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Abstract

We study single-interface solutions to a free boundary problem that couples bilinear bulk
diffusion to the Stefan condition and a hysteretic flow rule for phase boundaries. We introduce a
time-discrete approximation scheme and establish its convergence in the limit of vanishing step
size. The main difficulty in our proof are strong microscopic oscillations which are produced by a
propagating phase interface and need to be controlled on the macroscopic scale. We also present
numerical simulations and discuss the link to the viscous regularization of ill-posed diffusion
equations.
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1 Introduction

Ill-posed diffusion equations have many applications in science and technology and the prototypical
equation in a one-dimensional setting can be written as

Opu(t, T) = 028 (u(t, x)). (1)

Here, u is a scalar quantity that depends on time ¢ > 0 and the space variable x € R. In this paper
we are interested in the bistable case in which ®' is the derivative of a double-well-potential ® as
illustrated in the left panel of Figure 1. In this setting, equation (1) or its equivalent reformulation

Onw(t, x) = 0,9 (O,w(t, x))
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can be used to model the dynamics of phase transitions in fluids and solids or the flow through
porous media as described in [ElI85, GM17]. The two convexity intervals of ® represent the phases
and correspond to the increasing (or stable) branches of ® which are naturally related to the notion
of local forward diffusion. The decreasing (or unstable) branch of @', however, reflects the backward
diffusion inside the spinodal region. The monostable case is also important but exhibits a different
dynamical behavior, namely the formation and subsequent coarsening of localized patterns, see for
instance [Pad04, PM90, HPO04, ES08, EG09].

The Cauchy problem for (1) is ill-posed due to the non-monotonicity of ®. To obtain a well-
posed equation, several regularizations have been proposed in the literature and the most prominent
example is the one-dimensional Cahn-Hilliard equation

Owu(t, z) = 02 (u(t, z)) — V2 ul(t, x). (2)
More relevant for our work are the viscous approximation
du(t, x) — V20t ) = 929/ (u(t, 7)) (3)
as well as the lattice approximation
dult, z) = v2 (@’(u(t, v —v)) — 28 (u(t, 7)) + ¥ (u(t, » + V))) (4)

since both can be used to justify the hysteric flow rule for phase interfaces that is studied below.

Another classical approach is to study free boundary problems. In this setting, one seeks weak
solutions u to (1) that are confined to either one of the two phase everywhere with the exception of
a finite number of curves z = &;(t). These phase interfaces are not given a priori but satisfy certain
dynamical conditions which reflect microscopic details of the phase transitions and complement the
PDE. Both approaches or closely related and the complete set of interface conditions is often derived
from a regularized model in the limit ¥ — 0. Of course, one has to prove that sharp sharp interfaces
arise for ¥ = 0 and must identify classes of admissible initial data for v > 0.

In this paper we propose a time-discrete scheme with step size At > 0 for the computation
of single-interface solutions to a free boundary problem with a hysteric interface conditions that is
naturally related to the sharp interface limit v — 0 of both the viscous model (3) and the lattice
(4). Moreover, we prove the convergence of the scheme in the limit A¢ — 0 for a bilinear function
@’ and a certain class of initial data. The latter gives rise to a single phase interface which can alter
its propagation mode due to pinning or depinning events.
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Figure 1: Left panel. Cartoon of a smooth bistable function ®'. It possesses an unstable branch on the
interval u € [u., u*] (spinodal region, dark gray box) as well as the two stable branches for u < u, (&-phase)
and u > u* (®-phase). The light gray rectangles play an important role in the hysteretic flow rule (7) as they
confine the state on either side of the phase interface according to the second part of the Stefan condition (6).
Right panel. In the bilinear case (9), the spinodal region consists only of the origin and the special values can
be computed explicitly as in (10).



Hysteretic free boundary problem For any regularization of (1), the sharp-interface limit
combines the bulk diffusion

dpult, @) = plt, x) for x # &(1) (5)

with the Stefan condition
gz(t) ![u(t, ')”m:&(t) + H@wp(t, ')”m:&(t) =0, ‘[p(t, ')”x:&(t) =0, (6)

which couples the instantaneous interface speed fz(t) to spatial jumps such as

|[u(t, -)”m:&(t) = x{i{g}(t)u(t, x) — x}ig}(t) u(t, ).

In particular, (6) stipulates that

p(t, x) := <I>'(u(t, :v))

is continuous at z = &;(¢) and that the PDE (5) holds even across each interface in a distributional
sense. The combination of (5) and (6), however, does not determine the dynamics of the free phase
boundaries completely but must be complemented by further equations that take into account the
microscopic details in the vicinity of each interface. The extra conditions depend on the particular
regularization and must be identified by a careful analysis of the limit ¥ — 0. For instance, the
Cahn-Hilliard equation (2) fixes the value of p via

p<ta gz(t)) = Pmw

where the number p, is given by the Maxwell construction and depends only on the properties
of @', see for instance [BBMN12, BFG06] concerning more details. For the viscous approximation,
however, we expect a more complex behavior. The formal asymptotic analysis in [EP04] predicts the
flow rule

&i(t) |[ult, ')Hx:&(t) <0 = p(t &) =r",
i(t

) t, &
& ut V>0 = ot &0) = .. G
p(t’ El(t)) S (p*7 p*) = fz(t) =0,

which distinguishes in a hysteretic manner between standing and moving interfaces. Notice that the
third equation is actually implied by the first two ones since the second part of the Stefan condition
(6) ensures in combination with the properties of ® that the interface value of p belongs to the
interval [py, p*]. It has also been shown in [EP04] that (7) is equivalent to the family of entropy
inequalities

)
)

00 (u(t, 7)) — O, (T (u(t, x)) Dup(t, 3:)) <0 8)

where T is an arbitrary but increasing function and V¥ satisfies U'(u) = Y(®/(u)). See [Plo94] for
more details concerning the mathematical analysis and [DG17] for the thermodynamical aspects.
We also emphasize that both the hysteretic flow rule (7) and the inequality (8) also arise in the
sharp interface limit v — 0 of the lattice approximation (4) as shown in [HH13, HH18]. Moreover, a
hysteretic behavior of phase interface can also be observed in other equations such as the nonlocal
particle model studied in [MT12, HN23].

So far, we have no complete understanding of taking the vanishing viscosity limit v — 0 in the
PDE (3) although important contributions are given in [EP04, Smal0]. The key problem in a rigorous
analysis is to control the strong microscopic fluctuations that are produced by the backward diffusion
in the vicinity of a propagating phase interface. In the forthcoming paper [HJ24] we use a generalized
variant of our time-discrete approximation scheme to construct single-interface solutions for v > 0
and to study these fluctuations in greater detail. See also the related traveling wave solutions in
[GHJ23].



Simplified setting In what follows we restrict our considerations to the bilinear case

&' (u) = u — sgn(u), (9)

in which the spinodal region has shrunk to a single point « = 0. This is illustrated in the right panel
of Figure 1 and implies

Uy = —2, w, =0 =u*, ut =42, po=-1, p*=+1. (10)
Moreover, we solely study single-interface solutions which possess a unique phase interface and satisfy

sgn(u(t, z)) = sgn(z — £(1)), (11)

where £(t) denotes the instantaneous position of the phase interface. Assumptions (9)+(11) simplify
the analysis considerably and enable us to represent the solution to a time-discrete analog of the
nonlinear equation (1) by means of the linear superposition principle, where the contributions of a
propagating phase interface act as localized forcing terms. Notice, however, that the interface curve
& is not given a priori but must be identified as part of the solution. The bilinear variant of the

hysteretic flow rule is illustrated in Figures 2 and 3.

movmg into O- Phase [ standing interface } movmg into @- Phabe

Figure 2: Illustration of the bilinear analog to the hysteretic flow rule (7) for a ‘particle trajectory’
t— (u(t, z.), p(t, x.)) with fixed z, on the graph of (9) under assumption (11). If the interface runs into the
©-phase, any particle with x, < &y; initially moves along the left branch, suddenly jumps to the @-phase,
and is subsequently confined to the right branch. An similar discussion covers interfaces that propagate into
the @-phase but for standing interfaces we have to interpret the corresponding diagram differently. The two

particles on either side of the interface are coupled by |[ )”w —£(t) and move along the respective branch of
/
movmg into - Phase standlng mtcrfaco movmg> into @®- Phase

Figure 3: Hysteretic behavior of the spatial dynamics x — (u(t«, ), p(t«, x)) that corresponds to Figure 2.

% Piecewise linear functions have already been used in the literature, for instance in [HH13,
HH18], which establish the validity of the free boundary problem (5)4(6)+(7) in the scaling limit
v — 0 of the lattice regularization (4) for a certain class of single-interface initial data. The lattice
results in [GN11, BGN13] allow for more general nonlinearities and study even the limit ¢ — oo but
are restricted to initial data that give rise to standing interfaces only.

For trilinear ®' and a special class of single-interface data the local existence of a unique solution
to the hysteretic limit problem (5)+(6)+(7) has been shown in [MTT07, MTT09]. Moreover, the
global existence has been proven under the assumption wuini(x) € [u, u#] which produces standing
interfaces but excludes moving ones. These results have been generalized in [Terll, Smal0, ST13]
and the Riemann problem with both moving and standing interfaces has been solved in [GT10, LM12]



for trilinear and more general ®'. Besides of single-interface solutions one might also study measure-
valued solutions to the ill-posed diffusion equation (1). This generalized concept relies on Young
measures and has been introduced in [Plo93, Plo94]. The existence and non-uniqueness of measure-
valued solutions has been proven in [H6183, ST10, ST12, Ter14] while [Ter15] constructs special weak
solutions that penetrate the spinodal region.

For smooth bistable functions ®’, the global well-posedness of the initial value problem follows
for the lattice (4) by standard ODE arguments and has been established in [NCP91] for the viscous
regularization by transforming (3) into an equivalent dynamical system with nonlocal but Lipschitz-
continuous right hand side. These results, however, neither cover the discontinuous function (10) nor
imply the persistence of single-interface data.

Approximation scheme In this paper we do not study the bistable variant of the free boundary
problem (5)+(6)+(7) directly but a certain implicit time discretization with constant step size
At = €2, In what follows we denote by u™ a single-interface state at time

t"i=ne? (12)

and write £ for the corresponding interface position. Our abstract approximation scheme combines
two update rules that provide u"*! and ¢"*! in dependence of the current data (u", ™). The
latter will be discussed below and concerning the former we observe that the corresponding spatial
differential equation

ut —un 2 1 1

= 0 (T —sen (- —€n)). (13)
admits only distributional solutions as it exhibits singular terms on the right hand side. However,
the operator Id —e2 8% is strongly elliptic in sufficiently nice function spaces and its inverse is the
convolution with the fundamental solution

%uwz;gap(ﬂﬂ), (14)

which illustrated in the left panel of Figure 4. %

9-(7)

Figure 4: The functions g. and s. from (14) and (17) decay exponentially with rate 1/¢.

The scalar function g. satisfies (Id —e? 8%) ge = dp, where &y abbreviates the Dirac distribution
at x = 0. In particular, % = g. * u holds if and only if @& — £? 92@i = u and direct computations reveal
that the local differential update (13) is formally equivalent to

u =g 4 sgn(- — §"+1) — (ge * sgn) ( - f"“) (15)
with
~M

" =g xu”. (16)

This non-local equation represents u”t! by integrals of u" and uses £"1! as shift parameter for the
function

— exp (+§> for x <0,
s=(z) = sgn(x) — (g * sgn) (z) = o (17)
+ exp (—g> forx > 0,



which exhibits a jump of height 2 at the origin as shown in the rigth panel of Figure 4. The idea
for the update of the interface position is to choose £"*! such that v"*! from (15) is negative and
positive for z < "1 and « > "1, respectively. Due to the properties of s. and in reminiscence of
the hysteretic flow rule (7) we distinguish between left-moving, right-moving and standing interfaces
in dependence of the value attained by @™ at £".

Scheme 1 (iteration step n ~» n + 1).

1. convolution of u™: We compute 4™ via (16) as convolution of g. and u™.

2. update of £": We evaluate 0" (£") and distinct the following three cases
(LM) a*(€") >1,  (RM) a"(§")<-1,  (ST) a"(¢")€e[-1,1]
as follows.

(LM)  We choose the mazimal value of £"1 with €1 < € and a" (§"+1) = 41,
(RM)  We choose the minimal value of " with "1 > ¢ and @™ (£"+) = —1.
(ST) We choose "1 = ¢n.

3. update of u”: We set u"*! =" +s:(- — "),

In Section 2 we show that the update rule for £"+! is well-defined as long as u" is a sufficiently
nice single-interface state and in Section 3 we pass to the continuum limit € — 0 as outlined below
in greater detail. Moreover, a generalized version is used in [HJ24] to prove the existence of single-
interface solution to the viscous regularization (3).

A hysteretic interface update has also been proposed in [LM12], which studies several fully
discretized schemes for the computation of entropic single-interface solutions to a trilinear variant of
(1) and compares the numerical outcome with explicitely known Riemann solutions. One of these
schemes also distinguishes explicitely between the three propagation modes for phase interface but
the update rules for both u and £ are formulated on a spatial lattice and differ from the corresponding
formulas in Scheme 1. It remains a challenging task to investigate this scheme from [LM12] in greater
detail and to prove its convergence in the limit of vanishing discretization parameters.

Numerical simulations To illustrate the key dynamical features of Scheme 1, we restrict the
space variable x to the interval [—2, +2], impose homogeneous Neumann conditions at the boundary,
set €2 = 0.01, and choose the initial data

- (18)

0 20x—0.6 for —2<x<0,
u'(z) =
70x+1.4 for 0<ax <42,

which correspond to ¢ = 0 and

[0, 0 =20, 0], = 50.

Moreover, instead of implementing the convolutive integrals we solve in each time step the elliptic
auxiliary problem

" (x) — 202" (x) = u(x), = O,u"(£2) =0

by means of a standard finite-difference discretization. The results are shown in Figures 5+6 and
illustrate the depinning of an standing interface due to the bulk diffusion. For sufficiently small times
t", the single interface does not move and we have " = £°. The one-sided limits satisfy

u"(¢2—0) € (-2, 0), u" (€2 +0) € (0, +2), \[u””z:go =u"(&"+0) —u" (¢ —0) =2



and the continuous function

7

p" = u" —sgn(u”) = u" —sgn(- - £") (19)

attains at x = " a value inside the open interval (—1, 4+1) as predicted by the hysteretic flow rule
(7)3. We also observe that the value p™(£™) increases in time and suddenly becomes 1. Starting from
this switching time ¢ =~ 0.05 the phase interface propagates into the &-phase and we find

PEY =+, W€ -0)=0,  w(E"+0)=2

in accordance with (6)2 and (7);. A closer look to the numerical data reveals that both the standing
and the left-moving interface also satisfy the discrete analog to the Stefan condition (6) up to small
error terms. In particular, the initial jump of 0,p" is first smoothed out but later restored by the
moving interface.

snapshot of u at time t=0.00 snapshot of u at time t=0.01 snapshot of u at time t=0.05

snapshot of u at time t=0.30 snapshot of u at time t=0.55 snapshot of u at time t=0.80

Figure 5: Snapshot of the numerical data at six non-equidistant times on the subinterval x € [—1, +1] of the
computational domain = € [—2, +2]. The initial data are given by (18) and the gray box represents the region
u € [ug, u¥] = [-2, +2] as in Figure 1. The vertical lines indicate £° and £", the initial and the instantaneous
interface position, respectively.

evolution of ¢ evolution of u at x=-0.1 evolution of u at x=-0.2

Figure 6: The discrete interface curve and two pointwise trajectories for the numerical data from Figure 5.

Key findings and overview of the proof strategy In order to study the temporal continuum
limit € — 0 we interpret the time-discrete data via

pe(t, x) == p"(x) and " =¢&.(t) for telt", t"'H) (20)

as functions that are piecewise constant with respect to ¢t. Our main analytical results can informally
be summarized as follows.

Main result. Scheme 1 has the following properties.

1. A certain class of single-interface data is invariant and allows for both standing and left-moving
interfaces.



2. The functions p™ from (19) converges as ¢ — 0 via (20) in a strong sense to a limit function
po that depends continuously on both t and x. Moreover, the limit of the interface positions £"
is a mon-increasing function &y in the variable t.

3. The triple (uo, po, &) with ug = po + sgu(- — &o) is the unique solution to a simplified version
of the hysteretic free boundary problem (5)+(6)+(7). In particular, the linear bulk diffusion

atpO(ta l') = aip()(ta SL’) fOT’ x 7& €O(t)7 (21)
is satisfied at least in a weak sense and the Stefan condition
2600) + [Bmnlt. =00 [Ioolt ],y =0 e
as well as the hysteretic flow rule

&o(t) <0 = polt, &) =+1, po(t, &) € (-1,1) = &) =0. (23)
hold for almost all times t.

The class of admissible data is defined at the beginning of Section 3 and requires in addition to
the essential sign conditions a constant lower and a linear upper pointwise bound on the left and
the right of the interface, respectively. In Section 2.1 we prove the invariance of these properties
under the iteration n ~» n + 1 and show that they imply the non-strict monotonicity of the interface
curve as well as a maximal value for the modulus of its negative speed. In particular, the interface
never propagates into the &-phase but can arbitrarily switch between the standing and the left-
moving mode. The extra assumptions simplify our asymptotical analysis considerably but might
be weakened for the price of more technical and notational effort. In the general case, it might be
harder to control the interface speed and one has to divide the time axis into subintervals with either
non-increasing or non-decreasing interface curve so that generalizations of our result can be applied
locally. Notice that the general version of the hysteretic flow rule in (7) predicts a minimal distance
between any two times with opposite propagation directions because in between the interface value
of p has to change from p, = —1 to p* = 41 or vice versa.

In Section 2.2 we decompose the time-discrete data p” into a regular part which describes the
linear diffusion of the initial data and a remaining part which we call fluctuations in analogy with
the terminology in [HH13, HH18]. A moving interface produces in any time step local fluctuations
that have small amplitudes, are initially localized in the vicinity of the phase interface, and spread
afterwards diffusively into the bulk. The global fluctuations are the rather huge sum of all local
fluctuations — which are created at different times in distinct places — and converge in the continuum
limit € — 0 to a continuous function which quantifies how the limit of p” deviates from a solution of
the linear diffusion equation.

In Section 3 we pass to the limit € — 0. We first split the global fluctuation into negligible and
essential ones as described in Section 3.1. The former are highly irregular but small and vanish in
the continuum limit pointwise everywhere. The latter, however, are uniform Hélder continuous with
respect to both ¢t and x and hence compact in the space of continuous functions, see Section 3.2
for the details. In Section 3.2 we justify the hysteretic free boundary problem along subsequences
but this implies also the convergence of the entire family since it has already been proven that the
hysteretic limit model admits a most one solution.

2 Properties of the scheme

In this section we collect important properties of the time discrete dynamics and start with defining
a special class of single-interface data which turns out to be invariant under Scheme 1.

Definition 2 (admissible data). We call (u”, £") an admissible single-interface state, if it has the
following properties.



1. regularity : The function u™ is continuous for z < £ and = > £".

2. jump at the interface: We have ‘[u““ = 2.

z:En

3. refined single-interface property: The pointwise estimates

—2<u(z)<0 for x<E, u(z) >0 for x>¢"
are satisfied.

4. majorant property : There exists a > 0 such that v"(z) < a(x — &™) + 2 holds for any = > £".

According to the third condition, we only permit data u™ which are greater or equal than —2 on
the left side of the interface and a easy estimation shows that this implies a™({") > —1. Thus only
the cases (LM) and (ST) can occur and the interface is not able to alter its direction of propagation.
The majorant property yields an upper bound for the interface speed in Corollary 5 and the jump
of u™ at the interface ensures the continuity of p™ which is consistent with the second part of the
Stefan condition (6).

Admissible data belong to the function space

Lx(R) := {u € Li(R) : |u(z)| < a+b|z| for some constants a, b and almost all = € R} .

and we easily show for any u € Lx(R) that @ = g. * u is well-defined, likewise an element of L (R),
and a solution to the differential equation @(z) — €2 9%a(z) = u(z). Moreover, the half-space formula

[e. o]

(z) = é sinh <w - C) /exp (—y;c> u(y) dy
Loy (<229) [t (=) w60 e (<22,
¢

holds with ¢ < z < oo for any ¢ € R and represents @ on each interval ({, co) in terms of the
respective boundary value @(¢) = lim,\ ¢ @(z). Below we employ (24) with v = «™ and either
¢ =& or ¢ = €" as well as corresponding formula for 2 < ¢ that follows by setting = — 2¢ — .

(24)

2.1 Existence of time-discrete single-interface solutions

In the subsequent two lemmas we prove that admissible single-interface data are invariant under
Scheme 1.

Lemma 3 (persistence of single-interface property). Suppose (u", ™) is admissible in the
sense of Definition 2. Then the update step in Scheme 1 is well-defined and (u”“, {”“) fulfills the
refined single-interface property.

Proof. Preliminaries : Since u” € L4x(R), the convolution with the exponentially decaying kernel g.
from (14) is well-defined. In case of —1 < @"(£™) < 1, the new interface position exists trivially via
¢l = ¢n Otherwise we have 4™(£™) > 1 and inserting the single-interface property as well as the
majorant for u™ in the convolution formula we get

+00
. 1 T—y 1 x—&"
") < — — —&"+2)dy == 2
@<y oo (T2 -+ =29 oo (225
for all z < £". Since the right hand side converges to 0 as x — —oo, both the existence and uniqueness
of £"T1 < ¢" follow from the continuity of 4" and due to the maximality condition in Scheme 1. To
establish the single-interface property of u"*! | we distinguish the following three cases.



Case x < "' For a moving interface, we insert u"(z) < 0 as well as @"(£"*1) = 1 in the
reflected variant of the half-space-formula (24) with v = u", ¢ = ¢"*1. This gives in combination
with (17) the estimate

_ ¢n+1 _ en+l
un+1(x) —_ an(x) + Sg(l’ . §n+1) < exp <H) — exp (M> =0,
€ €
which also holds for a standing interface due to @"(£") < 1. Thanks to u"(x) > —2 we also get

W (1) = () — exp <$—f“> > 24 exp (ﬂf—’i“> exp <$—€”“) _
1% 1% 1%

for both moving and standing interfaces.
Case €™ < x < €": This case is only relevant for a moving interface and @"(z) > 1 implies

_ ¢n+l
u"tH(z) > 1+ exp <—M> >1.
£

Case x > £": For a moving interface, the half-space formula (24) with v = «”, ( = £ and the
estimate @' (&™) > 1 imply

u" T (z) > exp <_:c _€§n> + exp <_x_§n+1> > 0.

3

On the other hand, for a standing interface we get

u" T (z) > —exp <_m _€§n> + exp (—x _€§n> =0

thanks to a" (&™) > —1. O

Lemma 4 (majorant property). The pair (u™*!, £"™) from Lemma 3 satisfies
u"Hz) <24« (z— f"“) .
for x> €Tl

Proof. Moving interface, "1 < x < €": We insert the pointwise upper bounds for u” into the half-
space formula (24) with u = u", ¢ = £"*! and use also @™ (£"*!) = 1. This gives

u"t(z) < é sinh <x_§n+1) /exp <—y_§n+1> (2+aly —€") dy +0+2 exp (—x_gnﬂ>
é”ﬂ

9 9

= sinh <:U_§n+l> exp <_£n_€£n+1> (24 ae)+2exp (_:ﬂ—f”“)

5
< exp (—x_fnﬂ> (sinh (a;_SnH> 2+ ae)+ 2> ,

where we computed the integral explicitly and combined the monotonicity of exp with —&" < —ux.
Exploiting the elementary estimates

exp (—n) (2 sinh () 4+ 2) < 2, exp (—n) sinh (n) <7 for all neR
with n = (z — £""!) /e we finally obtain
W (2) <24 aen=2+a(z— ")

and hence the desired estimate on a a first subinterval.

10



Mowing interface, x > £™: This time we use (24) with v = u", { = " and compute

" (z) < L sin <x - 5”) 7p (—y ‘f") (2+ay - €m) dy

€ €
—i—é exp <_x_€€n> /sinh <y—6§”> (2+aly— &) dy (25)
571
_£n n __ n 1 _n
+ a"(&") exp <—H> + exp (_W) exp (_:c ¢ ) .
€ € €

Since u"t1(£") = a™(£") + exp (—w) holds due to Scheme 1, we obtain

u"t(z) < <2+a(x —¢&") =2 exp <—x _fn>> +u" (") exp <_”“° _5n>

9

and the first part of the proof ensures "™ (") < 2+ o (€" — £€"™1). In combination we get
u" T z) <24+ a(z— ")+« (5" - 5"“) <2+« (a: - f”“)

thanks to exp (— (z —&")/e) < 1.
Standing interface, x > " = "1 In this case, formula (25) ensures

u () < <2+a(w — ")~ 2 exp (-x _fn» +@(€") exp (-‘T—fn> + exp (—‘T _fn>

and the claim follows since 4" (™) < 1 holds by construction. O

Lemma 3 and 4 imply for any admissible (u”, {”) that (u”“, {"“) is also admissible in the sense
of Definition 2 with the same value of « since the piecewise continuity of «”*! and the corresponding
jump condition at & = £"*! hold by construction. For our analysis in Section 3 we further need an
upper bound for the discrete interface speed.

Corollary 5 (interface speed). Suppose (u”, ") is a single-interface-solution. Then we have
@ 2

Oégn_§n+1é2€ )

Proof. Since (u", &™) is a single-interface-solution, the function @™ with

i(z) = 0 for x < &7,
= a(z—E")+2 foraz >

is a majorant of u" by Lemma 4. We conclude that

%exp (x_fn)(oze—i—Z) for x < &,

£

W(z) = a(x—fn)—l-%eXp(_#) (ae=2)+2 forz>¢"

is majorant for @ and obtain
én _gn—&—l > gn _gn—&—l >0
where the auxiliary position £"*! is defined by @™ (£"*+1) = 1 and satisfies
- 1
g — vt —¢ln <1+a€> < X2
2 2
The claim now follows immediately. O
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2.2 Splitting of the data and introdution of the fluctuations
For the analytical considerations in the next section it is convenient to replace u” by

'

p"i=u" —sgn(u") = u" —sgn(- — £")
since this function is continuous at x = £™. The dynamics of u™ and the single-interface property
imply
P — sgn (- — £n+1)
=gex (p" +sgn(- — &) + s (- — ") —sgn(- — &) (26)
=ge*p" —
thanks to (15) and (17). Here, the local fluctuations are given by

n

P = —ge xsgn(- — &) — s (- — ") 4 sgn(- — &M

27
= Ge* sgn(- - gn—H) — ge xsgn(- — ") 27

and represent the contributions that stem from the shift of the interface in the n'" time step from
€™ to the updated position "1 < €. We emphasize that 7" is continuous, strictly positive, and
strongly localized with

exp #) — exp (x_gn for z < ¢l
r"(x) = < exp —‘”_Sn) — exp (—ﬂ for x > &", (28)
2 — exp <‘” ‘En) — exp (—ﬂ) for Entl < <€,

see Figure 7 for an illustration. The discrete Duhamel principle combined with the initial conditions
¢ =p°=u’ —sen(--¢%), =0
implies the representation formula

M= (ge ...k ge)xp) — f1 (29)

n times

The global fluctuations are defined by

n

fr@) = @) dgex " (@) 4 (ge x - ge) = (gex...xge)xr"Mx) (30
ﬁ,—/ ﬁ/—’
n—1 times =1 n—i times

for n > 1 and collect the terms from all interface jumps in the past. Without fluctuations, equation
(26) can be regarded as an implicit scheme for the linear diffusion equation and defining the regular
part via

" i=gexq" with ¢°=p° (31)

we obtain
pn —_ qn . fn )

This decomposition is central for our asymptotic analysis and splits p™ into a term that depends
diffusively on the initial data only and a contribution of the phase interface that exhibits much less
regularity. Notice, however, that £ is not known a priori but depends in a subtle and nonlinear
way on the regular part ¢"~! as well as on all previous interface positions. In what follows we
argue that the regular part approaches a solution of the linear diffusion equation in the limit € — 0.

12



The convergence of the global fluctuations, however, is much more involved and requieres a better
understanding of the fine strucure on different spatial scales. In particular, in Section 3 we split f"
further into many negligible and one essential part. The former are very irregular but small while
the latter turns out to be uniformly bounded in some Holder space, see Figure 8 for a schematic

overview.

In a preparatory step we compare the local fluctuations ™ from (27) by a suitable scaled and

shifted version of the convolution kernel g.. More precisely, we set

n _ ¢en+l
o () ::25275 5§ g€<x—;(§”+1+§”))
n _ ¢ntl _ 1(¢n+1 n
e (PO s i e,
= n n _ 1/(en+1 n
75 _f - exp ! 2(§€ +§)> foer%(f"+1+fn)

and show that the difference to the local fluctuations is small.

A

gntl gn

Figure 7: Cartoon of the local fluctuations ™ (grey) and r7, (black).

Lemma 6 (approximation error for local fluctuations). We have

(@) = ()] < Caclri @)

forallz € R andn < N.

Proof. Lemma 5 ensures

n _ ¢en+l
o 1= il S O(ae)
€
and introducing the spatial variable y by
En +£n+1
rT=Ty T EUnY

we find that 2 = "1 and x = £" corresponds to y = —1/2 and y = +1/2, respectively.

Case |y| < % : Using Taylor expansion in (28) and (32) we get

1 1
r(z) =2 —exp <Nny_ 2Mn> — exp <_Nny_ 2Mn> = Hn +O(Nz2)

as well as

n

ress(x) = HUn €XpP ( — Hn ’y‘ ) = Un + O(u%)

13
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and this implies via

r' (‘T) — Tgss (.T)

réss ()

= O(Nn)

the desired estimate inside the interval [¢"F1) £7].
Case |y| > 3 : We compute

1) = exp (s ) (e50 (G0 ) =30 (=50) )+ ) = i exp (s I

and obtain
" (x) — risg(2) | _ |exp (5 4n) —exp (=g pn) —pm| _ O(pp) _ O0(s2)
rgss(x) Hn n, "
by using a direct Taylor argument. O

3 Compactness and convergence to the limit model

In this section we interpret the data provided by Scheme 1 as functions that are piecewise constant
with respect to the continuum time ¢ € [0, 7] and depend additionally on the space variable x € R.
More precisely, we rely on the interpolation formula (20), which involves the discrete times from (12),
and define ug, ¢, f- as piecewise constants counterparts to u”, ¢, f™ in a similar way. We further
fix a macroscopic final time 0 < T' < oo independent of € and denote by N the corresponding time
index with

Ne? <T < (N+1)&%.

The discrete time index n and the continuous time variable ¢ in formula (20) are coupled by the
relation

tene? (n+1)e%) C o, 1], (33)

but sometimes we also exploit the alternative representations

N N
pf:‘(t7 .’IJ) = Z ém(x) X[me2?, (m+1) 52)(t) ’ fg(t) = Z g X[me2, (m+1) 62)(t) )
m=0 m=0

where y; denotes as usual the characteristic function of the interval I. In order to establish uniform
estimates for the limit € — 0 we always assume

e2<T, 0<t<T, 0<n<N+1, (34)

which ensures that all terms below are well-defined, and denote by C' any generic constant that is
independent of ¢, T', and the initial data. The latter comply with the following requirements.

Assumption 7 (admissible initial data). The initial data (uini, &ni) have the following properties:

1. (Wini, &mni) is admissible in the sense of Definition 2,

/!

2. Pini = Uini — sgN(Uini) grows linearly at infinity in the sense that p{ . exists as a signed measure

with finite mass,

3. gini =0.

14



The third condition is a mere convention while the first one implies the continuity of pi,; since
Uipi 1S piecewise continuous and exhibits a jump of height 2 at the initial interface located at x = &p.
The second condition can — with a slight abuse of notation — be written as

HpﬁliHl < o0 (35)
and allows O,piy; to have jumps, see the initial data of the numerical simulations in Figure 5 for a
typical example. Thanks to (35), we are able to bound the discretization error of the regular part
explicitly in Lemma 8 but a similar convergence result holds under weaker assumptions. We also
emphasize that all other estimates derived below depend on the initial data only via the parameter
« from Definition 2, which bounds the interface speed according to Corollary 5.
We already mentioned that (31) is equivalent to an implicit time scheme for the homogeneous
diffusion equation and this implies the following convergence result.

Lemma 8 (convergence of q.). There exists a universal constant C' such that

1 )

2
lae(t, ) — qolt, ||, < € min { ﬁ} ot

where qg denotes the unique smooth solution to the initial value problem
8tQ0 = 3;%% ) QO(Oa 33') = pini(x)
with z € R and t € [0, T1.

Proof. The properties of the heat kernel and the assumptions on pj,; imply the smoothness of gg.
Moreover, in the appendix we show that

Jasty = aoe)|| = g = g v = (e b < 5 el 36)

n times n times
holds for all n > 1, where the function h. is defined below in (37). The claim is now implied by (33)
and a simple interpolation argument. O

The convergence of the interface curve follows from the upper bound for the interface speed in
Lemma 5.

Lemma 9 (compactness of interface curve). The family (§.)- is compact in L>° ([0,T]) and

sup |6 (1) — & ()] =2 0

0<t<T

holds along subsequences. Moreover, any limit function &y is Lipschitz continuous as it satisfies
: o
0=&(t) =5

for almost all t € [0, T).

Proof. The piecewise linear interpolation

N

E(t) = Z [{m + (t —me?)

m=0

£m+1 o é-m
Q= X[m &2, (m+1)e2) (1) 5
satisfies £.(0) = £.(0) = 0 as well as

é-n _ €n+1

0<E() <>

: E.(t) — ()| <& — ¢t for te [t T

thanks to "1 < ¢ and (34). Since the right hand sides are uniformly bounded by Lemma 5, all
assertions follow from the compact embedding W>°([0, T]) < C([0, T), see for instance [Brell,
Proposition 8.4 and Theorem 8.8], and the estimate & (t2) < & (1), which holds for any ¢ and all
times t1,to with 0 <t <ty <T. O
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3.1 Smallness of the negligible fluctuations

As sketched in Figure 8, we successively split off the terms fe pneg, from the global fluctuations f; and
show that these are negligible in the sense of

1/ mes [

To control the global fluctuations, we approximate the local fluctuations in the representation formula

<Cuae.

5 neg1

D

E<: E neg4
s eSS4

/

‘ Holder continuous ‘

Figure 8: The strategy of splitting the global fluctuations f.: Four times we split off negligible contributions
Je,neg, and finally obtain the essential term f; ess,

(30) in a first step by the convolution kernel g. and afterwards by the function
he(x) := Gy (52, :B) , (37)

which represents the heat kernel

Golt, z) = \/4177 exp (-i) (38)

at time ¢t = €2. More precisely, we define the first and the second essential fluctuations by

n

fe, essy (tv :U) = Z (96 *o..k gf:‘) ess(x)

=1 Y.
n—1 times

i—1 % . .
—225 5 5 (ge * ... % ge) ( ;(§z+£z—l)>,
n— H—l times

and

fercsa(t ) ;225” e neh) (o 5€+6)

n—i+1 times
n i—1 i ) )
Z 287 & E ((n—z+1)5 :E—(£Z+£z_1)>.
Here, the two time variables n and ¢ are coupled as in (33) and we already inserted the definition
(32) as well as the identify

ha*...*hE:Go(né:Q, -),
——

n times
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which follows from elementary properties of Gy. The next result ensures that the corresponding error
terms

fa,neg;1 (t) 55) = fE(t7 l’) - fa, ess1 (ta x)a fs,negz (ta 33) = fa,essl (ta -73) - fa,essz (t7 x) (39)

are in fact negligible as ¢ — 0 and relies on the key estimate

C
H(gs*...*gg)—(he*...*ha) <=, (40)
o~ end/?
n times n times
which we prove in the appendix by means of Fourier analysis.
Lemma 10 (smallness of f. neg, and fe neg,). The estimates
1fenee [l CaVTe, || feneg, |l < Care

are satisfied by the functions from (39).
Proof. Corollary 5, Lemma 6, and (33) provide

n .

| f neg, (t, @) Z ok ge)#|r' () — rig(@)| < Cace Z Je * ... % ge *‘Te% )|
%,_/ %,_/
=1 n—i times n—1i times

and this gives

1 evne, (8, )| < Caelfeemn (b )]l

since the terms r’,, are positive. Moreover, we have

Hfa,essl(t, : H Hfa negg( H + er essz )Hoo
with
Hfs,neg2(t <Ca€QZH ge k... % ge)— (he ... % he) .
n— H—l times n—i+1 times
<CO“S2Z€ i 3/2_0 52 3/2
i=1
and

er,essz(ta )H < CO&S2ZH h *...%h )
n—i+1 times

2 . - BN
Z\/T Cas;ilm

thanks to (40) and the standard estimate HGg(t, )Hoo < C't~Y/2. The sums on the right hand sides
of the last two estimates can be bounded by Riemann integrals via

< C'oz52zn: HGO((n—i+ 1)e?, )H
i=1

o0

[e.9]

<(Cuae

n

n n

1 dy 1 dy 1/2
223/2_1+/ —/5 =3 Zimg/m<2n < CVT/e
i=1 1 i=1 0
and the claim follows by combining all partial results. O
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—
—

v

th, tn,

Figure 9: Schematic illustration of the additive contributions to the essential fluctuations fe ess, (left panel)
and f- ess, (right panel) as functions of ¢ with fixed z = €. The vertical lines represents the times t" = ne? at
which the number of summands increases according to (33) and (42)+(43). In particular, f. ess, is continuous
with respect to ¢ while f; ess, exhibits many small jumps.

The essential fluctuations f ess, are piecewise constant in time and each summand exhibits a
temporal jump at any multiple of 2. We regularize the fluctuations in the third step by using
Go(t, -) instead of Go(ne?, -) but thls does not eliminate all jumps since at any multiple of €2 an
additional summand has to be taken into account due to the increase in n. In the fourth step we
therefore replace G by the regularized heat kernel

0 fort <0,
t

H.(t, z) = 2 Go(EQ,x) for 0 <t <e?, (41)
Golt, z) for t > &2,

which is continuous with respect to all z € R and all times ¢ € R. Specifically, we now consider the
fluctuations

i—1 7
feoesss (t, ) = 225 287 —¢ 5 G0< i€2+52,x—;(§i+§il)> (42)
and
1—1 7
fe essa(t, ) 22 25 5 < i£2+52,x—;(§i+£i1)> (43)

along with the error terms

fE,negg (tv .7)) = fE, esso (tv ZL‘) - fe,essg, (tv .’B), fs,neg4 (tv .T) = fe,esss (ta JJ) - fE,ess4 (t7 .%'), (44)

where n and ¢ are still coupled by (33). Notice also that f. css, is continuous with respect to ¢, see
in Figure 9 for illustration, and that the series in its definition is actually a finite sum for any fixed
t. The Holder estimate

_ v L/ _
‘HE(tQ, x2) . Hg(tl, xl)‘ < C ( |t2 tl| + |-'E2 $1| ) (45)

1118&({62,151}%+7 max{e?, t}3/4

plays an important role in subsequent analysis and holds with arbitrary exponent 0 < v < 1 for all
0 <t <ty <ooand xy,ze € R. The proof of (45) exploits the piecewise linear behavior of H.(t1, -)
for t; < % and that G from (38) satisfies analogous estimates for ¢; > £2.

Lemma 11 (smallness of f; neg, and fc neg,). We have
£z nems |l < Caes [ fenens |l < Cae

for the functions from (44).

18



Proof. Using the temporal Holder estimate

|ta — t1]

[Gotta, ) = Goter, Mo < € =i

and Corollary 5 we obtain

[ fernegs ()|, € Cae® Y |[|Go((n—i+1)e?, ) = Go(t —ie® + &% )|,
=1

n
t —ne?

2
<Cuacs )52)3/2 <

"1
Cae — < Cuac
S (n—i+1 ;Z‘“’”

and the first desired estimate follows by taking the supremum with respect to t € [0, T'|. Moreover,
(41) implies

p £ — gttt 2, 2 1 1
fe,neg, (t, ) = 2¢ Tﬁ&(t—ns + e ,x—§(§"+ +§"))

since the contributions for all indices ¢ # n + 1 vanish by construction. This implies

| /2 negs || o, < Cac® |H.|,, =Cac®Gy(? 0) < Cae/Ve2 =Cac

and completes the proof. O

3.2 Holder continuity of the essential fluctuations

It remains to establish the uniform Holder continuity of the essential fluctuations f; ess,-

Lemma 12 (Ho6lder continuity in time of f; css,). For any 0 <y < 1/2, there exist a constant
C independent of € and T such that

‘fE,eSS4(t27 .%') - fE,eSS4(t17 x)‘ < Ca |t2 - t1|’yTl/2_’Y
holds for any x € R and all 0 <t; <ty <T.

Proof. For given 0 < t; <ty < T we choose ny,ny such that t; € [n; g2, (nj +1) €2) and fix v € R
arbitrarily. Using (43) and Corollary 5 we deduce

’fa,eSS4(t27 SU) - fE,eSS4(tl7 CC)‘ S Dl +D2

with
ni+1
Dy = Cac Z H€<t2—i52—|—52, x_%(§i+§i—1)) —Hg(tl—i€2+€2, x_;(gi_i_gi—l))'
i=1
and
Dy :=C ac? ”il H (tg —ie? et — } (§i +§"71)>
. i=n1+2 ) ’ 2 7

where the sum Dy vanishes in the case of ny = no.

19



Estimate for Dy : The Holder estimate (45) implies

ni+1

DlgCowQ‘tg—th Z L

i—1 max (527 ty —ie2 + 62)7—1—1/2
<C’0452‘t2—t1‘7 1 +Z 1
= (52)’Y+§ =1 nl — i+ 1) 52)74—1/2
1 2! 1

§Ca52|tg—t1\7 +

1
<Caltp—t|" e 2”Zﬂ+l/2

SCO&HQ—thTl/Q 7,

where the last estimate follows from the Riemann sum approximation

n1 ] ni—1 d
Y 1/2—y
i=1 0

due to ny < T/e2.
Estimate for Dy: Assuming na > ng + 2 and using (41) as well as [|Go(t, )|, < C/Vt we get

N2
Dy < Cac 22025 Gy (2, ||+ Cat S ||Golta—ic? +%, )|
i=ni1+2
) na 1 no—ni1—1 1
<C <cC <C —
> a<6+6i%:+2\/m>_ [(e%5 Zz; \[ aem

atz—t|=Calta—t|" |ta—t1[ T2V < Ca ftg — t|) TV?77.
For no = ni + 1 we have
OStQ—n2€2 <ty —11 §262
and obtain the estimate

to

Dy < Cast 225 gy (2, ) < Ca 22

o]

L<Calty—t]
<Cu« ‘tz — tl"yTl/Q_v,
where the last inequality holds since T' > &2 implies (52)1_7 el =¢l=27 < T1/2
Lemma 13 (Ho6lder continuity in space of f; ess,). We have
‘fa,ess;;(t x2) - fs,es54(t7 5131)‘ < COéTl/4 V ’1'2 — 331‘
for any 0 <t < T and all x1, x2 € R.

Proof. We fix x1,x2 € R and derive

‘fa,ess;;(t x?) - fa,es54(t7 xl)‘ <D

20



with

n+1

D = Caszz

from (43) and Corollary 5, where (¢, n) satisfy (33). The Holder estimate (45) provides

(t—ze +e? 3o — %(ﬁi—kfi*l)) —H5<t—i52+52, xp— ;(fi%—fil))‘

n

1 1
DSC@\/’$1—$2‘€2< +Z 3/4>

(52)3/4 o1 (t—ie24¢e?)

" 1
SCoz\/|xlx2|51/2<1+Zg/4>

i=1 (n—2+1)

n

1
< Can/l|ry —z2 51/2/3/4dy,

Y
0

where the last estimate is a Riemann sum approximation and yields the desired result thanks to
61/2 n1/4 < T1/4. n

For later use we establish uniform estimates for the space dependence of the essential fluctuations.

Lemma 14 (boundedness and regularity of fc ess,). We have

“f576554(t7 )Hoo S CO‘\/T7 Ha fe eSS4 H2 < CaT1/4
for all t € [0, T.

Proof. First part: Using the definition of H. in (41) as well as the upper bound for the interface
speed from Corollary 5 we obtain

n+1

{fs,ess;;(t) $)} < 00“522

H5<t —ie? 4 €%, 1 — % (Ei +£i_1))'

<Caei} o ) + Ca2 Y ||Colt— i<+ )|
i=1
where n and ¢ are coupled by (33). With ||Go(t, -)||., < C/V/t we therefore get
|fae554t:c)}<0a€+0a522 1 <Cae+Cac? Z L 7

= t—252+52)1/2 B (ne? —ie?+¢2)

<Cae+Cac E —,1/2
1
i=1

and a Riemann sum approximation provides the first estimate due to ¢ < v/T.
Second part: With ||0,Go(t, -)||, < C't73/? and analogously to the first part we find

H@ fe essa(t ‘}2<Ca51/2+0a51/22 1 o

= —Cac?rCacl?
= (n—i+1) Z

Z3/4

and this yields the second desired estimate. O
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3.3 Passage to the limit

The uniform estimates from the previous sections provide via (20) the compactness of the time-
discrete data produced by Scheme 1.

Corollary 15 (compactness). There exist subsequences for e — 0 with the following properties.
1. We have & — &y in LOO([O, T]) for a limit function & € Wl’oo([O, T])

2. The function q. converges to qy € C([O, T] x R) m LOO([O, T] x ]R) and therefore pointwise
almost everywhere.

3. There exist a limit function fo € C([(), T] x R), such that f. converges pointwise almost every-
where to fo as well as in L>°(K) on every compact subset K C [0, T| x R.

In particular, we have

0
Pe = Qs — [ L q — fo=:po-

in L(K) and pointwise almost everywhere.

Proof. The first and the second statement have already been shown in Lemma 8 and 9. The claim
concerning f. follows in view of the Arzela-Ascoli theorem by combining the Holder estimates for
the essential fluctuations in Lemma 12 and 13 with the convergence of the negligible fluctuations in
Lemma 10 and 11. Finally, the convergence of p. is a direct consequence of (29) and (20). O

To characterize the dynamics of any limit along subsequences we also introduce the macroscopic
interface curve by

So={(t,2) €0, TI xR:z=&(t)}
and recall that this is the graph of a Lipschitz continuous function according to Lemma 9.

Theorem 16 (limit model along subsequences).

1. weak formulation of the PDE: We have

T T
//po (t, 2) O%p(t, ) de dt = // po(t, x)—i—sgn(m—&)( )))@(p(t x)dxdt (46)
0 0 R

for all ¢ € C2°((0, T) x R).
2. bounds for p: The function pg is continuous and satisfies
—1<po(t,z) <+1 for x<E(t), —1<po(t,z) for z=>&(t)

at any t € [0, T7.

3. hysteretic flow rule: The estimate &(t) < 0 hold for almost all t € [0, T] and we have &(t) = 0
in case of po(t, &(t)) < 1.

4. further regularity : The functions fo and py admit a weak spatial derivative in LQ([O, T] x R)
and L} ([0, T] x R), respectively.

loc

Proof. We consider convergent subsequences as in Corollary 15 and recall that

Pe = Ue — Sgn(us) = Ue — Sgn(' - fz—:) (47)
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is a direct consequence of the single-interface property and the constitutive law (9). In what follows
we adapt the argumentation of [HH13, proof of Theorem 3.16].

Part 1: We fix a test function ¢ € Cgo(((), T) x R) and suppose that € > 0 is sufficiently small
so that ¢(t, ) vanishes for 0 < t < e and T'— ¢ < ¢t < T. Combining Scheme 1 with (47) and
elementary integral transformations we find

T
//pgt x) (t—62,:c)da:dt
0

= /pg(t + €2, :c)aggp(t, x)dxdt
R

T
/
_ /T/ug(t—l-EQ, x) — ue(t, m)@(t’ o) dadt
0 R
T
O/

g2

pe(t +e%,x) — p(t, x) N sgn(z — & (t + %)) —sgn(z — &(¢))
g2 g2

o(t, z)dxdt

t, x) — go(t — 2, z)

2 dxdt,

[ [ttt )+ s - on 2
R

where the second equality is just a reformulation of the update rule v — u"*!. The pointwise
convergence of p. and & yield the weak formulation (46) in the limit € — 0 thanks to the Dominated
Convergence Theorem.

Part 2 : The continuity of pg follows from the continuity of qg and fy. From Definition 2, Lemma
47, and Assumption 7 we also infer that

—2<wus(t,z) <0 for =z <E(L), 0 <wug(t,z) for x> &(t)

hold for all admissible ¢, x, and e, so the claim now follows for any given (¢, ) ¢ Z( from the
pointwise convergence in Corollary 15 thanks to (7). For (¢, x) € Zy, we use the continuity of py.

Part 3: The function & is Lipschitz continuous and its weak derivative is non-negative by
Lemma 9. We now fix an arbitrary point (t., z.) with

0<t, <T, xye = &o(ty) polts, i) < 1

and aim to show that &y is constant on a time interval [tg, t.] of positive length since this implies
£o(ts) = 0. Without loss of generality we can assume z, < &(0) because otherwise we choose tg = 0
and are done. For any small €, we denote by 7. the largest multiple of £2 that is smaller or equal
than ¢, and observe that

T.o=6(F) % o,
follows via
|7 — 2] < [ (E:) — o (E)] + |€o(Fe) — &o(ts)] < (|6 — &l + Cae?

from the uniform convergence in Corollary 15 and the Lipschitz continuity of &. Starting in 7. we
go back to the last time update n; — n. + 1, where the interface & has moved, see Figure 10 for an
illustration. We set ¢, := (n. + 1) &? and find

v = () = ge(ts) = Pe(te, me) =1, (48)



where the second formula holds since the update rule in Scheme 1 guarantees
un€+1 (é-ng—l-l o 0) — 07 un5+1 (é-ng—‘rl + O) =9

for a left-moving interface. By passing to a not-relabeled subsequence we can assume that t. converges
as € — 0 to a time ¢y € [0, T'] and similarly to above we show

e—0

‘fe(ts) - fO(t0)| S ‘fe(ts) - fO(ta)‘ + ‘éo(te) - fO(tO)‘ EE— 0.
This implies
xg := &o(to) = 2«

thanks to our choices of tAE and t. and we conclude that the non-increasing function & is in fact
constant on the interval [to, t.]. Moreover, by (48) we get

e—0

}pO(tsa :L'E) - 1| - }po(tsa :L'g) _pg(ts, $€)| S Hpo _pEHOO — 0’
so tg # t4 follows via
po(to, Tx) =1 > p(ts, Tx)

by our assumption on t,.
Part 4 : The claim follows by standard arguments from the convergence in Corollary 15, the
uniform bounds in Lemma 14, and the regularity of gq. O

—_—

Figure 10: The justification of the flow rule in the proof of Theorem 16 uses that the interface curve &y must
be constant on certain intervals of positive length.

Remarks.

1. The pointwise convergence

e—0

ue(t, ) = pe(t, ) + sgn(ac — fe(t)) ——  polt, )+ sgn(x — §0(t)) =:ug(t, x)

ensures that ug(¢, -) exhibits for any ¢t € [0, T] a single phase interface at x = &y(¢). In
combination with the continuity of py we thus obtain

lwo(t, )|, —gy ey = 2
as well as the second part of the Stefan condition (22).
2. Both ug and pg satisfies the linear diffusion equation (21) inside the bulk since
Opuo(t, x) = Oypo(t, x) = O2po(t, x) = dug(t, x) in [0,T]xR\Zg,

holds at least in the sense of distributions according to (46).
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3. Since pg admits a weak derivative with respect to z, we also have

T
//ugt x)Opp(t, z)dedt = //&cpgt x) Opip(t, x)dadt
0

for any test function . This implies the first part of the Stefan condition (22) for any time ¢
at which all quantities are well-defined.

4. The claim in Theorem 16 implies the second part of the flow rule (23) and also the first one by
contraposition.

5. The properties of the linear diffusion and the continuity of fy provide

po(t, ©) = qolt, @) + folt, )~ pimi(e) + fo(0, ) = pimi()

for any x € R, where the initial data of f vanishing due to f:, ess, (0, ) = 0 and the convergence
results for the fluctuations. Moreover, the convergence

t—0

€o(t)

follows from the Lipschitz continuity of &g.

&ini

Theorem 17 (uniqueness). The solution of the limit model from Theorem 16 is uniquely deter-
mined for given initial data. In particular, the limit from Corollary 15 is unique and the stated
convergence holds along the whole family € — 0.

Proof. The details of the proof can be found in [HH13] and employs ideas from [Hil89] und [Vis06]. [
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Appendix

The estimates (36) and (40) compare the convolutive powers of the exponentially decaying kernel g.
from (14) with those of the heat kernel h. in (37) and rely on the following inequalities.

Lemma 18 (auxiliary result). Let A,, Ax, Bn : R — R be defined by

Ap(s) = M , Aso(s) :=exp (— 52) , By(s) :=n|An(s) — Axs(s)]| -

Then, there exist a constant C independent of n such that

Og/Bn(s)dSSC’, Og/s_QBn(s)dSSC
holds for all mn € N.
Proof. We observe that
—51° <log(1+n) <n, 0 <exp(n) —1<nexp(n) (49)

holds for all » > 0 and the upper bound in (49); provides the positivity of B, via
A, (s) = exp ( —nlog(1+n"" 32)) > exp (—5%) = Axo(s).
The lower bound in (49); implies
0<A,(s) — Axo(s) = exp ( —nln(1+ nt 82)> —exp (— 82)
< exp ( —n(nts?+in? 34)) —exp (— s?)
= exp (—52) (exp (% nt 54) — 1)

and combining this with the upper bound in (49)y we get

nl/4 nl/4
/ (1 + 372) B (s)ds < / (1 + 372) n exp (—82) (% n~! 34) exp (% n! 34) ds
0

0
< C’/(s4+32) exp (—s%)ds < C.
0

Moreover, using monotonicity arguments and the lower bound in (49); once again we find

-2 _,.3/2
/ s “Bp(s)ds < / B,(s)ds <mn / 015" ds=n / 2" dz
nl/4 nl/4 nl/4 n—1/4
3/2 3
< i / 1 dz
(1+n71/2)"—1 1+ 22
0
< Cn?? (1 +n71/2>_n = Cn®? exp ( —nln (1 —i—n*l/Q))
< Cn3? exp ( — n(n_1/2 — %n_1)> < Cn?? exp (—nl/Q)
<C.
The claim now follows due to the evenness of B,,. O
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Using Fourier transform as well as Lemma 18 and the integral subsitution s = £ /n k we obtain

(40) via
H(ga*...*gg)—(ha*...*hg) OoSCH(ga*...*gg)—(ha*...*hg) 1§C’ fq\E"—TLgL )
n t;:nes n times n t;:nes n times
:C/ ;—exp(—néjkj) dk
(14e2k2)"
c 7 c I C
SE\/ﬁ /‘An(s)_AOO(SMdSng/Q /Bn(S)dSSMB/Q-

A similar computation combined with

yields

H(gg*.

n times n times

--*ga)*Qini—(ha*---*ha)*(hni
—_——

sup k? [Gini (k)| < O]l
kER

_<¢C / |An (e Vnk) — A (e v/ k)| |Gini (k)| Ak

o0

<Clilly [ 172 Au(e Vitk) - A (e Vik)| ak

—0o0

=0Hq§£iH1% /S—QBn(sms

and hence (36).
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