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The emergence of strong relativistic spin-orbit effects in low-dimensional systems provides a rich
opportunity for exploring unconventional states of matter. Here, we present a route to realize highly
tunable relativistic band structures based on the lateral patterning of proximity-induced spin-orbit
coupling (SOC). The concept is illustrated on a 1D patterned graphene heterostructure, where the
periodic spatial modulation of SOC is shown to give rise to a rich mini-band structure with massless
and massive Dirac bands carrying large Berry curvature. The envisaged systems support robust
spin Hall responses driven by the quantum geometry of mini-bands, which can be tailored through
metasurface fabrication methods and twisting effects. These findings suggest new pathways to 2D
quantum material design and low-power spintronic applications.

The intertwining of orbital and spin degrees of freedom
underpin a wealth of phenomena, from the formation of
topological insulators to the spin Hall effect of light [1–7].
In condensed matter systems, spin-orbit coupling (SOC)
is a relativistic interaction due to the motion of electrons
in the electric field of the crystal lattice, which can yield
spin-dependent band structures and Berry-curvature ef-
fects that strongly influence the electrodynamics of quasi-
particles [8, 9]. Because the Berry curvature flux encodes
global topological invariants (such as the Chern number
for quantum anomalous Hall insulators), SOC is also a
key mechanism behind quantized transport in 2D and 3D
topological phases of matter [10, 11].

Broken symmetries alter the spin-orbital character of
electronic states [12, 13], and therefore provide pathways
by which to realize novel spin phenomena. Among these,
the emergence of spin textures in spin-orbit-coupled sys-
tems with broken spatial inversion symmetry has gener-
ated enormous excitement in the fields of spintronics and
magnonics recently [14, 15]. Owing to a close interplay of
spin, lattice (pseudospin), and orbital degrees of freedom,
SOC manifests both in real and momentum spaces—spin-
momentum locking of spin-split Fermi surfaces [16–18],
magnetic skyrmions [19–21], and persistent spin helices
[22–24] are prominent examples—and forms the basis of
several transport effects of fundamental and practical in-
terest. Chief among these is the current-driven spin po-
larization that occurs in non-magnetic conductors with
nontrivial spin textures, such as spin-momentum-locked
Rashba interfaces and topological surfaces [25–27]. The
ensuing net spin polarizations are often large (allowing
current-induced magnetization switching of ferromagnets
[28–30]) and tend to lie perpendicularly to the applied
electric field owing to the tangential nature of conven-
tional Rashba-type spin textures. Moreover, recent stud-
ies have found that the net spin orientation can be tuned
in chiral materials boasting more exotic spin textures due

to fully broken reflection symmetries [31–34], which has
the potential to unlock unconventional spin-orbit torques
[35–37].

Likewise, the rich landscape of spin Hall effects (SHEs)
reflects the symmetries underlying spin-orbit-coupled
matter [38]. Of recent and growing interest is the SHE
in vertical heterostructures built from graphene and 2D
semiconductors [39]. In these systems, the interfacial
breaking of point-group symmetries leads to two main
types of SOC that can be either induced or greatly en-
hanced via proximity effects: the sublattice-staggered
SOC (responsible for the valley-Zeeman effect) and the
more familiar Rashba SOC [40–42]. Beyond featuring an
exceptionally high degree of SOC tunability via strain
and twisting effects [43–48], proximitized 2D crystals sup-
port a robust extrinsic SHE driven by scalar impurities,
having no counterpart in other, non-Dirac 2D systems
[49] (for a recent review see Ref. [42]). Such symmetry-
breaking effects are also of ubiquitous importance for
2D quantized transport [50–53], as well as for metallic
anomalous Hall and magnetic spin Hall phases [54, 55].

Despite this, most theoretical work so far has focused
on translation invariant spin-orbit fields that reflect the
periodicity of the underlying crystal structure, since this
is the most conspicuous case. An interesting exception
is the modulation of the strength of Rashba and Dres-
selhaus SOC induced in quantum-wire setups, previously
explored in the context of spin-transistor devices [56–58].
Inspired by recent advances in the realization of artificial
Dirac band structures in graphene with 1D superlattice
potentials [59–61], the purpose of this work is to show
that the quantum geometry and electrodynamic response
of 2D materials can be engineered via synthetic spin-orbit
fields created by a metasurface. Our proposal, outlined
in Fig. 1(a), leverages proximity-induced effects between
atomically thin crystals to engender effective spin-orbit
fields with periodicity aS much greater than the lattice
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scale, which we call super-spin-orbit fields (SSOFs). We
envision that the long-wavelength modulation of the spin-
orbit field acting on charge carriers can be achieved by
placing graphene on a patterned high-SOC substrate,
akin to the patterning of electrostatic potentials in a lat-
eral graphene superlattice [59–61] (other possibilities are
discussed below). As we shall see, the envisaged synthetic
SSOFs not only lead to the formation of mini-bands, but
remarkably also impact their underlying quantum geom-
etry, yielding a number of interesting and useful effects.

Setting the scene.—To model the electronic properties
of a graphene sheet subject to a proximity-induced SSOF,
we employ a continuum low-energy description based on
the Weyl-Dirac Hamiltonian [62], supplemented with a
1D periodic perturbation comprising a scalar potential
U(x) [59] and SOC terms allowed by symmetry [40–42].
We focus exclusively on long-period perturbations, hence
suppressing intervalley scattering [59]. The Hamiltonian
in the valley-isotropic basis is

H = v (σ · p)⊗ s0 + U(x)σ0 ⊗ s0 +Hso(x), (1)

where v is the bare Fermi velocity of 2D massless Dirac
fermions (v = 106 m/s), σa and sa (a = x, y, z) are
Pauli matrices acting on the pseudospin and spin sub-
spaces, respectively, σ0 and s0 are 2 × 2 identity matri-
ces, and p = −iℏ∇ is the momentum operator. For the
broad class of effective Dirac Hamiltonians that are lo-
cally invariant under the C3v point group [41, 42], the
SSOF receives up to 3 contributions, namely, a spin-flip
Rashba term [HR(x) = λR Φ(x) (σx ⊗ sy − σy ⊗ sx)], a
valley-Zeeman term due the broken sublattice symme-
try [Hvz(x) = τλvz Φ(x)σ0 ⊗ sz, where τ = ±1 is the
valley index], and a Kane-Mele (KM) term [HKM(x) =
λKM Φ(x)σz ⊗ sz]. Here, λR, λvz and λKM denote the
nominal strength of Rashba, valley-Zeeman and intrinsic-
like SOC, respectively, while Φ(x) describes the spatial
profile of the SOC modulation [Φ(x+maS) = Φ(x) with
m an integer]. An example of a graphene system sub-
ject to a SSOF with a square-wave profile is depicted
in Fig. 1(a). Recent measurements [45–47] have shown
that proximity-induced Rashba SOC in graphene/WSe2
attains giant values of up to 15 meV [46], which is more
than 350 times larger than graphene’s intrinsic SOC [63],
and makes group VI dichalcogenides ideal high-SOC sub-
strates for our proposal. Lastly, we assume that the su-
perlattice potential, when present, is designed to track
the SSOF modulation (e.g. via a patterned bottom gate),
and thus write U(x) = uΦ(x), where u is the scalar po-
tential amplitude.

The most striking scenario, on which we will focus our
attention, concerns Rashba SSOFs with a zero-mean pro-
file [that is, ⟨Φ(x)⟩ = (1/aS)

∫ aS

0
dxΦ(x) = 0]. For exam-

ple, this can be accomplished through encapsulation of a
graphene sheet between identical dielectric layers with a
relative offset of aS/2. More exotic experimental routes,

FIG. 1. (a) 1D periodic modulation of the proximity-induced
SOC. In this example, the SSOF is imprinted on graphene via
the use of a dielectric metasurface decorated with 2D semi-
condutors (labelled TMD). (b) Energy dispersion of low-lying
states around the K point for a zero-mean square-wave profile
with aS = 100 nm, λKM = 20 meV, and u = 0. (c) Same as
(b) but with u = 15 meV. As a guide to the eye, the bare
energy dispersion of graphene is shown in red (inner cones).

yet viable, include metal intercalation [64], periodic fold-
ing of graphene [65], proximity coupling to rippled group-
VI dicalcogenides [66, 67] and deposition of graphene on
stepped surfaces [68]. The low-energy physics in all these
routes are captured by Eq. (1) (or simple generalizations
thereof) with a suitable choice of parameters.

Results.—To build intuition, we first consider a SSOF
with zero spatial average (⟨Φ(x)⟩ = 0) that locally pre-
serves all the spatial symmetries of the honeycomb lat-
tice, i.e. with a single term (HKM). The energy spectrum
is two-fold spin degenerate in this case and exhibits the
typical mini-band structure due to a synthetic periodic
perturbation. In Fig. 1(b), we show numerically exact
results for a long-period square-wave modulation of type
KM. The most striking feature of the low-energy spec-
trum is the band touching at zero energy, i.e. the SOC
spatial modulation precludes the opening of a topolog-
ical gap [3]. (Higher-energy mini-bands are located at
energies ≈ ±2πvℏ/aS ≈ ±40 meV and thus lie outside
the energy range of Fig. 1.) Importantly, the linearly
dispersing zero energy states in our system cannot be
gapped out without breaking the global average condi-
tion of the periodic perturbation. In other words, the
Dirac point degeneracy survives SSOFs with ⟨Φ(x)⟩ = 0.
What is more, the emergent 2D Dirac fermions unveiled
here remain massless even for SSOFs that locally break
one or more spatial symmetries, such as a spatially mod-
ulated Rashba SOC. The robustness of the crossing point
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between the electron and hole mini-bands hints at inter-
esting quantum geometry effects to be discussed shortly.

Next, we observe that the KM-SSOF renormalizes the
group velocity along the modulation direction, x̂, while it
produces no change perpendicularly to it. This is the op-
posite behavior of graphene under a periodic (scalar) po-
tential [59], and provides a simple mechanism to fine tune
charge carrier propagation. This possibility is highlighted
in Fig. 1(c), showing that the combined action of a SSOF
and a periodic potential squeezes the Dirac cones along
both parallel and perpendicular directions to the recip-
rocal superlattice vector. Perturbation theory provides
further insights [69]. In the limit u, λKM ≪ ℏv/aS, the
component of the group velocity parallel to the wavevec-
tor k of the low-lying Dirac states is found to be

vk̂
∼= v

[
1− µ

u2 sin2 θk + λ2KM cos2 θk
ℏ2v2(2π/aS)2

]
, (2)

where θk is the wavevector angle and µ is a geomet-
ric factor (µ ≈ 1.645 for a square-wave SSOF). Equa-
tion (2) shows that the periodic perturbation can be
tuned to yield an isotropic group velocity. Indeed, setting
u = ±λKM results in isotropic Dirac cones, thus mimick-
ing the low-energy physics of bare graphene without SOC.
The situation becomes richer when considering realistic
systems with broken spatial symmetries as shown below.
For example, Dirac fermions with isotropic behavior can
be engineered by means of a pure Rashba SSOF, bypass-
ing the need for a scalar periodic potential.

Realistic SSOFs and quantum geometry effects.—Now,
we turn to the class of SSOFs that admix valley-Zeeman
(Hvz) and Rashba (HR) terms due to the breaking of
spatial symmetries. Unlike the KM-type SOC in the ex-
ample above, both λR and λvz can reach experimentally
relevant energy scales, which is ideal for our proposal. We
primarily focus on pure Rashba SSOFs [70], which can
be realized via twist-angle engineering in graphene-on-
transition metal dichalcogenides [43–46]. The idea is to
tune the twist angle, so that the effective SOC of charge
carriers on A and B sublattices coincide, yielding a van-
ishing valley-Zeeman effect, λvz = (λA−λB)/2 = 0. The
resulting SOC is thus of Rashba type (allowed by the
broken z → −z symmetry) [43, 44]. This intriguing pos-
sibility has been confirmed experimentally via quasipar-
ticle interference imaging [46], showing that λvz ≈ 0 and
λR ≈ 15 meV for 30◦ twist-angle graphene-on-WSe2 sys-
tems. Armed with this important insight, we start by in-
vestigating the electronic structure induced by a square-
wave Rashba SSOF. The energy dispersion of charge car-
riers in the three lowest-lying bands, above and below the
charge neutrality point, is shown in Fig. 2(a). The cal-
culated spectrum contains several genuine fingerprints of
the SSOFs proposed in this work. Similar to the case
above, the zero energy modes exhibit linear dispersion
(i.e. the Dirac point degeneracy is protected). Further-
more, the behavior is isotropic. Thus, with regards to en-

(b)

FIG. 2. Mini-band dispersion and quantum geometry effects
induced by a square-wave Rashba SSOF. (a) Energy disper-
sion along a cut with kx = 0. (b) Berry curvature of bands
near the Fermi level along the same k-path. Mini-bands are
labelled by integers next to curves [positive (negative) n labels
conduction (valence) bands]. Other parameters: aS = 100 nm
and λR = 20 meV.

ergy dispersion, this system emulates pristine graphene
with a strongly renormalized Fermi velocity (see below).
The massless nature of low-energy excitations is a robust
feature of the 2D van der Waals metamaterials underpin-
ning the SSOFs. In fact, only perturbations breaking the
zero-average condition (⟨Φ⟩ = 0) can gap out the mass-
less Dirac states [69]. As such, the zero-energy modes can
be mode as robust as desired in a realistic setup, by en-
suring during that the fabrication method preserves the
global average of the periodic perturbation. This con-
fers protection against local SOC fluctuations that are
unavoidable in realistic systems.

Next, we ask whether the SSOFs can endow 2D mass-
less Dirac fermions with quantum geometric properties.
We start by noting that the mini-bands due to a square-
wave Rashba SSOF [see Fig. 2(a)] are two-fold spin de-
generate, thus lacking a spin texture of their own. This
is intriguing because the Rashba SOC breaks the spatial
inversion symmetry and thus can lead to spin splittings.
To explain this counter-intuitive result, we analytically
compute the dispersion of the low-lying Dirac states us-
ing perturbation theory. While a standard second-order
expansion in λR predicts a spin-degenerate spectrum, a
cumbersome third-order calculation yields

ε
(n=±1)
ks ≈ ±

(
ℏvren|k| + s

µ̃λ3R
ℏ2v2G4

1

|k|2
)
, (3)

where s = ±1 for spin-up (spin-down) low-energy branch,
G1 = 2π/aS, vren = v[1 − µ(λR/ℏvG1)

2] and µ̃ is a geo-
metric factor that equals zero for sine- and square-wave
modulations, but is otherwise nonzero (e.g, for Kronig-
Penney-type modulations, |µ̃| attains values close to 0.26
[69]). Hence, Rashba SSOFs with more general profiles
can lift the spin degeneracy (as intuition would suggest),
but only perturbatively. While the resulting spin split-
tings are typically small, a sizeable effect can be achieved
by combining SSOFs with a periodic potential, providing
a rich phenomenology for future exploration.

To examine the quantum geometry of SSOF-induced
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mini-bands, we map out the momentum-space distribu-
tion of the spin Berry (SB) curvature

Ωz
n(k) = −2ℏ2 Im

∑
m ̸=n

⟨mk|vx|nk⟩⟨nk|vzy |mk⟩
(εnk − εmk)2

, (4)

where vi = v σx ⊗ s0 and vzi = v σi ⊗ sz (here, i = x, y)
are the charge and spin velocity operators, respectively.
This quantity governs the spin-Hall transport of electron
wavepackets and therefore is the geometric analogue of
the Berry curvature in the anomalous Hall effect [55, 71].
The SB curvature around the Dirac points is shown in
Fig. 2(b). We see that the linearly dispersing zero energy
modes (labelled n = ±1) are endowed with significant
SB curvature, despite their massless nature. This is evi-
dently at variance with 2D gapless Dirac systems, which
have vanishing (charge) Berry curvature [10]. Thus, the
emergent 2D Dirac cones reported here are not only ro-
bust against perturbations sharing the global average of
the SSOFs but, remarkably, also display quantum geo-
metric effects. Note that along the ky-direction, the SB
curvature of the massive Dirac mini-bands (|n| = 1, 2)
resembles the Berry curvature of gapped 2D Dirac ma-
terials [10]. To explore this further, Figs. 3(a)-(b) show
3D plots of the SB curvature in the mini-Brillouin zone.
Two features are of note: the central peaks in the SB cur-
vature of massive Dirac mini-bands discussed earlier are
identified as arising from hot spots of SB curvature [Fig.
3(b)]. On the other hand, the massless mini-bands attain
a giant SB curvature at the edges of the mini-Brillouin
zone (kx = ±π/aS) [Fig. 3(a)], about twice as large as
the Dirac-point hot spot of the massive mini-bands. We
attribute this feature to the emergence of large pseudo-
gaps along the SSOF direction [69]. Finally, we note that
the general behavior is highly anisotropic, except in the
vicinity of the Dirac point.

The enhanced SB curvature of the SSOF-induced mini-
bands indicates that the 2D van der Waals metamateri-
als proposed here support large spin-Hall responses. To
confirm this, we compute the intrinsic spin Hall conduc-
tivity (σz

ij) from the flux of SB curvature using standard
methods [69]. According to linear response theory, the
z-polarized spin current density generated by an exter-
nal electric field is jzs =

∑
i,j=x,y σ

z
ijEjej , where Ej are

the field components and ei is the unit vector along the
i-axis. As shown in Fig. 3(c), the spin Hall response has
a strong energy dependence and can reach sizeable val-
ues on the order of e/4π for typical values of proximity-
induced SOC at room temperature. This strong response
is robust to design imperfections and weak disorder pro-
vided that the global average of the SSOFs is preserved
(⟨Φ(x)⟩ = 0). We verified this with different types of
proximity-induced SSOFs and spatial patterns Φ(x). At
variance with 2D conductors subject to the usual uni-
form Rashba effect [49, 72], the spatial dependence of
the Rashba SSOF protects our quantum geometry-driven

FIG. 3. (a) Momentum-space distribution of the spin Berry
curvature of the massless Dirac mini-bands (n = ±1). (b)
Same as in (a) for the mini-bands n = ±2. SSOF parameters
as in Fig. 2. (c) Room-temperature σz

xy as a function of the
chemical potential for selected twisting-induced SOC mod-
ulations: pure Rashba SSOFs with amplitudes as indicated
(solid lines) and admixed Rashba-valley-Zeeman SSOFs with
λvz = λR/2 (dashed line) and λvz = λR (dot-dashed line).

spin Hall effect from exact cancellations due to impurity-
scattering corrections. In fact, a SU(2)-covariant conser-
vation law for the spin current can be derived in the vein
of Ref. [49] yielding ⟨Hso(x)v

z
i ⟩ = 0, with ⟨...⟩ denoting

a quantum and disorder average. For a uniform Rashba
field, this relation (which holds in the presence of arbi-
trary non-magnetic impurity potentials) implies jzs = 0.
However, in our system this cancellation is circumvent
due to the oscillatory nature of Hso(x). The SSOF-
driven SHE thus appears to be more robust than its coun-
terpart in standard Rashba-coupled graphene. We now
briefly address the case of 2D metamaterials with con-
current Rashba-type and valley-Zeeman SSOFs. Here,
the condition ⟨Φ(x)⟩ = 0 could be achieved by alternat-
ing the relative rotation angle of consecutive TMD lay-
ers, exploiting the anti-periodicity of the valley-Zeeman
effect, λvz(θ) = −λvz(θ ± π/3) [43, 44]. The ensuing
SSOF in this case strongly renormalizes the group veloc-
ity of wavepackets that propagate parallel to the SSOF
direction. The leading correction to Eq. (3) is given
by δε

(n=±1)
ks = ±µΛvz cos

2 θk, with Λvz = λ2vz/(ℏvG1),
yielding an anisotropic energy dispersion and SB curva-
ture. Interestingly, the valley-Zeeman SSOF leads to an
overall decrease in the SB curvature magnitude, which is
reflected in the spin Hall conductivity [Fig. (3)(c)]. This
is also at odds with the expected behavior in (standard)
proximitized graphene, where the spin-Hall conductivity
has a non-monotonic behavior with λvz, with λvz ̸= 0
[49] being essential to observe the SHE.
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In closing, we have shown that the spatial patterning
of symmetry-breaking spin-orbit fields gives rise to rich
physics beyond that of conventional superlattices, most
notably the emergence of 2D massless Dirac fermions
with anomalous electrodynamic responses. The proposed
periodic modulation of interface-induced SOC is within
reach of current nano-fabrication methods, and is likely
to have broad applications beyond those described in this
work.
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SUPPLEMENTARY MATERIAL

PRELIMINARIES

Model and numerical approach

The low-energy Hamiltonian in the valley-isotropic form is

Hτ = v (σ · p)⊗ s0 + U(x)σ0 ⊗ s0 +HR(x) +Hvz,τ (x) +HKM(x), (5)

with U(x) = uΦ(x), HR(x) = λRΦ(x) (σx⊗sy−σy⊗sx), Hvz,τ (x) = τλvzΦ(x)σ0⊗sz, andHKM(x) = λKMΦ(x)σz⊗sz.
The wavefunctions in valley τ = ±1 are 4-component spinors of the form Ψτ (r) = (ψA

τ↑(r), ψ
A
τ↓(r), ψ

B
τ↑(r), ψ

B
τ↓(r))

t.
Moving to reciprocal space, the eigenproblem formally reduces to solving an infinite set of coupled equations for the
plane-wave amplitudes {ψσ

ks}:

ℏv|k|e−iσθkψ−σ
ks +

∑
p∈Z

[
(u+ sσλKM + sλvz) ΦGpψ

σ
k−Gp,s + i(s− σ)λRΦGpψ

−σ
k−Gp,−s

]
= Eψσ

ks , (6)

where s = ± (≡↑, ↓) and σ = ± (≡ A,B) are the spin and pseudospin indices, respectively; the valley index is omitted
for brevity. Furthermore, k is the Bloch wavevector from the Dirac point, θk = ∠(k, x̂), Gp = Gpx̂ with Gp = 2πp/aS
(p ∈ Z), and ΦGp

are the Fourier coefficients of the periodic modulation.

In our calculations, the summation over Fourier components in Eq. (6) is truncated to a finite, but large, number
of terms (|p| ≤ N). The resulting system of equations is solved numerically yielding d = 4(2N + 1) bands εnk and
associated 4-component eigenvectors ψnk.

The spin Berry curvature of each band n is calculated from [8]

Ωz
n(k) = −2ℏ2v2 Im

∑
m̸=n

ψ†
nk σ̂y ⊗ ŝz ψmk × ψ†

mk σ̂x ⊗ s0 ψnk

(εnk − εmk)
2 . (7)

The linear-response intrinsic spin-Hall conductivity is σz
yx = (e/2)

∑
k

∑
n f(εnk) Ω

z
n(k), where f(ε) is the Fermi-Dirac

distribution function.

Spatial profile of the periodic perturbation

We consider Kronig-Penney (KP) and sinusoidal perturbations with zero spatial average. The KP profile is

Φ(x) = 2Φ

∞∑
m=−∞

(R(x+maS)− r) , 0 < r < 1, (8)

where Φ is the amplitude and R(x) = Θ(x+ ℓ/2)Θ(ℓ/2− x). Here, Θ is the Heaviside step function, aS is the lattice
width, ℓ is the barrier width (ℓ < aS), and r = ℓ/aS (for a square wave r = 0.5). For pure sinusoidal modulations, we
use Φ(x) = Φc +Φcos(G1x).

ELECTRONIC STRUCTURE

Numerics

Figure 4 shows the numerically calculated electronic structure of graphene subject to a pure Rashba SSOF for
square-wave and KP modulations. We note that only positive-energy states are shown for clarity. Main findings are:

• spin-degenerate Dirac cones emerge at low energy (see remark below);
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• the Dirac cones are isotropic around k = 0 (see Fig. 6(a));

• the mini-bands at higher energy are separated by pseudo-gaps;

• spin splittings are visible for KP profiles with r ̸= 0 (see panels (c) and (d)).
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FIG. 4. Mini-band energy dispersion ε(kx, 0) (a,c) and ε(0, ky) (b,d) of graphene subject to a pure Rashba SSOF in the range
kx ∈ [−π/aS, π/aS]; only positive energy branches are shown. SSOF spatial profile: square wave in (a,b) and KP lattice with
r = 0.3 in (c,d). The spin degeneracy of the bare system without SOC remains intact under square-wave SSOFs [(a,b)], while
it is lifted in (c,d). Other parameters: aS = 100 nm and λR = 20 meV. Bare energy dispersion is represented by dashed red
lines as a guide to the eye.

The first point above is rigorously true for square-wave perturbations (i.e., r = 0.5). For KP profiles with r ̸= 0.5,
the spin degeneracy is perturbatively lifted (see Eq. (9)). We also verified that sine-wave SSOFs behave similarly to
square-wave SSOFs but with less pronounced features. This is easily explained by comparing their Fourier coefficients.
For a square wave profile, Φsquare

±G1
= (2/π)Φ, while for sine waves: Φsine

±G1
= (1/2)Φ.
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The electronic structure for mixed Rashba-valley-Zeeman SSOFs is shown in Fig. 5. The main difference with
respect to Fig. 4 is that the emergent Dirac cones become anisotropic irrespective of the SSOF’s spatial profile.
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FIG. 5. Mini-band energy dispersion ε(kx, 0) (a,c) and ε(0, ky) (b,d) for a mixed Rashba-valley-Zeeman SSOF. SSOFs spatial
profile: square wave in (a,b) and KP lattice with r = 0.3 in (c,d). The valley-Zeeman strength is λvz = 10 meV. Other
parameters as in Fig. 4.
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FIG. 6. Low-energy dispersion for a pure Rashba SSOF (a) and a mixed Rashba-valley-Zeeman SSOF (b). Solid and dashed
lines show ε(kx, 0) and ε(0, ky), respectively. The low-energy Dirac cones are isotropic in (a) and anisotropic in (b). Parameters:
r = 0.5, aS = 100 nm, λR = 20 meV (a,b) and λvz = 10 meV (b).

Perturbation theory

We start with the class of 2 × 2 Dirac Hamiltonians subject to a periodic perturbation (period aS) with generic
pseudospin structure of the type:

Ĥ = ℏv(σxk̂x + σyk̂y) + Ŝ(x) + X̂(x) + Ŷ (x) + Ẑ(x),

where Ŝ(x) = SΦ(x)σ0 is the superlattice potential and X̂(x) = XΦ(x)σx, Ŷ (x) = Y Φ(x)σy and Ẑ(x) = ZΦ(x)σz are
the SU(2)-pseudospin fields. We recall that the unperturbed eigenstates are the spinors ψ0σ

k (r) = 1√
2
(1, σeiθk)teik·r
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corresponding to the eigenenergies ε0kσ = σℏv|k|. Using second order perturbation theory, we find that that the
correction to the lowest-lying energy states, δε(2)kσ = ε

(2)
kσ − ε0kσ is

δε
(2)
kσ = σ

1

ℏv
∑
n ̸=0

[
2|k| − |Gn| cos θk,Gn

|k|2 − |k−Gn|2
S2
Gn

+
|Gn| cos θk,Gn

|k|2 − |k−Gn|2
Z2
Gn

+
2|k| cos2 θk − |Gn| cos θk,Gn cos θk

|k|2 − |k−Gn|2
X2

Gn
+

2|k| sin2 θk + |Gn| cos θk,Gn cos θk
|k|2 − |k−Gn|2

Y 2
Gn

+
2|k| cos θk − |Gn| cos θk,Gn

|k|2 − |k−Gn|2
SGnXGn +

2|k| sin θk
|k|2 − |k−Gn|2

SGnYGn

+
4|k| cos θk sin θk + 2|Gn| cos θk,Gn

sin θk
|k|2 − |k−Gn|2

XGn
YGn

]
.

Expanding around the K point (k = 0) up to first order in k, we obtain

ε
(2)
kσ ≈ σℏv

[
1− µ

sin2 θkS
2 + cos2 θkZ

2 + Y 2 + sin θkSY + 2 sin θk cos θkXY

ℏ2v2G2
1

]
|k|.

where µ is a geometric factor equal to 1 for a sine-wave modulation and
∑∞

n=1(4r/n)
2sinc2(nπr) for a KP profiles

with zero spatial average. We note that the gapless nature of the spectrum has its origin in the chiral phase factors
eiθk of the unperturbed eigenstates as first discussed in Ref. [59] for pure scalar perturbations. Generalizing these

results to the 4× 4 Dirac Hamiltonian in Eq. (5), containing the SSOFs, yields

ε
(2)
ksσ ≈ σℏv

[
1− µ

sin2 θk(u
2 + λ2vz) + cos2 θkλ

2
KM + λ2R + 2s

√
sin2 θku2(λ2vz + λ2R) + cos2 θkλ2KMλ

2
R

ℏ2v2G2
1

]
|k|. (9)

Equation (9) provides the following insights:

• Symmetry protection: The Dirac point degeneracy is robust against all periodic perturbations with ⟨Φ(x)⟩ =
0, irrespective of the local spatial symmetries broken by the SSOF. A gap at k = 0 can only be open by adding
uniform SOC terms (i.e. for spatial profiles Φ(x) witn non-zero spatial average).

• Spin splitting: Surprisingly, a particular type of SSOF cannot perturbatively lift the spin degeneracy of the
low-lying states on its own. Only specific admixtures of periodic perturbations can lead to spin splitting of
low-lying states (e.g., Rashba SSOF combined with a periodic potential).

• Emergent Dirac cones: Pure Rashba SSOFs generate isotropic Dirac cones around k = 0. Because the spin
degeneracy is intact in this case, the low-lying spectrum around the Dirac points mimic that of pristine graphene
with a renormalized Fermi velocity.

• Anisotropic behavior: For SSOFs admixing Rashba and valley-Zeeman components, for example, or in the
presence of a periodic potential, u ̸= 0, the energy dispersion becomes anisotropic.
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Third-order perturbation theory versus numerics

Our fully non-perturbative numerical calculations demonstrate that pure Rashba SSOFs lift the spin degeneracy
of mini-bands for SSOFs with r ̸= 0.5; see Fig. 7. This effect is significant away from the Dirac point. To capture
this feature, one must turn to third-order perturbation theory. After tedious algebra, the energy dispersion to leading
order in k and associated spin gap, ∆spin(k), are obtained as

ε
(3)
ksσ ≈ ε

(0)
kσ − µσ

λ2R
ℏvG2

1

(
|k| − s

µ̃

µ

λR

ℏvG2
1

|k|2
)
, ∆spin(k) = 2µ̃|λR|

(
λR

ℏvG2
1

)2

|k|2, (10)

where µ̃ is a geometric factor, µ̃ =
∑′

n,m
4(2r)3sinc(nπr)sinc(mπr)sinc((n+m)πr)/[n2(m+ n)2] (the primed sum-

mation is used to exclude the cases n = −m and n,m = 0). In accord with the numerics, we see that µ̃ = 0 for
r = 0.5 (spin-degenerate states) and µ̃ ̸= 0 for r ̸= 0.5. The perturbative results reproduce well the numerics within
their regime of validity, |u|, |λKM|, |λR|, |λvz| ≪ πℏv/aS (≈ 20 meV for aS = 100 nm).

(a) (b)

-0.02 -0.01 0.00 0.01 0.02
0

2

4

6

8

10

12

k (nm-1)

ϵ
(m
e
V
)

-0.02 -0.01 0.00 0.01 0.02
0

2

4

6

8

10

12

k (nm-1)

ϵ
(m
e
V
)

FIG. 7. Perturbation theory versus numerics: Energy dispersion ε(kx, 0) of the lowest-lying electron band for a pure Rashba
SSOF with r = 0.5 (a) [r = 0.3 (b)], obtained numerically (solid lines) and via Eq. (10) (dashed lines). Other parameters:
aS = 100 nm and λR = 10 meV.

Zero-energy solutions: analytical results

The spinor components can be cast as ψσ
s (r) = ϕσs (x)e

ikyy, where ky is the wavevector component perpendicular to
the superlattice direction. The Dirac equation for zero-energy states (ℏ ≡ 1) yields

−iℏv∂xϕ−σ
s (x) + (u+ sσλKM + sλvz) Φ(x)ϕ

σ
s (x) + i(s− σ)λR(x)ϕ

−σ
−s (x) = 0 . (11)

We write the solutions in terms of the function φξ(x) = ξ/v
∫ x

Φ(x′)dx′. We denote by L the linear dimension of the
system along x (L≫ aS). Equation (11) admits analytical solutions in a number of cases summarized below.

• Case 1: No Rashba field (λR = 0, λKM ̸= 0, λvz ̸= 0, u ̸= 0). In this case, up and down spin sectors decouple.
The zero-energy eigenfunctions for s =↑, ↓ may be written as

ϕσs (x) =
1√
L

[
A cosφγ(x) + iB sinφγ(x)

−Bγ/∆γ cosφγ(x)− iAγ/∆γ sinφγ(x)

]
, (12)

where γ = ((u+ λvz)
2 − λ2KM)1/2, ∆γ = u+ λvz − λKM, and A and B are constants. There are two degenerate

solutions for a each spin state. We present two examples. For u ̸= 0 and all other potentials equal to zero, two
orthogonal degenerate zero-energy eigenstates for k = 0 corresponding to the two zero-energy modes (ZEMs)
read
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ϕAs (x) =
1√
L

[
cosφu(x)

−i sinφu(x)

]
, (13)

ϕBs (x) =
1√
L

[
−i sinφu(x)
cosφu(x)

]
, (14)

while for λKM ̸= 0 and all the other potentials zero, the ZEMs are

ϕAs (x) =
1√
CλKM

[
coshφλKM(x)

−i sinhφλKM(x)

]
, (15)

ϕBs (x) =
1√
CλKM

[
i sinhφλKM(x)
coshφλKM(x)

]
, (16)

where CλKM =
∫ L/2

−L/2
dx cosh 2φλKM(x). Eq. (12) holds for u+λvz ̸= λKM. When u+λvz = λKM = η, the ZEMs

are

ϕAs (x) =
1√
Cη

[
1

−2iφη(x)

]
, (17)

ϕBs (x) =
1√
L

[
0
1

]
, (18)

where Cη =
∫ L/2

−L/2
dx(1 + 4φ2

η(x)).

• Case 2: Pure Rashba field (λR ̸= 0, λKM = 0, λvz = 0, u = 0). In this case, four orthogonal degenerate
zero-energy eigenstates for k = 0 corresponding to the four ZEMs are found:

ϕA↑ (x) =
1√
L


1
0
0
0

 , (19)

ϕB↑ (x) =
1√
CλR


0
1
0

−2φλR(x)

 , (20)

ϕA↓ (x) =
1√
CλR


2φλR(x)

0
1
0

 , (21)

ϕB↓ (x) =
1√
L


0
0
0
1

 , (22)

where CλR =
∫ L/2

−L/2
dx(1 + 4φ2

λR
(x)).

These analytical results highlight the robustness of the Dirac point degeneracy to SSOFs satisfying the zero spatial-
average condition, in accord with the exact numerical calculations.
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