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Abstract
This paper addresses the problem of controlling multiple unmanned aerial vehicles (UAVs) cooperating in a for-
mation to carry out a complex task such as surface inspection. We first use the virtual leader-follower model to
determine the topology and trajectory of the formation. A double-loop control system combining backstepping and
sliding mode control techniques is then designed for the UAVs to track the trajectory. A radial basis function neu-
ral network (RBFNN) capable of estimating external disturbances is developed to enhance the robustness of the
controller. The stability of the controller is proven by using the Lyapunov theorem. A number of comparisons and
software-in-the-loop (SIL) tests have been conducted to evaluate the performance of the proposed controller. The
results show that our controller not only outperforms other state-of-the-art controllers but is also sufficient for com-
plex tasks of UAVs such as collecting surface data for inspection. The source code of our controller can be found
at https://github.com/duynamrcv/rbf_bsmc.

1. Introduction

Unmanned aerial vehicles, when combined with computer vision technologies, can collect visual data of
structures to provide valuable information for various tasks such as inspecting structural surfaces [1,2],
reconstructing 3D models [3, 4], identifying cracks [5, 6], and detecting corrosion and rust on steel
bridges [7, 8]. However, using a single UAV for these tasks is inefficient due to the large size of the
structures and the limited battery capacity of the UAV. A group of UAVs flying in a formation can be
used to overcome those limitations [9–12]. The formation allows the UAVs to perform collaborative
inspection to increase the efficiency and accuracy of data collection. It also allows for safe operation, as
the formation control can prevent collision among the UAVs.

In formation control, the leader-follower approach is commonly used to provide flexibility in topology
and trajectory selection [13, 14]. In the standard leader-follower method, one UAV is assigned as the
leader, and the others are followers. The leader plays the role of a reference node for the followers to
determine their locations to form the desired topology. The limitation of this approach, however, is the
dependence of the system on the leader. If the leader is malfunctioning, the whole system will fail. The
virtual leader-follower model can be used to cope with this problem. In this approach, the leader is
purely a virtual entity, serving as a reference point for the followers to determine their positions [15].
By decoupling the physical leader from the model, this method mitigates the risk of complete system
failure.

In the leader-follower model, linear controllers are commonly used to control individual UAVs to
form the desired topology [15–17]. In [16], linear quadratic and neural networks-based controllers are
combined to control a group of UAVs considering their full dynamics. In [17], the receding horizon
control is employed to yield a fast convergence rate of the formation tracking control. This controller
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also considers the orientation between the leader and the followers for accurate formation. The decen-
tralized 𝐻∞-PID controller is introduced in [18] to maneuver a group of UAVs to deal with the external
disturbance and trailing vortex coupling from their neighbor UAVs. A leader-follower formation con-
trol technique is presented in [19] to address issues related to backward error and suboptimal dynamic
speed tracking in PID neural network control. Linear controllers, however, have limitations in handling
constraints and parameter variation, especially when applied to nonlinear systems like UAVs.

In another approach, nonlinear controllers have been used for formation control [20–22]. In [23],
first and second-order sliding-mode controllers are deployed to assure the asymptotic stability of the
formation, taking into account modeling uncertainties. In [24], an adaptive controller using the dynamic
estimation of the distance between the leader and the followers is introduced to address uncertainties
related to positioning errors. Two finite-time observers are used in [25] to deal with bounded external
disturbance force and torque. In [26], a non-uniform vector field that dynamically varies in magnitude
and direction is employed to deal with the influence of wind in UAV formation control. A distributed
model predictive control algorithm is introduced in [27] to coordinate the operation of a fleet of UAVs
considering their spatial kinematics and unidirectional data transmissions. However, the convergence of
these controllers depends on the characteristics of disturbances, which are hard to model due to their
varying nature. A sufficient approach would be utilizing neural networks such as the radial basis function
neural network (RBFNN) to estimate disturbances and use it as the feedback for control [28–31].

In this work, we present a new controller for a group of UAVs cooperating in a formation. The UAVs
use the virtual leader-follower model to determine their trajectory and form the desired topology. The
controller is developed using the backstepping and sliding mode control techniques. An RBFNN is then
introduced to estimate external disturbances for better control performance. Our contributions in this
work are as follows:

i. The proposal of a new controller for UAV formation that is constructed by combining backstepping
and sliding mode control techniques, thereby enabling the elimination of nonlinear components
and enhancing system robustness. Additionally, the adverse effects associated with these con-
trollers, such as “explosion of term” and “chattering”, are mitigated through the approximation of
unknown factors by the neural network. As the result, the developed controller not only addresses
the drawbacks of the aforementioned techniques but also augments the adaptability of the UAV
system.

ii. The design of a radial basis function neural network (RBFNN) that is capable of estimating exter-
nal disturbances to compensate for input force control signals, thereby enabling the controller to
maintain the required control quality.

iii. The derivation of the stability proof for the designed controller using Lyapunov’s theorem, which
is essential to ensure stable operation of the UAVs under conditions affected by external forces.

iv. The comparison of the proposed controller with other popular methods including model predic-
tive control (MPC), backstepping sliding mode control (BSMC) and sliding mode control (SMC)
in different scenarios to confirm its superior performance. Software-in-the-loop tests were also
conducted with a cooperative bridge inspection task to verify the validity of the proposed method
for practical applications.

The rest of this paper is structured as follows. Section 2 presents the dynamic and formation models
of the UAVs. Section 3 introduces the proposed controller. Section 4 shows evaluation results. The paper
ends with conclusions described in 5.

2. Problem formulation

To control a group of UAVs, we first consider their dynamic model and formation topology with details
as follows.
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Figure 1: The structure of the quadrotor UAV in the global frame

2.1. UAV dynamic model

Consider a group of 𝑛 UAVs, each is a quadrotor with two pairs of propellers rotating in opposite direc-
tions, as described in Figure 1. Frames 𝐵𝐵𝑥𝐵𝑦𝐵𝑧 and𝑂𝑋𝑌𝑍 are respectively the body-fixed and inertial
frames. We use Euler angles to represent the attitude of the UAV. The configuration of the UAV includes
its position 𝜉 = [𝑥, 𝑦, 𝑧]𝑇 and Euler angles Ξ = [𝜙, 𝜃, 𝜓]𝑇 , with |𝜙| ≤ 𝜋/2, |𝜃 | ≤ 𝜋/2 and |𝜓 | ≤ 𝜋.
Those angles represent the roll, pitch and yaw orientation of the UAV, respectively. Control signals of
the UAV are defined as follows: 

𝑓𝑡
𝜏𝜙
𝜏𝜃
𝜏𝜓

 =


𝑓1 + 𝑓2 + 𝑓3 + 𝑓4

𝑙 ( 𝑓4 − 𝑓2)
𝑙 ( 𝑓3 − 𝑓1)

𝜏2 + 𝜏4 − 𝜏1 − 𝜏3

 , (1)

where 𝑙 is the arm length; 𝑓𝑡 is the total thrust of four propellers; 𝜏𝜙 , 𝜏𝜃 , 𝜏𝜓 are the torques in three axes;
and 𝑓𝑖 and 𝜏𝑖 , with 𝑖 = {1, 2, 3, 4}, are the forces and torques generated by four propellers, respectively.
According to [32], the dynamic model of the UAV is described as follows:

¥𝑥 = (cos 𝜙 sin 𝜃 cos𝜓 + sin 𝜙 sin𝜓) 𝑓𝑡

𝑚
+ 𝑑𝑥

𝑚

¥𝑦 = (cos 𝜙 sin 𝜃 sin𝜓 − sin 𝜙 cos𝜓) 𝑓𝑡

𝑚
+
𝑑𝑦

𝑚

¥𝑧 = cos 𝜙 cos 𝜃
𝑓𝑡

𝑚
− 𝑔 + 𝑑𝑧

𝑚

¥𝜙 =
¤𝜃 ¤𝜓

(
𝐼𝑦 − 𝐼𝑧

)
+ 𝜏𝜙

𝐼𝑥

¥𝜃 =
¤𝜙 ¤𝜓 (𝐼𝑧 − 𝐼𝑥) + 𝜏𝜃

𝐼𝑦

¥𝜓 =
¤𝜙 ¤𝜃

(
𝐼𝑥 − 𝐼𝑦

)
+ 𝜏𝜓

𝐼𝑧

(2)

where 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 are the moments of inertia, 𝑚 is the mass of the UAV, 𝑔 is the gravitational acceleration,
and

[
𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧

]𝑇 is the disturbance caused by factors such as wind or turbulent flows.

2.2. UAV formation model

The formation model used in this work is the virtual leader-follower model with two main components:
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Figure 2: Illustration of the virtual leader-follower formation structure

• Virtual leader: a virtual leader is a non-physical UAV used as a reference for other UAVs to
determine their position. Its trajectory represents the trajectory of the UAV group.

• Follower: a follower is a UAV that adjusts its position based on the virtual leader. Given the ref-
erence trajectory of the leader and the expected topology, the followers calculate their trajectories
and then track them to form the desired formation.

Consider virtual leader 𝐵𝐿 having position 𝜉𝐿 = [𝑥𝐿 , 𝑦𝐿 , 𝑧𝐿]𝑇 and heading angle 𝜓𝐿 and follower
𝐵𝑖 having position 𝜉𝐿 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]𝑇 and yaw angle 𝜓𝑖 . Let 𝐵′

𝐿
and 𝐵′

𝑖
be their projection on the 𝑂𝑋𝑌

plane, respectively, 𝐵′′
𝐿

be the projection of 𝐵𝑖 on 𝐵𝐿𝐵
′
𝐿
, and Δ𝑖 = [Δ𝑥𝑖 ,Δ𝑦𝑖 ,Δ𝑧𝑖]𝑇 be the desired

distance between follower 𝐵𝑖 and the virtual leader, as depicted in Figure 2. Since Δ𝑧𝑖 = 𝐵𝐿𝐵
′′
𝐿
, the

desired position of follower 𝐵𝑖 can be computed as:

𝑑𝜉𝑖 = Rot𝑧 (𝜓𝐿) Δ𝑖 + 𝜉𝐿

𝑑𝜓𝑖 = 𝜓𝐿 ,
(3)

where Rot𝑧 (·) ∈ R3×3 is the rotation matrix around z-axis. Equation (3) allows the followers to compute
their trajectory based on the trajectory of the virtual leader and the desired formation topology.

3. Controller design for UAV formation

Given the trajectory of the virtual leader, denoted as (𝜉𝐿 , 𝜓𝐿), the desired trajectory of follower 𝑖,
(𝑑𝜉𝑖 , 𝑑𝜓𝑖), in the formation can be computed based on (3). To track this trajectory, we design a dual-
loop control system for each follower as shown in Figure 3. The outer loop is a position controller that
regulates the altitude and horizontal position, while the inner loop is a backstepping sliding mode con-
troller (BSMC) that handles the UAV’s attitude, including its roll, pitch, and yaw angles. To account for
external disturbances, the position controller was designed with a radial basis function neural network
(RBFNN). A converter block is also included to convert the desired translational control forces into roll
and pitch angles. Details of each controller are described as follows.

3.1. Position controller design

The position controller aims to keep the UAV’s position aligned with the desired trajectory. It is designed
based on BSMC with the use of RBFNN for disturbance estimation. According to (2), dynamic equations
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Figure 3: The proposed controller

for the translational motion of UAV 𝑖 are given as follows:

¥𝑥𝑖 = 𝑢𝑥𝑖 +
𝑑𝑥𝑖

𝑚
,

¥𝑦𝑖 = 𝑢𝑦𝑖 +
𝑑𝑦𝑖

𝑚
,

¥𝑧𝑖 = 𝑢𝑧𝑖 +
𝑑𝑧𝑖

𝑚
,

(4)

where

𝑢𝑥𝑖 = (cos 𝜙𝑖 sin 𝜃𝑖 cos𝜓𝑖 + sin 𝜙𝑖 sin𝜓𝑖)
𝑓𝑡𝑖

𝑚
,

𝑢𝑦𝑖 = (cos 𝜙𝑖 sin 𝜃𝑖 sin𝜓𝑖 − sin 𝜙𝑖 cos𝜓𝑖)
𝑓𝑡𝑖

𝑚
,

𝑢𝑧𝑖 = cos 𝜙𝑖 cos 𝜃𝑖
𝑓𝑡𝑖

𝑚
− 𝑔.

(5)

Let 𝜉𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]𝑇 and ¤𝜉𝑖 = [ ¤𝑥𝑖 , ¤𝑦𝑖 , ¤𝑧𝑖]𝑇 respectively be the position and velocity of the translational

motion, 𝑈𝑖 =
[
𝑢𝑥𝑖 , 𝑢𝑦𝑖 , 𝑢𝑧𝑖

]𝑇 be the control signal, and 𝐷𝑖 =

[
𝑑𝑥𝑖

𝑚
,
𝑑𝑦𝑖

𝑚
,
𝑑𝑧𝑖

𝑚

]𝑇
, with ∥𝐷𝑖 ∥ ≤ 𝑑, be the

external disturbance affecting UAV 𝑖. Equation (4) can be rewritten as:

¥𝜉𝑖 = 𝑈𝑖 + 𝐷𝑖 . (6)

The BSMC is then designed as follows.

3.1.1. Backstepping sliding mode controller (BSMC) design
Let 𝑒𝜉𝑖 be the translational error, 𝑒𝜉𝑖 = 𝜉𝑖−𝑑𝜉𝑖 . The virtual velocity ,𝑣𝜉𝑖 , of the subsystem is designed as:

𝑣𝜉𝑖 =
𝑑 ¤𝜉𝑖 − 𝜆𝜉

𝑒𝜉𝑖 , (7)
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where 𝜆𝜉 > 0 is a positive definite gain. The first candidate Lyapunov function is chosen as

1𝑉𝜉𝑖 =
1

2
𝑒𝜉𝑇𝑖

𝑒𝜉𝑖 . (8)

Its derivative is given by
1 ¤𝑉𝜉𝑖 =

𝑒𝜉𝑇𝑖
𝑒 ¤𝜉𝑖 = 𝑒𝜉𝑇𝑖

(
¤𝜉𝑖 − 𝑑 ¤𝜉𝑖

)
. (9)

Substituting ¤𝜉𝑖 = 𝑣𝜉𝑖 into (9) gives

1 ¤𝑉𝜉𝑖 = −𝜆𝜉 ∥𝑒𝜉𝑖 ∥2 ≤ 0. (10)

Hence, the system is stable with the virtual velocity chosen in (7). The sliding mode control (SMC)
algorithm is then utilized to design the input control signal for the position system. The sliding surface
is chosen as follows:

𝑠𝜉𝑖 = 𝛾𝜉
𝑒𝜉𝑖 +

( ¤𝜉𝑖 − 𝑣𝜉𝑖
)
, (11)

where 𝛾𝜉 > 0 is a positive definite gain. Denote �̂�𝑖 as the disturbance estimated via an estimator such
as the RBFNN in Section 3.1.2. The derivative of 𝑠𝜉𝑖 then can be obtained by using �̂�𝑖 instead of 𝐷𝑖 as
follows:

¤𝑠𝜉𝑖 = 𝛾𝜉

(
¤𝜉𝑖 − 𝑑 ¤𝜉𝑖

)
+𝑈𝑖 + �̂�𝑖 − 𝑣 ¤𝜉𝑖 . (12)

The second Lyapunov function of the subsystem is chosen as follows:

2𝑉𝜉𝑖 =
1

2
𝑠𝑇𝜉𝑖 𝑠𝜉𝑖 (13)

The control signals are designed as follows:

𝑈𝑖𝑒𝑞 = 𝑣 ¤𝜉𝑖 − 𝛾𝜉

(
¤𝜉𝑖 − 𝑑 ¤𝜉𝑖

)
− �̂�𝑖

𝑈𝑖𝑠𝑤 = −
(
𝑐 𝜉1sg

(
𝑠𝜉𝑖

)
+ 𝑐 𝜉2𝑠𝜉𝑖

)
,

(14)

where 𝑐 𝜉1 and 𝑐 𝜉2 are positive gains, 𝑈𝑖𝑒𝑞 is the equivalent control signal that maintains the position
variables on the sliding manifold, 𝑈𝑖𝑠𝑤 is the signal that leads the subsystem to the sliding surface 𝑠𝜉𝑖 ,
and sg (·) is the piece-wise continuous function defined as

sg (𝑥) =


1
−1
𝑥

𝜖

𝑥 > 𝜖

𝑥 < −𝜖
otherwise

(15)

where 0 < 𝜖 < 1 is a pre-defined constant.

Theorem 3.1. Consider the position control system of the UAV. If the control signal is chosen as

𝑈𝑖 = 𝑈𝑖𝑒𝑞 +𝑈𝑖𝑠𝑤 , (16)

the system is stable.

Proof. Taking the first derivative of 2𝑉𝜉𝑖 gives

2 ¤𝑉𝜉𝑖 = 𝑠𝑇𝜉𝑖 ¤𝑠𝜉𝑖 . (17)
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...

Figure 4: The RBFNN structure

Substituting (12) into (17) gives

2 ¤𝑉𝜉𝑖 = 𝑠𝑇𝜉𝑖

(
𝛾𝜉

(
¤𝜉𝑖 − 𝑑 ¤𝜉𝑖

)
+𝑈𝑖 + �̂�𝑖 − 𝑣 ¤𝜉𝑖

)
. (18)

By substituting (14) and (16) into (18), ¤𝑉𝜉𝑖 becomes

2 ¤𝑉𝜉𝑖 = −𝑐 𝜉1𝑠𝑇𝜉𝑖 sg
(
𝑠𝜉𝑖

)
− 𝑐 𝜉2

𝑠𝜉𝑖2 ≤ 0. (19)

According to Lyapunov’s stability theorem, the system is stable. □

3.1.2. Radial basis function neural network (RBFNN) design
During operation, UAVs are subject to inevitable disturbances such as wind or turbulent flows. Those
disturbances affect the system performance, but are complex to model and analyze. We address this
problem by exploiting the online learning capability of neural networks to estimate the disturbances.
Previous studies on universal approximation theorems for RBFNN show that RBFNN can approximate
any nonlinear function on a bounded set with an arbitrary level of accuracy [31]. In this work, we design
a disturbance estimator using a neural network with the radial basis function (RBF). The network has
three layers including an input layer, a hidden layer, and an output layer, as shown in Figure 4. Position
vector 𝜉𝑖 and its derivation ¤𝜉𝑖 are the input of the network. At the hidden layer, neurons are activated by
a radial basis function. The output of neuron 𝑗 is computed as:

ℎ 𝑗 = exp

(
−
𝜉𝑖 − 𝜇1 𝑗

2 +  ¤𝜉𝑖 − 𝜇2 𝑗
2

𝑏2

)
, (20)

where 𝑏 is a parameter controlling the width of the Gaussian function, 𝜇1 𝑗 and 𝜇2 𝑗 are predefined center
points, and 𝑗 ∈ {1, 2, ..., 𝑚} is the neuron index with 𝑚 being the number of neurons in the hidden layer.
The output layer is a weighted sum. Let 𝑊𝑖 be the optimal weight matrix, 𝐻𝑖 be the output of the hidden
layer, and 𝜎𝑖 be the approximation error. Disturbance 𝐷𝑖 affecting UAV 𝑖 then can be expressed by:

𝐷𝑖 = 𝑊𝑇
𝑖 𝐻𝑖 + 𝜎𝑖 (21)

The output �̂�𝑖 of the RBFNN approximates 𝐷𝑖 as:

�̂�𝑖 = �̂�𝑇
𝑖 𝐻𝑖 , (22)
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where �̂�𝑖 is a trained weight matrix. This matrix is updated based on the following rule:

¤̂
𝑊𝑖 = 𝑎

(
𝐻𝑖𝑠

𝑇
𝜉𝑖
− 𝜂

𝑠𝜉𝑖 �̂�𝑖

)
, (23)

where 𝑎 is a positive definite gain matrix. With this structure, the estimation of disturbance 𝐷𝑖 can be
described as in Algorithm 1, where 𝛽 ∈ (0, 1) is the momentum factor.

Algorithm 1: Pseudocode to estimate disturbances by RBFNN for UAV 𝑖

/* Initialization only one time */
1 Initialize parameters 𝑚, 𝑎, 𝑏, 𝜂, 𝛽;
2 Initialize predefined center points 𝜇1, 𝜇2;
3 Create random weight matrix �̂�𝑖;
4 Initialize stored weight matrices �̂�1𝑖 = �̂�2𝑖 = �̂�𝑖;
/* Online training */

5 foreach computation step do
6 Get the current values of 𝜉𝑖 , ¤𝜉𝑖 , 𝑠𝜉𝑖 ;
7 𝐻𝑖 = zeros(𝑚, 1);
8 for 𝑗 = 1 to 𝑚 do
9 Compute sub-hidden layer ℎ 𝑗 ; /* Equation 20 */

10 Compute the value of ¤̂
𝑊𝑖; /* Equation 23 */

11 Update the weight matrix �̂�𝑖 = �̂�1𝑖 + ¤̂
𝑊𝑖 + 𝛽(�̂�1𝑖 − �̂�2𝑖);

12 Update stored weight matrices �̂�2𝑖 = �̂�1𝑖 and �̂�1𝑖 = �̂�𝑖;
13 Compute the current estimated disturbance �̂�𝑖; /* Equation 22 */

3.1.3. Stability of the position controller
The stability of this controller is addressed in Theorem 3.2 as follows.

Theorem 3.2. Consider UAV 𝑖 affected by external disturbance 𝐷𝑖 as described in (6), the control
signals designed in (14), the bounded weight ∥𝑊𝑖 ∥ ≤ �̄�𝑖 , and the update rule for RBFNN in (23). If the
following inequality condition is satisfied:

𝑠𝜉𝑖 ≥
�̄� + 1

4
𝜂�̄�2

𝑖

𝑐 𝜉2
, (24)

the position control system is stable.

Proof. Choose the candidate Lyapunov function as follows:

𝑉𝜉𝑖 =
2𝑉𝜉𝑖 +

1

2
tr

(
�̃�𝑇

𝑖 𝑎
−1�̃�𝑖

)
, (25)
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where �̃�𝑖 = 𝑊𝑖 − �̂�𝑖 is the error weight matrix. Taking the first derivative of 𝑉𝜉𝑖 gives:

¤𝑉𝜉𝑖 = 𝑠𝑇𝜉𝑖 ¤𝑠𝜉𝑖 + tr
(
�̃�𝑇

𝑖 𝑎
−1 ¤̃

𝑖𝑊

)
= −𝑐 𝜉1𝑠𝑇𝜉𝑖 sg

(
𝑠𝜉𝑖

)
− 𝑐 𝜉2

𝑠𝜉𝑖2 − 𝑠𝑇𝜉𝑖

(
�̂�𝑖 − 𝐷𝑖

)
− tr

(
�̃�𝑇

𝑖 𝑎
−1 ¤̂
𝑊𝑖

)
= −𝑐 𝜉1𝑠𝑇𝜉𝑖 sg

(
𝑠𝜉𝑖

)
− 𝑐 𝜉2

𝑠𝜉𝑖2 + 𝑠𝑇𝜉𝑖𝜎𝑖 + 𝑠𝑇𝜉𝑖�̃�
𝑇
𝑖 𝐻𝑖 − tr

(
�̃�𝑇

𝑖 𝑎
−1 ¤̂
𝑊𝑖

)
= −𝑐 𝜉1𝑠𝑇𝜉𝑖 sg

(
𝑠𝜉𝑖

)
− 𝑐 𝜉2

𝑠𝜉𝑖2 + 𝑠𝑇𝜉𝑖𝜎𝑖 + tr
(
−�̃�𝑇

𝑖

(
𝑎−1 ¤̂

𝑊𝑖 − 𝐻𝑖𝑠
𝑇
𝜉𝑖

))
(26)

With the updated rule of the neural network, ¤𝑉𝜉𝑖 can be rewritten as follows:

¤𝑉𝜉𝑖 = −𝑐 𝜉1𝑠𝑇𝜉𝑖 sg
(
𝑠𝜉𝑖

)
− 𝑐 𝜉2

𝑠𝜉𝑖2 + 𝑠𝑇𝜉𝑖𝜎𝑖 + tr
(
�̃�𝑇

𝑖 𝜂
𝑠𝜉𝑖 �̂�𝑖

)
= −𝑐 𝜉1𝑠𝑇𝜉𝑖 sg

(
𝑠𝜉𝑖

)
− 𝑐 𝜉2

𝑠𝜉𝑖2 + 𝑠𝑇𝜉𝑖𝜎𝑖 + 𝜂
𝑠𝜉𝑖 tr

(
�̃�𝑇

𝑖

(
𝑊𝑖 − �̃�𝑖

)) (27)

According to the Cauchy-Schwarz inequality, the following inequality equation can be satisfied:

tr
(
�̃�𝑇

𝑖

(
𝑊𝑖 − �̃�𝑖

))
≤

�̃�𝑖

 ∥𝑊𝑖 ∥ −
�̃�𝑖

2 (28)

Thus,

¤𝑉𝜉𝑖 ≤ −𝑐 𝜉1𝑠𝑇𝜉𝑖 sg
(
𝑠𝜉𝑖

)
− 𝑐 𝜉2

𝑠𝜉𝑖2 + 𝑠𝜉𝑖 �̄� + 𝜂
𝑠𝜉𝑖 (�̃�𝑖

 ∥𝑊𝑖 ∥ −
�̃�𝑖

2)
≤ −𝑐 𝜉1𝑠𝑇𝜉𝑖 sg

(
𝑠𝜉𝑖

)
− 𝑐 𝜉2

𝑠𝜉𝑖2 + 𝑠𝜉𝑖 �̄� + 1

4
𝜂
𝑠𝜉𝑖 �̄�2

𝑖 − 𝜂
𝑠𝜉𝑖 (

1

2
∥𝑊𝑖 ∥ −

�̃�𝑖

)2 (29)

Based on an extension of the Lyapunov theorem [33],
𝑠𝜉𝑖 is bounded. Moreover, the control gain 𝑐 𝜉2

can be selected large enough so that [
�̄� + 𝜂�̄�2

𝑖 /4
]
/𝑐 𝜉2 ≤ 𝑏 𝜉 (30)

Therefore, with the inequality condition (24), ¤𝑉𝑝 can be rewritten as follows:

¤𝑉𝜉𝑖 ≤ −𝑐 𝜉1𝑠𝑇𝜉𝑖 sg
(
𝑠𝜉𝑖

)
− 𝜂

𝑠𝜉𝑖 (
1

2
∥𝑊𝑖 ∥ −

�̃�𝑖

)2 ≤ 0 (31)

The Lyapunov stability condition is satisfied. □

3.2. Attitude controller design

In our system, the position controller is the outer loop of the UAV control system, as depicted in Figure
3. Its control signal is then fed to the converter block to calculate the desired angles and translational
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forces based on (5) as:

𝑑𝜃𝑖 = arctan

(
𝑢𝑥𝑖 cos

𝑑𝜓𝑖 + 𝑢𝑦𝑖 sin
𝑑𝜓𝑖

𝑢𝑧𝑖 + 𝑔

)
𝑑𝜙𝑖 = arctan

(
cos 𝑑𝜃𝑖

𝑢𝑥𝑖 sin
𝑑𝜓𝑖 − 𝑢𝑦𝑖 cos

𝑑𝜓𝑖

𝑢𝑧𝑖 + 𝑔

)
𝑓𝑡𝑖 =

𝑢𝑧𝑖 + 𝑔

cos 𝑑𝜙𝑖 cos 𝑑𝜃𝑖

(32)

They are used as the reference for the attitude controller, which is designed based on the BSMC. From
(2), the dynamic equation for the roll angle is given by:

¥𝜙𝑖 =
¤𝜃𝑖 ¤𝜓𝑖

(
𝐼𝑦 − 𝐼𝑧

)
+ 𝜏𝜙𝑖

𝐼𝑥
. (33)

Denote 𝑒𝜙𝑖 = 𝜙𝑖 − 𝑑𝜙𝑖 as the roll angle error. The virtual velocity, 𝑣𝜙𝑖 , is defined as:

𝑣𝜙𝑖 =
𝑑 ¤𝜙𝑖 − 𝜆𝜙𝜙1𝑒, (34)

where 𝜆𝜙 > 0 is a positive gain. The first candidate Lyapunov function for subsystem 𝜙1𝑒 is chosen as:

1𝑉𝜙𝑖
=
1

2
𝑒𝜙2

𝑖 . (35)

Taking the first derivative of 1𝑉𝜙 gives:

1 ¤𝑉𝜙𝑖
= 𝑒𝜙𝑖

𝑒 ¤𝜙𝑖 = 𝑒𝜙𝑖

(
¤𝜙𝑖 − 𝑑 ¤𝜙𝑖

)
. (36)

Substituting ¤𝜙𝑖 = 𝑣𝜙𝑖 into (36) gives

1 ¤𝑉𝜙𝑖
= −𝜆𝜙

𝑒𝜙2
𝑖 ≤ 0. (37)

Thus, the Lyapunov stability is guaranteed. The sliding surface of the roll angle subsystem is expressed
as:

𝑠𝜙𝑖
= 𝛾𝜙

𝑒𝜙𝑖 +
( ¤𝜙𝑖 − 𝑒𝜙𝑖

)
, (38)

where 𝛾𝜙 > 0 is a positive gain. The first derivative of 𝑠𝜙𝑖
is given by:

¤𝑠𝜙𝑖
= 𝛾𝜙

(
¤𝜙𝑖 − 𝑑 ¤𝜙𝑖

)
+

¤𝜃𝑖 ¤𝜓𝑖

(
𝐼𝑦 − 𝐼𝑧

)
+ 𝜏𝜙𝑖

𝐼𝑥
− 𝑣 ¤𝜙𝑖 . (39)

The control signal is then designed with two sub-control signals, 𝑒𝑞𝜏𝜙𝑖
and 𝑠𝑤𝜏𝜙𝑖

. 𝑒𝑞𝜏𝜙𝑖
is the equivalent

control signal that maintains the roll angle on the sliding manifold and 𝑠𝑤𝜏𝜙𝑖
is the signal that leads the

subsystem to the sliding surface 𝑠𝜙𝑖
. They are chosen as follows:

𝑒𝑞𝜏𝜙𝑖
= 𝐼𝑥

(
𝑣 ¤𝜙𝑖 − 𝛾𝜙

(
¤𝜙𝑖 − 𝑑 ¤𝜙𝑖

))
− ¤𝜃𝑖 ¤𝜓𝑖

(
𝐼𝑦 − 𝐼𝑧

)
𝑠𝑤𝜏𝜙𝑖

= −𝐼𝑥
(
𝑐𝜙1sg

(
𝑠𝜙𝑖

)
+ 𝑐𝜙2𝑠𝜙𝑖

)
,

(40)

where 𝑐𝜙1 and 𝑐𝜙2 are positive gains.
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Theorem 3.3. Consider the roll angle subsystem (33). If the control signal is designed as:

𝜏𝜙𝑖
= 𝑒𝑞𝜏𝜙𝑖

+ 𝑠𝑤𝜏𝜙𝑖
, (41)

the roll angle control system is stable.

Proof. The candidate Lyapunov function of the roll angle subsystem is chosen as follows:

𝑉𝜙𝑖
=
1

2
𝑠2𝜙𝑖

. (42)

Taking the first derivative of 𝑉𝜙 gives
¤𝑉𝜙𝑖

= 𝑠𝜙𝑖
¤𝑠𝜙𝑖

. (43)

By substituting (39) into (43), we have

¤𝑉𝜙𝑖
= 𝑠𝜙𝑖

(
𝛾𝜙

(
¤𝜙𝑖 − 𝑑 ¤𝜙𝑖

)
+

¤𝜃𝑖 ¤𝜓𝑖

(
𝐼𝑦 − 𝐼𝑧

)
+ 𝜏𝜙𝑖

𝐼𝑥
− 𝑣 ¤𝜙𝑖

)
. (44)

Finally, substituting (40) and (41) into (44) gives

¤𝑉𝜙𝑖
= −𝑐𝜙1𝑠𝜙𝑖

sg
(
𝑠𝜙𝑖

)
− 𝑐𝜙2𝑠

2
𝜙𝑖

≤ 0. (45)

Thus, the Lyapunov stability of the roll angle control system is guaranteed. □

The control signals for the pitch and yaw angles can be obtained by applying the design process
similar to the roll angle. As a result, the pitch control signals are obtained as:

𝜏𝜃𝑖 =
𝑒𝑞𝜏𝜃𝑖 + 𝑠𝑤𝜏𝜃𝑖

𝑒𝑞𝜏𝜃𝑖 = 𝐼𝑦

(
𝑣 ¤𝜃𝑖 − 𝛾𝜃

(
¤𝜃𝑖 − 𝑑 ¤𝜃𝑖

))
− ¤𝜙𝑖 ¤𝜓𝑖 (𝐼𝑧 − 𝐼𝑥)

𝑠𝑤𝜏𝜃𝑖 = −𝐼𝑦
(
𝑐𝜃1sg

(
𝑠𝜃𝑖

)
+ 𝑐𝜃2𝑠𝜃𝑖

)
,

(46)

and the yaw control signals are given by:

𝜏𝜓𝑖
= 𝑒𝑞𝜏𝜓𝑖

+ 𝑠𝑤𝜏𝜓𝑖

𝑒𝑞𝜏𝜓𝑖
= 𝐼𝑧

(
𝑣 ¤𝜓𝑖 − 𝛾𝜓

(
¤𝜓𝑖 − 𝑑 ¤𝜓𝑖

))
− ¤𝜙𝑖 ¤𝜃𝑖

(
𝐼𝑥 − 𝐼𝑦

)
𝑠𝑤𝜏𝜓𝑖

= −𝐼𝑧
(
𝑐𝜓1sg

(
𝑠𝜓𝑖

)
+ 𝑐𝜓2𝑠𝜓𝑖

)
.

(47)

4. Results

To evaluate the performance of the proposed control system, we have conducted a number of evaluations
and comparisons1. The UAV model used is the Hummingbird quadrotors [34], whose parameters are
shown in Table 1. Parameters of the position and attitude controllers are chosen as shown in Table 2.
The desired formation is a triangular shape with Δ1 = [2, 0, 0]𝑇 , Δ2 = [0, 0, 2]𝑇 , and Δ3 = [0, 0,−2]𝑇 ,
as depicted in Figure 5. Comparisons are conducted between the proposed controller (RBF-BSMC) and
three other controllers namely model predictive control (MPC) [27, 35], backstepping sliding mode
control (BSMC) [36, 37] and sliding mode control (SMC) [23, 38] in different scenarios.

1Evaluation results in Scenario 1 and Scenario 2 - https://youtu.be/LYD7269n1-c

https://youtu.be/LYD7269n1-c
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Table 1: Parameters of the Hummingbird quadrotor
Description Notation Value

The mass of UAV (kg) 𝑚 0.68
The gravitational acceleration (m/s2) 𝑔 9.81
Moment of inertia about x and y axes (kg.m2) 𝐼𝑥 , 𝐼𝑦 0.007
Moment of inertia about z-axis (kg.m2) 𝐼𝑧 0.012
Length of UAV arm (m) 𝑙 0.17
Thrust coefficient 𝑘𝑡 29×10−6

Drag coefficient 𝑘𝑑 1.1×10−6

Table 2: Parameters of the proposed controller
Parameters of the BSMC

Attitude controller
𝜆𝜙 = 𝜆𝜃 = 𝜆𝜓 = 5;
𝛾𝜙 = 𝛾𝜃 = 𝛾𝜓 = 5;
𝑐𝜙1 = 𝑐𝜃1 = 𝑐𝜓1 = 2;
𝑐𝜙2 = 𝑐𝜃2 = 𝑐𝜓2 = 2;

Position controller 𝜆𝜉 = 3; 𝛾𝜉 = 2; 𝑐 𝜉1 = 𝑐 𝜉2 = 2
Parameters of the RBFNN

Position controller
𝑚 = 50; 𝑎 = 0.1; 𝑏 = 10; 𝜂 = 0.2;
𝜇𝑥 = linspace (−𝑟𝑥 , 𝑟𝑥 , 𝑛)
𝜇𝑦 = linspace

(
−𝑟𝑦 , 𝑟𝑦 , 𝑛

)
𝜇𝑧 = linspace (−𝑟𝑧 , 𝑟𝑧 , 𝑛)

; 𝑟𝑥 = 𝑟𝑦 = 𝑟𝑧 = 15;

𝜇1 =
[
𝜇𝑥 , 𝜇𝑦 , 𝜇𝑧

]𝑇
; 𝜇2 = 𝜇1;

Figure 5: The desired topology

4.1. Scenario 1

In this scenario, external disturbances acting on the formation are generated based on the combination of
the rectangle and full wavelength “1-cosine” wind model [39], as shown in Figure 6. The initial positions
of the UAVs are set as 𝜉1 = [3, 2, 4]𝑇 , 𝜉2 = [2, 1, 4]𝑇 , and 𝜉3 = [0, 0, 4]𝑇 . The desired trajectory of the
virtual leader is a spiral with the 𝑧 coordinate increasing over time as expressed in (48).
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Figure 6: The external disturbance acting on the formation generated based on the rectangle and full
wavelength “1-cosine” wind model in Scenario 1

(a) RBF-BSMC (b) MPC

(c) BSMC (d) SMC

Figure 7: Trajectories of the UAV formation generated by the four controllers in Scenario 1
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(a) The tracking errors (b) The estimated disturbances

Figure 8: The tracking errors and estimated disturbances of the controllers in Scenario 1

Figure 9: The external disturbance acting on the formation generated based on the rectangle wind model
in Scenario 2

𝑥𝐿 = 5 cos

(
2𝜋

20
𝑡

)
(m),

𝑦𝐿 = 5 sin

(
2𝜋

20
𝑡

)
(m),

𝑧𝐿 = 0.5𝑡 + 5 (m),

𝜓𝐿 =
2𝜋

20
𝑡 + 𝜋

2
(rad).

(48)

Figure 7 shows the 3D views of the trajectory tracking results of the UAV formation. It can be seen
that the UAVs quickly reach the initial positions to form the desired shape. They then maintain the shape
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(a) RBF-BSMC (b) MPC

(c) BSMC (d) SMC

Figure 10: Trajectories of the UAV formation generated by the four controllers in Scenario 2

while following the reference trajectory. However, the trajectory of the proposed method is smoother and
more accurate than the others due to its capability to estimate the disturbance via the RBFNN and use
it as feedback to adjust the control signals. This result can be further verified via the tracking errors as
shown in Figure 8a. It can be seen that the average tracking errors of the proposed controller quickly
converge to zeros, whereas those errors of the other controllers largely fluctuate due to disturbances. In
addition, the maximum and minimum tracking errors of the UAVs are also very small with our method,
which confirm its stability for formation control.

Figure 8b shows the disturbances estimated for each UAV by the proposed controller. After the tran-
sition period, the estimation starts to converge to the real disturbance. This provides feedback for the
controller to adjust the control signal for better tracking performance.

4.2. Scenario 2

In this scenario, the rectangle wind model is used to generate external disturbances as shown in Figure
9. The initial positions of the UAVs are set as 𝜉1 = [2, 0, 9]𝑇 , 𝜉2 = [5, 2, 7]𝑇 , and 𝜉3 = [−3,−2, 8]𝑇 . The
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(a) The tracking errors (b) The estimated disturbances

Figure 11: The tracking errors and estimated disturbances of the controllers in Scenario 2

(a) The real Hummingbird drone

GPS and
Communication

modules

(b) The Hummingbird model

Figure 12: The Hummingbird drone model used in validation [32, 34]

(a) Vertical formation (b) Triangular formation

Figure 13: The vertical and triangular formation topologies used in SIL tests
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(a) 3D view

(b) Side view

(c) Top view

Figure 14: The planned paths to inspect the bridge

Formation
changing

Figure 15: The tracking errors of UAV formation in the Gazebo SIL
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desired trajectory of the virtual leader is generated based on an inspection path used to collect surface
data [40].

The 3D of the UAV formation tracking results are shown in Figure 10. It can be seen that all controllers
are able to drive the UAVs to reach their reference positions and then track them to form the desired
shape. The proposed controller, however, introduces smaller tracking errors than the other controllers,
as shown in Figure 11a, due to its disturbance estimator. As shown in Figure 11b, the estimation closely
follows the actual disturbances except for the positions where step changes happen. At those positions,
a transition period is needed for the estimator to converge to the new steady state. However, the settling
time of the estimator is short allowing it to provide timely feedback to the controller.

4.3. Validation with software-in-the-loop tests

To further validate the proposed control system, we have carried out software-in-the-loop (SIL) tests that
involve the inspection of a scaled-down 3D model of a real bridge with 5 columns, as shown in Figure
14. The UAV model used is a Hummingbird quadrotor2 developed based on Gazebo-based RotorS sim-
ulator [32], as depicted in Figure 12. The formation used includes two topologies, vertical and triangular
shapes, as shown in Figure 13. According to our previous work [41], the generated path to inspect the
bridge includes two stages. The first stage covers all columns of the bridge using a vertical formation.
The second one uses a triangular formation to cover the side and top surfaces of the bridge, as depicted
in Figure 14.

Given the planned paths, the UAVs start to fly from positions [−8,−8, 0]𝑇 , [−4,−8, 0]𝑇 , [4,−8, 0]𝑇 ,
and reach their initial positions to form a vertical formation as shown in Figure 14a. The formation then
tracks the planned path to acquire surface images of the bridge3. Figure 15 shows the tracking errors
of the UAVs during operation. It can be seen that the errors quickly converge to small values in both
inspection stages except between time steps 1070 and 1120, where there is a change in the formation
topology. The errors in the first stage are slightly larger than in the second one as the UAVs frequently
changes their direction to navigate around each column of the bridge. Nevertheless, the average tracking
error of less than 5 cm is sufficient for most UAV-related applications and thus confirms the validity of
our approach.

5. Conclusion

In this paper, we have presented a robust control system using RBFNN for a group of UAVs flying
in a formation. By combining BSC with SMC, the controller can handle nonlinearity to increase its
control performance. The use of RBFNN enables the system to estimate external disturbances to enhance
its control robustness. By using Lyapunov’s theorem, we proved that the control system is stable and
the proposed controller can track the reference trajectory. Evaluation results show that the proposed
controller outperforms the state-of-the-art BSMC in terms of accuracy and robustness and is sufficient
for most UAV applications.
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2Source code used for Gazebo validation - https://github.com/duynamrcv/hummingbird_simulator
3SIL validation - https://youtu.be/1yUCzWRDcp0
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