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OPACITY COMPLEXITY OF AUTOMATIC SEQUENCES.

THE GENERAL CASE

JEAN-PAUL ALLOUCHE AND JIA-YAN YAO

Abstract. In this work we introduce a new notion called opacity complexity
to measure the complexity of automatic sequences. We study basic properties
of this notion, and exhibit an algorithm to compute it. As applications, we
compute the opacity complexity of some well-known automatic sequences, in-
cluding in particular constant sequences, purely periodic sequences, the Thue-
Morse sequence, the period-doubling sequence, the Golay-Shapiro(-Rudin) se-
quence, the paperfolding sequence, the Baum-Sweet sequence, the Tower of
Hanoi sequence, and so on.
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1. Introduction

We begin with some definitions and notation (see for example [11] and [1]).
Let A be a finite nonempty set. We call it an alphabet. We let #A denote the

number of elements in A. Each element of A is called a letter. We fix ε an element
not in A, called the empty word over A.

Let N = {0, 1, . . .} be the set of all natural numbers and let n ∈ N. If n = 0, we
define A0 := {ε}, and if n 6= 0, we let An denote the set of all finite sequences with
terms in A and of length n. Finally we set

A∗ :=

∞⋃

n=0

An and Â := A∗ ∪AN.

An element w in Â is called a finite word if w ∈ A∗ and an infinite word if w ∈ AN.
We let |w| denote the length of w. More precisely, we have |w| = n if w ∈ An, and
|w| = +∞ if w ∈ AN. In particular, we have |ε| = 0.

Let w = (w(n))06n<|w| ∈ A∗ and v = (v(n))06n<|v| ∈ Â be two words over A.
The concatenation or product between w and v, denoted by w ∗ v (or more simply
by wv), is again a word of length |w|+ |v| over A, defined as follows:

(w ∗ v)(n) =

{
w(n), if 0 6 n < |w|,

v(n− |w|), if |w| 6 n < |w|+ |v|.

Therefore wε = εw = w for all w ∈ A∗. Clearly (A∗, ∗) is a monoid with ε as the
identity element. By induction, we can also define the concatenation of a finite or

even an infinite number of words over A. Thus every w = (w(n))06n<|w| ∈ Â can
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be represented by a finite or an infinite product

w =

|w|−1∏

n=0

w(n) := w(0)w(1) · · · ,

and every prefix of w can be written as w[0, n] := w(0) · · ·w(n), with 0 6 n < |w|.
Let w = (w(n))06n<|w| and v = (v(n))06n<|v| be two words over A. We define

dA(w, v) = 2− inf{n : w(n) 6=v(n), 06n<min(|w|,|v|)}

if w 6= v, and dA(w, v) = 0 if w = v. Clearly dA is a metric over Â. Endowed

with this metric, Â becomes a compact metric space which contains A∗ as a dense

subset. Finally we remark that AN is a compact subspace of Â.

From now on, we fix k > 2 an integer, and Σk = {0, 1, . . . , k − 1}.

A finite k-automaton is a quadruple A = (S, i0,Σk, t) which consists of

• an alphabet S of states; one of the states, say i0, is distinguished and called
the initial state.

• a map t : S × Σk → S, called the transition function.

For all s ∈ S, put t(s, ε) = s. Then extend t over S×Σ∗
k (still denoted by t) such

that t(s, ση) := t(t(s, σ), η), for all s ∈ S and all σ, η ∈ Σ∗
k. The finite k-automaton

A also induces a map (also denoted by A ) from Σ̂k to Ŝ defined by

(A η)(m) := t(i0, η[0,m]) = t(i, η(0) · · · η(m)),

for all η ∈ Σ̂k and all m ∈ N (0 6 m < |η|).
It is useful to give a pictorial representation of A = (S, i0,Σk, t). States will be

represented by points or nodes or vertices. For all s ∈ S and all σ ∈ Σk, we link
s to t(s, σ) by a (directed) arrow, labelled σ. This arrow (also called edge) is said
of type σ and denoted by (s, σ, t(s, σ)) (i.e., treated as an element in S × Σk × S)
where s is the starting-point, σ is the label or type of the arrow, and t(s, σ) is the

endpoint. In this way, by linking sequentially all the edges together, each η ∈ Σ̂k

defines a path (noted pη) on the graph A (the path is infinite if η ∈ ΣN

k ) as follows:

pη =
(
i0, η(0), t(i0, η(0))

)(
t(i0, η(0)), η(1), t(i0, η(0)η(1))

)
· · · .(1)

In this work we only need consider paths of the above form, which begin from the
initial state. Later in the next work [2], we shall be obliged to consider more general
paths which can begin from any state.

Below we shall constantly identify A with its graph (and we use a horizontal
incident arrow to mark the initial state). Then S becomes the set of vertices and
Σk becomes the set of labels or types of arrows. When we talk of a path, we always
mean that the path is finite unless otherwise indicated.

Let r, s be two states of A = (S, i0,Σk, t). We say that s is accessible from r if
there exists σ ∈ Σ∗

k such that s = t(r, σ). So s is accessible from itself for t(s, ε) = s.
A state of A is said accessible if it is accessible from the initial state i0, and we call
A an accessible (resp. strictly accessible) automaton if every state of A is accessible
(resp. for all states r and s, r is accessible from s and vice versa). From now on,
all finite k-automata in discussion will be supposed (implicitly) accessible, and we
let AUTk denote the set of all such finite k-automata.

Fix Y a nonempty set. Let o be a map defined on S with values in Y . We shall
call the couple (A , o) = (S, i0,Σk, t, o) a finite k-automaton with output and o the
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output function of A . Just like the finite k-automaton A , this couple also induces

a map (still denoted by (A , o)) from Σ̂k to ô(S) such that

∀σ ∈ Σ̂k and ∀m ∈ N (0 6 m < |σ|), we have (A , o)(σ)(m) := o((A σ)(m)).

Often, to simplify the notation, we also let o(A σ) denote (A , o)(σ).
A sequence u = (u(n))n>0 with terms in Y will be called a k-automatic sequence

if there exists a finite k-automaton with output (A , o) = (S, i0,Σk, t, o) such that
u(0) = o(i0), and u(n) = o(t(i0, nm · · ·n0)) for all integers n > 1 with standard

k-ary expansion n =
m∑
j=0

njk
j. In this case, we also say that u is generated by

(A , o) (resp. by A if o is the identity map on S). Note that we can suppose in
addition t(i0, 0) = i0, and we call such an A an internal finite k-automaton of u.

Indeed, if u is generated by (A , o) = (S, i0,Σk, t, o) with t(i0, 0) 6= i0, then by
adding a new state i′0 to S and defining

S′ = S ∪ {i′0},

t′
∣∣
S×Σk

= t, t′(i′0, 0) = i′0, t′(i′0, σ) = t(i0, σ) (∀σ ∈ Σk \ {0}),

o′
∣∣
S
= o, o′(i′0) = o(i0),

we obtain a new finite k-automaton with output (A ′, o′) = (S′, i′0,Σk, t
′, o′), which

generates u and satisfies t′(i′0, 0) = i′0.
In what follows we shall let AUTk(u) denote the set of all internal finite k-

automata of u. By the above discussion, we have AUTk(u) 6= ∅.
Note here that in our definition of finite automata, we have not mentioned the

notion of terminal state, that the preceding definition corresponds to the classical
notion of complete (deterministic) automaton where all states are final (cf. [11]),
and that when we define the opacity of a finite automaton, we do not want to recog-
nize a language, but only consider the finite automaton as a machine (transducer)
which transforms a sequence into another one. For this point of view and related
studies, see for example [5, 7, 6].

Now we give two examples to illustrate the above definitions and notation.

Example 1. (One-state automaton) Let S = {i0}. For all σ ∈ Σk, put t(i0, σ) = i0.
The finite k-automaton Ik = (S, i0,Σk, t) is strictly accessible and generates the
constant sequence i0i0i0 · · · .

Example 2. (Identity automaton) Let S = {A,B}, i0 = A, Σ2 = {0, 1}, and
define the transition function t by t(A, 0) = A, t(B, 0) = A, t(A, 1) = B, and
t(B, 1) = B. The finite 2-automaton Aid = (S, i0,Σ2, t) is strictly accessible, and if

we define o(A) = 0 and o(B) = 1, then (Aid, o)(η) = η, for all η ∈ Σ̂2. Moreover the
2-automatic sequence generated by Aid is simply the periodic sequence ABAB · · · .

A B

0

1

0

1

Output function: o(A) = 0, o(B) = 1

Figure 1. Identity automaton Aid



4 Jean-Paul ALLOUCHE, and Jia-Yan YAO

2. Basic properties of opacity complexity

In this section, we shall introduce the notion of opacity complexity of k-automatic
sequences. We begin with the notion of opacity of finite automata. For this, we fix
Y , a nonempty set.

Definition 1. Let A = (S, i0,Σk, t) be a finite k-automaton. Define

Ωd(A ) = sup
σ∈ΣN

k

inf
o∈Y S

d(o(A σ), σ),

and call it the opacity of A attached to d, where d is a “prefixed” comparison
method (i.e., a comparison method where two elements having a long common
prefix are “close”) to measure the difference between the inputs and outputs.

Remarks. 1. The comparison method d in the definition need be indicated in
concrete problems. It is important to point out that d is crucial in the study of
opacity theory: the theory may be quite different for different d (see [21, 22]). Later
in the present work we shall discuss in detail the case where Y = Σk and d = dY ,
while in the next work [2], we shall investigate the case where Y = C and d = d2,
defined for all u ∈ CN and all σ ∈ ΣN

k by

d2(u, σ) = lim sup
N→∞

( 1

N

N−1∑

m=0

∣∣u(m)− e(σ(m))
∣∣2
)1/2

.

Here we use e(σ(m)) := e
2σ(m)π

k
i instead of σ(m) to equilibrate the elements in Σk.

Example 9 shows that the two cases may be quite different for special situations.
Indeed the opacity attached to dΣk

depends heavily on the starting homogeneous
parts of paths issued from the initial state (see Theorem 2 below), while the opacity
attached to d2 depends on simple circuits, i.e., simple cyclic paths (see [2] or [23]).

2. The opacity of A measures in a certain sense the intrinsic noise produced by
the default of A . Opacity theory of finite automata begun with M. Mendès France
in his pioneer work [17], where he considered deterministic finite automata with
inputs ± and chose as comparison method the quadratic semi-norm. It was then
generalized and developed systematically by J.-Y. Yao to more general deterministic
finite automata in [21, 22, 23] (see also [8, 10]) from the point of view of information
transmission theory.

3. The term “opacity” has quite different meanings in information theory (mainly
about security). See for example [4, 15, 3, 13, 20, 19, 16, 18] and the references
therein.

Let A = (S, i0,Σk, t) and A ′ = (S′, i′0,Σk, t
′) be two finite k-automata. We call

A ′ a factor of A (see, e.g., [14]) if there exists a surjective map λ : S → S′ such
that i′0 = λ(i0), and t′(λ(s), σ) = λ(t(s, σ)), for all s ∈ S and all σ ∈ Σk. In this
case, we call λ a k-automaton homomorphism of A , and write A ′ = λ(A ). From
Definition 1 we obtain at once

Ωd(A ) 6 sup
σ∈ΣN

k

inf
o′∈Y S′

d
(
(o′ ◦ λ)(A σ), σ

)
= Ωd(λ(A )),(2)

which means that a finite k-automaton with simpler structure has a larger opacity.
Note that the one-state k-automaton Ik, which is the finite k-automaton with the
simplest structure, is a factor of A , hence Ωd(A ) 6 Ωd(Ik), from which we deduce

Mk := sup
A ∈AUTk

Ωd(A ) = Ωd(Ik).
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Definition 2. Let A = (S, i0,Σk, t) be a finite k-automaton.

(1) We say that A is transparent if Ωd(A ) = 0.
(2) We say that A is opaque if Ωd(A ) = Mk.

Let λ be a k-automaton homomorphism of A . If λ is also injective, then its
inverse map λ−1 is a k-automaton homomorphism of λ(A ), and we call λ a k-
automaton isomorphism of A , and say that A and A ′ are isomorphic, noted
A ≃ A

′. In this case, we have Ωd(A ) = Ωd(A
′). Intuitively two finite k-automata

are isomorphic if and only if, up to the names of states, they have the same graph.
From now on, we shall always identify isomorphic finite k-automata and use, if no
confusion is possible, the same symbols A ,B, and so on, for finite k-automata and
for classes of isomorphic finite k-automata. In particular, up to isomorphism, there
exists only one one-state k-automaton Ik.

Definition 3. Let u = (u(n))n>0 be k-automatic with terms in Y . We define

Ωd(u) = sup
A ∈AUTk(u)

Ωd(A ), and ̟d(u) =
Ωd(u)

Mk
,

and call them respectively the opacity of u and the opacity complexity of u.

(1) We say that u is transparent if Ωd(u) = 0, i.e., ̟d(u) = 0;
(2) We say that u is opaque if Ωd(u) = Mk, i.e., ̟d(u) = 1.

Remark. For a given infinite word (sequence) u, there are two ways to measure
its complexity. One is based on the internal structure of u. A type example is the
subword complexity function pu(n) which counts the number of different subwords
of length n in u (see for example [1, p. 298]). The other uses external tools to
locate u in the complexity hierarchy. A typical example is the transducer degrees
introduced in [12, p. 830], which compare two infinite words w, u, and write w > u,
if u is the image of w under a sequential finite-state transducer. Our complexity
belongs to the first type, for AUTk(u) is uniquely determined by u itself. Below we
show in Theorem 1 that the sup in the definition can be achieved by a special finite
k-automaton Au, treated as a sequential finite-state transducer. However there Au

is not an external tool to compare u with the others, but a part of u to define the
complexity.

Let (A , o) = (S, i0,Σk, t, o) be a finite k-automaton with output. Two states r, s
of A are said indistinguishable if o(t(r, σ)) = o(t(s, σ)) for all σ ∈ Σ∗

k. Otherwise
we call them distinguishable. If all distinct states of A are distinguishable, then
(A , o) is called minimal.

Let (A , o) and (A ′, o′) be two finite k-automata with output. If for all η ∈
Σ∗

k, we have (A , o)(η) = (A ′, o′)(η), then we call them equivalent and write
(A , o) ≈ (A ′, o′). If in addition A ≃ A ′, then we call them isomorphic and
write (A , o) ∼= (A ′, o′). It is well known that two equivalent minimal k-automata
are isomorphic, and every finite k-automaton with output is equivalent to some
minimal k-automaton (see for example [9]). This result can be slightly specified
by the following one, which shows in a certain sense that a minimal k-automaton
is in fact the least common factor of all finite k-automata with output, which are
equivalent to it (see for example [24, Proposition 9, p. 262]).

Proposition 1. For each finite k-automaton with output (A , o), there exists a
minimal k-automaton (A ′, o′) (unique up to isomorphism) such that A ′ is a factor
of A , and (A , o) ≈ (A ′, o′).
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Let u = (u(n))n>0 be k-automatic with terms in Y . Let Au ∈ AUTk(u) denote
the common factor of all finite k-automata in AUTk(u) (whose existence is guaran-
teed by Proposition 1), called the intrinsic finite k-automaton of u (note here that it
is also the finite k-automaton in AUTk(u) with the smallest number of states). By
Proposition 1 and Formula (2), we obtain immediately the following result which
reduces the computation of the opacity complexity of k-automatic sequences to the
computation of the opacity of finite k-automata.

Theorem 1. Let u = (u(n))n>0 be k-automatic with terms in Y . Then

Ωd(u) = Ωd(Au), and ̟d(u) =
Ωd(Au)

Mk
.

Remark. As it has been indicated above, the opacity of a finite k-automaton A

measures in a certain sense the intrinsic noise produced by the default of A . So
the opacity complexity of a k-automatic sequence u measures the intrinsic noise of
its internal finite k-automaton with the simplest structure (i.e., its intrinsic finite
k-automaton Au), and describes the distortion between u and the words defined by
the k-ary expansion of n’s.

3. Computation of opacity complexity

In the section, we shall concentrate our attention on the case where Y = Σk,
and d = dΣk

. In this case, we already know how to compute the opacity of a
finite k-automaton A from the structure of the graph of A (see [22], and also [10]).
For the convenience of the potential readers, in the following we shall recall all the
needed results. To simplify the notation, we shall also let Ω(u) and ω(u) denote
respectively Ωd(u) and ωd(u). Then

Mk = Ω(Ik) = sup
σ∈ΣN

k

inf
o∈ΣS

k

d(o(Ikσ), σ) =
1

2
,

where the supremum is attained for all σ ∈ ΣN

k with σ(0) 6= σ(1).
Let A = (S, i0,Σk, t) be a finite k-automaton, and p a path on A . We shall

say that p is homogeneous if for each vertex s of p, all the arrows over p incident
into s are of the same type. Otherwise we say that p is inhomogeneous. With this
definition, we have the following result (see [22]; also see [10]).

Theorem 2. Let A = (S, i0,Σk, t) be a finite k-automaton. Then we have the
following two possibilities:

(a) A is transparent if and only if all the paths on A are homogeneous;
(b) if A is not transparent, then Ω(A ) = 1/2ℓ−1, where ℓ > 2 is the length of

the shortest inhomogeneous paths on A .

Proof. First note that from the definitions, we have

Ω(A ) = sup
η∈Σ∗

k

inf
o∈ΣS

k

d(o(A η), η).(3)

(a) Suppose that A is transparent, i.e., Ω(A ) = 0. Let p be a path on A . Then
there exists η ∈ Σ∗

k such that p = pη, where pη is the path determined by η, defined
in Formula (1). By Formula (3) and the fact that ΣS

k is finite, we can find op ∈ ΣS
k

such that op(A η) = η. Thus for each vertex s of the path p, all the arrows incident
into s over p are labelled by op(s). So p is homogeneous.
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Conversely, assume that all the paths on A are homogeneous. Take η ∈ Σ∗
k and

fix τ ∈ Σk. Then the path pη is homogeneous. For all s ∈ S, if s is not a vertex
of pη, then we set oη(s) := τ . Otherwise we assign to oη(s) the label of the arrows
incident into s over pη. Then oη ∈ ΣS

k and oη(A η) = η. So Ω(A ) = 0, and A is
transparent.

(b) If A is not transparent, it contains some inhomogeneous paths. Since A is
accessible, it suffices to show that for all η ∈ Σ∗

k with pη inhomogeneous, we have

inf
o∈ΣS

k

d(o(A η), η) = 2−h,

where h > 1 is the length of the longest homogeneous part of pη.
Write η = (η(j))06j6m. Then m > h, and we can find an integer j (0 6 j < h)

such that η(j) 6= η(h), but t(i0, η[0, j]) = t(i0, η[0, h]). So for all o ∈ ΣS
k , we have

o(t(i0, η[0, j])) 6= η(j) or o(t(i0, η[0, h])) 6= η(h),

from which we obtain d(o(A η), η) > 2−h.
To end the proof, it remains to find oη ∈ ΣS

k such that

(4) d(o(A η), η) = 2−h.

For all s ∈ S, put oη(s) := η(l) if s = t(i0, η[0, l]) for some integer l (0 6 l < h).
Otherwise put oη(s) := τ , where as above τ is a prefixed element of Σk. From the
definition of h, we deduce at once

oη(A η)[0, h− 1] = η[0, h− 1], and oη(A η)(h) 6= η(h),

and the desired equality (4) comes. �

Let A = (S, i0,Σk, t) be a finite k-automaton, and s a state of A . Since A

is supposed to be accessible, thus s must have some incident arrows. We call s
a homogeneous state of type σ (σ ∈ Σk) if over the graph of A , all the incident
arrows into s are of type σ. Otherwise we call it inhomogeneous. Note here that
inhomogeneous paths are determined by inhomogeneous states, from which we can
compute the opacity by Theorem 2.

A finite k-automaton is called homogeneous if all its states are homogeneous. The
following result tells us that transparent automata and homogeneous automata are
tightly related.

Corollary 1. Let A = (S, i0,Σk, t) be a finite k-automaton. If A is homogeneous,
then it is transparent. The converse also holds if A is strictly accessible.

Proof. The first part comes directly from Theorem 2. Indeed we can do better. For
all s ∈ S, since s is homogeneous, we let o(s) denote the type of s. Thus we obtain
o ∈ ΣS

k such that o(A σ) = σ, for all σ ∈ Σ∗
k.

Now assume that the finite automaton A is transparent and strictly accessible.
Let s ∈ S. If (s1, σ1, s) and (s2, σ2, s) are edges of A , by the strict accessibility, we
can find a path p on A which contains these two edges. But A is transparent, so
p is homogeneous, and then σ1 = σ2, i.e., s is homogeneous. �

Likewise we also have the following characterization of opaque automata.

Corollary 2. A finite k-automaton A = (S, i0,Σk, t) is opaque if and only if there
exist σ1, σ2 ∈ Σk such that σ1 6= σ2, and t(i0, σ1) = t(i0, σ1σ2).

Proof. It suffices to apply Theorem 2.(b) with ℓ = 2. �
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Remark. Let u = (u(n))n>0 be a sequence generated by a finite k-automaton
without output or with injective output function. Then by Corollary 2, we obtain
that u is opaque if and only there exist σ1, σ2 ∈ Σk such that σ1 6= σ2, and
u(σ1) = u(σ1k + σ2). See Example 5 and Example 11.

4. Some examples

In the section, we compute the opacity of some classical automatic sequences.

Example 3. (constants)The one-state automaton is the intrinsic finite k-automaton
of all constant sequences. Thus all constant sequences are opaque. Indeed they lose
all the information of the words defined by the k-ary expansion of n’s.

Example 4. (2-periodic) The identity automaton is the intrinsic finite 2-automaton
of purely 2-periodic sequences. This automaton is homogeneous, hence all purely
2-periodic sequences are transparent.

Example 5. (Thue-Morse) The Thue-Morse sequence (u(n))n>0 in {0, 1} satisfies

u(0) = 0, u(2n) = u(n), and u(2n+ 1) = 1− u(n) (n > 0).

Its intrinsic finite 2-automaton is given by Figure 2 (see for example [1, p. 174]).

A B

0

1

1

0

Output function: o(A) = 0, o(B) = 1

Figure 2. Thue-Morse Automaton Atm

By Corollary 2, the Thue-Morse sequence is opaque, for t(A, 1) = B = t(A, 10).
This result also comes from the Remark after Corollary 2, since u(1) = u(2).

Example 6. (Period-doubling) For all integers n > 0, define

u(n) = v2(n+ 1) (mod 2),

where v2(n+1) is the greatest integer r > 0 such that 2r divides n+1. Then we call
upd = (u(n))n>0 the period-doubling sequence, whose intrinsic finite 2-automaton
is given by Figure 3 (see for example [1, p. 176]).

A B

0

1

0, 1

Output function: o(A) = 0, o(B) = 1

Figure 3. Period-doubling automaton Apd



Opacity complexity of automatic sequences 9

The initial state A is the only inhomogeneous state of Apd. Thus by Theorem 2, we
have Ω(Apd) = 1/4 (the shortest inhomogeneous path is given by σ = 011), thus
the opacity complexity of the period-doubling sequence equals 1/2.

Example 7. (Golay-Shapiro) The Golay-Shapiro(-Rudin) sequence (u(n))n>0 sat-
isfies (for all integers n > 0)

u(0) = 1, u(2n) = u(n), u(4n+ 1) = u(n), and u(4n+ 3) = −u(2n+ 1).

Its intrinsic finite 2-automaton is given in Figure 4 (see for example [1, p. 154]).

A B C D

0

1

0

1

1

0

1

0

Output function: o(A) = o(B) = 1, o(C) = o(D) = −1.

Figure 4. Golay-Shapiro(-Rudin) automaton Agsr

The 2-automaton in Figure 4 is homogeneous, hence by Corollary 1, the Golay-
Shapiro(-Rudin) sequence is transparent.

Example 8. (Paperfolding) The paperfolding sequence (u(n))n>0 satisfies

u(2n) = 1, and u(2n(2m+ 1)) = (−1)m (∀n,m > 0).

Its intrinsic finite 2-automaton is given by Figure 5 (see for example [1, p. 156]).

A B

D C

0

1

0

0 1

1 1

0

Output function: o(A) = o(B) = 1, o(C) = o(D) = −1.

Figure 5. Paperfolding automaton Apf

The 2-automaton in Figure 5 is homogeneous. Hence, by Corollary 1, the paper-
folding sequence is transparent.
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Example 9. (Baum-Sweet) The Baum-Sweet sequence (u(n))n>0 satisfies

u(0) = 1, u(2n+ 1) = u(n), u(4n) = u(n), and u(4n+ 2) = 0 (n > 0).

Its intrinsic finite 2-automaton is given in Figure 6 (see for example [1, p. 157]).

A B C D

0

1

1

0

1

0

0, 1

Output function: o(A) = o(B) = 1, o(C) = o(D) = 0.

Figure 6. Baum-Sweet automaton Abs

The inhomogeneous states of Abs are B and D. Hence by Theorem 2, we have
Ω(Abs) = 1/4 (the shortest inhomogeneous path is given by σ = 100), thus the
opacity complexity of the Baum-Sweet sequence equals 1/2. It is worthy to point out
here that the Baum-Sweet sequence is opaque for the opacity complexity attached
to d2 (see [2]). As we have already indicated above, this is due to the fact that the
theory of opacity complexity heavily relies on the prefixed comparison method.

Example 10. (Tower of Hanoi) The Tower of Hanoi sequence is a sequence on
6 symbols, obtained from the classical Hanoi puzzle, with “an infinite number of
disks”. Its intrinsic finite 2-automaton is given in Figure 7 (see for example [1,
p. 181]).

A B C

D E F

0

0

0

1

1

1

1

0

0

0
1 1

Output function: o(A) = a, o(B) = a, o(C) = c,

o(D) = c, o(E) = b, o(F ) = b.

Figure 7. Tower of Hanoi Automaton Ath
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The inhomogeneous states of Ath are A, C, and E. Hence by Theorem 2, we have
Ω(Ath) = 1/4 (the shortest inhomogeneous path is given by σ = 011), thus the
opacity complexity of the the Tower of Hanoi sequence equals 1/2.

Example 11. (A 3-automatic sequence) An example of 3-automatic sequences,
similar to the Thue-Morse sequence, is the sequence (z(n))n>0 defined by: z(n) is
the sum, reduced modulo 3, of the ternary digits of the integer n. Its intrinsic finite
3-automaton is given in Figure 8.

A B

C

0 0

0

1

2

1

2
1 2

Output function: o(A) = 0, o(B) = 1, o(C) = 2.

Figure 8. Ternary sum of digits modulo 3 Automaton Ater

By Corollary 2, this 3-automatic sequence is opaque, for t(A, 1) = B = t(B, 10),
just as for the Thue-Morse sequence. This result also comes from the Remark after
Corollary 2, since z(1) = z(2).

5. Further study

In the work in preparation [2], we shall continue our above study to consider
opacity complexity attached to the comparison method d2, and discuss its various
properties.

Acknowledgments. Jia-Yan Yao would like to thank heartily the National Nat-
ural Science Foundation of China (Grants No. 12231013 and No. 11871295) for
partial financial support.
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[15] S. Lafortune, F. Lin, C. N. Hadjicostis, On the history of diagnosability and opacity in

discrete event systems. Annu. Rev. Control 45 (2018), 257–266.
[16] X. Li, C. N. Hadjicostis, and Z. Li, Reduced-complexity verification for K-step and infinite-

step opacity in discrete event systems. (2023), https://arxiv.org/abs/2310.11825.
[17] M. Mendès France, Opacity of an automaton. Application to the inhomogeneous Ising chain.

Comm. Math. Phys. 139 (1991), 341–352.
[18] G. Viliam, P. Dominika, and S. Alexander, State complexity of binary coded regular languages.

Theoret. Comput. Sci. 990 (2024), Paper no. 114399.
[19] A. Wintenberg, M. Blischke, S. Lafortune, and N. Ozay, A general language-based framework

for specifying and verifying notions of opacity. Discrete Event Dyn. Syst. 32 (2022), 253–289.
[20] J. Yang, W. Deng, D. Qiu, and C. Jiang, Opacity of networked discrete event systems. Inform.

Sci. 543 (2021), 328–344.
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