
An Integrated Communication and Computing
Scheme for Wi-Fi Networks based on Generative

AI and Reinforcement Learning
Xinyang Du, Xuming Fang*

Key Laboratory of Information Coding and Transmission, Southwest Jiaotong University, Chengdu, China
xydu@my.swjtu.edu.cn, xmfang@swjtu.edu.cn

Abstract—The continuous evolution of future mobile commu-
nication systems is heading towards the integration of commu-
nication and computing, with Mobile Edge Computing (MEC)
emerging as a crucial means of implementing Artificial Intelli-
gence (AI) computation. MEC could enhance the computational
performance of wireless edge networks by offloading computing-
intensive tasks to MEC servers. However, in edge computing
scenarios, the sparse sample problem may lead to high costs of
time-consuming model training. This paper proposes an MEC
offloading decision and resource allocation solution that combines
generative AI and deep reinforcement learning (DRL) for the
communication-computing integration scenario in the 802.11ax
Wi-Fi network. Initially, the optimal offloading policy is deter-
mined by the joint use of the Generative Diffusion Model (GDM)
and the Twin Delayed DDPG (TD3) algorithm. Subsequently,
resource allocation is accomplished by using the Hungarian
algorithm. Simulation results demonstrate that the introduction
of Generative AI significantly reduces model training costs, and
the proposed solution exhibits significant reductions in system
task processing latency and total energy consumption costs.

Index Terms—mobile edge computing, reinforcement learning,
generative artificial intelligence, computing-communication inte-
gration, offloading decision

I. INTRODUCTION

With the rapid proliferation of Internet of Things (IoT)
technology, latency-sensitive applications such as autonomous
driving, video streaming analysis, virtual reality (AR/VR), and
online gaming continue to emerge. There is an increasingly
urgent demand for computing services with high speed, low
latency, and low energy consumption. Meanwhile, the expo-
nential growth of smart devices rapidly connecting to networks
generates a large amount of data. Traditional cloud computing
architectures are currently unable to achieve large-scale real-
time computing for massive front-end devices. In order to
significantly enhance the data processing of wireless edge
networks and meet the demand of users for computing service
quality, edge computing technology has emerged.

Mobile Edge Computing (MEC) enhances the computa-
tional performance of wireless edge networks by offloading
locally intensive tasks to MEC servers [1]. As a pivotal
technology for integrating communication and computing,
MEC meets critical requirements in various areas such as

The work of X. Du, and X. Fang was supported in part by the NSFC under
Grant No. 62071393. (Corresponding author: Xuming Fang.)

real-time operations, data optimization, security, and privacy
protection. Hence, it finds widespread application in scenarios
including vehicular networks, unmanned aerial vehicles, smart
cities, and virtual reality services.

In recent years, people have devoted significant research
efforts to the joint optimization of task offloading policies and
resource allocation. The work in [2] proposed a distributed al-
gorithm based on game theory, which jointly optimizes latency
and energy consumption. An MEC system architecture with
multiple access points (APs) and STAs was constructed based
on the 802.11ac standard in [3]. The work proposes a scheme
combining computing offloading and resource allocation. The
optimization problem was formulated as an integer program-
ming problem and solved using branch and bound method.
However, the above studies all assume that communication
resources can be arbitrarily partitioned, which is not applicable
to existing Wi-Fi networks. Additionally, due to the complex-
ity and variability of the transmission environment, the actual
wireless channel exhibits time-varying characteristics. The
solutions mentioned above become impractical. As a branch
of artificial intelligence (AI), reinforcement learning (RL) has
made significant contributions to decision-making problems
in the MEC field. The work in [4] introduced a resource
allocation scheme based on state-action-reward-state-action
(SARSA) algorithm to solve resource management problems
in MEC systems, aiming to minimize the weighted sum of
energy consumption and latency. However, there is an issue
of low sample efficiency in edge computing scenarios. Due
to the lack of expert datasets, deep reinforcement learning
(DRL) model typically requires extensive interaction with the
environment, leading to high computational costs and time
consumption [5].

To tackle this problem, the Generative Diffusion Model
(GDM) was proposed in [6]. As a generative AI technique,
it has the ability to capture complex data distributions and
can seamlessly integrate with other RL policies to reduce the
number of samples required and enhance RL performance
[7]. GDM utilizes a denoising network to iteratively converge
to an approximation of the true sample through a series
of estimation steps [8]. After obtaining the initial input,
GDM gradually introduces Gaussian noise through a forward
diffusion process. Subsequently, a neural network is trained

ar
X

iv
:2

40
4.

13
59

8v
1

 [
cs

.N
I]

 2
1

A
pr

 2
02

4

to predict the noise and perform reverse diffusion, thereby
completing the recovery of data and content. The work in
[9] combines the GDM model with RL algorithms to propose
the Diffusion Q-Learning algorithm. This model outperforms
traditional DRL algorithms significantly and exhibits high
scalability and flexibility, making it suitable for solving var-
ious optimization problems in wireless networks. However,
there is currently scarce literatures utilizing deep diffusion
reinforcement learning models to solve edge computing of-
floading problems.

In response to the deficiencies identified in the previous
studies, this paper proposes an optimized offloading decision
and resource allocation solution based on generative AI and
RL algorithms. The main contributions are as follows:

• In the scenario of communication-computing integra-
tion based on the 802.11ax Wi-Fi network, we have
constructed a multi-user MEC offloading decision and
resource allocation system model. Furthermore, based on
the resource allocation characteristics of Wi-Fi, we pro-
pose a resource allocation scheme utilizing the Hungarian
algorithm.

• To address the issue of sparse samples, we proposes
a task offloading decision solution based on generative
AI and DRL algorithms, named Diffusion Twin Delayed
DDPG (DTD3). The GDM is utilized as the policy net-
work for the TD3 algorithm to solve the edge computing
offloading decision problem. This approach significantly
reduces convergence time while minimizing the weighted
sum of latency and power consumption.

The rest of the paper is organized as follows. In Section II,
we present the system model, including wireless transmission
model, computing model, and formulate the optimization
problem. In Section III, we describe the detailed design of
the proposed solution based on generative AI and RL. Section
IV elaborates on the performance evaluation of the proposed
solution. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL

A. Network Model
We construct an MEC edge-end architecture based on

802.11ax Wi-Fi, as illustrated in Fig. 1. The scenario in-
cludes a single AP and multiple STAs. The MEC edge
servers are deployed in the AP side, equipped with certain
communication, computing, and storage capabilities, with the
CPU computing power of MEC far exceeding that of STAs.
Assuming there are a total of L STAs in the scenario,
denoted as L = {1, 2, 3, · · · , L}, among which there are
M computing STAs and N communication STAs, denoted
as M = {1, 2, 3, · · · ,M} and N = {1, 2, 3, · · · , N} respec-
tively. Computing STAs are limited by their own power and
computing capabilities and can choose to migrate computing-
intensive tasks to MEC servers for data processing to meet the
computing needs of latency-sensitive tasks. Communication
STAs only generate uplink traffic, requiring bandwidth from
AP for data interaction, without requiring AP to allocate
computing resources.

We divide time into equal-length time slot periods, denoted
as T = {1, 2, 3, · · · , T}. In each time slot t, all STAs will gen-
erate either a communication or a computing-intensive task.
For computing STAm, only one computing-intensive task is
generated per time period, denoted as Jm ≜ (dm, cm, τm) .
dm represents the amount of data required to complete the
task, cm represents the required CPU cycles for the task,
and τm represents the constrained latency for computing-
intensive tasks. Assuming only uplink communication traf-
fic exists in the scenario, communication STAn generates
one communication task per time period, denoted as Jn ≜
(dn, τn). dn represents the size of the uplink transmission
data, τn represents the latency constraint for uplink packet
transmission. Assuming computing tasks have lower priority
than communication tasks, when both computing tasks and
communication tasks exist in the system simultaneously, and
the resources at the AP side are not sufficient to meet all
STAs’ demands, the AP prioritizes fulfilling the needs of
communication STAs.

Fig. 1. System model

B. Wireless Transmisson Model

It is assumed that AP and STAs communicate and per-
form tasks offloading using Orthogonal Frequency-Division
Multiple Access (OFDMA) in accordance with 802.11ax
protocol. In 802.11ax protocol, the spectrum resources cannot
be arbitrarily divided, and the smallest divisible granularity
is defined as Resource Unit (RU). There is a one-to-one
correspondence between STA and RU, and RU can be divided
into different specifications based on the bandwidth occupied.
When the channel bandwidth is 80MHz, RU specifications
include several sizes such as 26-tone, 52-tone, 106-tone, 242-
tone, 484-tone, and 996-tone. For computational convenience,
these different RU specifications are represented as integer
multiples of 26-tone, denoted as rl ∈ {1, 2, 4, 9, 18, 36} .

In addition, assuming there are L STAs needing to transmit
tasks, with total bandwidth Bmax at the AP, which needs to
be divided into L RUs and allocated to corresponding STAs.
We define rl as the communication resources allocated by the
AP to the STAl, where the resource vector for each STA
can be represented as R = {r1, r2, . . . , rl}. Let gl represent
the channel gain, pl is the uplink transmission power, N0 is
the noise power spectral density, and bc is the bandwidth of a
single 26-tone RU. Then, we can calculate the Signal-to-Noise
Ratio (SNR) when transmitting on the corresponding RU as:

SNRl =
plgl

N0rlbc
(1)

Based on the mapping between the receiver Received Signal
Strength Indicator (RSSI) and Modulation and Coding Scheme
(MCS) given in the protocol, we can calculate the noise power
and derive the relationship between SNR and MCS. Therefore,
based on SNRl, the size of allocated RU specifications rl , the
mapping function between RU and transmission rate and the
mapping function between SNR and the maximum selectable
MCS, the maximum achievable uplink transmission rate of
STAl can be expressed as:

Vl = V(rl,MCS(SNRl)) (2)

C. Computing Model

There are two modes of task execution: local computing
and offloading computing. In this paper, it is assumed that
computing tasks cannot be divided and can only be offloaded
as a whole. When computing locally, it is assumed that the
CPU computing capacity of the local device is flocal , and
the computing demand of the STAm is cm. Therefore, the
delay and energy consumption of local computing generated
by STAm can be respectively represented as:

T local
m =

cm
flocal

(3)

Elocal
m = 10−27 × (flocal)

2 × cm (4)

During offloaded computing, there are three steps: 1) the
STA uploads the task; 2) the AP performs the computing; and
3) the AP transmits the result back. Since the size of the result
data is much smaller compared to the task data [10], the delay
and energy consumption of this part are negligible. Assuming
that the AP allocates computing resources fm to STAm, the
data transmission rate of STAm is Vm, the amount of data for
the task is dm, and the transmission power of STAm is pm,
the delay and energy consumption of offloaded computation
generated by STAm can be expressed as:

T off
m =

cm
fm

+
dm
Vm

(5)

Eoff
m = pm

dm
Vm

(6)

Similarly, the delay and energy consumption generated by
communication STAn can be expressed as follows:

T trans
n =

dn
Vn

(7)

Etrans
n = pn

dn
Vn

(8)

The calculation of total delay and energy consumption can
be summarized as follows:

Ttotal =

M∑
m=1

amT off
m + (1− am)T local

m +

N∑
n=1

T trans
n (9)

Etotal =

M∑
n=1

amEoff
m + (1− am)Elocal

m +

N∑
n=1

Etrans
n (10)

D. Problem Formulation

Let the decision variable of STAm be am ∈ {0, 1},
where am = 0 represents local execution and am = 1 rep-
resents offloaded execution. Thus, the offloading decision
vector can be represented as A = {a1, a2, a3, · · · , aM}. The
AP communication resource allocation vector is denoted as
R = {r1, r2, · · · , rL}, and the computation resource alloca-
tion vector is denoted as F = {f1, f2, f3, · · · fM}. Consistent
with [11] and [12], the objective of this paper is to minimize
the weighted sum of system delay and energy consumption.
Therefore, the optimization problem can be expressed as:

P: minA RF (λTtotal + (1− λ)Etotal)
s.t. C1 : (1− am)T local

m + amT off
m ≤ τm,∀m ∈M

C2 : T trans
n ≤ τn,∀n ∈ N

C3 : am ∈ {0, 1},∀m ∈M
C4 :

∑
l∈L rlbc ≤ Bmax

C5 : rl ∈ {1, 2, 4, 9, 18, 36},∀l ∈ L
C6 :

∑
m∈M fm ≤ Fmax

(11)
where Bmax and Fmax respectively denote the maximum
communication and computational resources at the AP side,
while λ represents the weighting coefficient of the objective.
C1 indicates the constraint on the maximum delay for compu-
tational tasks, C2 represents the constraint on the maximum
delay for communication tasks, C3 ensures that the offloading
decision is a binary variable, C4 represents the constraint
on AP communication resources, C5 indicates the constraint
on the allocation of RU specifications, and C6 denotes the
constraint on AP computation resources.

The optimization problem P involves multiple variables,
and the presence of integer variables am and rl makes it a non-
convex integer programming problem [13], which has been
proven to be NP-Hard in [14], making it difficult to solve using
traditional optimization algorithms. Therefore, we formulate P
as a Markov Decision Processes (MDP) and utilize generative
AI and DRL to find the optimal values for offloading and
resource allocation.

III. OFFLOADING AND RESOURCE ALLOCATION SCHEME
BASED ON DTD3

A. Three Key Elements for RL

The key to solving RL problems lies in constructing the
agent and environment, which involves designing parameters
such as state, action, and reward.

• State: We define the system state space as S =
{d1, d2, d3, · · · , dL, c1, c2, c3, · · · cM , fmec}, which con-
sists of the size of the task data, the number of CPU cy-
cles required for computing, and the available computing
resources in MEC.

• Action: Considering that the offloading policy in the
system is binary, we define the action space as A =
{a1, a2, a3, · · · , aM} , where am ∈ {0, 1}.

• Reward: Considering minimizing the weighted sum of
latency and energy consumption while prioritizing com-
munication tasks to meet latency constraints, we assume

clocal represents the total cost of local computing, ctotal
denotes the total cost of computing in the current time
slot, ttransn stands for the transmission time of commu-
nication STAn, and τn represents the latency constraint
of communication task. Then we can define the reward
function as:

R =

{ clocal−ctotal

clocal
,∀ttransn ≤ τn

−1 ,∃ttransn > τn
(12)

B. DTD3 Offloading Decision Algorithm
Considering the high training cost and low efficiency of

traditional RL algorithms in edge computing scenarios, this
paper proposes a deep diffusion learning model called DTD3
to jointly solve the offloading decision problem in multi-user
edge networks. The algorithm architecture of DTD3 consists
of several components, including: policy network, twin critic
networks, target policy network, target critic network, and
experience replay buffer. Unlike traditional RL algorithms,
DTD3 uses a Diffusion Policy (DP) based on a diffusion
model as the policy network. Similar to [9], we define
k = {1, 2, 3, · · · ,K} as diffusion timestep, and the RL policy
of this solution can be represented as the inverse process of
conditional diffusion modeling:

πθ(a|s) = N (aK ; 0, I)

K∏
k=1

pθ(a
k−1|ak, s) (13)

The final sample of the reverse diffusion chain a0 is
the action provided by the model. Through the reverse
diffusion process, the model can effectively capture the
dependency between the state and the action. Generally,
pθ(a

k−1|ak, s) can be modeled as a Gaussian distribution
N (ak−1;µθ(a

k, s, k),Σθ(a
k, s, k)) and can be parameter-

ized as a noise prediction model, where αk = 1 − βk,
ᾱk =

∏k
i=1 αi, the covariance matrix is constructed as∑

θ(a
k, s, k) = βkI and mean is represented as:

µθ(a
k, s, k) =

1
√
αk

(
ak − βk√

1− αk
εθ(a

k, s, k)

)
(14)

The reverse diffusion process first samples aK ∼ N (0, I),
and then multiple steps of sampling for k = K, ..., 1 are
performed using the reverse diffusion chain parameterized by
θ:

ak−1|ak =
ak
√
αk
− βk√

αk(1− αk)
εθ(a

k, s, k) +
√
βkε (15)

where ε ∼ N (0, I). According to [15], this approach defines
the diffusion model loss as:

Ld(θ) = Eε∼N (0,I)

[
||ε− εθ

(√
αka

0 +
√
1− αkε, s, k

)
||2
]

(16)
Consistent with [9], the Q-value function is injected into

the reverse diffusion chain during training model:

Lq(θ) = −
η

E(s,a)∼D [|Qϕ(s, a)|]
· Es∼D,a0∼πθ

[Qϕ(s, a
0)]

(17)

where η is a hyperparameter used to balance the regularization
and the ability of Q-learning. Thus, the final policy function
learning objective can be represented as:

π = argπθ
min

(
Ld(θ) + Lq(θ)

)
(18)

The training process of DTD3 is presented in algorithm 1.

Algorithm 1 The training process of Diffsion TD3

Initialize policy network πθ, twin critic networks Qϕ1
, Qϕ2

and target networkπ′
θ, Q′

ϕ1
, Q′

ϕ2

for t = 1, 2, ..., T do
Select action by at ∼ πθ (at | st)
Observe rt,st+1 and store transition (st, at, rt, st+1)
Sample mini-batch B = (st, at, rt, st+1) ∼ D
y ← r(st, at) + γmini=1,2Qϕ′

i
(st+1, a

′
t+1)

Update Qϕ1
and Qϕ2

← Ea′
t∼πθ′

[
||y −Qϕi

(st, a
′
t)||2

]
Update policy network according to (18)
if t mod d then

Soft update target network: θ′ ← τθ + (1− τ)θ′

ϕ′
i ← τϕi + (1− τ)ϕ′

i, for i ∈ {1, 2}
end if

end for

C. Resource Allocation Scheme

After completing the offloading decision, the system pro-
ceeds with the allocation of computational resources to the
computing STAs. We takes into account the factors such as
the required CPU computational resources cm, task data size
dm, task latency constraint τm and the transmission capacity
of STAm capabilitym to calculate the priority of tasks. When
an STA has poorer channel condition, larger task data size,
greater CPU computational resource requirement, or stricter
latency constraint, the task demand is more challenging to
fulfill. Therefore, the system should assign a higher priority to
such STAs and allocate more computational resources to them.
We set RUreq

m = dm

τm
, freq

m = cm
τm

. capabilitym represents the
maximum MCS achievable under the current environment’s
channel conditions. Since the communication resources have
not been allocated yet, we set rm for all STAs to 1, which
means the RU specification is 26-tone. We let w1, w2 and w3

be weight parameters, and
∑3

i=1 wi = 1. Thus, the priority
calculation can be expressed as follows:

prioritym = w1
RUreq

m∑
m∈M RUreq

m
+ w2

freq
m∑

m∈M freq
m

+w3

1
capabilitym∑

m∈M
1

capabilitym

(19)

The computational resource allocation is represented as:

fm =
prioritym∑M

m=1 prioritym
× fmec (20)

Based on the resource allocation characteristics of 802.11ax
OFDMA, we consider the allocation problem of commu-
nication resources as an allocation problem of RU speci-
fications. To address this issue, this paper first determines
the combination of RU specifications used based on the

number of transmission tasks of the AP. If the number of
transmission tasks of the AP exceeds the maximum number
of RUs that the AP can allocate, the tasks are sorted based
on the calculated task priorities. RUs are allocated to tasks
with higher priority, and resource redistribution is performed
according to the computing resource allocation scheme. Tasks
with lower priority are no longer offloaded. Given the limited
bandwidth resources, the number of partitioning methods for
RU specifications is limited. First, we obtain possible RU
specification combinations based on the number of STAs and
available bandwidth. Then, we calculate the efficiency matrix
for each RU configuration combination and use the Hungarian
algorithm to determine the optimal RU allocation scheme
along with the corresponding STA transmission latency and
energy consumption. Finally, we select the RU configuration
combination that minimizes STA transmission latency and
energy consumption as the final RU allocation result.

IV. SIMULATION RESULT

We use Python 3.7 and PyTorch to build the simulation
platform and conduct algorithm training and simulation. The
algorithm model is deployed on the AP for centralized training
in this paper. Assuming the AP’s position keeps fixed, STAs
are randomly distributed within a circle around the AP with
the radius of 20m. All STAs complete computing tasks or
communication tasks transmission via OFDMA. We modeled
indoor path loss using the Keenan-Motley model. The com-
puting task latency limit for STAs is set to 80%-120% of
the latency when the task is computed locally. The compu-
tational capacities of MEC and STA are 10GHz and 1GHz,
respectively. The transmission power of STAs is 500mW. The
number of CPU cycles required for computing is uniformly
distributed between 900 Megacycles and 1100 Megacycles
[14]. The data size of computing task is uniformly distributed
between 2.4Mbits and 4Mbits, and the communication task is
between 10Mbits and 20Mbits. λ is set to 0.8.

To validate the superiority of our algorithm, we compares
the performance of the proposed DTD3 scheme with four
baseline schemes through simulations. “Local computing”
means that all computing tasks are executed locally, “Full of-
floading” stands for that all computing tasks are offloaded, and
“Random offloading” stands for that AP randomly determines
the offloading decision. The above three baselines allocate
RUs evenly among STAs. Further, “DQN” stands for that the
offloading decision is determined by DQN model, and the
RU is allocated using the Hungarian algorithm. The Quality
of Service (QoS) represents the ratio of computing tasks
satisfying the latency limit to the total number of computing
tasks, while the communication success rate represents the
ratio of communication tasks completed within the latency
limit to the total number of communication tasks. We vary
some parameters in simulation to observe the performance.

A. Scenario with Varying Computing STAs

Fig. 2 illustrates the performance of algorithms with varying
computing STAs when there are 3 communication STAs. In

Fig. 2a, the total cost increases with the increase in computing
STAs. DTD3 demonstrates outstanding performance among
all approaches. Fig. 2b indicates that due to the limited com-
puting and communication resources at the AP, the QoS de-
creases as the number of computing STAs increases. However,
under resource constraints, the QoS of DTD3 is significantly
higher than other approaches. Fig. 2c shows that even with an
increasing number of computing STAs, the communication
success rate of DTD3 remains at a high level. Similarly, the
trained DQN model can also provide offloading decisions that
meet the communication STAs’ requirements. In contrast, as
the resources of the AP cannot meet the demands of all STAs,
the communication success rate of the full offloading scheme
significantly decreases with the increase of computing STAs.

B. Scenario with Varying Capacity of MEC

Fig. 3 depicts the performance of algorithms with varying
capacity of MEC when there are 3 communication STAs
and 5 computing STAs. Fig. 3a shows that as the MEC
computing resource increases, the total cost decreases due
to the corresponding reduction in system latency and energy
consumption. In contrast, the performance trend of the local
computing policy remains relatively stable as it is independent
of MEC computing resources. DTD3 significantly outperforms
other approaches. Fig. 3b illustrates that the QoS of computing
STAs increases with the increase of the MEC computing
resource. DTD3 achieves higher QoS compared to other
approaches, particularly when MEC computing resources are
limited. Fig. 3c shows that the communication success rate
of the full offloading policy maintains around 50%, while the
random offloading policy maintains around 85%. In contrast,
the communication success rate of DTD3 and the DQN
algorithm consistently maintains at 100%.

C. Convergence Analysis

Fig. 4 shows the convergence performance of DQN, SAC
and the proposed DTD3 algorithms when there are 3 commu-
nication STAs, 10 computing STAs, and 10GHz of MEC re-
sources. The DTD3 algorithm converges around 400 episodes
with optimal convergence performance. This is attributed to
the introduced generative diffusion model, which effectively
reduces the convergence time and training cost by working
in coordination with the RL framework. In contrast, the
convergence and stability of the DQN algorithm are relatively
poor. The SAC algorithm, on the other hand, exhibits better
convergence performance than the DQN algorithm due to
the introduction of the maximum entropy mechanism, which
enhances SAC’s exploration capability and robustness.

V. CONCLUSION

In this paper, we proposes an offloading decision and
resource allocation scheme based on generative AI and DRL
for the integration of communication and computing in multi-
STAs single-AP scenarios under 802.11ax Wi-Fi networks.
We introduce diffusion models to address the sparse sam-
ple problem in edge computing scenarios and propose a

(a) (b) (c)

Fig. 2. The performance of algorithms with varying computing STAs: (a) total cost verus the number of computing STAs, (b) QoS verus the number of
computing STAs, (c) communication success rate verus the number of computing STAs

(a) (b) (c)

Fig. 3. The performance of algorithms with varying capacity of MEC: (a) total cost verus the capacity of MEC, (b) QoS verus the capacity of MEC, (c)
communication success rate verus the capacity of MEC

Fig. 4. The convergence of algorithms

communication allocation scheme more suitable for Wi-Fi
environments based on the Hungarian algorithm. Extensive
simulation results demonstrate that the proposed approach can
reduce the overall energy consumption and latency of the
system, enhance QoS, and ensure communication success rate.
Moreover, compared to traditional RL methods, this model
exhibits superior convergence performance. In the future, our
framework could be extended to multi-agent mobile edge
systems, utilizing distributed execution of RL algorithms to
improve system scalability and robustness.

REFERENCES

[1] M. Tang and V. W. S. Wong, “Deep Reinforcement Learning for Task
Offloading in Mobile Edge Computing Systems,” IEEE Trans. Mobile
Comput., vol. 21, no. 6, pp. 1985-1997, 2022.

[2] L. Yang, H. Zhang, X. Li, H. Ji, and V. C. M. Leung, “A Distributed
Computation Offloading Strategy in Small-Cell Networks Integrated
With Mobile Edge Computing,” IEEE/ACM Trans. Netw., vol. 26, no.
6, pp. 2762-2773, 2018.

[3] B. Dab, N. Aitsaadi, and R. Langar, “Joint Optimization Of Offloading
And Resource Allocation Scheme For Mobile Edge Computing,” in
Proc. IEEE WCNC, 2019, pp. 1-7.

[4] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task Offloading and Resource Allocation for Mobile Edge Computing
by Deep Reinforcement Learning Based on SARSA,” IEEE Access, vol.
8, pp. 54074-54084, 2020.

[5] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang,
and D. I. Kim, “Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133-3174, 2019.

[6] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep Unsupervised Learning using Nonequilibrium Thermodynamics,”
in Proc. ICML, 2015, pp. 2256-2265.

[7] H. Du, R. Zhang, Y. Liu, J. Wang, Y. Lin, Z. Li, D. Niyato, J. Kang,
Z. Xiong, S. Cui, A. Bo, H. Zhou, I. Dong, et al., “Beyond Deep
Reinforcement Learning: A Tutorial on Generative Diffusion Models
in Network Optimization,” CoRR, vol. abs/2308.05384, 2023.

[8] H. Du, R. Zhang, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, X.
Shen, and H. V. Poor, “Exploring Collaborative Distributed Diffusion-
Based AI-Generated Content (AIGC) in Wireless Networks,” CoRR, vol.
abs/2304.03446.99, pp. 1-8, 2023.

[9] Z. Wang, J. Huang, and M. Zhou, “Diffusion Policies as an Expressive
Policy Class for Offline Reinforcement Learning,” in Proc. ICLR, 2022.

[10] P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-Saving Offloading by
Jointly Allocating Radio and Computational Resources for Mobile Edge
Computing,” IEEE Access, vol. 5, pp. 11255-11268, 2017.

[11] W. Zhan, C. Luo, J. Wang, G. Min, and H. Duan, “Deep Reinforcement
Learning-Based Computation Offloading in Vehicular Edge Comput-
ing,” in Proc. GLOBECOM, 2019, pp. 1-6.

[12] H. Cao and J. Cai, “Distributed multiuser computation offloading for
cloudlet-based mobile cloud computing: A game-theoretic machine
learning approach,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 752-
764, 2018.

[13] N. Eshraghi and B. Liang, “Joint Offloading Decision and Resource
Allocation with Uncertain Task Computing Requirement,” in Proc. IEEE
INFOCOM, Paris, France, Apr. 2019, pp. 1414-1422.

[14] J. Li, H. Gao, T. Lv, Y. Lu, “Deep Reinforcement Learning Based
Computation Offloading and Resource Allocation for MEC,” in Proc.
IEEE WCNC, 2018, pp. 1-6.

[15] J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic
Models,” in Proc. NeurIPS, 2020, vol. 33, pp. 6840-6851.

	Introduction
	System Model
	Network Model
	Wireless Transmisson Model
	Computing Model
	Problem Formulation

	Offloading and Resource Allocation Scheme Based on DTD3
	Three Key Elements for RL
	DTD3 Offloading Decision Algorithm
	Resource Allocation Scheme

	Simulation Result
	Scenario with Varying Computing STAs
	Scenario with Varying Capacity of MEC
	Convergence Analysis

	Conclusion
	References

