

   ( )0 2
0γ γ + γ I 0,k

ki c qc A A mcμ
μ∂ =ψ- ψ- ψ   

    ( )γ I 0,i qA mcμ
μ μ ∂ = - - ψ     (B.41) 

 
where the relation Ak kA = −  between the covariant components of four-vector kA  and the 
components of 3D vector Ak  is taken into account. Theorem 4 is proved. 
 
 
Appendix C 
 
Proof of Lemma 3 
 Let the system be self-consistent, that is, condition (2.17) is satisfied, then it is possible 
for it to construct the Maxwell equation system for external (2.23)-(2.24) and probabilistic 
eigenfields (2.25)-(2.26). The self-consistency condition for equation (2.7) means (2.20)-(2.22): 
 

   
2

2

0 0 0

ρ1φ V V ,f qq
q ε ε ε

Ψ
Ψ = = =  = Ψ       (C.1) 

   
( )

( )
( ) ( )

2 32 2

0

, ,
, ,

2 4,
r rr t r t d rq U r t

m r rr t πε
′ ′Δ Ψ Ψ

+ =
′−Ψ 

 
 

     (C.2) 

 
where rt t r r с′= − −   and the representation for the Lienard-Wiechert potential is used. 
Expression (C.2) is an integro-differential equation for the modulus of wave function Ψ . 
Knowing Ψ , one can find quantum potential Q  and potential V  (2.9). From equations (2.20)-

(2.21) probability density 0 QQ q
ερ =   is determined, as well as vector potential 

0AQ Q vμ ρ=
   during calibration (2.15): 

 

    ( )2
1A A A Q,Q r Qq q

mc
ϕ = ∇ − + 

  
      (C.3) 
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where Helmholtz decomposition (2.1) is taken into account. Lemma 3 is proved. 
 
Proof of Theorem 5 
 According to (1.6), it follows from the condition 1,2

0 0f∂ =  that 
 
    ( ) ( )

2

1 1,2 3, ,f r f r v d v
Ω

= 
        (C.4) 

   ( ) ( ) ( )
2

1,2 3
11

1 , .v r f r v vd v
f r Ω

= 
    

      (C.5) 

 
 Since ( ) 21f r = Ψ , then from expression (C.4), we obtain the stationarity of the quantum 
potential (2.9):  
 
      ( )0 Q 0.r∂ =      (C.6) 
 
 From expressions (2.20)-(2.22) and (С.6) it follows that  
 

   ( ) ( ) ( )
0

Q Q .r Q Q Q
qr r rρ ρ ρ
ε

= −Δ =  =      (C.7) 

 
In Helmholtz decomposition (2.1) for the field (C.5), fields ( ),r r tα− ∇ Φ   and ( )A ,r tγ Ψ

   
are independent, since they correspond to the potential and vortex components. Hence, 
 

  ( ) ( ) ( ), A ,rv r r t rα γ Ψ= − ∇ Φ +
     ( ) ( ), ,r t g r tϕ = − 


    (C.8) 

 
where   is a constant value, and ( )g r is some function. According to expressions (C.4) and 
(C.8), wave function has the form 
 

   ( ) ( ) ( )1, exp .r t f r ig r i t Ψ = −  
  


     (C.9) 

 
 Taking into account (C.5)-(С.6) and (C.8), we write Hamilton-Jacobi equation (2.8)-(2.9) 
 

   ( ) ( ) ( )2

1 Q .
2
m v r U r U U r= + +  =   

     (C.10) 

 
 Current density (2.26) according to (C.5) and (C.7) is also stationary: 
 
    ( ) ( ) ( )1J ,Q Qr r v rρ=

      
hence (2.27), 

   
( ) ( )

3
0

0

J
A J A A A .

4
Q

Q Q Q Q Q

r d r
r

r r
μμ
π

′ ′
=  =  =

′−
          (C.11) 

 
 Theorem 5 is proved. 
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